Introduction

Mastering Complexity in the Future Internet

Top-down approach:

* Process-driven (incl. service composition) and MDD approaches to master
complexity and enterprise-scale change:
o model/build once -> use many times by many service consumers

Bottom-up approach:

* User-driven composition, Mashup
approach for small-scale:
o build once -> use once

Some Service-oriented Approaches

Jini

Jini is a technology for building service oriented architectures
§ Written in Java
§ Uses RMI and Java Object Serialization

§ Offers network plug and play of services (java objects)

0SGi (Open Service Gateway Initiative)

A Java framework for developing (remotely) deployed service applications
§ Portable byte code (independent of OS or CPU architecture)
§ Security integrated in the language

§ Excellent model for the myriad of customizations and variations that are
required for today’s devices

UPNP (Universal Plug and Play)
supports Devices and Control Points
§ A device may have multiple Services (e.g. TV ControlService, PictureService)

Enterprise Application Integration (EAI)
§ One of the main challenges in IT

§ Applications shall be integrated to work together

§ Communication via messages (neutral message format)
=> Message Oriented Middleware (MOM)

§ passing of data between applications using a common communication channel
that carries self-contained messages

§ messages sent and received asynchronously

Integration Brokers are used to
§ transform,
§ store & route messages (point-to-point or publish/subscribe)
§ apply business rules &
§ respond to events.
Web Services vs. EAI? (http://www.ebizqg.net/topics/eai/features/1555.html)
§ Web services are made up of a set of standard

§ EAI groups together a set of methods, technologies and tools (not exclusively
based on standards)

§ Web services and EAI are two fully complementary notions: each enriches the
other, but they are not mutually exclusive, since Web services can be seen as a technical
means of implementing loosely coupled EAL

§ Web services: self-contained Software Entities which are published, discovered,
and invoked on the Internet. XML-based languages -> LOOSE COUPLING OF SYSTEMS

§ Virtualization of Resources

§ Agile development through service composition
What is a Service?

§ Standardized interface

§ Self-contained with no dependencies to other services

§ Little integration need

§ Coarse-grained (complex service) or fine-grained (simple service)

§ Context-independent (-> loosely coupled)

§ Can be stateful or stateless

§ Quality of Service(QoS)Attributes which can be measured
Software Services vs Real-world services

§ Software Services equivalent to real-world services

§ Software services should align with business functions/real-world services
§ Service properties apply to software services too

What is SOA?
§ Architectural style of software design

§ Guides all aspects of creating and using services
§ Mainparadigms: loose coupling, dynamic, binding, high interoperability
§ Basic Architecture: publish/find/bind

Roles in SOA:

Types of (Web) Services:

§ Informational services: services of relatively simple nature (provide content or
expose back-end business applications)

§ Complex service: involve the assembly & invocation of many preexisting
services possibly found in diverse enterprises to complete a multi-step business
interaction

Two programming styles for services

§ synchronous or remote procedure call (RPC)-style: method call with a set of
arguments (Simple informational services, e.g., returning the current price for a given
stock)

§ asynchronous or message (document)-style: typically sends an entire document
(Business processes, e.g., a purchase order)

Well-definedness of web services:

The Web Services Description Language (WSDL) allows applications to describe to other
applications the rules for interfacing and interacting

Service interface:

§ defines service functionality visible to the external world and provides the
means to access this functionality (operations available, the parameters, data-typing and
the access protocols)

§ realized by service implementation (using any programming language - hidden
to service consumer)

Service Level Agreement (SLA):

formal agreement (contract) between a provider and client formalizing the details of use
of a Web service

Technical Benefits of Services:
§ Efficient development
§ More reuse
§ Simplified maintenance
§ Incremental adoption (allows step-by-step migration)
Business Benefits of Services:
§ Agility
§ Reduced integration costs (loose coupling, platform independence)
§ Reduced dependency on technolog and vendors

WEB SERVICES
§ ONE possible implementation technology for SOA (abstract architectural
concept -> Web Service - one approach to realization)

§ machine-to-machine interaction
§ interface described in machine-processable format (WSDL)
§ interaction using SOAP-mesages (conveyed using HTTP with XML serialization)

§ Core standards (SOAP, WSDL, UDDI) describe basic parts of Web service

platform
WSDL
Specification

“uDD!I

Core Web Service
Architecture:

Service
Requestor

Requirements

Web Service Stack (Framework):

BPEL4WS WS-CDL
58
=9 L
o = B . o
B WS-Reliable . WS-Transaction Quality of
go Messaging MR WS-Coordination rvice
52
g
za WSDL WS-Policy Description
aa
-

SOAP, WS-Addressing Messaging
TCP/IP, HTTP, SMTP, FTP, ... Transport

SOAP (Simple Object Access Protocol) - see chapter ,SOAP“:

XML-based messaging protocol to exchange messages between computers (using
HTTP)

WSDL (Web Services Description Language) - see chapter , WSDL“:
§ XML vocabulary to describe Web services

UDDI (Universal Description, Discovery and Integration) - see chapter
»Metadata/UDDI":

§ Flexible directory/registry service for Web services
Summary:
Web Services are self-contained, modular applications that can be
§ Described: WSDL
§ Published: to UDDI
§ Found: in UDDI
§ Bound: using SOAP
§ Invoked: using SOAP
§ Composed: Orchestration (e.g. BPEL)
Extended Specifications:
§ WS-Addressing

§ Interoperable, transport-independent way of identifying message
senders and receivers

§ WS-Policy

§ Define constraints, conditions, service-level assurances and
requirements
§ Attach these policies to WS-PolicyAttachment

§ various others: WS-MetaDataExchange, WS-Security, WS-Reliable Messaging,
WS-Coordination, WS-Transaction, WS-CDL

§ BPEL (Business Process Execution Language for Web Services)

§ Provides orchestration for Web services
§ Definition and execution of business processes
§ Allows the recursive creation of larger Web services from smaller ones

SOAP (Simple Object Access Protocol)

Simple enveloping mechanism
Processing model for messages
Optional data model and encoding

Extensibility scheme

w W W W WwWn

Binding mechanism for transport protocols
§ Attachment of non-XML encoded information

To address the problem of overcoming proprietary systems running on
heterogeneous infrastructures, Web services rely on SOAP, an XML-based
communication protocol for exchanging messages between computers regardless
of their operating systems or programming environment

Uses XML as an encoding scheme for request and response parameters
Uses HTTP as a means for transport
= standard messaging protocol used by Web services

SOAP covers the following four main areas

§ A message format for one-way communication describing how a message can
be packed into an XML document

§ A description of how a SOAP message should be transported using HTTP (for
Web based interaction) or SMTP (for e-mail based interaction)

§ Asetofrules that must be followed when processing a SOAP message and a simple
classification of the entities involved in processing a SOAP message.

§ Aset of conventions on how to turn an RPC call into a SOAP message and back.

Message Format

Optional header
§ Specifies additional handling

§ Used by extension protocols,
e.g. WS-ReliableMessaging, WS-SecuritySOAP Envelope

Mandatory body
§ Message payload or business information

<env:Envelope
xmlns:env="http://www.w3.0rg/2003/05/socap-envelope">

<env:Header>
<h:SomeHeader xmlns:h="Some-URI">
<h:Value>2</h:Value>
</h:SomeHeader>
</env:Header> Header

<env:Body>
<f:CallFunction xmlns:f="Some-URI">
<f:Parameter>5</f:Parameter>
</f:CallFunction>
</env:Body> Body

</env:Envelope>

Nodes and Roles
Nodes send and/or receive SOAP messages
Three Types: § Initial sender § Intermediaries § Ultimate receiver

A role is an URI defining what parts of a message a node processes
Node can act in different roles

Message Processing
§ Header block may target node by specifying role
§ Norole specified — targeted at ultimate receiver

§ Node may process header block if targeted
§ Attribute ,mustUnderstand“ — block must be processed

§ Block targeted at node must be removed
§ May be reinserted (unchanged/modified) if processed
§ Attribute ,relay“ — must be forwarded if not processed

§ Body is always targeted at ultimate receiver, but may be changed by intermediaries

<env:Envelope xmlns:env="{soap-org}/soap-envelope">

<env:Header>

<p:oneBlock xmlns:p="http://example.com" .
env:role="{soap-org}/soap-envelope/next">

</p:oneBlock>

<g:anotherBlock xmlns:g="http://example.con"
env:role="{soap-org}/soap-envelope/next"
env:mustUnderstand="true"> -

-

| </g:anotherBlock>

<r:yetanotherBlock xmlns:r="http://example ,com"
env:role="{soap-org}/scap-envelope/next" env:relay="true">

</r:yetanotherBlock>
</env:Header>

<env:Body>
{Changed Body-Content}
</env:Body>

</env:Envelope>

Interaction Styles
Synchronicity of request and response does not depend on interaction style!

Document literal
§ Body contains business document
§ Response (if any) contains another document

Example (SOAP message containing PurchaseOrder document):

<env:Envelope xmlns:env="{soap-org}/soap-envelope">
<env:Body>
<m:PurchaseOrder xmlns:m="http://example.com">
<m:Item>XYZ 1138</m:Item>
<m:Quantity>42</m:Quantity>
</m:PurchaseOrder>
</env:Body>
</env:Envelope>

Remote procedure call
§ Body contains procedure call (name, input parameters)
§ Response contains return value, output parameters

Example (SOAP message for call to orderGoods method):

orderGoods (String productItem, Number quantity)

<env:Envelope xmlns:env="{soap-org}/soap-envelope">
<env:Body>
<m:orderGoods
env:encodingStyle="{soap-org}/soap-encoding"

xmlns:m="http://example.com">

<m:productItem>XYZ 1138</m:productItem>
<m:quantity>42</m:quantity>
</m:orderGoods>

</env:Body>
</env:Envelope>

Extensibility
Definition of features (e.g. reliability, security, message exchange patterns)

SOAP provides one-way communication => more advanced message exchange
patterns (MEP) can be specified as feature

Binding: how to pass SOAP messages using an underlying protocol (valid for a single
hop between nodes) -> HTTP binding uses URI adressing

SOAP Attachments: sending binary data Base64 encoded (en-/decoding is time
consuming!)

=>SOAP MTOM and XOP

MOTM (Message Transmission Optimization Mechanism) specifies an abstract
feature for optimizing Base64-encoded data

XOP (XML-binary Optimized Packaging) specifies use of MIME for binary parts

Advantages/Disadvantages

PRO CON

SOAP hides implementation technolgy § Too muchreliance on HTTP

XML-based § Statelessness

§ Serialization by value and not by

Platform independent
reference

Relatively simple

W3C Standard

wn wn wn wn wn wn

Lots of vendor support

WSDL (Web Service Description Language)

§ XML vocabulary to describe Web services
§ Highly extensible and adaptable

§ Two parts:
§ Abstract: operational behavior (“what?”)
§ Concrete: binding, service (“how?”, “where?”)

Scenarios

§ Service description for clients
§ Describes published service
§ Abstract and concrete parts

§ Description of standard service for implementers
§ Describes standard for service
§ Abstract part only

Concepts
Extensibility

Multiple Type Systems

Messaging and RPC

Separation abstract - concrete parts
Multiple protocols and transports

No ordering

w W W W W W

No semantics

Problems and Limitations of WSDL 1.1
§ Messages
§ No variable number of items
§ No choice of alternative message parts

§ Original idea: use also other type systems in addition to XML Schema
— Functionality equivalent to XML Schema required

§ SOAP binding
§ Operation styles and encodings problematic
§ Original idea: bridge message-oriented and RPC-oriented descriptions

§ Services
§ Lack clarity w.r.t. granularity (coarse/fine grained)
§ No guidelines for grouping — interoperability problems

§ Solution: WSDL 2.0

WSDL 1.1 Language Structure

= Abstract Part

= Types

= Operational behavior = Contains data type
(“What?”) definitions

= Plays role of interface * Normally XML Schema
definition language = Extensibility may be used

to support other type
= Concrete Part systems
= Bindings (“How?") = Message

* Mapping of abstract o = Contains multiple parts
descriptions to concrete Operations

= Each part is associated

protocols with a type
= Services (“Where?”) .
Ports = Example: RPC — parts are
providers
= B|nd|ng = Port type " Op:l'atI;)n
= Defines message = Named set of abstract " Seto abstra.act messages
format and protocol operations » Fqur_ transmission
details for a port type primitives:
n 0peration Abstract -> = One-way
* Binding information for __ Concrete zzl‘i‘:ii:s’ez:zse
corresponding cit-resp
operation in port type = Service = Notification
. = Predefined bindings only
= Port Group of ports) support the first two
. . = Do not communicate
" Individual endpoint = Ports are alternatives
= Single address « Protocol
= Distance
WSDL 2.0

Simpler to use

Better specified, more additional features

§ Main differences:
§ Elimination of message construct
§ More Message exchange patterns
§ Interface extensions
§ Flexible include/import concept
§ Features and properties

WSDL 2.0 Language = Syntactic changes:

Structure = Root: description
instead of
definitions

+ No message construc

= Interfaces replace port

types

= Endpoints replace

ports

Web Service Composition

...creating new processes/applications
§ Combine and link existing Web services
§ Services to be combined can be:
§ Atomic
§ Composed (recursive composition)

Types of composition
Static: services to be composed are decided at design time

Dynamic: services to be composed are decided at runtime

Orchestration vs. Choreography
Often used interchangeably, overlap somewhat

Orchestration

§ Compose Web services for business processes

§ Define composite services

§ Reuse of existing Web services

§ Composition in the “part-of” sense
Choreography

§ Compose Web services for business collaboration

§ Peer-to-peer model

§ Define how multiple parties collaborate

§ Composition in the “sequencing” sense

Difference:
____Private Process ____ __ Public Process ____
1 U] 1
* N .
i Business A ol i Business B
1 1 3
s Send | | Receive
A» Transform = . >
From ERP, Pol - PO Request ! °o
| i :
| Receive | | | Send PO
1) 1
\ FOfck i1 PO Acknowledgement Ll Ack
| Nl f
L Transform [+ Receive PO | Send PO
1
ToERP | Response: ! PO Response I:Response
1 o '
g g Sy g S 1

Choreography — The observable public exchange of messages
Orchestration — A private executable business process

Process-based
§ Compositions are treated like Workflows

Requirements driven

§ Compositions are generated out of detailed requirement specifications'
documents

Al-based
§ Compositions are defined through “reasoning-engines”

Orchestration (BPEL)
§ Centralized cooperation of services

Choreography (WS-CDL)
§ Decentralized federation of services

Event-based federation (WS-Eventing)
§ Event-based approach applied to SOA

Process-oriented composition language
Definition of concrete and abstract processes

Mainly intended for orchestration

w W W wWn

Relies on WSDL

§ Process can be exposed as WSDL-defined service

§ Included services expected to be defined as WSDL port types

§ BPEL processes interact with the services through the WSDLs they
expose

Basic component: activity
§ Primitive activities
§ Structured activities
§ Prescribe the order in which a set of activities is executed

Partners
§ Actors that are external to the process and with which the process needs to interact
§ They can offer to and use services offered by the process

§ They are defined by their services
§ Specified through WSDL

Types of Processes

Abstract processes

§ Describe externally visible interactions

§ Do not necessarily expose internal business logic

§ Used for external interface for business partners e.g.
Concrete/executable processes

§ External protocol and internal business logic

§ Implementation of business processes

WS-CDL (Choreography Description Language)

§ Declarative language for defining interaction patterns (not executable)
§ Specifies interactions in B2B scenarios

§ Intended to complement WS-BPEL with global definitions for message exchange

Transactions

§ Mechanism for ensuring that all participants in an application achieve a mutually
agreed outcome

§ Fundamental concept in distributed systems

§ Two-phase commit (2PC)
§ Phase 1: prepare
§ Phase 2: commit

§ Requires locking of resources

Transaction Properties (ACID)
§ Atomicity
§ Transaction completes successfully: all actions happen
§ Transaction completes unsuccessfully: no actions happen

§ Consistency
§ Consistent results are produced
§ Correct transformation of application states at completion

§ Isolation
§ Intermediate states invisible to other transactions

§ Durability
§ Changes are maintained after successful completion

Transactions for Web services
§ Needed for transactions spanning multiple execution environments

§ Additional difficulties:
§ Loose coupling
§ Distributed across independent systems
§ Heterogeneity
§ Longruntimes

=> ACID properties not always possible
=> Coordination required

Long-Running Transactions
§ Composed of multiple short-time sub-activities

§ Sub-activities are committed on completion

§ Incase of an error (rollback):
§ Previously committed sub-activities are compensated

§ Compensation is application-specific

§ Limitations
§ Does not guarantee isolation
§ Effects of committed sub-activities are visible to other applications
§ Handling of errors during compensation

Coordination

Participants - A contributor to an activity

Final outcome of an activity must be consistently agreed to between all of its
participants

§ Coordination types & -protocols are used for this
Agreement on the outcome is mediated by a Coordinator

Protocol defines exchange of messages (including their order) between a participant
and coordinator

WS-Coordination

Defines protocols and services for:
§ Activating coordination
§ Providing a context to identify operations as part of an activity
§ Allowing registration of interest in participating in the activity outcome

§ Selecting a coordination protocol to be performed at completion of the
activity

WS-AtomicTransaction
§ Handles short-lived activities

§ Satisfies ACID properties

§ Application initiates completion by calling Commit or Rollback on the coordination
service

§ Coordinator performs 2-phase commit protocol
§ Sends Prepare to all participants
§ Ifall answer with Prepared, sends Commit
§ If one participant answers with Aborted, sends Rollback to all others
§ Expects Committed or Aborted from all participants

WS-BusinessActivity
§ Handles long-lived activities

§ Participant must be able to compensate activity

§ Once finished, participant sends Completed to coordinator

§ If complete activity is completed, coordinator sends Close to participants,
which answer with Closed

§ On error, coordinator sends Compensate, answered by Compensated

§ Can be combined with Atomic Transactions (e.g. busines activity includes several
atomic transactions)

Other Web-Standards (WS-I, REST)

WS-l (Web Service Interoperability)
,Meta“ Web Standards

Main goals:
§ Clarifying ambiguities in existing standards
§ Define best practices
§ ‘Ban’ certain aspects which are known to cause troubles

WS-I Basic Profile (WS-1 BP):
§ Main outcome of WS-I

§ Small subset of WS features, which are expected to be interoperable among any
(compliant) platform and WS middleware

WS-I Basic Security Profile (WS-I BSP)

§ Similar to WS-BP but focuses on interoperability of Security solutions

REST (Representational State Transfer)
...basic architecture of the WWW and an architectural style for distributed systems

§ Resource-Orientation
§ Key elements of any RESTful system are resources

§ Activities are not explicitly modelled
=> Resources are represented in a MIME type (e.g., text/html, text/plain,

image/jpeg, ...)

§ Statelessness

§ Everyrequestis self-contained
=>HTTP

§ Uniform Interface

§ Everyresource is accessed through the same interface
=> HTTP interface (GET / POST / PUT / HEAD / DELETE)

§ Naming
§ Everyresource is associated with an unique and descriptive name
=> Every resource is identified by a URI
=> URIs should be descriptive

§ Layering
§ Intermediaries can be inserted transparently
=> HTTP works over caches, proxies, gateways, routers...

From REST to RESTful Web Services

Create Web services that are in line with the Web => Create Web services according to
the REST principles

XML
..prevalently used for resource representation

§ Other possibilities:
§ JSON (in conjunction with AJAX)

§ HTML
§ Plain text
§
SOAP REST
SOAP vs REST
INVOKE ——[Activity 1] - GET >
Client INVOKE —» Client : :OUSTY :: Resource
INVOKE ——»- Activity 3 4 DELETE ———»
SOAP Services Model REST Services Model
ACTIVITIES DATA

e.g., a bank transaction e.g., a lyrics database

SOAP Vs

Main focus:
§ SOA
§ EAI

§ Supports different protocol bindings

§ WS-*stack supports enterprise
features

§ Cover everything (and introduce
extensibility to cover everything else)

Mashups

REST

§ Main focus:
§ Web2.0

§ Simple usage, ad-hoc
§ Light-weight

§ Letengineers figure out thdetails on
demand

§ Aggregate content from more than one source
§ Public Web Service APIs (flickr.com, maps.google.com, ...)
§ Data feeds from other providers (google search, news feeds, ...)
§ User-provided information (wikipedia)

§ Lightweight programming effort

§ Numerous toolkits (mostly based on JavaScript and HTML)

§ Interactive Web Application
§ Ad-hoc composition

Architecture

JSON (JavaScript Object Notation)

§ isa lightweight data-interchangeformat

HTTP/XML

HTTP/JSON

HTTP/RSS/ATOM

Web Service
APls

§ easy for humans to read and write § easy for machines to parse and generate

§ Based on a subset of the JavaScript Programming Language

§ A collection of name/value pairs OR an ordered list of values

RSS (Rich Site Summary)
a family of Web feed formats used to publish frequently updated works(blogs, news,
headlines, audio and video)

ATOM
Alternative to RSS, because RSS had to remain backward compatible -> advantage in
fresh design

Service Mashups
Widespread use of RESTful Web services

§ Strongly influences traditional business process environments

§ Evolve from general Services like Google Search to specialized Services like Twitter,
Facebook or Amazon Web services

Metadata and Discovery

Web Service Metadata
Data types and structures for messages

Message exchange patterns

§

§

§ Addressing information for endpoints

§ Required extended features (security, reliability, transactions, etc.)
§

Quality of service attributes

Web Service Metadata Technologies
§ XML Schema
§ Defining data types

§ WSDL
§ Defining messages, message exchange patterns, interfaces, endpoints

§ WS-Addressing
§ Defining Web service endpoint references

§ WS-Policy
§ Declaring assertions for quality of service requirements (reliability, security,
transactions, etc.)

§ UDDI
§ Registry/repository for storing/retrieving metadata

§ WS-MetadataExchange
§ Dynamic exchange of metadata

§ Flexible directory service/registry for Web services
§ Services described using WSDL and accessed using SOAP
§ Original vision: public directory (UBR - Universal Business Registry)
§ Companies register provided Web services
§ Other companies dynamically discover and use these

§ Not (yet) fully realized -> Meanwhile: intra-enterprise directories
Most Web services used are internal or shared between business
partners / UDDI successful as private/semi-private registry

Changes in V3:

§ Improved security support
§ Support for public and private registries

..Addressing mechanism for Web services

Correct delivery to appropriate destination/service endpoint required
=> SOAP does not specify addressing mechanism

§ Specifies:
§ Structure and contents of endpoint references
§ SOAP headers used for encoding addressing information

§ Transport protocol independent
Endpoint References

§ Maps to at most one WSDL port
§ Multiple endpoints can map to the same port

§ WHSDL: functional description
§ Policies: nonfunctional service behavior (e.g. QoS attributes)

=> Changes to policy do not require change of WSDL description
Basic Structure: Assertion (expresses a single behavior)

Vocabulary is the set of all assertions (thus the behavior of the policy)
Capabilities:

§ Grammar for expressing alternatives and composition
§ Merging of multiple policies (= merging of vocabularies)
§ Intersection of policies (determine compatibility between policies)

Policies can be reused since they are completely separated from subject.

WS-MetadataExchange

§ WSDL interface for exchanging metadata
§ designed to support extensibilty and redirection
§ supports different metadata dialects

Research Challenges
Self-Healing, Trust and Reputation, Service Management, Service Engineering, ...

