Technische Universität Wien
Fakultät für Informatik
Assist. Prof. Florian Zuleger
Assist. Prof. Georg Weissenbacher
Yulia Demyanova, Mag.
Moritz Sinn, M.Sc.; Ivan Radiček, M.Sc.

SS 2015 Exercise 5 23rd May 2015

Exercises on Semantics of Programming Languages

Solutions are to be handed in at the lecture on June 8. Later submissions will not be accepted.

Exercise 1 Length of a List

(6 Points)

We encode lists in the untyped λ -calculus (without numbers and booleans) as follows:

- We model the list H::T with head H and tail T by the lambda term $\lambda xy.xHT$.
- The empty list nil is defined as $\lambda xy.y.$

Write a λ -term that calculates the length of a list, i.e., give a λ term for the function

len =
$$\lambda \ell$$
. IF ISNIL ℓ THEN $\underline{0}$ ELSE SUCC (len (TAIL ℓ))).

Hints:

- Use the lambda-terms from the lecture for the numbers (the Church numerals $\underline{0}$, $\underline{1}$, $\underline{2}$, ...).
- Define appropriate lambda-terms for the functions IF-THEN-ELSE, ISNIL, SUCC and TAIL.
- You will need to use the fixed-point λ -term $\Theta := (\lambda xy.y(xxy))(\lambda xy.y(xxy))$.
- Execute your lambda term for len on an empty and on a list with length two.

Exercise 2 Pair and list in simply-typed λ -calculus

(7 Points)

Extend the syntax, the evaluation and typing rules of the simply-typed λ -calculus for the following constructs.

a) **Pair**. Introduce:

- a new term pair, written $\langle t_1, t_2 \rangle$
- two new *projection* terms, written t.1 for the projection of t to its first argument and t.2 for the projection of t to its second argument
- a new type constructor $\tau_1 \times \tau_2$, called the *product* of τ_1 and τ_2 .

The semantics of the i-th projection term is to return the i-th element of the pair.

Example. The following program evaluates to 8: (1,0).1 + (2,3).2 + (4,1).1

a) List. Introduce:

- The following terms:
 - * The empty list $nil[\tau]$.
 - * The list $constructor\ cons[\tau]\ t_1\ t_2$. The list is formed by adding a new element t_1 of type τ to the front of a list t_2 of type $List\ \tau$.
 - * The head of a list $head[\tau]$ t, which returns the first element of the list t.
 - * The tail of a list $tail[\tau]$ t, which returns the list containing the elements of the list t starting from the second one.
 - * The *emptiness* test for lists $isnil[\tau]$ t a boolean predicate, which yields tt if the list t is the empty list.
- The type constructor List τ . For every type τ , the type List τ describes finitelength lists whose elements are drawn from τ .

Example. Let k be the list cons[int] 1 (cons[int] 2 (cons[int] 3 nil[int]). The following program calculates the sum of the elements of k, i.e., evaluates to 6:

$$(fix \ \lambda f: (List \ \tau \to int) \to (List \ \tau \to int). \lambda \ell: (List \ \tau \to int).$$
 if isnil[int] ℓ then 0 else head[int] ℓ + f (tail[int] ℓ)) k

Exercise 3 Progress and preservation properties

(7 Points)

For the simply-typed λ -calculus prove the following properties. You can choose which function application semantics to use (call-by-name, call-by-value, or you can prove for both):

- Progress property: Suppose M is a closed term and $M : \sigma$. Then either:
 - M is a value
 - or $M \to N$ for some N
- Preservation property: If $\Gamma \vdash M : \sigma$ and $M \to N$ then $\Gamma \vdash N : \sigma$.

Hints:

- The progress property is proved by induction on the structure of the typing judgment $\Gamma \vdash M : \sigma$.
- The preservation property is proved by induction on the structure of the term M. You are allowed to use the substitution property without proof:

Substitution property: $\Gamma, x : \sigma_1 \vdash M : \sigma_2 \text{ and } \Gamma \vdash N : \sigma_1 \text{ implies } \Gamma \vdash M[\![N/x]\!] : \sigma_2.$