
Lecture Notes Numerical Computation

J.M. Melenk, M. Faustmann, K. Sturm

Institute of Analysis und Scientific Computing
TU Wien

WS 2023/24

Contents

1 Polynomial Interpolation 2
1.1 Existence and uniqueness of the polynomial interpolation problem 2
1.2 Neville scheme . 4
1.3 Newton representation (CSE) . 7
1.4 Extrapolation as a prime application of the Neville scheme 11
1.5 A simple error estimate . 11

1.5.1 Interpolation vs. approximation . 15
1.6 Chebyshev interpolation . 17

1.6.1 Uniform point distribution . 17
1.6.2 Chebyshev points . 17
1.6.3 Error bounds for Lagrange interpolation 23

1.7 Remarks on Hermite interpolation . 26
1.8 Splines (CSE) . 27

1.8.1 Piecewise linear approximation . 27
1.8.2 The classical cubic spline . 28
1.8.3 Remarks on splines . 30

1.9 Trigonometric interpolation and FFT (CSE) . 32
1.9.1 Trigonometric interpolation . 32
1.9.2 Fast Fourier transform (FFT) . 35
1.9.3 Properties of the DFT . 38
1.9.4 Application: fast convolution of sequence 40

2 Numerical Integration 43
2.1 Newton-Cotes formulas . 44
2.2 Romberg extrapolation . 47
2.3 Non-smooth integrands and adaptivity . 49
2.4 Gaussian quadrature . 50

2.4.1 Legendre polynomials Ln as orthogonal polynomials 50
2.4.2 Gaussian quadrature . 53

2.5 Comments on the trapezoidal rule . 55
2.6 Quadrature in 2D . 56

2.6.1 Quadrature on squares . 56
2.6.2 Quadrature on triangles . 57
2.6.3 Further comments . 57

2.7 Comments on Gaussian quadrature (CSE) . 58
2.7.1 Gaussian quadrature with weights . 60

3 Conditioning and Error Analysis 61
3.1 Error measures . 61
3.2 Conditioning . 61
3.3 Stability of algorithms . 62

i

4 Gaussian Elimination 65
4.1 Lower and upper triangular matrices . 65
4.2 Classical Gaussian elimination . 67

4.2.1 Interpretation of Gaussian elimination as an LU -factorization 68
4.3 LU -factorization . 70

4.3.1 Crout’s algorithm for computing LU -factorization 70
4.3.2 banded matrices . 73
4.3.3 Cholesky-factorization . 74
4.3.4 Skyline matrices . 74

4.4 Gaussian elimination with pivoting . 75
4.4.1 Motivation . 75
4.4.2 Algorithms . 76
4.4.3 Numerical difficulties: choice of the pivoting strategy 78

4.5 Condition number of a matrix A . 78
4.6 Fill-in and ordering strategies (CSE) . 80

4.6.1 Fill-in for SPD matrices . 80
4.6.2 Standard ordering strategies . 83

4.7 QR-factorization . 86
4.7.1 Orthogonal matrices . 86
4.7.2 QR-factorization . 87
4.7.3 Householder reflections (CSE) . 88
4.7.4 QR-factorization with pivoting (CSE) . 92
4.7.5 Givens rotations (CSE) . 92

5 Least Squares 96
5.1 Method of the normal equations . 96
5.2 Least squares using QR-factorizations . 97

5.2.1 Solving least squares problems with QR-factorization 97
5.3 Underdetermined systems . 98

5.3.1 SVD . 99
5.3.2 Finding the minimum norm solution using the SVD 100
5.3.3 Solution of the least squares problem with the SVD 100
5.3.4 Further properties of the SVD . 100
5.3.5 The Moore-Penrose Pseudoinverse (CSE) 101
5.3.6 Further remarks . 103

6 Nonlinear Equations and Newton’s Method 104
6.1 Newton’s method in 1D . 104
6.2 Convergence of fixed point iterations . 105
6.3 Newton’s method in higher dimensions . 107
6.4 Implementation aspects of Newton methods . 108
6.5 Damped and globalized Newton methods . 109

6.5.1 Damped Newton method . 109
6.5.2 A digression: descent methods . 110
6.5.3 Globalized Newton method as a descent method 110

6.6 Gauss-Newton . 112

ii

6.7 Quasi-Newton methods (CSE) . 113
6.7.1 Broyden method . 113

6.8 Unconstrained minimization problems (CSE) . 115
6.8.1 Gradient method with quadratic cost function 115
6.8.2 Trust region methods . 117

7 Eigenvalue Problems 119
7.1 The power method . 119
7.2 Inverse Iteration . 121
7.3 Stopping Criteria . 123
7.4 Orthogonal Iteration (CSE) . 124
7.5 Basic QR-algorithm (CSE) . 125
7.6 Improvements for the QR-algorithm (CSE) . 126

7.6.1 Hessenberg form . 126
7.6.2 Deflation . 127
7.6.3 QR-algorithm with shift . 128
7.6.4 further comments on QR . 131
7.6.5 real matrices . 131

8 Iterative solution of linear systems (CSE) 132
8.1 Conjugate Gradient method . 133

8.1.1 The CG algorithm . 135
8.1.2 Convergence behavior of CG . 137

8.2 GMRES . 138
8.2.1 Computation of xℓ . 139
8.2.2 Realization of the GMRES method . 139

9 Numerical Methods for ODEs (CSE) 144
9.1 The explicit Euler method . 144
9.2 The implicit Euler method . 146
9.3 Runge-Kutta methods . 146

9.3.1 Explicit Runge-Kutta methods . 147
9.3.2 implicit Runge-Kutta methods . 149
9.3.3 Why implicit methods? . 150
9.3.4 The concept of A-stability . 152

9.4 Boundary value problems - Shooting methods 156

A Notations and facts from other lectures 159
A.1 Function spaces . 159
A.2 Norms and inner products . 159
A.3 Linear algebra notations . 161

A.3.1 Linear combinations, basis . 161
A.3.2 The Gram-Schmidt process . 161
A.3.3 Matrix notations . 162

A.4 Further notations . 162
A.4.1 The O(·)-notation . 162

A.5 Polynomial approximation . 162

iii

Introduction

The aim of this lecture is to give an overview of common elementary numerical methods. The
goal of numerical methods is to approximately solve mathematical problems on computers
(which oftentimes come from applications in physics, engineering, etc.) that have no known
closed form solution.
Hereby, some key questions should be answered before implementing a method:

• Does the method produce a solution (i.e. convergence), is the solution the one I want
(uniqueness).

• How accurate is my approximation and is the method efficient?

In this lecture, these questions are mathematically discussed and answered for problems in
interpolation, numerical integration, solution of linear systems and nonlinear equations, com-
putation of eigenvalues and solution of differential equations.

The lecture is especially designed for the master studies Computational Science and Engineering
(CSE) and Technical Informatics/Visual Computing at TU Wien.

The lecture notes assume that the reader is familiar with the following topics:

• basic calculus, convergence of sequences

• vector spaces, integration and differentiation in more variables,

• matrices, linear systems of equations, eigenvalues,

• ordinary differential equations.

For an overview of some of these topics, we refer the appendix of this document and to the
lecture notes for the course Applied Mathematics Foundations by Markus Faustmann (down-
loadable at https://www.tuwien.at/mg/asc/faustmann/lehre/skripten).

More examples and numerical tests including plots can be found on slides, which are as sup-
plementary material for the course also uploaded to the corresponding TUWEL course.

This is version 3 of the lecture notes, written during the winter term 2024.

1

1 Polynomial Interpolation

The idea of polynomial interpolation is to find an easy function (here: a polynomial or a
trigonometric polynomial) that matches some given data points exactly. As the data may come
from real applications (e.g. measurements), the representation of it by an easy function can be
used to make further calculations or predictions.

goal: given pairs of points xi (also called knots) and values fi, i = 0, . . . , n,

find p ∈ Pn s.t. p(xi) = fi, i = 0, . . . , n. (1.1)

applications (examples):

• “Extrapolation”: oftentimes the data is provided as function evaluations fi = f(xi)
for an (unknown) function f . Using polynomial interpolation gives a p such that p(x)
approximates f(x) on the unknown values x ̸∈ {x0, . . . , xn}.

• “Dense output/plotting of f”, if only the values fi = f(xi) are given (or, e.g., function
evaluations are too expensive).

• “Approximation of f”: if the function f is available, but e.g. integration/differentiation
is too expensive: measure f at data points → find the polynomial interpolation p →
integrate or differentiate the interpolating polynomial p.

1.1 Existence and uniqueness of the polynomial interpo-

lation problem

We first discuss, whether the problem (1.1) is uniquely solvable, i.e., if there is exactly one
polynomial of degree ≤ n that satisfies the conditions. In order to do so, we introduce a useful
basis for the space Pn of polynomials of degree ≤ n.

Definition 1.1 (Lagrange polynomial) Let the n + 1 points xi, i = 0, . . . , n with xi ̸= xj,
i ̸= j be given. Then, the Lagrange polynomials (ℓi)

n
i=0 w.r.t. the points (xi)

n
i=0 are given by

ℓi(x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

.

By definition, there holds

• ℓi ∈ Pn for all i = 0, . . . , n;

• ℓi(xj) = δij, i.e., ℓi(xi) = 1 and ℓi(xj) = 0 for j ̸= i.

This directly implies that the (ℓi)
n
i=0 are n+1 linearly independent functions in Pn. As dimPn =

n+1, they also form a basis of Pn. By definition of a basis, any p ∈ Pn can thus be written as

p(x) =
n∑

i=0

piℓi(x).

2

Now, if p should solve the interpolation problem, the coefficients pi can be determined by the
conditions p(xi) = fi. As ℓi(xj) = δij, we calculate

fj = p(xj) =
n∑

i=0

piℓi(xj) = pj.

We summarize this in the following theorem, that also takes care of uniqueness.

Theorem 1.2 (Lagrange interpolation) Let the points xi, i = 0, . . . , n, be distinct. Then
there exists, for all values (fi)

n
i=0 ⊂ R, a unique interpolating polynomial p ∈ Pn. It is given by

p(x) =
n∑

i=0

fiℓi(x), ℓi(x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

. (1.2)

Proof: Uniqueness: Let p1, p2 ∈ Pn be two interpolating polynomials. Then, the difference
p := p1 − p2 is a polynomial of degree n with (at least) n + 1 zeros. A mathematical theorem
(“fundamental theorem of algebra”) states that a non-zero polynomial of (exact) degree n has
exactly n zeros (counting multiplicity). Hence, p ≡ 0, i.e., p1 = p2. 2

Example 1.3 The polynomial p ∈ P2 interpolating the data

(x0, y0) = (0, 0), (x1, y1) =
(π
4
,

√
2

2

)
, (x2, y2) =

(π
2
, 1
)

is given by

p(x) = 0 · ℓ0(x) +
√
2

2
· ℓ1(x) + 1 · ℓ2(x),

ℓ0(x) =
(x− π/4)(x− π/2)

(0− π/4)(0− π/2)
= 1− (1.909...)x+ (0.8105...)x2,

ℓ1(x) =
(x− 0)(x− π/2)

(π/4− 0)(π/4− π/2)
= (2.546...)x− (1.62...)x2

ℓ2(x) =
(x− 0)(x− π/4)

(π/2− 0)(π/2− π/4)
= −(0.636...)x+ (0.81...)x2.

That is, p(x) = (1.164...)x− (0.3357...)x2

In fact the given data points fi are function evaluations of the function f(x) = sin(x), i.e.,
fi = sin(xi). As we have computed the interpolation polynomial, we can now easily obtain
approximations to

• f ′(0) = 1 by f ′(0) ≈ p′(0) = 1.164...;

•
∫ π/2

0
f(x) dx = 1 by

∫ π/2

0
p(x) dx = 1.00232....

3

2 0 2 4 6

7

6

5

4

3

2

1

0

1

(x0, y0)
(x1, y1)

(x2, y2)

interpolation polynomial
sin(x)

Figure 1.1: The interpolation polynomial p(x) = y0ℓ0(x) + y1ℓ1(x) + y2ℓ2(x) from the previous
example.

finis 1.DS

1.2 Neville scheme

It is not efficient to evaluate the interpolating polynomial p(x) at a point x based on (1.2)
since it involves many (redundant) multiplications when evaluating the ℓi. Traditionally, an
interpolating polynomial is evaluated at a point x with the aid of the Neville scheme.

The main idea of the Neville scheme is that the interpolating polynomial pn in n + 1 knots
can be constructed from certain interpolation polynomials of degree n − 1. Denote by p0,n−1

the interpolating polynomial for the pairs (xi, fi) with i = 0, . . . , n − 1 and by p1,n−1 the
interpolating polynomial for the pairs (xi, fi) with i = 1, . . . , n. Then, the function

π(x) = α(x− xn)p0,n−1(x) + β(x− x0)p1,n−1(x)

with α, β ∈ R is a polynomial of degree n. In order for it to satisfy the interpolation condition,
we calculate

π(x0) = α(x0 − xn)p0,n−1(x0) = α(x0 − xn)f0
!
= f0

π(xn) = β(xn − x0)p1,n−1(xn) = β(xn − x0)fn
!
= fn

Thus, α = −β = − 1
xn−x0

and the polynomial

π(x) =
(x− x0)p1,n−1(x)− (x− xn)p0,n−1(x)

xn − x0

4

satisfies for j = 1, . . . , n− 1

π(xj) =
(xj − x0)fj − (xj − xn)fj

xn − x0

= fj.

Thus, π solves the polynomial interpolation problem and by uniqueness is the solution we are
looking for. Now, the same concepts can be applied for the polynomials p0,n−1, p1,n−1, i.e.,
they can be expressed by some interpolation polynomials of degree n − 1 and so on. This
motivates the following theorem, which is shown with the exact same calculations/ideas as
above (exercise!).

Theorem 1.4 Let x0, . . . , xn, be distinct knots and let fi, i = 0, . . . n, be the corresponding
values. Denote by pj,m ∈ Pm the solution of

find p ∈ Pm, s.t. p(xk) = fk for k = j, j + 1, . . . , j +m. (1.3)

Then, there hold the recursions:

pj,0 = fj, j = 0, . . . , n (1.4)

pj,m(x) =
(x−xj)pj+1,m−1(x)−(x−xj+m)pj,m−1(x)

xj+m−xj
m ≥ 1 (1.5)

The solution p of (1.1) is p(x) = p0,n(x).

Theorem 1.4 shows that evaluating p at x can be realized with the following scheme:

x0 f0 =: p0,0(x) −→ p0,1(x) −→ p0,2(x) −→ . . . −→ p0,n(x) = p(x)

↗ ↗
... ↗

x1 f1 =: p1,0(x) −→ p1,1(x)
...

↗
...

...

x2 f2 =: p2,0(x)
...

...
...

...
...

...
...

...
...

...
... −→ pn−2,2(x)

...
...

...
... ↗

...
...

... −→ pn−1,1(x)
...

...
... ↗

xn fn =: pn,0(x)

J here, the operation “
−→
↗ ” is realized by formula (1.5) K

slide 1 - Neville scheme example

Exercise 1.5 Formulate explicitly the algorithm that computes (in a 2-dimensional array) the
values pi,j. How many multiplications (in dependence on n) are needed? (It suffices to state α
in the complexity bound O(nα).)

5

Algorithm 1 (Aitken-Neville Scheme)

1: % Input: knot vector x ∈ Rn+1, vector f ∈ Rn+1

2: % Output: p(x), p solves (1.1)

3: for m = 1 : n do
4: for j = 0 : n−m do ▷ array has triangular form
5: fj :=

(x−xj) fj+1−(x−xj+m) fj
xj+m−xj

6: end for
7: end for
8: return f0

The scheme computes the values “column by column”. If merely the last value p(x) is required,
then one can be more memory efficient by overwriting the given vector of data:

Remark 1.6 • Cost of Alg. 1: O(n2) arithmetic operations.

• The knots xi need not be sorted.

• The Neville scheme, i.e., the algorithm formulated in Exercise 1.5 is particularly con-
venient, if additional data points are added at a later time: one merely appends one
additional row at the bottom.

6

1.3 Newton representation (CSE)

The cost of evaluating the interpolating polynomial p at a single point x is O(n2). If the
interpolating polynomial has to be evaluated in many points x (e.g., for plotting), then it is
of interest to reduce the cost (i.e., number of floating point operations) from O(n2) to O(n)
per evaluation point x. The “classical” way to achieve this is with the Horner scheme, which
actually works in a different polynomial basis.

Definition 1.7 The Newton polynomials ωj, j = 0, . . . , n, w.r.t. the knots x0, x1, . . . , xn,
are defined by

ωj(x) :=

j−1∏
i=0

(x− xi).

Note: an empty product is defined to be 1.

Written explicitly they read as

1, (x− x0), (x− x0)(x− x1), . . . , (x− x0)(x− x1) · · · (x− xn−1). (1.6)

These polynomials form a basis of Pn. That is, for every polynomial p(x) of degree n there are
coefficients d0, . . . , dn, such that

p(x) = d0 · 1 + d1(x− x0) + d2(x− x0)(x− x1) + d3(x− x0)(x− x1)(x− x2)

+ . . . + dn(x− x0)(x− x1) · · · (x− xn−1). (1.7)

Example A particular case is x0 = x1 = · · · = xn−1. Then, the representation (1.7) of p is the
Taylor polynomial (around x0). 2

Once the coefficients di are available, the polynomial p(x) can be evaluated very efficiently by
rearranging (1.7) as follows:

p(x) = d0 + d1(x− x0) + d2(x− x0)(x− x1) + . . .+ dn(x− x0)(x− x1) · · · (x− xn−1) =

= d0 + (x− x0)

[
d1 + (x− x1)

[
d2 + (x− x2)

[
. . .
[
dn−1 + (x− xn−1)[dn]

]
. . .
]]]

This procedure is formalized in the following “Horner scheme”:

Algorithm 2 (Horner scheme)

1: % Input: knots xi, coefficients di, evaluation point x

2: % Output: p(x) =
n∑

j=0

dj ωj(x)

3: y := dn
4: for j = (n− 1) : −1 : 0 do
5: y = dj + (x− xj)y
6: end for
7: return y

7

Remark 1.8 The computational cost of the method is:

• O(n2) to compute the coefficients dj (→ see below);

• O(n) to evaluate p(x) using Algorithm 2.

⇒ Horner scheme is useful, if p is evaluated at “many” points x.
The Horner scheme is particularly economical on multiplications. Thus, the Horner scheme is
useful in situations where multiplications are expensive. An example is the evaluation of matrix
polynomials p(A) =

∑n
i=0 aiA

i, since the multiplication of two N × N matrices A, B costs
O(N3) floating point operations.

Example 1.9 (Conversion of binary numbers into decimal numbers) The binary number 1011binary
means 1 · 20 + 1 · 21 + 0 · 22 + 1 · 23. With x = 2, we have to evaluate a polynomial at x = 2,
which can be done efficiently with the Horner scheme.

We now answer the question how to determine the coefficients di in (1.7) for given data

(x0, f0), (x1, f1), . . . , (xn, fn).

This is achieved by using successively the interpolation conditions:

x = x0 in (1.7)
f0 = p(x0) = d0 (1.8)

x = x1 in (1.7)
f1 = p(x1) = d0 + d1(x1 − x0) = f0 + d1(x1 − x0)

⇒ d1 =
f1 − f0
x1 − x0

(1.9)

x = x2 in (1.7)

f2 = p(x2) = d0 + d1(x2 − x0) + d2(x2 − x0)(x2 − x1)

= f0 +
f1 − f0
x1 − x0

(x2 − x0) + d2(x2 − x0)(x2 − x1)

Rearranging yields

f2 − f1 + f1 − f0 −
f1 − f0
x1 − x0

(x2 − x0) = d2(x2 − x0)(x2 − x1)

⇐⇒ f2 − f1
x2 − x1

+
(f1 − f0)(x1 − x0)

(x1 − x0)(x2 − x1)
− (f1 − f0)(x2 − x0)

(x1 − x0)(x2 − x1)
= d2(x2 − x0)

⇐⇒ f2 − f1
x2 − x1

− (f1 − f0)(x0 − x1) + (f1 − f0)(x2 − x0)

(x1 − x0)(x2 − x1)
= d2(x2 − x0)

⇐⇒ f2 − f1
x2 − x1

− f1 − f0
x1 − x0

= d2(x2 − x0)

and finally

f2−f1
x2−x1

− f1−f0
x1−x0

x2 − x0

= d2 (1.10)

...

8

(1.8), (1.9), and (1.10) suggest to define the so-called divided differences :

zeroth divided difference
f [x0] := f(x0) = f0

first divided difference

f [x0, x1] :=
f(x1)− f(x0)

x1 − x0

=
f1 − f0
x1 − x0

=
f [x1]− f [x0]

x1 − x0

second divided difference

f [x0, x1, x2] :=

f2−f1
x2−x1

− f1−f0
x1−x0

x2 − x0

=
f [x1, x2]− f [x0, x1]

x2 − x0

We recognize how the k-th divided difference should be defined:
The denominator is the difference xk−x0, the numerator is the difference between the (k−1)-th
divided difference for the knots x1, . . . , xk and the (k−1)-th divided difference for the knots
x0, x1, . . . , xk−1. Formally:

Definition 1.10 The divided differences are given by the following recursion:

f [xi] = f(xi) = fi, i = 0, 1, . . . , n,

and

f [x0, x1, . . . , xk] :=
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0

. (1.11)

The above discussion suggests that the coefficients di in (1.7) are given by the divided differ-
ences. This is indeed the case:

Theorem 1.11 Let the knots x0, . . . , xn be distinct. Then, the interpolating polynomial p has
the form

p(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) (1.12)

+ . . . + f [x0, x1, . . . , xn](x− x0) · · · (x− xn−1).

Proof: For any polynomial π ∈ Pn of the form π(x) =
∑n

i=0 aix
i we define its leading coefficient

lc(π) := an. We show with the notation of Theorem 1.4 that, for any j, k,

lc(pj,k) = f [xj, . . . , xj+k]. (1.13)

To see (1.13), we proceed by induction on k. By definition, we have pj,0 = f [xj] for all j. Let
us assume that (1.13) holds true for all k ≤ K. Then with the aid of Theorem 1.4

lc(pj,K+1)
Thm. 1.4

=
lc(pj+1,K)− lc(pj,K)

xj+(K+1) − xj

induction hyp.
=

f [xj+1, . . . , xj+1+K]− f [xj, . . . , xj+K]

xj+(K+1) − xj

Def. 1.10
= f [xj, . . . , xj+K+1].

This shows (1.13). From (1.13) we obtain the claim of the theorem (why?). 2

9

Remark 1.12 Divided differences can be interpreted as approximations to derivatives.

1. Consider the specific knots x1 = x0+h, x2 = x0+2h, x3 = x0+3h, . . . for small h. Then
we have (the ≈ becomes an equality in the limit h→ 0):

f [x0, x1] =
f1 − f0

h
≈ f ′(x0)

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

2h
≈ 1

2

f ′(x1)− f ′(x0)

h
≈ 1

2
f ′′(x0)

f [x0, x1, x2, x3] =
f [x1, x2, x3]− f [x0, x1, x2]

3h
≈ 1

3

1
2
f ′′(x1)− 1

2
f ′′(x0)

h
≈ 1

2 · 3
f ′′′(x0).

In general, one has

f [x0, x1, . . . , xk] ≈
1

k!
f (k)(x0). (1.14)

2. This observation suggests to define for x0 = x1 = . . . = xk the divided difference by

f [x0, x1, . . . , xk] :=
1

k!
f (k)(x0).

This definition also allows one to generalize the definition of divided differences to the
case when some knots coincide, for which the statement of Theorem 1.11 also holds.

3. In general, for any knot sequence x0, . . . , xn there is an intermediate point

ξ ∈ (min{x0, . . . , xk},max{x0, . . . , xk})

such that

f [x0, . . . , xk] =
1

k!
f (k)(ξ).

Exercise 1.13 Formulate an algorithm similar to the Neville scheme to compute the divided
differences f [x0], . . . , f [x0, . . . , xn]. How expensive is the evaluation of an interpolating polyno-
mial of degree n in M points?

10

1.4 Extrapolation as a prime application of the Neville

scheme

A typical application of the Neville scheme is the extrapolation of a function value that is not
directly accessible. Given n+ 1 pairs (xi, fi), a approximation to a function value f(x) can be
found by evaluating the interpolation polynomial pn ∈ Pn, i.e.,

pn(x) ≈ f(x).

A prime application of this method is to compute derivatives of a function (here at 0), for which
only function values are available. Define for h ̸= 0 the difference quotient

D(h) =
f(0 + h)− f(0)

h
.

If f is differentiable, then the limit limh→0D(h) = f ′(0) exists and is the sought derivative.
As the value is unknown, one can compute the values of D(hj) for hj > 0 (small) and then
evaluate the corresponding interpolation polynomial at h = 0 to obtain an approximation to
f ′(0).

Exercise 1.14 Let f(x) = exp(x). We seek an approximation to u′(0). Define the function
h 7→ D(h) as above.
Compute the Neville scheme for h = 2−j, j = 0, 1, . . . , 10. Compute a second array containing
the actual errors (recall: f ′(0) = exp(0) = 1). What do you observe in the first, second, and
third column of the Neville scheme?

slide 2 - Extrapolation example

1.5 A simple error estimate

In this subsection, we now assume that the values fi are point evaluations of a function f , i.e.,
fi = f(xi) and that the knots xi, i = 0, . . . , n are distinct.

Question: how big is the error f(x)− p(x) for the interpolating polynomial p?

Our aim is to actually write the error in terms of an evaluation of polynomial depending only
on the knots and some term that does depend on the function f .
Let ωn+1(x) :=

∏n
j=0(x− xj) be the Newton polynomial of degree n+ 1.

• At the knots {x0, . . . , xn} the error is zero by definition.

• In order to derive a formula for the error at x /∈ {x0, . . . , xn}, we employ the so called
mean value theorem/Rolle’s theorem: For functions g ∈ C1([a, b]) for an interval [a, b]
with g(a) = g(b), there exists ξ ∈ (a, b) such that g′(ξ) = 0.

•
ba ζ

• ••

11

• Let x ̸∈ {x0, . . . , xn} be fixed. Now the function

f(t)− p(t) (1.15)

has the roots {x0, . . . , xn}. We want to keep the roots, but add an additional root at x,
such that the new function has the roots {x0, . . . , xn}. For this we define

g(t) := f(t)− p(t)−Kωn+1(t) (1.16)

with some to be determined constant K. By definition g has roots at {x0, . . . , xn} and to
obtain a root at x we must have

0 = g(x) = f(x)− p(x)−Kωn+1(x) (1.17)

or equivalently

K =
f(x)− p(x)

ωn+1(x)
(1.18)

• We now aim to find a formula for K that does not depend on p. For this we note that
since g has n + 2 roots, the derivative g′ has n + 1 roots (This is clear from drawing a
picture as for instance since g(x0) = 0 = g(x1) there is at least one point between x0 and
x1 with g′(ζ) = 0 and so on for the other intervals (xi, xi+1), i = 1, . . . n− 1). Proceeding
inductively we conclude that gn+1 hat at least one root ξ:

0 = gn+1(ξ) ⇔ (n+ 1)!K = f (n+1)(ξ) ⇔ K =
f (n+1)(ξ)

(n+ 1)!
(1.19)

Thus since g(x) = 0 we shown the following theorem.

Theorem 1.15 Let [a, b] ⊂ R and the knots xi ∈ [a, b], i = 0, . . . , n, be distinct. Let f ∈
Cn+1([a, b]), and let p be the interpolating polynomial. Then for x ∈ [a, b] there exists a ξ ∈ (a, b)
such that

f(x)− p(x) = (x− x0) · · · (x− xn)
f (n+1)(ξ)

(n+ 1)!
= ωn+1(x)

f (n+1)(ξ)

(n+ 1)!
. (1.20)

The error formula (1.20) yields bounds for the interpolation error as seen in the following
example.

Definition 1.16 We define the interpolation operator

In : C([a, b])→ Pn ⊂ C([a, b]), f 7→ In(f) := p, (1.21)

where p ∈ Pn is the unique solution to

p(xℓ) = f(xℓ), ℓ = 0, . . . , n. (1.22)

12

Remark 1.17 Since ∥ωn+1∥C([a,b]) ≤ (b− a)n+1 we obtain:

∥In(f)− f∥C([a,b]) ≤
∥f (n+1)∥C([a,b])

(n+ 1)!
(b− a)n+1, (1.23)

and since limn→∞ cn/n! = 0 for every constant c ∈ R, we see that the error goes to zero if
all derivatives are uniformly bounded in n, that means if there is a constant C > 0, such that
∥f (n)∥C([a,b]) ≤ C, then

∥In(f)− f∥C([a,b]) ≤ C
(b− a)n+1

(n+ 1)!
→ 0 as n→∞. (1.24)

However, to obtain convergence the uniform boundedness of the derivatives is not necessary.
Consider for instance f(x) := sin(kx) for some k ∈ N and [a, b] := [0, π]. Then f (2n)(x) =
(−1)nk2n sin(kx) and hence ∥f (2n)∥C([0,π]) = k2n →∞ as n→∞. However we have

∥I2n(f)− f∥C([a,b]) ≤
(k(b− a))2n+1

(2n+ 1)!
→ 0 as n→∞. (1.25)

A similar calculation holds for the odd indices 2n+ 1.

Example 1.18 (cf. Example 1.3) Let f(x) = sinx and [a, b] = [0, π/2]. Let x0 = 0, x1 = π/4,
x2 = π/2. Then the interpolating polynomial p ∈ P2 satisfies in view of maxy∈R |f (3)(y)| =
maxy∈R | − cos y| ≤ 1

|f(x)− p(x)| ≤ |ω3(x)|
|f (3)(ξ)|

3!
≤ 1

6
|ω3(x)| =

1

6
|(x− 0)(x− π/4)(x− π/2)|.

Fig. 1.2 visualizes this estimate. The upper bound is pretty good in this example: it overestimates
the error merely by a factor 1.5.

13

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

x

sin(x)

quadr. interpol.

0 0.5 1 1.5

0

1

2

3

·10−2

x

error

bound

Figure 1.2: Left: f(x) and the interpolating polynomial for Example 1.18. Right: absolute
value of the error and upper bound.

Example 1.18 generalizes as follows:

Theorem 1.19 Let f ∈ Cn+1([a, b]) and hi = qi, i = 0, 1, . . ., for a chosen 0 < q < 1. Let
x0 ∈ [a, b]. Denote by pi,m ∈ Pm the polynomial that interpolates f in the points x0 + hi+j,
j = 0, . . . ,m. Then there exists a constant C > 0 (which depends on f , m, and q), such that
for m ≤ n+ 1

|f(x0)− pi,m(x0)| ≤
1

(m+ 1)!
∥f (n+1)∥∞hm+1

i (1.26)

Proof: From Theorem 1.15, we get (exercise!) for some ξ ∈ (x0, x0 + hi)

|f(x0)− pi,m(x0)| ≤
1

(m+ 1)!
|f (m+1)(ξ)|

∣∣∣∣∣
m∏
j=0

(x0 − (x0 + hi+j))

∣∣∣∣∣ ≤ Chm+1
i .

2

If the function f is smooth, then the difference quotient D(h) = f(x0+h)−f(x0)
h

is a smooth
function of h (Taylor expansion!). In that case, we may apply Theorem 1.19 to the function
h 7→ D(h). Then, Theorem 1.19 explains the convergence behavior that was observed in
Exercise 1.14 and silde 2 for the columns of the Neville scheme.

The assumption that f be smooth (i.e. n in Theorem 1.19 is fairly large), is essential for the
rapid convergence behavior in the columns of the Neville scheme:

Example 1.20 slide 2 - Extrapolation example

Consider the Neville scheme as in Exercise 1.14 for the function u(x) = |x|3/2, i.e., D(h) =√
|h|. Then D is not smooth—it is not even differentiable at h = 0. Fig. 1.3 shows the errors
|D(0)− pi,m(0)|. We observe that increasing m does not lead to better results.

14

h m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
20 1.000 4.14−1 2.52−1 1.68−1 1.15−1 8.06−2 5.66−2 3.99−2

2−1 7.07−1 2.93−1 1.79−1 1.19−1 8.17−2 5.70−2 4.00−2 2.82−2

2−2 5.00−1 2.07−1 1.26−1 8.40−2 5.77−2 4.03−2 2.83−2

2−3 3.54−1 1.46−1 8.93−2 5.94−2 4.08−2 2.85−2

2−4 2.50−1 1.04−1 6.31−2 4.20−2 2.89−2

2−5 1.77−1 7.32−2 4.46−2 2.97−2

2−6 1.25−1 5.18−2 3.16−2

2−7 8.84−2 3.66−2

2−8 6.25−2

Error
√
h

√
h

√
h

√
h

√
h

√
h

Figure 1.3: (cf. Example 1.20) Extrapolation error at h = 0 for the function h−1(u(h)− u(0))
with u(x) = |x|3/2. The subscript numbers denote powers of 10.

Often the interpolation error is measured in a norm, e.g., the maximum norm. For an interval
[a, b], the maximum norm ∥g∥∞,[a,b] of a function g ∈ C([a, b]) is defined by

∥g∥∞,[a,b] := max
x∈[a,b]

|g(x)|. (1.27)

Theorem 1.15 implies for the interpolation error

∥f − p∥∞,[a,b] ≤ ∥ωn+1∥∞,[a,b]

∥f (n+1)∥∞,[a,b]

(n+ 1)!
≤ (b− a)n+1∥f (n+1)∥∞,[a,b]

(n+ 1)!
.

Often, one approximates functions by piecewise polynomials as illustrated in the following
exercise.

Exercise 1.21 The goal is to approximate the function f on the interval [a, b] by a piecewise
polynomial of degree n. Proceed as follows: Partition [a, b] in N subintervals [tj, tj+1], j =
0, . . . , N − 1, of length h = (b − a)/N with tj = a + jh. In each subinterval [tj, tj+1] select
as the interpolation points xi,j := tj +

1
n
ih, i = 0, . . . , n, and approximate f on [tj, tj+1] by

the polynomial that interpolates f in the points xi,j, i = 0, . . . , n. In this way, one obtains a
function p that is a polynomial of degree n on each subinterval. Show:

∥f − p∥∞,[a,b] ≤
1

(n+ 1)!
hn+1∥f (n+1)∥∞,[a,b].

Sketch the function p for the case n = 1.

1.5.1 Interpolation vs. approximation

So far we discussed interpolation of a continuous or smooth function f : [a, b] → R. We saw
that the interpolation can sometimes fail to approximate the function f properly as n increases.
However one can always find polynomials which approximate a continuous function f .

Theorem 1.22 Let f : [a, b]→ R be a continuous function and ε > 0 be given. Then there is
a polynomial p such that ∥f − p∥∞,[a,b] ≤ eps.

15

The polynomial can p can be explicitly constructed on [a, b] = [0, 1] via

Bn(f) :=
n∑

i=0

f(i/n)bi,n(x), (1.28)

where bi,n are the Bernstein polynomials defined by

bi,n(x) :=

(
i
n

)
xi(1− x)n−i. (1.29)

finis 2.DS

16

1.6 Chebyshev interpolation

Question: If one is allowed to choose the interpolation points, which one should one choose?

For large n, the choice of the interpolation points may strongly impact the approximation
quality of the interpolation process as we will see in the following.

1.6.1 Uniform point distribution

The easiest choice that comes to mind would be to distribute the knots uniformly in the
considered interval [a, b], i.e., take

xj = a+
b− a

n
j j = 0, . . . , n.

However, the following example illustrates that this might not be a good choice - even for fairly
harmless functions f .

Example 1.23 (Runge example) Consider f(x) = (1 + 25x2)−1 on the interval [−1, 1].
Fig. 1.4 shows the interpolation in equidistant points. We clearly observe failure for the in-
terpolation in equidistant points as n grows.

−1 0 1
0

0.5

1

x

n = 2

interp. uniform

1/(1 + 25x2)

−1 0 1
−4

−2

0

x

n = 12

interp. uniform

1/(1 + 25x2)

−1 0 1

0

50

100

x

n = 22

interp. uniform

1/(1 + 25x2)

Figure 1.4: Interpolation of (1 + 25x2)−1 on [−1, 1] using equidistant points (n = 2, 12, 22).

1.6.2 Chebyshev points

We now aim to present a better choice of interpolation points that leads to more satisfactory
results for large polynomial degrees.

The representation of the interpolation error (1.20) has the advantage of being an equality. It
has the disadvantage that the intermediate point ξ is not known and depends on the function
f and the chosen knots xi. Typically, one does not study the error in single points but studies
the interpolation error in a norm. Here, we consider the maximum norm and estimate

∥f − p∥∞,[a,b] ≤ ∥ωn+1∥∞,[a,b]︸ ︷︷ ︸
depends solely on the knots

∥f (n+1)∥∞,[a,b]

(n+ 1)!︸ ︷︷ ︸
depends solely on f and n

17

This shows that a sensible strategy to choose the knots xi, i = 0, . . . , n, is to minimize
∥ωn+1∥∞,[a,b] (recall ωn+1(x) = (x− x0) · · · (x− xn)):

given n, find xi ∈ [a, b] such that ∥ωn+1∥∞,[a,b] is minimal. (1.30)

This minimization problem has a solution, the so-called Chebyshev points:

Theorem 1.24 (Chebyshev points) The minimization problem (1.30) has a solution given
by

xi =
a+ b

2
+

b− a

2
xCheb
i,n , xCheb

i,n := cos

(
π
2i+ 1

2n+ 2

)
, i = 0, . . . , n. (1.31)

For this choice of interpolation points, there holds

∥ωCheb
n+1 ∥∞,[a,b] = 2

(
b− a

4

)n+1

.

In particular, for every choice of interpolation points xi with corresponding polynomial ωn+1

there holds
∥ωn+1∥∞,[a,b] ≥ ∥ωCheb

n+1 ∥∞,[a,b].

Example 1.25 The Chebyshev points xCheb
i,n , i = 0, . . . , n, for the interval [−1, 1] are not uni-

formly distributed in the interval [−1, 1] but more closely spaced near the endpoints ±1. Fig. 1.5
illustrates this.

-1 -0.5 0 0.5 1
0

0.5

1
Chebyshev points for n=5

-1 -0.5 0 0.5 1
0

0.5

1
Chebyshev points for n=25

Figure 1.5: Chebyshev points xCheb
i,n , i = 0, . . . , n, for n = 5 (left) and n = 25 (right).

We will assume that a = −1 and a = 1, since the general case can be reduced to this case.

Definition 1.26 For n ∈ N, we define the Chebyshev polynomials by

Tn(x) := cos(n arccos(x)), x ∈ [−1, 1]. (1.32)

The Chebyshev polynomials T1, . . . , T5 are depicted in Figure 1.26. The figure was generated
with the following python code:

18

import numpy as np

import matplotlib.pyplot as plt

define Chebyshev polynomial of degree n

def T(n, x):

if n == 0:

return 1.0

elif n == 1:

return x

elif n >= 2:

return 2.0 * x * T(n-1, x) - T(n-2,x)

define grid point on which we plot the polynomials

XX = np.linspace(-1,1,100)

plot the Chebyshev polynomials 1 to 5

for k in range(1,6):

YY = T(k, XX)

plt.plot(XX,YY, label = ’$T_{’ + str(k) + ’}$’)

add the legend to plot

plt.legend()

show the plot

plt.show()

19

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

T1
T2
T3
T4
T5

Figure 1.6: Chebyshev polynomials T1, . . . , T5

It is clear that |Tn(x)| ≤ 1 for all [−1, 1] and maxx∈[−1,1] |Tn(x)| = 1. Moreover we collect
further properties of Tn in the following lemma.
We give a proof of Theorem 1.30 using the following lemma:

Lemma 1.27 For the functions T0, . . . , Tn holds.

(a) For x ∈ [−1, 1] we have

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1. (1.33)

(b) For n ≥ 1, Tn ∈ Pn has the leading coefficient equal to 2n−1.

(c) Tn has n+ 1 stationary points on [−1, 1],

T ′
n(s

(n)
j) = 0, where s

(n)
j := cos

(
jπ

n

)
, j = 0, 1, . . . , n. (1.34)

(d) Tn+1 has n+ 1 simple roots in [−1, 1]:

Tn+1(x
Cheb
j,n) = 0, where xCheb

j,n := cos

(
(2j + 1)π

2n+ 2

)
, j = 0, 1 . . . , n. (1.35)

Proof: to (a): Is a direct consequence of

cos(α) + cos(β) = 2 cos

(
α− β

2

)
cos

(
α + β

2

)
for all α, β ∈ R, (1.36)

20

applied with α := (n+ 1) arccos(x) and β := (n− 1) arccos(x).
to (b): Follows by induction from (a).
to (c): Recall that (f−1)′(x) = 1/(f ′(f−1(x))) for every differentiable and invertible function
f . Since arccos(x) = cos−1(x) it follows

T ′
n(x) = − sin(n arccos(x))n(arccos′(x)) = sin(n arccos(x))n

1

− sin(arccos(x))
!
= 0. (1.37)

Since x ∈ [−1, 1] it follows that (1.37) is equivalent to

0 = sin(n arccos(x)) ⇔ n arccos(x) = kπ, k ∈ Z (1.38)

or equivalently x = cos(kπ/n) for k ∈ Z.
to (d): Assume x ∈ [−1, 1] is such that

Tn(x) = cos(n arccos(x))
!
= 0, (1.39)

then n arccos(x) = kπ + π
2
for k ∈ Z, which implies that we have the n pairwise distinct roots

x = cos

(
π(2k + 1)

2n

)
, k = 0, 1, . . . , n− 1. (1.40)

2

Lemma 1.28 We have

inf
x0,...,xn∈[−1,1]

max
x∈[−1,1]

n∏
j=0

|x− xj| = max
x∈[−1,1]

n∏
j=0

|x− xCheb
i,n | =

1

2n
. (1.41)

Proof: At first notice that according to Lemma 1.27 we have Tn+1(x) = 2n
∏n

j=0(x − xCheb
i,n).

Since ∥Tn+1∥C([−1,1]) = 1, it follows

1

2n
=

1

2n
∥Tn+1∥C([−1,1]) = max

x∈[−1,1]

n∏
j=0

|x− xCheb
i,n |, (1.42)

which shows the second equality in (1.41). It remains to show the first equality. For this we
note that

inf
x0,...,xn∈[−1,1]

max
x∈[−1,1]

n∏
j=0

|x− xj| ≤ max
x∈[−1,1]

n∏
j=0

|x− xCheb
i,n |

(1.42)
=

1

2n
. (1.43)

Therefore, to show the first equality, it suffices to show the inequality

inf
x0,...,xn∈[−1,1]

max
x∈[−1,1]

n∏
j=0

|x− xj| ≥
1

2n
. (1.44)

Suppose that (1.44) does not hold. Then we find points ζ0, . . . , ζn ∈ [−1, 1], such that

max
x∈[−1,1]

n∏
j=0

|x− ζj| <
1

2n
. (1.45)

21

Define the polynomial p := 1
2n
Tn+1−ωn+1 ∈ Pn, (why not Pn+1?), where ωn+1(x) =

∏n
j=0(x−ζj).

In view of our Assumption 1.45 and item (c) of Lemma 1.27 we have

|ωn+1(s
(n+1)
j)| < 1

2n
, j = 0, . . . , n+ 1. (1.46)

Moreover, we compute for j = 0, . . . , n+ 1:

Tn+1(s
(n+1)
j) = cos((n+ 1) arccos(cos(jπ/(n+ 1))) = cos(jπ) = (−1)j. (1.47)

Therefore by the intermediate value theorem, p admits n + 1 pairwise distinct roots and it
follows p ≡ 0. However, this contradicts p(s

(n+1)
j) ̸= 0 and finishes the proof.

2

This proves Theorem 1.31 for [a, b] = [−1, 1]. The general case can be reduces to this one.

22

1.6.3 Error bounds for Lagrange interpolation

Question: How does the interpolation error compare to the best approximation error?

We fix the interval [a, b] = [−1, 1] and denote by Inf the Lagrangian interpolation polynomial
of degree n that interpolates f in some distinct knots xi (e.g. Chebyshev points or uniformly
distributed points).
By definition of Lagrangian interpolation, we can derive the following stability estimate

∥Inf∥∞,[−1,1] = max
x∈[−1,1]

|(Inf)(x)| = max
x∈[−1,1]

|
n∑

i=0

f(xi)ℓi(x)|

≤ max
i=0,...,n

|f(xi)| max
x∈[−1,1]

n∑
i=0

|ℓi(x)| ≤ ∥f∥∞,[−1,1] max
x∈[−1,1]

n∑
i=0

|ℓi(x)|. (1.48)

Thus, the maximum of the interpolation polynomial is bounded by the maximum of the given
function times an amplification factor, the so called Lebesgue constant Λn defined by

Λn := max
x∈[−1,1]

n∑
i=0

|ℓi(x)|. (1.49)

The following exercise shows that – as a mapping – Lagrangian interpolation is linear and
reproduces polynomials of degree n.

Exercise 1.29 Show that:

• The mapping f 7→ Inf is a linear map, i.e., for continuous functions f , g and λ ∈ R
there holds In(f + g) = (Inf) + (Ing) as well as In(λf) = λInf .

• Inf = f for all polynomials f ∈ Pn.

Hint: Uniqueness of polynomial interpolation, Theorem 1.2.

Using these two properties, together with the stability estimate (1.48), we can now estimate
the best approximation error. For arbitrary q ∈ Pn, there holds

∥f − Inf∥∞,[−1,1]
Exer. 1.29

= ∥f − q − In(f − q)∥∞,[−1,1]

≤ ∥f − q∥∞,[−1,1] + ∥In(f − q)∥∞,[−1,1]

(1.48)

≤ ∥f − q∥∞,[−1,1] + Λn∥(f − q)∥∞,[−1,1] = (1 + Λn)∥f − q∥∞,[−1,1].

We summarize the findings in the following theorem, which also gives bounds on the Lebesgue
constants for Chebyshev and uniformly distributed interpolation (see literature for that).

Theorem 1.30 Let In be Lagrangian interpolation operator for some distinct knots.

(i) There hold the stability and quasi-best approximation:

∥Inf∥∞,[−1,1] ≤ Λn∥f∥∞,[−1,1]

∥f − Inf∥∞,[−1,1] ≤ (1 + Λn) min
q∈Pn

∥f − q∥∞,[−1,1]

23

(ii) For the Lebesgue constants there holds:

Uniform points: Λunif
n ∼ 2n

en lnn
(for large n)

Chebyshev points: ΛCheb
n ≤ 2

π
ln(n+ 1) + 1

Remark 1.31 (Interpretation of Λn) 1. The factor 1 + Λn measures how much worse
the approximation of f by the interpolation is compared to the best possible polynomial
approximation (in the norm ∥ · ∥∞,[−1,1]).

The logarithmic growth of ΛCheb
n is very slow so that Chebyshev interpolation is typically

very good: for example, for (the already rather high polynomial degree) n = 20 one has
ΛCheb

n ≈ 2.9 and thus 1 + ΛCheb
20 ≤ 4.

2. Λn can also be understood as an amplification factor: If, instead of the exact function
values f(xi), perturbed values f̃i with |f̃i − f(xi)| ≤ δ are employed, then the “perturbed”

interpolation polynomial
∑

i f̃iℓi satisfies (Exercise!)

∥(
n∑

i=0

f̃iℓi)− Inf∥∞,[−1,1] ≤ Λnδ.

In other words: Since ΛCheb
n of Chebyshev interpolation is moderate, perturbations or

errors in the values f(xCheb
i,n) have a rather small impact on the error in the interpolating

polynomial.

In general, computing best-approximation errors to given functions by polynomials of fixed
degree, e.g., minq∈Pn ∥f − q∥∞,[−1,1] exactly is very hard/impossible. Numerically, one could
employ the so called Remez algorithm for that (see literature).
However, estimates for the best-approximation error can be easily found by inserting special
polynomials such as the Taylor polynomial or the Chebyshev interpolation polynomial, which
we illustrate in the following example.

Example 1.32 Let f(x) = exp(x) on [−1, 1]. Computing the Taylor polynomial of degree 1
around x0 = 0 gives T1(x) = 1 + x. Then, the function | exp(x) − (1 + x)| takes its maximal
value at x = 1. Thus, we have

min
q∈P1

∥f − q∥∞,[−1,1] ≤ ∥f − T1∥∞,[−1,1] = exp(1)− 2 ≈ 0.7183.

Note that the Chebyshev points on [−1, 1] are given by xCheb
1 = − 1√

2
and xCheb

2 = 1√
2
and the

interpolation polynomial reads as ICheb
1 f ≈ 1.0854x+ 1.2606, which gives a bound

min
q∈P1

∥f − q∥∞,[−1,1] ≤ ∥f − ICheb
1 f∥∞,[−1,1] ≈ 0.3723.

Employing the Remez algorithm provides the polynomial q(x) = 1.1752x+ 1.2643 such that

min
q∈P1

∥f − q∥∞,[−1,1] ≈ 0.2788.

Thus, the Chebyshev interpolation is reasonably close to the best-approximation error and pro-
vides a much better bound for the error as the Taylor polynomial.

24

Chebyshev interpolation converges very rapidly for smooth functions, which is the topic of the
following exercise.

Exercise 1.33 Consider the function f(x) = (4−x2)−1. Give an upper bound for minq∈Pn ∥f−
q∥∞,[−1,1] by selecting q as the Taylor polynomial of f about a suitable point.
Determine the interpolating polynomials ICheb

n f for n = 1, . . . , 10. Plot the error semilogarith-
mically (semilogy in matlab or matplotlib.pyplot.semilogy in python) versus n. To that
end, approximate the error ∥f − ICheb

n f∥∞,[−1,1] by simply computing the error in 100 points
that are uniformly distributed over [−1, 1].

We now come back to the Runge example from before.

Example 1.34 (Runge example, cont.) slide 3 - Chebyshev interpolation

Consider again f(x) = (1 + 25x2)−1 on the interval [−1, 1]. Fig. 1.7 now compares the inter-
polation in Chebyshev and equidistant points. Whereas Chebyshev interpolation works well, we
observe failure for the interpolation in equidistant points.

−1 0 1

0

0.5

1

x

Cheb., n = 2

−1 0 1
0

0.5

1

x

Cheb., n = 12

−1 0 1
0

0.5

1

x

Cheb., n = 22

−1 0 1
0

0.5

1

x

Cheb., n = 32

−1 0 1
0

0.5

1

x

uniform, n = 2

−1 0 1
−4

−2

0

x

uniform, n = 12

−1 0 1

0

50

100

x

uniform, n = 22

−1 0 1

−4

−2

0

·103

x

uniform, n = 32

Figure 1.7: Interpolation of (1+25x2)−1 on [−1, 1]. Top row: interpolation in Chebyshev points
(n = 2, 12, 22, 32). bottom row: Interpolation in equidistant points (n = 2, 12, 22, 32).

Example 1.34 shows that one should not use equidistant points for interpolation by polynomials
of high degree. If the data set is based on (more or less) equidistant points, then one typically
approximates by splines, i.e., piecewise polynomials of a fixed degree (e.g., n ∈ {1, 2, 3}) as
illustrated in Exercise 1.21. An important representative of of this class is the “cubic spline”
(see Section 1.8.2.)

25

1.7 Remarks on Hermite interpolation

A generalization of polynomial interpolation is Hermite interpolation, where not only nodal
values are reproduced exactly, but also derivatives. Its most general form is as follows: Let
x0, . . . , xn be n + 1 distinct knots, and let di ∈ N0 be given for each i. Then, given values f j

i ,
i = 0, . . . , n, j = 0, . . . , di, the Hermite interpolant is given by: Find p ∈ Pn+

∑n
i=0 di

s.t.

p(j)(xi) = f j
i , i = 0, . . . , n, j = 0, . . . , di. (1.50)

Remark 1.35 Hermite interpolation generalizes the polynomial interpolation problem (1.1):
the choice d0 = d1 = · · · = dn = 0 reproduces (1.1). Another extreme case is n = 0 and

d0 = N . Then p(x) =
∑N

j=0
fj
0

j!
(x− x0)

j. In particular, for f j
0 = f (j)(x0), we obtain the Taylor

polynomial of f of degree N .

One can show that problem (1.50) is uniquely solvable. One can also show that, if f j
i = f (j)(xi)

for a sufficiently smooth f , then an error bound analogous to that of Theorem 1.15 holds true.
finis 3.DS

26

1.8 Splines (CSE)

Question: Can we find a good localized approximation on a uniform grid?

slide 2a - Splines

Splines are piecewise polynomials on a partition ∆ of an interval [a, b].

Definition 1.36 (Spline spaces) A partition ∆ is described by knots a = x0 < x1 < · · ·xn =
b. We denote the elements by Ii = (xi, xi+1), i = 0, . . . , n− 1 and set hi := xi+1 − xi. We also
set h := maxi hi as the maximal element width.

For a partition ∆ and p (polynomial degree), r ∈ N0 (regularity) the spline space Sp,r(∆) is
defined as

Sp,r(∆) := {u ∈ Cr([a, b]) |u|Ii ∈ Pp ∀i}. (1.51)

Given values fi, i = 0, . . . , n, we say that s ∈ Sp,r(∆) is an interpolating spline, if

s(xi) = fi, i = 0, . . . , n. (1.52)

Splines are widely used to fit given data or to describe curves or surfaces, e.g., in CAD systems1.

1.8.1 Piecewise linear approximation

The simplest case is p = 1 and r = 0 is shown in Figure 1.8.

•
x0 x1 x2 x3 x4

• • • •

•

•
•

• •s(x)

Figure 1.8: A piecewise linear spline (p = 1, r = 0).

The interpolation problem reads as: Given knots a = x0 < x1 < · · · < xn = b and the
corresponding partition,

find s ∈ S1,0(∆) s.t. s(xi) = fi, i = 0, . . . , n. (1.53)

It is uniquely solvable and has as the solution

s(x) =
n∑

i=0

fiφi(x),

where the φi continuous, piecewise linear functions defined by the condition φi(xj) = δij (Exer-
cise: sketch the φi!). Concerning error estimates, one has from a generalization of Exercise 1.21

∥f − s∥∞,[a,b] ≤ Ch2∥f ′′∥∞,[a,b].
1key words: Bézier curves. Extensions of the idea of splines are NURBS (= nonuniform rational B-splines)

27

1.8.2 The classical cubic spline

The classical cubic spline space is given by the choices p = 3 and r = 2. The interpolation
problem is:

find s ∈ S3,2(∆) s.t. s(xi) = fi, i = 0, . . . , n. (1.54)

Obviously, (1.54) represents a system of n+ 1 equations.

Now, the question is how many free parameters (also called degrees of freedom) a function in
S3,2(∆) has. We answer this more generally for the spline spaces Sp,r(∆) in the following.

We count degrees of freedom needed to describe a spline: We have dimPp = p + 1 so that
the space of discontinuous piecewise polynomials of degree p is (p + 1)n. The condition of Cr

continuity at the n− 1 interior knots x1, . . . , xn−1 imposes (n− 1)(r+ 1) conditions. Thus, we
expect dimSp,r(∆) = n(p+ 1)− (n− 1)(r+ 1), which in fact, is the statement of the following
lemma.

Lemma 1.37 Let ∆ be a partition given by n+ 1 (distinct) knots x0, . . . , xn. Then,

dimSp,r(∆) = n(p+ 1)− (n− 1)(r + 1). (1.55)

For the case p = 3, r = 2, we get dimS3,2(∆) = 4n − 3(n − 1) = n + 3. The interpolation
conditions (1.54) yield n+1 conditions. Hence, two more conditions have to be imposed. These
two extra conditions are selected depending on the application. Typically, one of the following
four choices is made:

1. Complete/clamped spline: The user provides two additional values f ′
0, f

′
n ∈ R and imposes

the following two additional conditions:

s′(x0) = f ′
0, s′(xn) = f ′

n. (1.56)

2. Periodic spline: one assumes f0 = fn and imposes additionally

s′(x0) = s′(xn), s′′(x0) = s′′(xn). (1.57)

3. Natural spline: one imposes

s′′(x0) = 0, s′′(xn) = 0. (1.58)

4. “not-a-knot condition”: one requires that the jump of s′′′ at the knots x1 and xn−1 be
zero:

lim
x→x1−

s′′′(x) = lim
x→x1+

s′′′(x), lim
x→xn−1−

s′′′(x) = lim
x→xn−1+

s′′′(x). (1.59)

Concerning the accuracy of the interpolation method, we have:

Theorem 1.38 Let f ∈ C4([a, b]) and h := maxi hi. Let fi = f(xi), i = 0, . . . , n. Then, the
estimates

∥f − s∥∞,[a,b] ≤ Ch4∥f (4)∥∞,[a,b], ∥(f − s)′∥∞,[a,b] ≤ Ch3∥f (4)∥∞,[a,b]

hold in the following cases:

28

(i) s is the complete spline and f ′
0 = f ′(x0) and f ′

n = f ′(xn).

(ii) s is the periodic spline and f is additionally periodic, i.e., f ∈ C4(R) and f(x+(b−a)) =
f(x) for all x ∈ R.

(iii) s is the not-a-knot spline.

In particular, in each of these cases, the spline interpolation problem is uniquely solvable.

Remark 1.39 If only the values fi = f(xi) are available and a good spline approximation to f
is sought, then typically the not-a-knot interpolation is chosen. This is the default choice of the
spline command in matlab and in scipy.interpolate.CubicSpline. However, both matlab

and python also allow for other endpoint conditions.

Minimization property of cubic splines

By Theorem 1.38, the cubic spline interpolation problems with any of the above 4 extra condi-
tions is uniquely solvable. In the three cases “complete spline”, “natural spline”, and “periodic
spline” the interpolating spline has an optimality property:

Theorem 1.40 (“energy minimization” of cubic splines) Let I = [a, b] and ∆ be a par-
tition given by a = x0 < x1 < · · ·xn = b. Let fi, i = 0, . . . , n, be given values.

(i) (complete spline) Let f ′
0, f ′

n ∈ R be additionally be given. Then, the complete spline
s ∈ S3,2(∆) satisfies

∥s′′∥L2(I) ≤ ∥y′′∥L2(I) ∀y ∈ Ccomplete,

where Ccomplete is given by

Ccomplete = {v ∈ C2(I) | v(xi) = fi for i = 0, . . . , n and v′(x0) = f ′
0, v

′(xn) = f ′
n}.

(ii) (natural spline) The natural spline s ∈ S3,2(∆) satisfies

∥s′′∥L2(I) ≤ ∥y′′∥L2(I) ∀y ∈ Cnat,

where Cnat is given by

Cnat = {v ∈ C2(I) | v(xi) = fi for i = 0, . . . , n and v′′(x0) = v′′(xn) = 0}.

(iii) (periodic spline) Assume f0 = fn. Then, the periodic spline s ∈ S3,2(∆) satisfies

∥s′′∥L2(I) ≤ ∥y′′∥L2(I) ∀y ∈ Cper,

where Cper is given by

Cper = {v ∈ C2(I) | v(xi) = fi for i = 0, . . . , n and v′(x0) = v′(xn) and v′′(x0) = v′′(xn)}.

29

Remark 1.41 The minimization property explains the name “spline”. If one studies the de-
flection of an elastic “spline”, then the theory of linear elasticity states that the deflection is
such that the spline’s elastic energy is minimized. If y describes the deflection of this spline,
then in good approximation, the elastic energy of a spline is given by (ignoring physical units)
1
2
∥y′′∥2L2(I). Hence, if the spline is forced to pass through points (xi, fi), i = 0, . . . , n, then the

sought deflection s is the minimizer of the problem:

minimize
1

2
∥y′′∥2L2(I)

under the constraint y(xi) = fi, i = 0, . . . , n (plus possibly further conditions).

Theorem 1.40 states that the minimizer is the interpolating cubic spline, if the additional con-
straints are that the spline is the “complete”, ”natural”, or “periodic” one.

Computation of the cubic spline

The computation of the interpolating spline can be reduced to the solution of a linear system
of equations. In principle, one could make the ansatz that s is a cubic polynomial on each
element Ii = (xi, xi+1). The interpolation conditions s(xi) = fi, the continuity conditions

lim
x→xi−

s(j)(x) = lim
x→xi+

s(j)(x), i = 1, . . . , n− 1, j = 0, 1, 2

and the two additional conditions for complete/natural/periodic/not-a-knot splines describe a
linear system of equations that can be solved.

1.8.3 Remarks on splines

Exercise 1.42 Show: for r ≥ p, one has Sp,r(∆) = Pp irrespective of the partition ∆.

Remark 1.43 For fixed, (small) r the spaces Sp,r are much more local than the spaces Pp.
In polynomial interpolation, changing one data value fi affects the interpolant everywhere.
For splines (with small r), the effect is much more local, i.e., a value only affects the spline
interpolant in the neighborhood of the data point. This is of interest, e.g., in the following
situations:

1. some data values have large errors (e.g., measurement errors): then the spline is only
wrong near the corresponding knot. In contrast, in polynomial interpolation, the approxi-
mation is affected everywhere.

2. point evaluation: if a spline is truely local (e.g., in the case r = 0), then the evaluation
of a spline at a point x requires only the data points near x, i.e., a local calculation.

30

Example 1.44 Fig. 1.9 shows polynomial interpolation and the (complete) cubic spline inter-
polation of the Runge example (cf. Example 1.23) on [−1, 1]. For n = 8, the n+1 = 9 knots are
uniformly distributed in [−1, 1]. We observe that, while the polynomial interpolation is rather
poor, the cubic spline is very good.

−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

−0.5

0

0.5

1

x

Runge example, n = 9 knots

spline

interp. poly.

1/(1 + 25x2)
interp. points

Figure 1.9: Polynomial interpolation and cubic spline interpolation for uniform knot distribu-
tion; Runge example.

31

1.9 Trigonometric interpolation and FFT (CSE)

convention: In this chapter, i =
√
−1 with i2 = −1 (complex unit), that is, not an index.

Numbering of indices of vectors starts at 0.

1.9.1 Trigonometric interpolation

Question: Can we use other simple functions for interpolation?

Motivation

Classical trigonometric polynomials are of the form

p(x) = a0 +
m∑
j=1

aj cos(jx) + bj sin(jx). (1.60)

A meaningful interpolation problem is: given 2m + 1 knots xk, k = 0, . . . , 2m and values yk
find the coefficients aj, bj such that

p(xk) = yk, k = 0, . . . , 2m. (1.61)

Using the Euler formula eix = cosx+ i sinx, one can rewrite trigonometric polynomials also in
the form

p(x) =
m∑

j=−m

cje
ijx, where cj =

1
2
(aj − ibj) for j ≥ 1 and cj =

1
2
(aj + ibj) for j < 0, c0 = a0.

(1.62)
Hence, the interpolation problem (1.61) of finding the coefficients aj and bj can equivalently be
posed as finding the coeffcients cj of p in the form (1.62) such that (1.61) holds.

Remark 1.45 (i) The trigonometric polynomial x 7→ p(x) is a 2π-periodic function. It
therefore is natural to assume that the knots xk ∈ [0, 2π).

(ii) The (continuous) Fourier transform is an important tool in signal processing, e.g., when
analyzing audio signals. In the simplest setting, a signal is assumed to be periodic (over
a given time interval (0, T)) and writing it as a Fourier series decomposes the signal into
different frequency components. These components are then analyzed or modified (e.g.,
with low pass or high pass filters).

For T = 2π, the Fourier series is simply the representation

f(x) =
∞∑

j=−∞

fje
ixj, fj =

1

2π

∫ 2π

0

f(x)e−ixj dx, (1.63)

and fj are the Fourier coefficients. In order to avoid evaluating the integrals, one could
proceed as follows: 1) sample the signal in the points xj; 2) approximate f by its trigono-
metric interpolant p; 3) interpret the Fourier coefficients of p as (good) approximations
to the Fourier coefficients of f .

32

A simplification of the trigonometric interpolation problem

Multiplying the polynomial p(x) in (1.62) by eimx, one arrives at

eimxp(x) = eimx

m∑
j=−m

cje
ijx =

2m∑
j′=0

cj′−me
ij′x

so that the interpolation problem (1.61) can be rephrased as finding a trigonometric polynmo-
mial p̃(x) of the form

∑2m
j′=0 cj′−me

ij′x such that p̃(xk) = ỹk := yke
imxk .

These considerations motivate us to introduce the following definition:

Definition 1.46 The polynomials p : R→ C, p(x) =
n−1∑
j=0

cje
ijx, cj ∈ C are called modified

trigonometric polynomials of degree n− 1.

The interpolation problem now reads: given distinct knots xj ∈ [0, 2π), j = 0, . . . , n − 1 and
values yj, j = 0, . . . , n− 1 solve:

find modified trigonometric polyomial p of degree n− 1 s.t. p(xj) = yj, j = 0, . . . , n− 1
(1.64)

Remark 1.47 The interpolation problem (1.61) for a polynomial of the form (1.62) can also
be solved with the same techniques as the problem (1.64). In particular, the FFT-techniques
that we develop below can be applied. See Remark 1.60 below for more details.
Reasons for introducing the modified trigonometric polynomials and interpolation problem (1.64)
are mostly due to the fact that the DFT-matrix (and subsequently the FFT) take a form that is
more common in the literature and can be found in the matlab and numpy implementations.

Remark 1.48 The modified trigonometric polynomial x 7→ p(x) is a 2π-periodic function. The
coefficients cj are its Fourier coefficients.

The interpolation problem (1.64) can be written as a linear system

Vc = y

with a so-called Vandermonde matrix V, which leads to the following existence result.

Theorem 1.49 Let xj ∈ [0, 2π), j = 0, . . . , n − 1 be distinct. Then, (1.64) is uniquely
solvable for each sequence (yj)

n−1
j=0 ∈ Cn.

Proof: Set zj := eixj , j = 0, . . . , n−1. Then the zj are distinct. The ansatz p(x) =
n−1∑
k=0

ck e
ikx

yields the linear system of equations:
z00 z10 . . . zn−1

0

z01 z11 . . . zn−1
1

...
...

...
z0n−1 z1n−1 . . . zn−1

n−1

︸ ︷︷ ︸

=:V

c0
c1
...

cn−1

︸ ︷︷ ︸

=:c

=

y0
y1
...

yn−1

︸ ︷︷ ︸

=:y

The system matrix V satisfies detV =
∏

0≤j<k≤n−1

(zk−zj) ̸= 0 and is therefore invertible, which

implies the unique solvability of the interpolation problem. 2

33

Properties of the system matrix

In the remainder of the chapter, we consider the uniform knot distribution

xj =
2πj

n
, j = 0, . . . , n− 1. (1.65)

In the following we introduce some useful notation.

Definition 1.50 Let n ∈ N. Define the complex root

ωn := e−
2πi
n (1.66)

and the so called DFT matrix
Vn :=

(
ωj·k
n

)n−1

j,k=0
. (1.67)

Note that there holds ωn
n = e−2πi = 1 as well as ωj

n = e−ixj .

The matrix Vn of (1.67) is easily inverted, which gives a solution to the trigonometric interpo-
lation problem.

Theorem 1.51 Assume (1.65). Let y := (y0, . . . , yn−1)
⊤ ∈ Cn be given, p(x) =

n−1∑
j=0

cj e
ijx be

the solution to (1.64) and Vn the DFT-matrix from (1.67). Then:

(i) 1
n
Vn y = c J i.e., ck =

1
n

n−1∑
j=0

ωj·k
n yj K

(ii) 1√
n
Vn symmetric and unitary

(
i.e.,

(
1√
n
Vn

)−1

= 1√
n
VH

n = 1√
n
Vn

)
(iii) Vn =

(
ωn

jk
)n−1

j,k=0
=
(
ω−jk
n

)n−1

j,k=0

Proof: ad (iii): ✓
ad (ii): Let vj, j = 0, . . . , n− 1 be the columns of 1√

n
Vn. Then:

• vHk vk = 1
n

n−1∑
j=0

ω−jk
n ωjk

n = 1

• k ̸= l :

vHk vl =
1

n

n−1∑
j=0

ω−jk
n ωlj

n =
1

n

n−1∑
j=0

(
ωl−k
n

)j geometr.
=

series

=
1

n

1−
(
ωl−k
n

)n
1− ωl−k

n

=
1

n

1− (ωn
n)

l−k

1− ωl−k
n

= 0 since ωn
n

(1.66)
= 1

ad(i): For the equidistant points xj, j = 0, . . . , n − 1, given by (1.65), the linear system of

equations (1.67) has the form Vnc = y
(ii)⇒ c = Vn

−1
y = 1√

n

(
1√
n
Vn

)−1

y = 1√
n

1√
n
Vny =

1
n
Vny. 2

34

The DFT-matrix induces a linear mapping that is a discrete version of the continuous Fourier
transform.

Definition 1.52 The linear map

Fn : Cn → Cn, y =

 y0
...

yn−1

 7→ Vn y

is called the discrete Fourier transform (DFT) of length n.
The inverse F−1

n is called IDFT (inverse discrete Fourier transform).

Remark 1.53 Theorem 1.51 yields

F−1
n y =

1

n
Vny =

1

n
Vny =

1

n
Fn(y). (1.68)

Thus, the IDFT can be realized in the same fashion as the DFT.

1.9.2 Fast Fourier transform (FFT)

observation: The matrix Vn is fully populated. A naive realization of the DFT therefore
requires O(n2) arithmetic operation, which is inefficient.

However, the matrix Vn has special structure, which can be exploited. This leads to the Fast
Fourier transform (FFT), which only needs O(n log n) arithmetic operations. The FFT is
a prime example of a divide and conquer algorithm.

Let n = 2m with m ∈ N. We aim to reduce the application of the DFT for some vector y ∈ Cn,
i.e., the evaluation of

(Vny)k =
n−1∑
j=0

ωj·k
n yj =: αk,

to an evaluation of two DFTs for vectors of the length m = n/2.
For even indices k = 2ℓ, we use ωnℓ

n = 1 and obtain

α2ℓ =
n−1∑
j=0

ω2ℓj
n yj =

m−1∑
j=0

ω2ℓj
n yj + ω

2ℓ(j+n
2
)

n yj+m =

=
m−1∑
j=0

ω2ℓj
n (yj + ωℓn

n yj+n
2
) =

m−1∑
j=0

ω2ℓj(yj + yj+n
2
).

For odd indices k = 2ℓ+ 1, we use ωm
n = e−iπ = −1 and obtain

α2ℓ+1 =
n−1∑
j=0

ω(2ℓ+1)j
n yj =

m−1∑
j=0

ω(2ℓ+1)j
n yj + ω(2ℓ+1)(j+m)

n yj+m =

=
m−1∑
j=0

ω2ℓj
n

(
ωj
n yj + ωj

nω
2ℓm
n ωm

n yj+m

)
=

=
m−1∑
j=0

ω2ℓj
n (yj − yj+m)ω

j
n.

35

The same calculation can also be made for the inverse DFT by changing the sign in the exponent
in ωn. We summarize everything in the following lemma.

Lemma 1.54 Let n = 2m, ω = e±
2πi
n . Let (y0, . . . , yn−1) ∈ Cn. Then, the terms

αk :=
n−1∑
j=0

yj ω
kj k = 0, . . . , n− 1

can be, defining ξ := ω2, computed for ℓ = 0, . . . ,m− 1 as follows:

α2ℓ =
m−1∑
j=0

gj ξ
jℓ with gj := yj + yj+m

α2ℓ+1 =
m−1∑
j=0

hjξ
jℓ with hj := (yj − yj+m)ω

j.

Lemma 1.54 shows that provided n = 2m the computation of ŷ = (ŷ0, . . . , ŷn−1)
⊤ := Fn(y) can

be reduced to the computation of Fn
2
(g) and Fn

2
(h), where

(ŷ0, ŷ2, . . . , ŷn−2)
⊤ = Fm(g) , g = (yj + yj+m)

m−1
j=0

(ŷ1, ŷ3, . . . , ŷn−1)
⊤ = Fm(h) , h = ((yj − yj+m)ω

j
n)

m−1

j=0 .

If now m is again an even number, the same idea can be employed to compute Fm(g),Fm(h)
with applications of DFTs for vectors of lengths m/2. Proceeding further in this fashion gives
the following algorithm called Fast Fourier Transform (FFT).

Algorithm 3 (FFT)

1: % Input: n = 2p, p ∈ N0, y = (y0, . . . , yn−1)
⊤ ∈ Cn

2: % Output: ŷ = (ŷ0, . . . , ŷn−1) = Fn(y)
3: if n = 1 then
4: ŷ0 := y0
5: else
6: ω := e

−2πi
n

7: m := n
2

8: (gj)
m−1
j=0 := (yj + yj+m)

m−1
j=0

9: (hj)
m−1
j=0 := ((yj − yj+m)ω

j)
m−1

j=0

10: (ŷ0, ŷ2, . . . , ŷn−2) := FFT (m,g)
11: (ŷ1, ŷ3, . . . , ŷn−1) := FFT (m,h)
12: end if
13: return ŷ

By (1.68), the same idea can also be used to compute the Inverse Discrete Fourier Transform:
The computation of (y̌0, . . . , y̌n−1) := F−1

n (y) reduces to computation of (cf. first equation in
(1.68)):

(y̌0, y̌2, . . . , y̌n−2)
⊤ = 1

2
F−1

n
2
(g) , g = (yj + yj+m)

m−1
j=0

(y̌1, y̌3, . . . , y̌n−1)
⊤ = 1

2
F−1

n
2
(h) , h =

(
(yj − yj+m)ωn

j
)m−1

j=0

36

Algorithm 4 (IFFT)

1: % Input: n = 2p, p ∈ N0, y = (y0, . . . , yn−1)
⊤ ∈ Cn

2: % Output: y̌ = F−1
n (y)

3: if n = 1 then
4: y̌0 := y0
5: else
6: ω := e

2πi
n

7: m := n
2

8: (gj)
m−1
j=0 := 1

2
(yj + yj+m)

m−1
j=0

9: (hj)
m−1
j=0 := 1

2
((yj − yj+m)ω

j)
m−1

j=0

10: (y̌0, y̌2, . . . , y̌n−2) := IFFT (m,g)
11: (y̌1, y̌3, . . . , y̌n−1) := IFFT (m,h)
12: end if
13: return ŷ

It reamains to justify the name Fast Fourier Transform, i.e., we show that the computational
cost of the FFT is significantly lower than the cost of computing the DFT directly.

Cost of the FFT: Denote by A(n) the cost of the call of FFT (n,y) and let n = 2p, p ∈ N0.
Then:

A(n) ≤ 2A(n/2) + C︸︷︷︸
computation of g, h

n (1.69)

and thus:

A(n)
(1.69)

≤ 2A
(n
2

)
+ C n =

= 2A
(
2p−1

)
+ C 2p

(1.69)

≤
(1.69)

≤ 2

(
2A
(
2p−2

)
+ C 2p−1

)
+ C 2p =

= 22A
(
2p−2

)
+ 2C 2p

(1.69)

≤
(1.69)

≤ 22
(
2A
(
2p−3

)
+ C 2p−2

)
+ 2C 2p =

= 23A
(
2p−3

)
+ 3C 2p ≤ . . . ≤

≤ 2pA
(
20
)
+ pC 2p =

= nA(1) + (log2 n)C n ≤
≤ n · log2 n · C ′ mit C ′ = C + A(1)

Example 1.55 In the following, we compare the computational times when employing the naive
DFT implementation with the FFT implementation of Matlab. As a test case, we take a signal
f(t) = 3 sin(100πt) + sin(240πt) sampled at N points uniformly distributed in [0, 1].
Figure 1.10 shows that the FFT indeed scales like O(N log(N)) for growing N , while the DFT
performs significantly worse.

37

102 103 104 105 106 107
10−6

10−4

10−2

100

102

N log(N)
N2

N

co
m
p
u
ta
ti
on

al
ti
m
e
(s
) DFT

FFT

Figure 1.10: Computational times of DFT vs. FFT.

1.9.3 Properties of the DFT

The DFT appears very prominently when one is trying to compute efficiently the convolution of
two sequences (with various applications in signal processing), which is defined in the following
definition.

Definition 1.56 (i) A sequence f = (fj)j∈Z is called n-periodic, if fj+n = fj ∀j ∈ Z. Cn
per

denotes the space of the n-periodic sequences.

(ii) The DFT Fn is defined by:

Fn : Cn
per → Cn

per

(fj)j∈Z 7→

(
n−1∑
j=0

ωjk
n fj

)
k∈Z

Since ωn
n = 1 the DFT Fn is well-defined; J i.e., Fn((fj)j∈Z) is again an n-periodic

sequence K

(iii) the convolution ∗ is defined by:

∗ : Cn
per × Cn

per → Cn
per

(f, g) 7→ (f ∗ g)k :=

(
n−1∑
j=0

fk−j gj

)
∀k ∈ Z

(iv) the pointwise multiplication · is defined by:

· : Cn
per × Cn

per → Cn
per

(f, g) 7→ (f · g)k := fk · gk ∀k ∈ Z

Remark 1.57 The DFT of Def. 1.52 coincides with the definition of the DFT of Def. 1.56, if
one extends the finite sequence (fj)

n−1
j=0 n-periodically.

38

The following theorem (the proof is an exercise for the reader) motivates, why the DFT is very
useful when calculating convolutions, as convolutions are turned into multiplications.

Theorem 1.58 For f , g ∈ Cn
per let f̂ := Fn(f), ĝ := Fn(g) be the Fourier transformations.

Then:

(i) Fn : Cn
per → Cn

per is linear.

(ii) F−1
n (f) = 1

n

(
n−1∑
j=0

ωn
jkfj

)
k∈Z

(iii) (convolution theorem)

f̂ ∗ g = Fn(f ∗ g) = f̂ · ĝ

Remark 1.59 In the context of periodic sequences, the DFT can alternatively be defined by

(Fnf)k :=
n−m−1∑
j=−m

ωjk
n fj (1.70)

for any m ∈ Z, i.e., it is only essential that the summation in j extends over one period but
not where it starts.
The DFT of Def. 1.52 is (up to scaling) the definition employed in matlab or numpy. Often
in the literature, however, the DFT is defined differently from Def. 1.52, for example, as in
(1.70) with m = n/2 + 1. In the setting of periodic sequences these definitions coincide, which
corresponds to rearranging the input data if necessary.

Remark 1.60 With Remark 1.59 we can easily solve the interpolation problem of finding the
vector (cj)

m
j=−m that solves the interpolation problem

m∑
j=−m

cje
ijxk = yk, k = −m, . . . ,m.

(Note that we conveniently posed the interpolation problem in the points xk, k = −m, . . . ,m.)
In matrix-vector notation, this is

y = Vc, V = (ωjk
n)mj,k=−m,

where we adopted the notation to index the matrix V for j, k = −m, . . . ,m rather than from 0
to 2m− 1. Inspection of the proof of Theorem 1.51 shows that (2m)−1/2V is unitary and that
hence

c =
1

2m
Vy.

That is:

ck =
1

2m

m∑
j=−m

ωjk
n yj, k = −m, . . . ,m,

which is the same formula as for the standard DFT—only the range of the summation has
changed. In view of Remark 1.59, this is the standard DFT (after suitably periodizing y and
c). In particular, the FFT techniques are applicable.

39

1.9.4 Application: fast convolution of sequence

Example 1.61 Let f , g ∈ Cn
per. The naive evaluation of the convolution h := f ∗ g costs

O(n2) operations. It is more efficient to proceed with Theorem 1.58:

1.) compute f̂ and ĝ using FFT cost: O(n log n)

2.) compute ĥ := f̂ · ĝ cost: O(n)

3.) compute h = F−1
n

(
ĥ
)

using IFFT cost: O(n log n)

The convolution of finite (non-periodic) sequences is defined slightly differently, namely, for two
finite sequences (fj)

N−1
j=0 , (gj)

N−1
j=0 , its convolution is given by the sequence (cj)

N−1
j=0 with entries

cj =

j∑
k=0

fj−kgk. (1.71)

The sequence (cj)
N−1
j=0 can also be computed with the aid of the FFT:

Example 1.62 Let (fj)
N−1
j=0 , (gj)

N−1
j=0 be finite sequences.

goal: compute (hj)
N−1
j=0 given by hj =

j∑
k=0

fj−k gk, j = 0, . . . , N − 1

idea: periodize the two sequences (fj)
N−1
j=0 and (gj)

N−1
j=0 , so that Example 1.61 is applicable.

Procedure: Choose an n ≥ 2N of the form n = 2p for a p ∈ N0 and define f′ , g′ ∈ Cn
per by

f ′
j :=

{
fj for j = 0, . . . , N − 1
0 for j = N, . . . , n− 1

g′j :=

{
gj for j = 0, . . . , N − 1
0 for j = N, . . . , n− 1

Then:

f ′
j = 0 for N − n ≤ j ≤ −1 (1.72)

g′j = 0 for N ≤ j ≤ n− 1 (1.73)

For k ∈ {0, . . . , N − 1} we have:

(f′ ∗ g′)k =
n−1∑
j=0

f ′
k−j g

′
j

(1.73)
=

N−1∑
j=0

f ′
k−j gj =

k∑
j=0

f ′
k−j︸︷︷︸

=fk−j

gj +
N−1∑
j=k+1

f ′
k−j︸︷︷︸

=0 by (1.72)

gj =
k∑

j=0

fk−j gj

The convolution of non-periodic sequence arises, for example, when polynomials are multiplied.

Example 1.63 Let polynomials π1(x) =
∑N−1

j=0 fjx
j and π2(x) =

∑N−1
j=0 gjx

j of degree N − 1
be given. Then, the product π1π2 is a polynomial of degree 2N − 2 given by

π1(x)π2(x) =

2(N−1)∑
j=0

hjx
j, hj =

j∑
k=0

fj−kgk,

where we implicitly assume that fk = gk = 0 for k ∈ {N, . . . , 2N − 2}. Hence, Example 1.62 is
applicable.

40

An application that exemplifies the use of the FFT in connection with the computation of the
convolution of sequences is the multiplication of very large numbers.

Example 1.64 (multiplication of numbers with many digits) The fast realization of the
multiplication of numbers with many digits is nowadays done by FFT2. Consider the multipli-
cation of two integers with n digits that are written as

x =
n∑

j=0

fjb
j, y =

n∑
j=0

gjb
j,

where b ∈ N (e.g., b = 10) and the coefficients (“digits”) satisfy fj, gj ∈ {0, . . . , b − 1}. We
seek the representation of z = xy in the form z =

∑2n
j=0 cjb

j with cj ∈ {0, . . . , b − 1}. This is
very similar to Example 1.63, and a formal multiplication yields

xy =
2n∑
j=0

hjb
j, hj =

j∑
k=0

fj−kgk,

where we again assumed that fj = 0 = gj for j ∈ {n + 1, . . . , 2n}. The sequence (hj)j can
be calculated with cost O(n log n) using the FFT as described in Example 1.62. The sought
coefficients (cj)j of z are obtained from the sequence (hj)j by one more sweep through the
sequence with cost O(n) that ensures that the coefficients cj satisfy cj ∈ {0, . . . , b − 1}. The
following loop overwrites the hj with the sought cj:

for j = 0 : 2n do
if hj ≥ b then ▷ carrying over is necessary

hj := hj − ⌊hj/b⌋b
hj+1 := hj+1 + ⌊hj/b⌋

end if
end for

Example 1.65 (solving linear systems with circulant matrices) A matrix C ∈ Cn×n is
called circulant, if it has the form

C =

c0 cn−1 · · · c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2

. . .
. . . cn−1

cn−1 cn−2 · · · c1 c0

 .

Introduce the vector c := (c0, . . . , cn−1)
T . Observe that the matrix-vector product Cx is a

convolution, i.e., the entries yj of the vector y = Cx are given by

yj =
n−1∑
k=0

cj−kxk,

2This is also a building block of arbitrary precision arithmetic

41

where we view the sequence (cj)
n−1
j=0 as an element of Cn

per (i.e., extend the sequence (cj)
n−1
j=0

periodically). That is,
(Cx)j = (c ∗ x)j, j = 0, . . . , n− 1.

Hence, given b ∈ Cn, the linear system of equations Cx = b can also be written as

c ∗ x = b. (1.74)

Solving for x can be achieved with the FFT. To that end, write ĉ = Fn(c), x̂ = Fn(x), b̂ =
Fn(b) and observe:

1. Applying DFT on both sides of (1.74) gives by the convolution theorem ĉjx̂j = b̂j, j =
0, . . . , n− 1.

2. Hence, x̂j = b̂j/ĉj.

3. an inverse DFT of x̂ = (x̂j)
n−1
j=0 gives x.

Hence, the work to solve Cx = b is 2 FFTs of length n and n divisions.

Example 1.66 Circulant matrices arise in the discretization of differential equations with pe-
riodic boundary conditions. Consider the problem

−u′′ + u = f on (0, 1), u(0) = u(1), u′(0) = u′(1)

discretized by a finite difference method on the regular the grid xi = ih, i = 0, . . . , N , h = 1/N .
That is, denoting by ui an approximation to u(xi) and replacing the differential operator by a
difference quotient one arrives at the following system of equations

−ui+1 − 2ui + ui−1

h2
+ ui = fi := f(xi), i = 0, . . . , N − 1,

Inserting the periodicity condition, i.e., uN = u0 and u−1 = uN−1 yields a linear system Au = f
with A ∈ RN×N given by

A =
1

h2
AD +M, AD =

2 −1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 −1 2

, M =

1

. . .
. . .

1

The matrix A is a circulant matrix. Hence, the linear system Ax = b can be solved using the
FFT.

42

2 Numerical Integration

goal: compute (approximately)
∫ b

a
f(x) dx.

Quadrature formulas: We consider quadrature formulas of the form∫ b

a

f(x) dx ≈ Qb
a(f) =

n∑
i=0

wif(xi) (2.1)

The points xi are called quadrature points, the numbers wi quadrature weights.

Example 2.1 Partition [a, b] in N subintervals [ti, ti+1], i = 0, . . . , N − 1 with ti = a + ih,
h = (b− a)/N . Let mi := (ti + ti+1)/2 be the midpoints. Then the composite midpoint rule is∫ b

a

f(x) dx ≈ Qb
a(f) =

N−1∑
i=0

hf(mi).

Example 2.2 The (composite) trapezoidal rule is given, with the notation of Example 2.1, by∫ b

a

f(x) dx ≈ Qb
a(f) =

N−1∑
i=0

h
1

2
[f(ti) + f(ti+1)] = h

[
1

2
f(a) +

N−1∑
i=1

f(ti) +
1

2
f(b)

]
.

x

f(x)

•
•

•

•

a bt1 t2 t3
x

f(x)

•

• •
•

•

a bt1 t2 t3

Figure 2.1: Left: composite midpoint rule, right: composite trapezoidal rule.

The Examples 2.1, 2.2 are typical representatives for the way composite quadrature rules are
generated:

1. define a quadrature rule Q̂(f) ≈
∫ 1

0
f(x) dx on a reference interval, e.g., [0, 1].

2. Partition the interval [a, b] in subintervals (ti, ti+1) of lengths hi = ti+1 − ti.

3. The observation
∫ ti+1

ti
f(x) dx = hi

∫ 1

0
f(ti + hiξ) dξ motivates the definition∫ b

a

f(x) dx =
N−1∑
i=0

∫ ti+1

ti

f(x) dx =
N−1∑
i=0

hi

∫ 1

0

f(ti + hiξ) dξ ≈
N−1∑
i=0

hiQ̂(f(ti + hi·))

Remark 2.3 Quadrature rules are normally formulated for a reference interval, which is typ-
ically [0, 1] or [−1, 1]. For a general interval [a, b], the rule is obtained by an affine change of
variables (as done above).

43

2.1 Newton-Cotes formulas

The Newton-Cotes formulas for the integration on [0, 1] are examples of interpolatory quadra-
ture formulas. They are based on interpolating the integrand f and integrating the intepolating
polynomial. The interpolation points are uniformly distributed over [0, 1].

Example 2.4 (closed Newton-Cotes formulas) Let n ≥ 1 and xi =
i
n
, i = 0, . . . , n. The

interpolating polynomial p ∈ Pn is

p(x) =
n∑

i=0

f(xi)ℓi(x), ℓi(x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

.

Hence, the quadrature fromula is∫ 1

0

f(x) dx ≈
∫ 1

0

p(x) dx =

∫ 1

0

n∑
i=0

f(xi)ℓi(x) dx =
n∑

i=0

f(xi)

∫ 1

0

ℓi(x) dx︸ ︷︷ ︸
=:wi

=: Q̂cNC
n (f)

with the quadrature weights wi, i = 0, . . . , n, which are explicitly given in Fig. 2.2.

slide 4 - Newton-Cotes formulas

The endpoints of the interval are quadrature points for the “closed” formulas of Example 2.4.
If, for example, integrands are not defined at an endpoint (e.g., 1/

√
x, log x), then it is more

convenient to have formulas that do not sample the integrand at the endpoint. Hence, another
very important class of Newton-Cotes formulas are the “open” formulas:

Example 2.5 (open Newton-Cotes-Formeln) Let n ≥ 0 and xi = 2i+1
2n+2

, i = 0, . . . , n.
Then the quadrature is given by∫ 1

0

f(x) dx ≈
n∑

i=0

f(xi)

∫ 1

0

ℓi(x) dx︸ ︷︷ ︸
=:wi

=: Q̂oNC
n (f), ℓi(x) =

n∏
j=0
j ̸=i

x− xj

xi − xj

.

The choice n = 0 corresponds to the midpoint rule∫ 1

0

f(x) dx ≈ Qmid(f) = f(1/2).

By construction the Newton-Cotes formulas are exact for polynomials f ∈ Pn (as the interpo-
lation reproduces polynomials). In fact, one can show that, if n is even, then both the closed
and the open Newton-Cotes formulas are exact for polynomials f ∈ Pn+1.

Example 2.6 The midpoint rule integrates all linear polynomials exactly, as for arbitrary
p(x) = αx+ β there holds ∫ 1

0

p(x) dx =
α

2
+ β = p(1/2) = Qmid(p).

44

n weight Q(f)−
∫ 1
0 f(x) dx name

1 1
2

1
2

1
12h

3f (2)(ξ) trapezoidal rule

2 1
6

4
6

1
6

1
90h

5f (4)(ξ) Simpson rule

3 1
8

3
8

3
8

1
8

3
80h

5f (4)(ξ) 3/8 rule

4 7
90

32
90

12
90

32
90

7
90

8
945h

7f (6)(ξ) Milne rule

5 19
288

75
288

50
288

50
288

75
288

19
288

275
12096h

7f (6)(ξ) —

6 41
840

216
840

27
840

272
840

27
840

216
840

41
840

9
1400h

9f (8)(ξ) Weddle rule

Figure 2.2: the closed Newton-Cotes formulas for the integration over [0, 1]. Quadrature points
are xi =

i
n
, i = 0, . . . , n; h = 1

n
.

Exercise 2.7 1. Show for the quadrature weights:
∑n

i=0wi = 1(= length of the interval [0, 1])
(hint: apply the quadrature formula to a suitable function f .)

2. Show that the quadrature formulas Q̂cNC
n , Q̂oNC

n are exact for f ∈ Pn.

3. Show the symmetry property wn−i = wi, i = 0, . . . , n. (hint: Use the symmetry of the
points with respect to 1/2. The symmetry of the weights is visible in Fig. 2.2.).

4. Let n = 2m be even. Consider the function f = (x − 1/2)n+1, which is odd with respect

to 1/2. Show:
∫ 1

0
f(x) dx = 0 = Q̂cNC

n (f) = Q̂oNC
n (f). Conclude that the quadrature

formula is exact for polynomials of degree n+1. In particular, the midpoint rule is exact
for polynomials in P1, and the Simpson rule is exact for polynomials in P3.

The Newton-Cotes formulas are typically used for fixed n in composite rule. We illustrate the
convergence behavior for two important cases, the composite trapezoidal rule and the composite
Simpson rule. Let a = x0 < x1 < . . . < xN = b be a partition of [a, b] and hi := xi+1 − xi. We
introduce the following notation for the composite trapezoidal rule

T{x0,...,xN}(f) :=
N−1∑
i=0

hi
1

2
(f(xi) + f(xi+1)) ,

such that, we can easily write T{xi,xi+1}(f) = hi
1
2
(f(xi) + f(xi+1)) for the trapezoidal rule on

the interval [xi, xi+1].

We now aim to derive an estimate for the error between the the true integral
∫ b

a
f and the

trapezoidal rule.

45

• As the rule is exact for polynomials of degree n = 1, we can insert an arbitrary p ∈ P1 as
follows:∫ xi+1

xi

f(x) dx− T{xi,xi+1}(f) =

∫ xi+1

xi

f(x)− p(x) dx+

∫ xi+1

xi

p(x) dx− T{xi,xi+1}(f)

=

∫ xi+1

xi

f(x)− p(x) dx+ T{xi,xi+1}(p)− T{xi,xi+1}(f)

=

∫ xi+1

xi

f(x)− p(x) dx− T{xi,xi+1}(f − p).

Therefore,∣∣∣∣∫ xi+1

xi

f(x) dx− T{xi,xi+1}(f)

∣∣∣∣ ≤ (xi+1 − xi)∥f − p∥∞,[xi,xi+1] + |T{xi,xi+1}(f − p)|

≤ (xi+1 − xi)∥f − p∥∞,[xi,xi+1] + (xi+1 − xi)∥f − p∥∞,[xi,xi+1]

≤ 2hi∥f − p∥∞,[xi,xi+1].

Now, summing up over all sub-intervals gives∣∣∣∣∫ b

a

f(x)− T{x0,...,xN}(f)

∣∣∣∣ =
∣∣∣∣∣
N−1∑
i=0

∫ xi+1

xi

f(x) dx− T{xi,xi+1}(f)

∣∣∣∣∣ ≤
N−1∑
i=0

2hi min
p∈P1

∥f − p∥∞,[xi,xi+1]

which bounds the error by a polynomial best-approximation error.

• In order to provide a bound for this best-approximation term, we select for p the linear
interpolant of f with Chebyshev knots in [xi, xi+1]. From the error bound of Theorem 1.15

together with ∥ωCheb
2 ∥∞,[xi,xi+1] =

(xi+1−xi)
2

8
from Theorem 1.24 we obtain

min
v∈P1

∥f − p∥∞,[xi,xi+1] ≤
1

16
(xi+1 − xi)

2∥f ′′∥∞,[xi,xi+1],

from which we arrive at∣∣∣∣∫ b

a

f(x)− T{x0,...,xN}(f)

∣∣∣∣ ≤ 1

8

N−1∑
i=0

h3
i ∥f ′′∥∞,[xi,xi+1].

With hi ≤ h := maxhi we finally get∣∣∣∣∫ b

a

f(x)− T{x0,...,xN}(f)

∣∣∣∣ ≤ 1

8

N−1∑
i=0

h3
i ∥f ′′∥∞,[xi,xi+1] ≤

1

8
h2

N−1∑
i=0

hi∥f ′′∥∞,[xi,xi+1]

≤ 1

8
h2∥f ′′∥∞,[a,b]

N−1∑
i=0

hi =
1

8
h2∥f ′′∥∞,[a,b](b− a).

We summarize the findings in the following, which also provides a similar estimate for the
composite Simpson rules defined by

S{x0,...,xN}(f) :=
N−1∑
i=0

hi
1

6

(
f(xi) + 4f(

xi + xi+1

2
) + f(xi+1)

)
.

46

Theorem 2.8 (i) Let f ∈ C([a, b]). Then:∣∣∣∣∫ b

a

f(x) dx− T{x0,...,xN}(f)

∣∣∣∣ ≤ 2
N−1∑
i=0

hi min
p∈P1

∥f − p∥∞,[xi,xi+1],∣∣∣∣∫ b

a

f(x) dx− S{x0,...,xN}(f)

∣∣∣∣ ≤ 2
N−1∑
i=0

hi min
p∈P3

∥f − p∥∞,[xi,xi+1].

(ii) Let f ∈ C2([a, b]). Then for h := maxi=0,...,N−1 hi∣∣∣∣∫ b

a

f(x) dx− T{x0,...,xN}(f)

∣∣∣∣ ≤ 1

8

N−1∑
i=0

h3
i ∥f (2)∥∞,[xi,xi+1] ≤

1

8
(b− a)h2∥f (2)∥∞,[a,b]

(iii) Let f ∈ C4([a, b]). Then for h := maxi=0,...,N−1 hi with a constant C > 0∣∣∣∣∫ b

a

f(x) dx− S{x0,...,xN}(f)

∣∣∣∣ ≤ C
N−1∑
i=0

h5
i ∥f (4)∥∞,[xi,xi+1] ≤ C(b− a)h4∥f (4)∥∞,[a,b]

We say that a quadrature rule has order m if the the composite rule leads to error bounds of
the form Chm (for sufficiently smooth f). The composite trapezoidal rule has therefore order
m = 2, the composite Simpson rule order m = 4. More generally, the arguments leading to
Theorem 2.8 show that a Newton-Cotes formula (or, more generally, any composite rule) that
is exact for polynomials of degree n leads to a composite rule of order n+ 1.

Example 2.9 slide 5 - Composite Newton-Cotes formulas
We compare the composite trapezoidal rule with the composite Simpson rule for integration on
[0, 1]. We partition [0, 1] in N subintervals of length h = 1/N . By Theorem 2.8 the errors
Etrap, ESimpson satisfy (F denotes the number of function evaluations):

Etrap(h) ≤ Ch2 ∼ CF−2, ESimpson ≤ Ch4 ∼ CF−4.

We show in Fig. 2.3 the error versus the number of function evaluations F , since this is a
reasonable cost measure of the method. We note that methods of a higher order are more
efficient than lower order methods.

The O(h2) convergence behavior of the composite trapezoidal rule and the O(h4) behavior of
the compositive Simpson rule require f ∈ C2 and f ∈ C4, respectively:

Example 2.10 Integration of f(x) = x0.1 on [0, 1] does not yield O(h2) but merely O(h1.1) as
is visible in Figure 2.3 (right). Note that the function f is integrable and continuous, but the
derivative f ′(x) = 0.1x−0.9 is not continuous at x = 0.

2.2 Romberg extrapolation

Extrapolation can be used to accelerate convergence of composite rules for smooth integrands.
We illustrate the procedure for the composite trapezoidal rule. For that, let the interval [a, b]
be partitioned in N subintervals (xi, xi+1) of length h = (b− a)/N with xi = a+ ih. Define

T (h) := h
N−1∑
i=0

1

2
(f(xi) + f(xi+1))

47

101 102 103
10−15

10−11

10−7

10−3

N−2

N−4

number function evaluations

q
u
ad

ra
tu
re

er
ro
r

smooth
∫ 1

0
exp(x)dx

Trapez.

Simpson

101 102 103
10−4

10−3

10−2

10−1

100

N−1.1

number function evaluations

q
u
ad

ra
tu
re

er
ro
r

singular
∫ 1

0
x0.1dx

Trapez.

Simpson

Figure 2.3: Convergence of composite trapezoidal and Simpson rule for smooth integrand
f(x) = exp(x) (left) and singular integrand f(x) = x0.1 (right).

The sought value of the integral
∫ b

a
f(x) dx = limh→0 T (h), so that one may use extrapolation

for the data (hi, T (hi)), i = 0, 1, . . . , with hi = (b− a)M−i for some chosen M ∈ N, M ≥ 2.1

In fact, T (h) has “additional structure”: There holds the Euler McLaurin formula

T (h) =

∫ b

a

f(x) dx+ c1h
2 + c2h

4 + c3h
6 + · · · , (2.2)

where the coefficients ci depend on higher derivatives of f . This means that T (h) is actually a
function depending only on h2, i.e.,

T (h) = T̃ (h2).

slide 6 - Euler-McLaurin formula, Romberg extrapolation

Therefore, one can obtain an approximation to
∫ b

a
f(x) dx = limh→0 T (h) in two ways:

1. Interpolate the data (hi, T (hi)), i = 0, . . . , n, and evaluate the interpolating polynomial
at h = 0.

2. Interpolate the data (h2
i , T (hi)) = (h2

i , T̃ (h
2
i)), i = 0, . . . , n, and evaluate the interpolating

polynomial at h2 = 0.

Effectively, the first approach interpolates the function T , whereas the second approach interpo-
lates the function T̃ . In practice, the interpolation of T̃ is again realized with a Neville scheme
and yields a much better accuracy for the same computational cost for smooth functions.

1strictly speaking, T (h) is only defined for h of the form h = (b − a)/N , N ∈ N, so that one should write∫ b

a
f(x) dx = limN→∞ T (h(N)).

48

Remark 2.11 Extrapolation of the composite trapezoidal rule for M = 2 yields in the first
columns of the Neville scheme the composite Simpson rule; in the second column, the composite
Milne rule arises. The choice M = 3 produces in the first column of the Neville scheme the
composite 3/8-rule.

finis 4.DS

2.3 Non-smooth integrands and adaptivity

Example 2.10 shows that, for non-smooth integrands, composite quadrature rules based on
equidistant partitions x0 < x1 < · · · < xN do not work very well. Our goal is to choose the
partition in such a way that the composite trapezoidal rule yields convergence O(N−2), where
N is the number of quadrature points. In other words: the convergence (error vs. number of
function evaluations) is similar to the case of smooth integrands.
This can be achieved for quite a few integrands f if the partition is suitably adapted to f .
Basically, one should use small interval lengths hi where f is large (in absolute value) or varies
rapidly (i.e., higher derivatives of f are large):

Example 2.12 slide 7 - Adaptive quadrature

Consider the composite trapezoidal rule for
∫ 1

0
f(x) dx mit f(x) = x0.1 for two partitions of

0 = x0 < x1 · · · < xN = 1 of the form

1. equidistant points: xi = (i/N), i = 0, . . . , N

2. points refined towards x = 0: xi = (i/N)β, i = 0, . . . , N mit β = 2

The convergence behavior of the composite trapezoidal rule is shown in Fig. 2.4. While the
convergence is only O(N−1.1) for the equidistant points, it is O(N−2) for the one where the
points are refined towards x = 0.

101 102 103
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

N−1.1

N−2

number function evaluations

q
u
ad

ra
tu
re

er
ro
r

Trapezoidal rule
∫ 1

0
x0.1dx

uniform

graded

0 0.2 0.4 0.6 0.8 1
x

Quadrature point distribution

uniform

graded

Figure 2.4: (cf. Example 2.12) numerical integration of f(x) = x0.1 using composite trapezoidal
rule based on a) equidistant nodes and b) nodes suitable refined towards x = 0.

49

In practice, it is difficult to construct a good partition for a given integrand. One is there-
fore interested in adaptive algorithms. Structurally, these algorithms proceed as outlined in
Algorithm 5: the accuracy of an approximation for the integration on an interval [a, b] (here:
using the trapezoidal rule) is estimated with a better rule (here: Simpson rule). If the esti-
mate accuracy does not meet the desired tolerance, then the interval [a, b] is subdivided into two
subintervals [a,m], [m, b] with midpoint m = (a+b)/2 and the quadrature routine is recursively
called for the two subintervals.

Algorithm 5 (adaptive algorithm based on trapezoidal rule)

1: % approximates
∫ b

a
f(x) dx to given accuracy τ

2: % hmin = minimal interval length ; ρ ∈ (0, 1) safety factor
3: % T ([a, b]) = trapezoidal rule für [a, b]; S([a, b]) = Simpson rule for [a, b]

4: adapt(f, a, b, τ)

5: if (b− a) ≤ hmin return S([a, b]) ▷ forced termination!

6: if |S([a, b])− T ([a, b])| ≤ ρτ ▷ desired accuracy reached!

7: return S([a,b])
8: else ▷ desired accuracy not reached → subdivide [a, b] into [a,m] and [m, b]

9: m := (a+ b)/2

10: I := adapt(f, a,m, τ/2) + adapt(f,m, b, τ/2)
11: return I

2.4 Gaussian quadrature

Question: How to choose n + 1 quadrature points so that polynomials of the highest possible
degree are integrated exactly?

Answer: Gaussian quadrature integrates polynomials of degree 2n + 1 exactly. The n + 1
quadrature points (“Gaussian points”) of this quadrature rule are the zeros of the Legendre
polynomial Ln+1.

2.4.1 Legendre polynomials Ln as orthogonal polynomials

We consider the interval [−1, 1]. On the space C([−1, 1]) we define a scalar product by

⟨u, v⟩ :=
∫ 1

−1

u(x)v(x) dx. (2.3)

We seek a sequence of polynomials Ln ∈ Pn, n = 0, 1, . . . ,, with the following properties:

(i) {L0, . . . , Ln} is a basis of Pn (for each n)

(ii) Ln is orthogonal to the space Pn−1, i.e,.

⟨Ln, v⟩ = 0 ∀v ∈ Pn−1. (2.4)

50

Such polynomials can be constructed inductively with a variant of the “Gram-Schmidt-orthogonalization”:
We choose2,

L̃0(x) := 1, L̃1(x) := x.

We note that
⟨L̃1, L̃0⟩ = 0, (2.5)

so that (2.4) is satisfied for n = 1.

For L̃2 ∈ P2 we make the ansatz

L̃2(x) = xL̃1(x) + r1

for a polynomial r1 ∈ P1 to be determined. Writing r1 = a0L̃0 + a1L̃1 the orthogonality
conditions (2.4) imply the two equations

0
!
= ⟨L̃2, L̃0⟩ = ⟨xL̃1(x), L̃0(x)⟩+ a0 ⟨L̃0, L̃0⟩︸ ︷︷ ︸

>0

+a1 ⟨L̃1, L̃0⟩︸ ︷︷ ︸
=0 b/c of (2.5)

,

0
!
= ⟨L̃2, L̃1⟩ = ⟨xL̃1(x), L̃1⟩+ a0 ⟨L̃0, L̃1⟩︸ ︷︷ ︸

=0 b/c of (2.5)

+a1 ⟨L̃1, L̃1⟩︸ ︷︷ ︸
>0

.

for the coefficients a0, a1. This system of equations can obviously be solved and therefore L̃2 is
determined. By construction, we have (2.4) for n ≤ 2.

Inductively, we make for L̃3 the ansatz L̃3(x) = xL̃2(x) + r2(x) for an r2 ∈ P2. Again, (2.4)

yields after writing r2(x) =
∑2

i=0 aiL̃i(x) a linear system of equations for the ai:

0
!
= ⟨L̃3, L̃0⟩ = ⟨xL̃2(x), L̃0⟩+

2∑
j=0

aj⟨L̃j, L̃0⟩,

0
!
= ⟨L̃3, L̃1⟩ = ⟨xL̃2(x), L̃1⟩+

2∑
j=0

aj⟨L̃j, L̃1⟩,

0
!
= ⟨L̃3, L̃2⟩ = ⟨xL̃2(x), L̃2⟩+

2∑
j=0

aj⟨L̃j, L̃2⟩.

Again, since we already know (2.4) for n ≤ 2, the system of equations simplifies to

0
!
= (L̃3, L̃i) = ⟨xL̃2, L̃i⟩+ ai ⟨L̃i, L̃i⟩︸ ︷︷ ︸

>0

, i = 0, 1, 2.

This yields the coefficients ai and therefore L̃3. In this way, we can construct inductively the
polynomials L̃n ∈ Pn, n = 0, 1, Our procedure yields the representation

L̃n+1(x) = xL̃n(x)−
n∑

i=0

1

⟨L̃i, L̃i⟩
⟨xL̃n, L̃i⟩L̃i(x)

2since the “classical” Legendre polynomials Ln are scaled slightly differently (see below), we employ the

notation L̃n

51

This can be simplified furthermore with the aid of (2.4):

⟨xL̃n(x), L̃i(x)⟩ = ⟨L̃n(x), xL̃i(x)⟩
(2.4)
= 0 für i+ 1 ≤ n− 1, (2.6)

Hence, we arrive at the so-called “3-term recurrence relation”

L̃n+1(x) = xL̃n(x)−
n∑

i=0

1

⟨L̃i, L̃i⟩
⟨xL̃n(x), L̃i(x)⟩L̃i(x)

(2.6)
= xL̃n(x)−

n∑
i=n−1

1

⟨L̃i, L̃i⟩
⟨xL̃n(x), L̃i(x)⟩L̃i(x)

= xL̃n(x)− ãnL̃n(x)− b̃nL̃n−1(x) = (x− ãn)L̃n(x)− b̃nL̃n−1(x), (2.7)

with

ãn =
⟨xL̃n(x), L̃n(x)⟩
⟨L̃n, L̃n⟩

, b̃n =
⟨xL̃n(x), L̃n−1(x)⟩
⟨L̃n−1, L̃n−1⟩

.

Polynomials that satisfy the conditions (i), (ii) are not unique. For example, each Ln could
be multiplied by a factor cn ̸= 0. However, this is the only freedom, i.e., each system Ln that
satisfies the conditions (i), (ii) is of the form Ln = cnL̃n with the above constructed L̃n. The
“classiscal” Legendre polynomials Ln are fixed by the “normalization condition” Ln(1) = 1.
We have:

Theorem 2.13 (Legendre polynomials) There holds:

A. There is a unique sequence (Ln)n∈N0 of polynomials Ln ∈ Pn, the Legendre polynomials,
that satisfy the following conditions:

(i) {L0, . . . , Ln} is a basis of Pn (for each n)

(ii) Ln is orthogonal to the space Pn−1, i.e., satisfies (2.4) for all n ∈ N0.

(iii) Ln(1) = 1 for all n ∈ N0.

B. The Legendre polynomials Ln have the explicit representation (“Rodrigues formula”)

Ln(x) =
1

2nn!

dn

dxn
(x2 − 1)n (2.8)

C. The Legendre polynomials satisfy the “3-term recurrence relation”

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x) (2.9)

Remark 2.14 The 3-term recurrence (2.9) is the standard way to evaluate Legendre polyno-
mials. The Legendre polynomials are a very important representative of the class of orthogonal
polynomials. Other important families of orthogonal polynomials are the Chebyshev polynomi-
als and the Jacobi polynomials. All orthogonal polynomials satisfy 3-term recurrence relations
and are typically evaluated in this way.

52

2.4.2 Gaussian quadrature

The following result is key for the definition of Gaussian quadrature (the proof of it can be
found in literature).

Theorem 2.15 For each n ∈ N0, the Legendre polynomial Ln+1 has exactly n + 1 (pairwise
distinct) zeros x0, . . . , xn. Furthermore, xi ∈ (−1, 1) for all i.

With the aid of the n+1 zeros of Ln+1 we define the Gaussian quadrature as the interpolatory
quadrature, i.e., we interpolate the integrand in the n + 1 zeros of Ln+1 and integrate the
interpolating polynomial:

Gauss points: xG
i,n = zeros of Ln+1 (2.10a)

Gauss weights: wG
i,n =

∫ 1

−1

ℓi(x) dx, ℓi(x) =
n∏

j=0
j ̸=i

x− xG
j,n

xG
i,n − xG

j,n

(2.10b)

By construction, this is a quadrature formula QGauss
n (f) :=

∑n
i=0w

G
i,nf(x

G
i,n) that is exact for

polynomials of degree n: ∫ 1

−1

g(x) dx = QGauss
n (g) ∀g ∈ Pn (2.11)

In fact, for Gaussian quadrature there hold even stronger statements:

• Gaussian quadrature is exact for polynomials of degree 2n+ 1:

Let f ∈ P2n+1. With the aid of polynomial division (“Euklidian algorithm”) we write f
as

f(x) = Ln+1(x)qn(x) + rn(x)

with two polynomials qn, rn ∈ Pn. Then∫ 1

−1

f(x) dx =

∫ 1

−1

Ln+1(x)qn(x) dx︸ ︷︷ ︸
=0 by (2.4)

+

∫ 1

−1

rn(x) dx

=

∫ 1

−1

rn(x) dx
(2.11)
= QGauss

n (rn) =
n∑

i=0

wG
i,nrn(x

G
i,n)

Ln+1(xG
i,n)=0

=
n∑

i=0

wG
i,nLn+1(x

G
i,n)qn(x

G
i,n) + rn(x

G
i,n) = QGauss

n (f)

• The Gauss weights wG
i,n > 0 are positive (this is important to avoid cancelation):

We apply the quadrature formula to ℓi to obtain

wG
i,n

ℓi(x
G
j,n)=δi,j
=

n∑
j=0

wG
j,nℓi(x

G
j,n)

ℓi(x
G
j,n)=δi,j
=

n∑
j=0

wG
j,n(ℓi(x

G
j,n))

2

= QGauss
n (ℓ2i)

ℓ2i∈P2n,(2.12)
=

∫ 1

−1

ℓ2i (x) dx > 0.

53

• Gaussian quadrature is optimal (w.r.t. to degree of exactness):

There is no rule with n + 1 points that is exact for all polynomials of P2n+2: Let xi,
i = 0, . . . , n, be the quadrature points of a rule. Consider

f(x) =
n∏

i=0

(x− xi)
2 ∈ P2n+2

Then 0 <
∫ 1

−1
f(x) dx, but Qn(f) = 0.

We summarize the findings in the following theorem.

Theorem 2.16 (Gaussian quadrature) The quadrature rule QGauss
n defined (2.10) satisfies:

QGauss
n (f) =

∫ 1

−1

f(x) dx ∀f ∈ P2n+1 (2.12)

wG
i,n > 0 i = 0, . . . , n. (2.13)

Furthermore, there is no quadrature rule with n + 1 points that is exact for all polynomials of
degree 2n+ 2.

Gaussian quadrature converges for integrands f ∈ C([−1, 1]) if n→∞:

• Similarly to the error estimates for the trapezoidal rule, we exploit that the quadrature
rule is exact for polynomials of a particular degree. For arbitrary v ∈ P2n+1 we have∫ 1

−1

f(x) dx−QGauss
n (f)

Thm. 2.16
=

∫ 1

−1

(f(x)− v(x)) dx+QGauss
n (v)−QGauss

n (f)

=

∫ 1

−1

(f(x)− v(x)) dx+QGauss
n (v − f)

and therefore (note:
∑n

i=0w
G
i,n = QGauss

n (1) =
∫ 1

−1
1 dx = 2)∣∣∣∣∫ 1

−1

f(x) dx−QGauss
n (f)

∣∣∣∣ ≤ ∣∣∣∣∫ 1

−1

f(x)− v(x) dx

∣∣∣∣+ ∣∣QGauss
n (f − v)

∣∣
≤ 2∥f − v∥∞,[−1,1] +

n∑
i=0

|wG
i,n|︸ ︷︷ ︸

=wG
i,n b/c of (2.13)

|f(xG
i,n)− v(xG

i,n)|︸ ︷︷ ︸
≤∥f−v∥∞,[−1,1]

≤ (2 +
n∑

i=0

wG
i,n)∥f − v∥∞,[−1,1] = 4∥f − v∥∞,[−1,1].

Theorem 2.17 (convergence of Gaussian quadrature) There holds:∣∣∣∣∫ 1

−1

f(x) dx−QGauss
n (f)

∣∣∣∣ ≤ 4 min
v∈P2n+1

∥f − v∥∞,[−1,1]. (2.14)

In particular there holds
∫ 1

−1
f(x) dx = limn→∞ QGauss

n (f) for each f ∈ C([−1, 1]).

54

100 101 102
10−17

10−12

10−7

10−2

number Gauss points

q
u
ad

ra
tu
re

er
ro
r

exp(x)

x0.1

100 101 102 103
10−17

10−12

10−7

10−2

number function evaluations

q
u
ad

ra
tu
re

er
ro
r

smooth
∫ 1

0
exp(x)dx

Trapez.

Simpson

Gauss

Figure 2.5: Gaussian quadrature on the interval [0, 1] for smooth integrand f(x) = exp(x) and
non-smooth integrand f(x) = x0.1 (left). Comparison of Gaussian quadrature with trapezoidal
rule and Simpson rule for smooth integrand (right).

Gaussian quadrature is very efficient for smooth integrands:

Example 2.18 We consider Gaussian quadrature with n+ 1 points on the interval [0, 1] (i.e.,
the quadrature points are xi =

1
2
(1 + xG

i,n) and the weights wi =
1
2
wG

i,n) for f1(x) = exp(x) and
f2(x) = x0.1. While very rapid convergence is visible for the smooth integrand f1, Gaussian
quadrature is not very efficient for the non-smooth integrand f2.

slide 8 - Gaussian quadrature

Typically, Gaussian quadrature is also employed in composite rules. Then the number n+1 of
Gaussian points (per subinterval) is typically fixed. Convergence results analogous to those for
the composite trapezoidal and Simpson rule of Theorem 2.8 hold true.

Remark 2.19 There is no explicit formula for the Gauss points and weigths for n ≥ 5.
There are may implementations, e.g., gauleg.c from “Numerical Recipes” (also available as
gauleg.m)) or numpy.polynomial.legendre.leggauss.

2.5 Comments on the trapezoidal rule

The (composite) Gauss rules are much more efficient than then composite trapezoidal rule for
smooth integrands. There is one exception: the integration of smooth periodic functions over
one period. In this case, the trapezoidal rule converges very rapidly and is typically employed:

Example 2.20 slide 9 - trapezoidal rule

We employ the composite trapezoidal rule for the numerical integration on [−1, 1] for the fol-
lowing three periodic functions:

f1(x) = sin(πx), f2(x) = (cos(πx))10, f3(x) = exp(sin(8πx)).

55

We observe in Fig. 2.6: the composite trapezoidal rule is exact for rather large step sizes h for
f1; for somewhat large step sizes it is exact for the trigonometric polynomial f2; for f3 we also
observe fast convergence.

101 102 103
10−18

10−13

10−8

10−3

number of points N

q
u
ad

ra
tu
re

er
ro
r

periodic integrands

f1
f2
f3

Figure 2.6: Composite trapezoidal rule on [−1, 1] for f1(x) = sin(πx), f2(x) = (cos(πx))10,
f3(x) = exp(sin(8πx)).

2.6 Quadrature in 2D

Goal: Determine
∫
T
f(x) dx, where T ⊂ R2 is the reference triangle T = {(x, y) | 0 < x < 1, 0 <

y < 1− x} or the reference square S = (0, 1)2.
In principle, the typical construction of quarature rule for triangles or rectangles follows that
in 1D: one selects quadrature points and weights in such a way that certain polynomials are
integrated exactly.

2.6.1 Quadrature on squares

A quadrature rule for the square S is typically obtained from a 1D rule by a product construc-
tion. To that end, let

Q1D
n (f) :=

n∑
i=0

wif(xi) ≈
∫ 1

0

f(x) dx (2.15)

be a 1D rule. Then, one can define for functions F (x, y) the 2D rule

Q2D
n (F) :=

n∑
i,j=0

wiwjF (xi, xj). (2.16)

Exercise 2.21 Let the 1D rule (2.15) be exact for polynomials of degree p, i.e., Q1D
n (f) =∫ 1

0
f(x) dx for all f ∈ Pp. Then the rule Q2D

n is exact for all polynomials F ∈ span{(xiyj | i, j =
0, . . . , p}.

56

2.6.2 Quadrature on triangles

Quadrature rules on the triangle T are typically created in one of the following two ways:

1. One selects points in T . The condition that certain polynomials are integrated exactly
determines the quadrature weights.

2. The triangle T is transformed to a square and a quadrature formula for the square S is
employed.

Exercise 2.22 The simplest case is a quadrature rule with 1 point, e.g., the barycenter of
T . What is the corresponding quadrature weight so that the rule exact for polynomials of
degree 0? Show that this rule is in fact exact for polynomials of degree 1, i.e., for polynomials
F (x, y) = a+ bx+ cy.
The next case is a quadrature rule with 3 points, e.g., the vertices of T . Construct the weights
such that the rule is exact for polynomials of degree 1.

Example 2.23 Let Q2D be a quadrature rule on S with N points xi = (xi, yi) ∈ S and corre-
sponding weights wi, i = 0, . . . , N . The substitution (“Duffy transformation”)∫

T

F (x, y) dy dx =

∫ 1

x=0

∫ 1−x

y=0

F (x, y) dy dx =

∫ 1

x=0

∫ 1

η=0

F (x, (1− x)η)(1− x) dη dx

suggests the following quadrature rule on T :∫
T

F (x, y) dy dx =

∫ 1

x=0

∫ 1

η=0

F (x, (1− x)η)(1− x) dη dx ≈
∑
i

F (xi, (1− xi)yi)(1− xi)wi.

Typically, rules Q2D for S are derived from 1D rules as described in Section 2.6.1. The 1D rule
can be a Newton-Cotes formula or a Gauss rule or a composite Newton-Cotes or Gauss rule.

2.6.3 Further comments

Integrals over “arbitray” domains G ⊂ R2 are typically done by composite rules, in which G
is decomposed into triangles or quadrilaterals and each subdomain is then treated by a rule of
the above type. finis 5.DS

57

2.7 Comments on Gaussian quadrature (CSE)

goal: compute the Gaussian quadrature points and weights
In principle, there are two approaches to compute the Gaussian quadrature points, both of
which are used in the numerical practice:

1. find the zeros of the Legendre polynomial Ln+1 by some Newton method (→ see below).
The starting values are taken to be the Chebyshev points, which are explicitly avail-
able. The Legendre polynomials are evaluated using the three-term recurrence relation.
Newton’s method requires also the derivatives L′

n+1, which also satisfies a three-term
recurrence relation.

2. Identify the zeros of Ln+1 as eigenvalues of a suitable symmetric matrix in R(n+1)×(n+1)

and compute those with some eigenvalue solver.

In the following, we derive a characterization of zeros of (more general) sets of polynomials that
satisfy three-term recurrence relations of the form

Ln(x) = (anx+ bn)Ln−1(x)− cnLn−2(x), n = 1, 2, . . . , (L0 := 1;L1 := x)

as eigenvalues of a matrix.

The recurrence relation can be written as

x

L0(x)
L1(x)

...

...
Ln−1(x)

 =

− b1

a1
1
a1

0 · · ·
c2
a2

− b2
a2

1
a2

· · ·

0
. . .

. . .
. . .

cn−1

an−1
− bn−1

an−1

1
an−1

cn
an

− bn
an

︸ ︷︷ ︸

=:T

L0(x)
L1(x)

...

...
Ln−1(x)

+

0
...
...
0

1
an
Ln(x)

or in short as

xL = TL+
1

an
Ln(x)en,

where T ∈ Rn×n is a tridiagonal matrix and en = (0, 0, . . . , 0, 1)⊤ is a unit vector. This
shows that L = (L0(ξ), L1(ξ), . . . , Ln−1(ξ))

⊤ is an eigenvector for the eigenvalue ξ of T if
and only if Ln(ξ) = 0. Hence, the eigenvalues of T are the zeros xi of Ln with eigenvector
(L0(xi), . . . , Ln−1(xi))

⊤.
The tridiagonal matrix T can be made symmetric with a similarity transformation: for suitable
diagonal matrix D = diag(d0, . . . , dn−1), there holds

DTD−1 = J =

α1 β1 0
β1 α2 β2

0
. . .

. . .
. . .

. . .
. . .

. . . βn−1

βn−1 αn

 , αi := −
bi
ai
, βi =

(
ci+1

aiai+1

)1/2

.

(2.17)

58

(Exercise: check this!) Since D is a diagonal matrix, the eigenvectors of J are the form

vi = D

 L0(xi)
...

Ln−1(xi)

 =

 diL0(xi)
...

diLn−1(xi)

 . (2.18)

Since J is a symmetric matrix, its eigenvectors vi are pairwise orthogonal.

Lemma 2.24 Let the functions Li satisfy the three-term recurrence relation

Ln(x) = (anx+ bn)Ln−1(x)− cnLn−2(x), n = 1, 2, . . . , (L0 := 1;L1 := x) (2.19)

Assume that ai, ci > 0 for all i. Then, the zeros of Ln are the eigenvalues of the matrix J of
(2.17). Associated with each eigenvalue xi, i = 0, . . . , n − 1 is an eigenvector vi of J. These
eigenvectors are pairwise orthogonal.

Once the Gauss points x0, . . . , xn−1 (i.e., the zeros of Ln) have been determined, the weights wi,
i = 0, . . . , n − 1, can be computed by solving a linear system of equations from the exactness
condition ∫ 1

−1

f(x) dx =
n−1∑
j=0

wjf(xj), ∀f ∈ Pn−1. (2.20)

In fact, if the eigenvectors of the matrix J are available, then the weights wi can easily be
determined directly:

Lemma 2.25 Let v0, . . . ,vn−1 be a basis of Rn of eigenvectors of J corresponding to the eigen-
values xi, i = 0, . . . , n− 1. Then the quadrature weights are given by

wi(v
⊤
i vi) =

∫ 1

−1

L2
0(x) dx = 2((vi)1)

2, i = 0, . . . , n− 1.

Proof: By Lemma 2.24, the eigenvectors vi, i = 0, . . . , n− 1, of the matrix J are orthogonal,
i.e., v⊤

i vj = 0 for i ̸= j. Formula (2.18) shows that

vi = di(L0(xi), . . . , Ln−1(xi))
⊤, i = 0, . . . , n− 1.

From the exactness condition (2.20) applied to the function f(x) = diLi(x), we get∑
j

wjdiLi(xj) =

∫ 1

−1

diLi(x) dx
L0=1
= di

∫ 1

−1

L0(x)Li(x) dx
Lj orthog.

= δi0di∥L0∥2L2(−1,1)
L0=1
= 2diδi0

(2.21)
With the matrix V and the unit vector e1 given by

V := (v1, . . . ,vn−1), e1 = (1, 0, . . . , 0)⊤

the n equations in (2.21) can be written as

Vw = 2die1,

where w = (w0, . . . , wn)
⊤. Multiplying from the left by the vector v⊤

i and using that the
eigenvectors are pairwise orthogonal yields

v⊤
i viwi = 2div

⊤
i e1 = 2di(vi)1

(vi)1=diL0=di
= 2((vi)1)

2

2

59

2.7.1 Gaussian quadrature with weights

goal: given a positive function ω on (−1, 1), determine quadrature points xi, i = 0, . . . , n and
weights wi such that the exactness condition∫ 1

−1

f(x)ω(x) dx =
n∑

i=0

wif(xi) (2.22)

holds for polymials of as a degree as possible. Proceeding as in the case of the classical Gaussian
quadrature (i.e., ω ≡ 1) one can show that

Theorem 2.26 If the function ω is positive on (−1, 1) and satisfies
∫ 1

−1
ω(x) dx <∞ there are

points xi ∈ (−1, 1), i = 0, . . . , n, and weights wi > 0 such that∫ 1

−1

f(x)ω(x) dx =
n∑

i=0

wif(xi) ∀f ∈ P2n+1. (2.23)

In particular, for the quadrature error one has∣∣∣∣∣
∫ 1

−1

f(x)ω(x) dx−
n∑

i=0

wif(xi)

∣∣∣∣∣ ≤ 2

(∫ 1

−1

ω(x) dx

)
inf

v∈P2n+1

∥f − v∥∞,[−1,1]. (2.24)

The theory is set up completely analogously to the case of the Gaussian quadrature: one
computes polynomials that are pairwise orthogonal with respect to the weighted inner product

⟨u, v⟩ =
∫ 1

−1

u(x)v(x)ω(x) dx.

Denoting these orthogonal polynomials Pn, the quadrature points xi, i = 0, . . . , n are the zeros
of Pn+1. The weights are obtained by requiring exactness of the quadrature rule for polynomials
of degree n.
Important examples are:

1. ω ≡ 1: the orthogonal polynomials are the Legendre polynomials Ln

2. ω(x) = (1− x2)−1/2: the orthogonal polynomials are the Chebyshev polynomials Tn

3. ω(x) = (1− x)α(1 + x)β for some α, β > −1: the orthogonal polynomials are the Jacobi

polynomials, usually denoted P
(α,β)
n . Note that the special case α = β = 0 corresponds

to the Legendre polynomials and α = β = −1/2 to the Chebyshev polynomials.

60

3 Conditioning and Error Analysis

3.1 Error measures

Numerical simulations contain errors that come from various sources:

• Modelling error: when describing a problem with mathematical equations, various effects
are typically neglected (e.g., continuum models versus the atomic structure of gases or
solids)

• measurement errors: models typically contain parameters that have to be measured

• roundoff errors: computers work with finite precision numbers (typically floating point
numbers), so that an error is made in each floating point operation

• discretization errors: numerical methods are not exact. Examples we have encountered
are numerical differentiation and integration

Errors are typically measured using norms (see appendix).

slide 10 - errors

3.2 Conditioning

The condition number of a problem measures how the (exact) mathematical problem deals with
perturbations/errors in the input data:

Definition 3.1 The condition number of a problem (described as the evaluation of a function
f) is the factor by which input perturbations are amplified in the worst case. One distinguishes:

(a) absolute condition number κabs(x) is the smallest number such that for all sufficiently small
∆x:

∥f(x)− f(x+∆x)∥ ≤ κabs(x)∥∆x∥.

(b) relative condition number κrel(x) is the smallest number such that for all sufficiently small
∆x:

∥f(x)− f(x+∆x)∥
∥f(x)∥

≤ κrel(x)
∥∆x∥
∥x∥

In practice, one can compute the condition number in terms of the derivative of f . In the interest
of simplicity, we consider the simple case f : R → R. If f ∈ C1, then Taylor expansion yields
f(x+∆x) = f(x) + f ′(x)∆x+ · · · so that (approximately) |f(x+∆x)− f(x)| ≤ |f ′(x)| |∆x|.
Hence, we see that (essentially)

κabs(x) = |f ′(x)|

For the relative condition number we obtain analogously (for f(x) ̸= 0)

|f(x+∆x)− f(x)|
|f(x)|

≈ |f
′(x)∆x|
|f(x)|

=
|f ′(x)| |x|
|f(x)|

|∆x|
|x|

.

61

That is, we expect

κrel(x) =
|f ′(x)|
|f(x)|

|x|.

In the following, we consider the relative condition number of a problem. We say that a
problem is well conditioned, if κrel(x) is “moderate” and it is called ill conditioned, if κrel(x) is
“large”. The notion of “moderate” and “large” are vague, since it depends on the setting and
the ultimate goal of the calculation whether a certain amplification of input errors is acceptable
or not.

Example 3.2 The addition of two positive numbers is well conditioned: Let x, y > 0 and ∆x,
∆y with |∆x|/x ≤ δ and |∆y|/y ≤ δ. Then

|(x+∆x) + (y +∆y)− (x+ y)|
|x+ y|

≤ |∆x|+ |∆y|
x+ y

x,y>0

≤ δx+ δy

x+ y
≤ δ,

i.e. κrel ≤ 1. The (relative) error in the result is at most as large as the (relative) input error.

Example 3.3 slide 11 - Cancellation
Subtracting two numbers of similar size is ill-conditioned (“cancellation”). Consider the sub-
traction

x1 = 1.2345689? · 100

x2 = 1.2345679? · 100

where ? stands for an error/uncertainty in the input. The relative input error is thus of size
10−8. For the difference

x1 − x2 = 0.0000011? · 100 = 1.1? · 10−6

we get a relative error/uncertainty of 10−2. Thus, we have lost 6 digits. Correspondingly, the
(relative) condition number is κrel ≈ 1.8 · 106. Auxiliary computation:∣∣∣∣(x+∆x)− (y +∆y)− (x− y)

x− y

∣∣∣∣ = ∣∣∣∣∆x−∆y

x− y

∣∣∣∣ ≤ |∆x|+ |∆y|
|x− y|

.

This leads to 2 · 10−8/(1.1 · 10−6) ≈ 1.8 · 10−2.

Exercise 3.4 Show that multiplication and division are well conditioned (relative condition-
ing).

3.3 Stability of algorithms

The algorithmic realization of a mathematical function f is typically done as a concatenation

f = f1 ◦ f2 · · · ◦ fN

62

of functions f1, . . . , fN , where one may think of the functions fi as “elementary functions” such
as the addition, subtraction, multiplication, division or as more complex subproblems such as
the evaluation of integrals, finding zeros of functions, solutions of differential equations. An
algorithm will typically not realize a function exactly, i.e., f will be approximated by

f̂ = f̂1 ◦ f̂2 · · · ◦ f̂N .

Examples of such approximations are:

• A computer realizes numbers typically as floating point numbers. Hence, already the
input is rounded. The elementary operations +, −, ∗, / cannot be realized exactly.

• Subproblems fi such as the evaluation of integrals are not exact but are tainted with
discretization errors.

An inaccuracy/error that results from using an approximation f̂i instead of fi is potentially

amplified by the subsequent functions f̂1, . . . , f̂i−1. A stability analysis of algorithms tries to
identify ill-conditioned subproblems f̂i and will possibly modify them. Modifying subproblems
f̂i (or choosing a different decomposition f1 ◦ · · · ◦ fN ′) is a sensible approach if some subprob-
lems are ill-conditioned but if at the same time the corresponding “exact” functions are well
conditioned. We illustrate this procedure with some simple examples in which cancellation (cf.
Example 3.3) is the culprit.

Example 3.5 slide 12 - stability

Consider the evaluation of the function f(x) = log(1 + x) for small x. The problem is well-
conditioned since

κrel(x) =
|f ′(x)||x|
|f(x)|

=
|x|

(1 + x)| log(1 + x)|
≤ 2 (for x sufficiently close to 0)

The “naive” numerical realization is

x
f27→ w := (x+ 1)

f17→ logw.

The mapping f1 is ill-conditioned near w = x+ 1:

κrel(w) ≈
w

w| logw|
=

1

| logw|
=

1

log(1 + x)
≈ 1

x
.

Hence, we observe the following: The intermediate result 1 + x has a relative accuracy of 16
digits but the subsequent application of f2 may amplify (relative) inaccuracies by a factor ≈ 1/x.
For example, for x = 10−10 one has to fear that one loses 10 digits. Indeed, in matlab:

>> x=1.234567890123456e-10;

>> w=1+x; f=log(w)

f =

1.234568003306966e-10

63

The true value (rounded to 16 digits) is f = 1.234567890047248e− 10. That is, although the
IEEE-floating point arithmetic of matlab uses 16 digits, the result has only 6 corret digits, i.e.,
10 digits were lost.
Since the original function f is well-conditioned, one may hope to find another algorithm that
circumvents this cancellation problem. Indeed, using, e.g., the Taylor approximation of f for
small x gives

f(x) = x− 1

2
x2 +

1

3
x3 − · · · (3.1)

and one obtains for x− x2/2 the value 1.234567890047248e− 10, which is correct to all digits.
This example is not untypical. The situation is such that the final result (here: x) is small but
that the intermediate results (here: 1 + x ≈ 1) are large relative to the final result. One should
fear that the small final result is then somehow obtained by subtracting numbers of similar size.
A different way of understanding the problem is: by (3.1) the final result is approximately x
so that one shouldn’t lose information contained in the digits of x. However, the intermediate
results remove information about x as the following calculation with 16 digits shows:

1.000000000000000
0.0000000001234567890123456
1.0000000001234568

Example 3.6 The two zeros of the quadratic equation x2 − 2px− q = 0 are given by

x0 = p−
√

p2 + q, x1 = p+
√

p2 + q. (3.2)

A (mathematically equivalent) alternative formula is given by

x1 = p+
√

p2 + q, (3.3a)

x0 = p−
√
p2 + q =

(p−
√

p2 + q)(p+
√

p2 + q)

p+
√

p2 + q
=

−q
p+

√
p2 + q

= − q

x1

(3.3b)

Consider the case p, q > 0. If p2 >> q we expect again cancellation when computing x0. Indeed,
in matlab:

>> p = 400000; q = 1.234567890123456;

>> r = sqrt(p^2+q); x0=p-r

x0 =

-1.543201506137848e-06

The exact solution is −1.543209862651343129e − 06. The reason is again cancellation in the
last step of the realization of the formula for x0. The alternative formula (3.3b) avoids this
subtraction and yields a result with 16 correct digits:

>> x1=p+sqrt(p^2+q);x0=-q/x1

x0 =

-1.543209862651343e-06
finis 6.DS

64

4 Gaussian Elimination

Goal: solve, for given A ∈ Rn×n and b ∈ Rn, the linear system of equations

Ax = b. (4.1)

In the sequel, we will often denote the entries of matrices by lower case letters, e.g., the entries
of A are (A)ij = aij. Likewise for vectors, we sometimes write xi = xi.

Remark 4.1 In matlab, the solution of (4.1) is realized by x = A\b. In python, the function
numpy.linalg.solve performs this. In both cases, a routine from lapack1 realizes the actual
computation. The matlab realization of the backslash operator \ is in fact very complex.

4.1 Lower and upper triangular matrices

A matrix A ∈ Rn×n is

• an upper triangular matrix if Aij = 0 for j < i;

• a lower triangular matrix if Aij = 0 for j > i.

• a normalized lower triangular matrix if, in addition to being lower triangular, it satisfies
Aii = 1 for i = 1, . . . , n.

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

Figure 4.1: schematic representation of lower (left) and upper (right) matrices (n = 4); blank
spaces represent a 0

Linear systems where A is a lower or upper triangular matrix are easily solved by “forward
substitution” or “back substitution”:

Algorithm 6 (solve Lx = b using forward substitution)

1: % Input: L ∈ Rn×n lower triangular, invertible, b ∈ Rn

2: % Output: solution x ∈ Rn of Lx = b

3: for j= 1 : n do

4: xj :=

(
bj −

j−1∑
k=1

ljkxk

)/
ljj ▷ convention: empty sum = 0

5: end for

1linear algebra package, see en.wikipedia.org/wiki/LAPACK

65

Algorithm 7 (solve Ux = b using back substitution)

1: % Input: U ∈ Rn×n upper triangular, invertible, b ∈ Rn

2: % Output: solution x ∈ Rn of Ux = b

3: for j = n : −1 : 1 do

4: xj :=

(
bj −

n∑
k=j+1

ujkxk

)/
ujj

5: end for

The cost of Algorithms 6 and 7 are O(n2):

Exercise 4.2 Compute the number of multiplications and additions in Algorithms 6 and 7.

The set of upper and lower triangular matrices are closed under addition and matrix multipli-
cation2:

Exercise 4.3 Let L1, L2 ∈ Rn×n be two lower triangular matrices. Show: L1 + L2 and L1L2

are lower triangular matrices. If L1 is additionally invertible, then its inverse L−1
1 is also a

lower triangular matrix. Analogous results hold for upper triangular matrices.

Remark 4.4 (representation via scalar products) Alg. 6 (and analogously Alg. 7) can be
writen using scalar products:

for j = 1:n do

x(j) :=
[
b(j)− L(j, 1 : j − 1) ∗ x(1 : j − 1)

]/
L(j, j)

end for

The advantage of such a formulation is that efficient libraries are available such as BLAS
level 13. More generally, rather than realizing dot-products, matrix-vector products, or matrix-
matrix-products directly by loops, it is typically advantageous to employ optimized routines such
as BLAS.

Remark 4.5 In Remark 4.4, the matrix L is accessed in row-oriented fashion. One can re-
organize the two loops so as to access L in a column-oriented way. The following algorithm
overwrites b with the solution x of Lx = b:

for j = 1:n-1 do
b(j) = b(j)/L(j, j)
b(j + 1 : n) := b(j + 1 : n)− b(j)L(j + 1 : n, j)

end for

2That is, they have the mathematical structure of a ring
3Basic Linear Algebra Subprograms, see en.wikipedia.org/wiki/Basic Linear Algebra Subprograms

66

4.2 Classical Gaussian elimination

slide 13 - Gaussian elimination
The classical Gaussian elimination process transforms the linear system (4.1) into upper trian-
gular form, which can then be solved by back substitution. We illustrate the procedure:

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
...

...
an1x1 + an2x2 + · · · + annxn = bn

(4.2)

Multiplying the 1st equation by

l21 :=
a21
a11

and subtracting this from the 2nd equation produces:

(a21 −
a21
a11

a11)︸ ︷︷ ︸
0

x1 + (a22 −
a21
a11

a12)︸ ︷︷ ︸
=:a

(2)
22

x2 + · · ·+ (a2n −
a21
a11

a1n)︸ ︷︷ ︸
=:a

(2)
2n

xn = b2 −
a21
a11

b1︸ ︷︷ ︸
=:b

(2)
2

(4.3)

Multiplying the 1st equation by

l31 :=
a31
a11

and subtracting this from the 3rd equation produces:

(a31 −
a31
a11

a11)︸ ︷︷ ︸
0

x1 + (a32 −
a31
a11

a12)︸ ︷︷ ︸
=:a

(2)
32

x2 + · · ·+ (a3n −
a31
a11

a1n)︸ ︷︷ ︸
a
(2)
3n

·xn = b3 −
a31
a11

b1︸ ︷︷ ︸
b
(2)
3

(4.4)

Generally, multiplying for i = 2, . . . , n, the 1st equation by li1 := ai1/a11 and subtracting this
from the ith equation yields the following equivalent system of equations:

a11x1 + a12x2 + · · · + a1nxn = b1
a
(2)
22 x2 + · · · + a

(2)
2nxn = b

(2)
2

...
...

a
(2)
n2x2 + · · · + a

(2)
nnxn = b

(2)
n

(4.5)

Repeating this process for the (n− 1)× (n− 1) subsystem

a
(2)
22 x2 + · · · + a

(2)
2nxn = b

(2)
2

...
...

a
(2)
n2x2 + · · · + a

(2)
nnxn = b

(2)
n

of (4.5) yields

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1
a
(2)
22 x2 + a

(2)
23 x3 + · · · + a

(2)
2nxn = b

(2)
2

a
(3)
33 x3 + · · · + a

(3)
3nxn = b

(3)
3

...
...

a
(3)
n3x3 · · · a

(3)
nnxn = b

(3)
n

(4.6)

67

A

0

0

0
0

0

0

0

0
0

0

0

0 0

Figure 4.2: Gaussian elimination: reduction to upper triangular form

One repeats this procedure until one has reached triangular form. The following Alg. 8 realizes
the above procedure: It overwrites the matrix A so that its upper triangle contains the final
triangular form, which we will denote U below; the entries lik computed on the way will be
collected in a normalized lower triangular matrix L.

Algorithm 8 (Gaussian elimination without pivoting)

1: % Input: A ∈ Rn×n

2: % Output: non-trivial entries of L and U; A is overwritten by U

3: for k = 1 : (n− 1) do
4: for i = (k + 1) : n do
5: lik :=

aik
akk

6: A(i, [k + 1 : n]) += −lik · A(k, [k + 1 : n])
7: end for
8: end for

Remark 4.6 In (4.8) below, we will see that A = LU, where U and L are computed in Alg. 8.
Typically, the off-diagonal entries of L are stored in the lower triangular part of A so that
effectively, A is overwritten by its LU-factorization.

Exercise 4.7 Expand Alg. 8 so as to include the modifications of the right-hand side b.

4.2.1 Interpretation of Gaussian elimination as an LU-factorization

With the coefficients lij computed above (e.g., in Alg. 8) one can define the matrices

L(k) :=

1

0
. . .

...
. . .

. . .
... 0 1
...

... lk+1,k

. . .
...

...
... 0

. . .
...

...
...

...
. . .

. . .

0 · · · 0 ln,k 0 · · · 0 1

, k = 1, . . . , n− 1

68

Exercise 4.8 Check that the inverse of L(k) is given by

(L(k))−1 =

1

0
. . .

...
. . .

. . .
... 0 1
...

... −lk+1,k

. . .
...

...
... 0

. . .
...

...
...

...
. . .

. . .

0 · · · 0 −ln,k 0 · · · 0 1

. (4.7)

Each step of the above Gaussian elimination process sketched in Fig. 4.2 is realized by a
multiplication from the left by a matrix, in fact, the matrix (L(k))−1 (cf. (4.7)). That is, the
Gaussian elimination process can be described as

A = A(1) → A(2) = (L(1))−1A(1) → A(3) = (L(2))−1A(2) = (L(2))−1(L(1))−1A(1) → . . .

→ A(n)︸︷︷︸
=:U upper triangular

= (L(n−1))−1A(n−1) = . . . = (L(n−1))−1(L(n−2))−1 . . . (L(2))−1(L(1))−1A(1)

Rewriting this yields, the LU -factorization

A = L(1) · · ·L(n−1)︸ ︷︷ ︸
=:L

U

The matrix L is a lower triangular matrix as the product of lower triangular matrices (cf.
Exercise 4.3). In fact, due to the special structure of the matrices L(k), it is given by

L =

1

l21
. . .

...
. . .

. . .

ln1 · · · ln,n−1 1

as the following exercise shows:

Exercise 4.9 For each k the product L(k)L(k+1) · · ·L(n−1) is given by

L(k)L(k+1) · · ·L(n−1) =

1

0
. . .

...
. . .

. . .
... 0 1
...

... lk+1,k 1
...

...
... lk+2,k+1

. . .
...

...
...

...
. . .

. . .

0 · · · 0 ln,k ln,k+1 · · · ln,n−1 1

.

69

Thus, we have shown that Gaussian elimination produces a factorization

A = LU, (4.8)

where L and U are lower and upper triangular matrices determined by Alg. 8.

4.3 LU-factorization

In numerical practice, linear systems are solved by computing the factors L and U in (4.8) and
the system is then solved with one forward and one back substitution:

1. compute L, U such that A = LU

2. solve Ly = b using forward substitution

3. solve Ux = y using back substitution

Remark 4.10 In matlab, the LU-factorization is realized by lu(A). In python one can use
scipy.linalg.lu.

As we have seen in Section 4.2.1, the LU -factorization can be computed with Gaussian elimi-
nation. An alternative way of computing the factors L, U is given in the following section4

4.3.1 Crout’s algorithm for computing LU-factorization

We seek L, U such that
1

l21
. . .

...
. . .

. . .

ln1 · · · ln,n−1 1

u11 · · · · · · u1n

. . .
...

. . .
...

unn

 !
=

a11 · · · · · · a1n
...

...
...

...
an1 · · · · · · ann

This represents n2 equations for n2 unknowns, i.e., we are looking for lij, uij, such that

aik
!
=

n∑
j=1

lij ujk, ∀i, k = 1, . . . , n.

L is lower triangular, U is upper triangular =⇒

aik
!
=

min(i,k)∑
j=1

lij ujk ∀i, k = 1, . . . , n (4.9)

4One reason for studying different algorithms is that the entries of L and U are computed in a different
order so that these algorithms differ in their memory access and thus potentially in actual timings.

70

Idea:
Traverse the n2 equations in (4.9) in following order: (“Crout ordering”)]]

(1, 1) , (1, 2) , . . . , (1, n)
(2, 1) , (3, 1) , . . . , (n, 1)
(2, 2) , (2, 3) , . . . , (2, n)
(3, 2) , (4, 2) , . . . , (n, 2)

etc.

Procedure:

1. step: i = 1, k = 1, . . . , n in (4.9):

l11︸︷︷︸
=1

u1k
!
= a1k

⇒ U(1, :) can be computed

2. step: k = 1, i = 2, . . . , n in (4.9):

li1u11
!
= ai1

⇒ L([2 : n], 1) can be determined

3. step: i = 2, k = 2, . . . , n in (4.9):

l21︸︷︷︸
is known

by 2. step

u1k︸︷︷︸
is known

by 1. step

+ l22︸︷︷︸
=1

u2k
!
= a2k for k = 2, . . . , n

⇒ can compute U(2, [2 : n])

4. step: k = 2, i = 3, . . . , n in (4.9):

li1︸︷︷︸
known by
2. step

u12︸︷︷︸
known by
1. step

+li2 u22︸︷︷︸
known by
3. step

!
= ai2 for i = 3, . . . , n

⇒ can compute L([3 : n], 2)
...
...
...

The procedure is formalized in the following algorithm.

71

Algorithm 9 (Crout’s LU-factorization)

1: % Input: invertible matrix A ∈ Rn×n that has an LU -factorization
2: % Output: the non-trivial entries of the normalized LU -factorization

3: for i = 1 : n do
4: for k = i : n do

5: uik := aik −
i−1∑
j=1

lijujk

6: end for
7: for k = i+ 1 : n do

8: lki :=

(
aki −

i−1∑
j=1

lkjuji

)/
uii

9: end for
10: end for

Remark 4.11 (cost when solving (4.1) with LU-factorization)

• The LU-factorization dominates with O(n3) (more precisely: 2/3n3+O(n2) floating point
operations) the total cost, since the cost of back substitution and forward substitution are
O(n2).

• An advantage of an LU-factorization arises, when problems with multiple right-hand sides
are considered: solving Ax = b for M right-hand sides b, requires only a single LU-
factorization, i.e., the cost are 2

3
n3 + 2Mn2.

In practice, if A is not further needed, is overwritten by its LU -decomposition.

Algorithm 10 (LU-factorization with overwriting A)

1: % Input: A, invertible, has a LU -factorization
2: % Output: algorithm replaces aij with uij for j ≥ i and with lij for j < i

3: for i = 1 : n do
4: for k = i : n do

5: aik := aik −
i−1∑
j=1

aij ajk

6: end for
7: for k = (i+ 1) : n do

8: aki :=

(
aki −

i−1∑
j=1

akj aji

)/
aii

9: end for
10: end for

72

4.3.2 banded matrices

A matrix A ∈ Rn×n is a banded matrix with upper bandwidth q and lower bandwidth p if aik = 0
for all i, k with i > k + p or k > i+ q.

a11 · · · a1,q+1

...
. . .

. . .

ap+1,1

. . .
. . .

. . .
. . .

. . .
. . .

. . . an−q,n

. . .
. . .

...
an,n−p · · · ann

Figure 4.3: banded matrix with upper bandwidth q and lower bandwidth p.

The following theorem shows that banded matrices are of interest if p and q are small (compared
to n):

Theorem 4.12 Let A ∈ Rn×n be a banded matrix with upper bandwidth q and lower bandwidth
p. Let A be invertible and admit an LU-factorization. Then:

(i) L has lower bandwidth p and U has upper bandwidth q.

(ii) Cost to solve Ax = b:

(a) O(npq) floating point operations (flops) to determine LU-factorization

(b) O(np) flops to solve Ly = b

(c) O(nq) flops to solve Ux = y

Proof: (Exercise) Prove (i) for the special case of a tridiagonal matrix, i.e., p = q = 1. To that
end, proceed by induction on the matrix size n:

• n = 1 ✓

• for the induction step n→ n+1 make the ansatz

A =

0
...

An

...
0

an,n+1

0 · · · · · · 0 an+1,n an+1,n+1

!
=

 Ln 0

l⊤ 1

 Un u

0 ρ

and compute l⊤, u, and ρ. Use the structure of Ln, Un given by the induction hypothesis.

2

73

4.3.3 Cholesky-factorization

A particularly important class of matrices A is that of symmetric positive definite (SPD)
matrices:

• A is symmetric, i.e., Aij = Aji for all i, j

• A is positive definite, i.e., x⊤Ax > 0 for all x ̸= 0.

Remark 4.13 An alternative criterion for positive definiteness of a symmetric matrix is that
all its eigenvalues are positive.

For SPDmatrices, one typically employs a variant of the LU -factorization, namely, the Cholesky-
factorization, i.e.,

A = CC⊤, (4.10)

where the Cholesky factor C is lower triangular (but not normalized, i.e., the entries Cii are
not necessarily 1).

Exercise 4.14 Formulate an algorithm to compute C. Hint: Proceed as in Crout’s method for
the LU-factorization.

Remark 4.15 If an SPD matrix A is banded with bandwidth p = q, then the Cholesky factor
C is also banded with the same bandwidth.

Remark 4.16 The cost of a Cholesky factorization (of either a full matrix or a banded matrix)
is about half of that of the corresponding LU-factorization since only half the entries need to be
computed.

Remark 4.17 A Cholesky factorization is computed in matlab with chol.

4.3.4 Skyline matrices

slide 14 - banded and skyline matrices

Banded matrices are a particular case of sparse matrices, i.e., matrices with “few” non-zero
entries. We note that the LU -factors have the same sparsity pattern, i.e., the zeros of A
outside the band are inherited by the factors L, U.
Another important special case of sparse matrices are so-called skyline matrices as depicted on
the left side of Fig. 4.4. More formally, a matrix A ∈ Rn×n is called a skyline matrix, if for
i = 1, . . . , n there are numbers pi, qi ∈ N0 such that

aij = 0 if j < i− pi or i < j − qj. (4.11)

We have without proof:

Theorem 4.18 Let A ∈ Rn×n be a skyline matrix, i.e., there are pi, qi with (4.11). Let A
have an LU-factorization A = LU. Then the matrices L, U satisfy:

lij = 0 for j < i− pi, uij = 0 for i < j − qj.

74

Figure 4.4: lines indicate non-zero entries. Left: skyline matrix, whose sparsity pattern is
inherited by LU -factorization. Right: not a skyline-Matrix and the LU -factorization does not
inherit the sparsity pattern.

A =

1 1 1
1 2 2

1 3 3
1 2 3 5 18

1 5
1 6

1 2 3 18 5 6 92

L = U⊤ =

1
1

1
1 2 3 1

1
1

1 2 3 4 5 6 1

Figure 4.5: A ∈ R7×7 and its LU -factorization.

Theorem 4.18 states that the factors L and U have the same sparsity pattern as A. Figure 4.5
illustrates this for a simple example. Obviously, this can be exploited algorithmically to econ-
omize on memory requirement and computing time by simply computing the non-zero entries
of L and U. Note that the matrices in Fig. 4.4 should not be treated as banded matrices as
then the bands p, q would be n. The right example in Fig. 4.4 is not a skyline matrix, and
the sparsity pattern of A is lost in the course of the LU -factorization: L ist in general a fully
populated lower triangular matrix and U a fully populated upper triangular matrix. This is
called fill in.

Exercise 4.19 The sparsity pattern of matrices can be checked in matlab with the command
spy. Check the sparsity patterns of the LU-factorization of the matrices A given above.

Remark 4.20 Modern solvers for sparse linear systems typically perform as a preprocessing
step row and column permutations so as to minimize fill-in during factorization. (→ see Ap-
proximate Minimum Degree, Reverse Cuthill-McKee).

4.4 Gaussian elimination with pivoting

4.4.1 Motivation

So far, we assumed that A admits a factorization A = LU. However, even if A is invertible,
this need not be the case as the following example shows:

75

Exercise 4.21 Prove that the matrix

A =

(
0 1
3 2

)
does not have a factorization A = LU with normalized lower triangular matrix L and upper
triangular matrix U.

The key observation is that permuting the rows of A leads to a matrix that has an LU -
factorization: Let

P =

(
0 1
1 0

)
be the permutation matrix that interchanges the rows 1 and 2 of A:

PA =

(
3 2
0 1

)
This matrix has an LU -factorization. The general principle is:

Theorem 4.22 Let A ∈ Rn×n be invertible. Then there exists a permutation matrix P, a
normalized lower triangular matrix L, and an upper triangular matrix U such that LU = PA.
Here PA is a permutation of the rows of A.

Exercise 4.23 Let P be given by

P =

1
. . .

0 1
. . .

1 0
1

. . .

where the off-diagonal 1 are in the positions (i1, i2) and (i2, i1) (with i1 ̸= i2). Show: The matrix
PA is the matrix A with rows i1 and i2 interchanged. Furthermore, P−1 = P⊤ = P.

finis 7.DS

4.4.2 Algorithms

A factorization as given in Theorem 4.22 can be obtained by modifying Alg. 8: if a definition
of an lij is not possible because a

(j)
jj = 0, then a row j′ from the rows {j + 1, . . . , n} is chosen

with a
(j)
jj′ ̸= 0 (this is possible since otherwise A is rank deficient). One interchanges rows j and

j′ and continues with Alg. 8.
Mathematically, it is immaterial, which row j′ is chosen. Numerically, one typically chooses
the row j′ such that the corresponding entry a

(j)
jj′ is the largest (in absolute value) from the set

{a(j)jJ J = j + 1, . . . , n}. This is called partial pivoting.
To formalize the procedure, we need the concept of permutation matrices:

76

Definition 4.24 Let π : {1, . . . , n} → {1, . . . , n} be a permutation5. Then,

Pπ :=
(
eπ(1) , . . . , eπ(n)

)
denotes the corresponding permutation matrix.

Theorem 4.25 Let π : {1, . . . , n} → {1, . . . , n} be a permutation. Then:

(i) Pπ ei := eπ(i) ∀i

(ii) P−1
π = P⊤

π

(iii) PπA is obtained from A by row permutation: the i-th row of A becomes the π(i)-th row
of PπA. Put differently: (PπA)i,: = Aπ−1(i),: or, still equivalently, (Pπ−1A)i,: = Aπ(i),:.

(iv) APπ is obtained from A by column permutation: (APπ):,i = A:,π(i).

Proof: Exercise. (Prove (ii), then (iv). Finally (iii) using (ii) and transposes.) 2

In practice, the LU-factorization of A with (row) pivoting operates directly on the matrix A,
i.e., overwrites the matrix A and the row permutations are not done explicitly but implicitly
with pointers. This leads to:

Algorithm 11 (Gaussian elimination with row pivoting)

1: % Input: invertible A ∈ Rn×n

2: % Output: factorization PA = LU, where A is overwritten by U:
3: % uij = aπ(i),j and P = P−1

π = P⊤
π is implicitly given by the vector π

4: π := (1, 2, . . . , n)
5: for k = 1 : (n− 1) do
6: seek p ∈ {k, . . . , n} s.t. |apk| ≥ |aik| ∀i ≥ k
7: interchange k-th and p-th entry of vector π
8: for i = (k + 1) : n do
9: lπ(i),k :=

aπ(i),k

aπ(k),k

10: for j = (k + 1) : n do
11: aπ(i),j := aπ(i),j − lπ(i),k aπ(k),j
12: end for
13: end for
14: end for

Theorem 4.26 Let A ∈ Rn×n be invertible. Then Algorithm 11 yields a factorization LU =
PA, where L satisfies |lij| ≤ 1 ∀i, j. P is a permutation matrix.

Remark 4.27 The matlab/python commands to compute LU-factorization typically return
matrices L, U, P of a factorization LU = PA and perform (at least some) pivoting.

Exercise 4.28 Given a factorization LU = PA, determine the solution x of Ax = b.

5That is, π is a bijection

77

4.4.3 Numerical difficulties: choice of the pivoting strategy

Alg. 11 selected the largest element from among the possible pivot elements. Why this is a
good strategy becomes more clear when one studies the case that the pivot element is non-zero
but small as in the following example.
Consider for small ε the matrix

A =

(
ε 1
1 1

)
Its LU -factorization is

A =

(
1 0
ε−1 1

)(
ε 1
0 1− ε−1

)
Let now ε = 10−20. In typical floating point arithmetic (16 digits) one therefore expects this to

be realized as with approximate factors L̂, Û given by

L̂ =

(
1 0

1020 1

)
, Û =

(
10−20 1
0 −1020

)
If one performs (in matlab, say) the forward and back substitution for the linear system

L̂Ûx =

(
1
0

)
one obtains x = (0, 1) whereas the correct solution of the original problem is (up to machine
precision) x = (−1, 1). That is, the solution is completely inaccurate. In contrast, solving the
row-pivoted problem yields the correct solution.
Rather than fully analyzing round errors for the solution of linear systems, let us give a heuristic,
why the pivoting strategy is reasonable. Let us assume that the entries of the matrix A and the
right-hand side vector b and the solution vector x are “moderate” in size. If small pivots are
used, i.e., some a

(k)
kk is small during Gaussian elimination, then one should expect the entries of L

to be large (as in the above example). Hence, in the course of the forward or back substitution,
one should expect large intermediate values. If the final result is again “moderate”, then one
should fear that this is achieved by subtracting numbers of similar size. That is, one should fear
cancellation and thus loss of accuracy. In Alg. 11 the pivoting choice ensures that the entries of
L are all bounded by 1, thus moderate. We stress that this is not an insurance against roundoff
problems as the pivoting strategy does not control the size of the entries of U. While this is
possible (“full pivoting”), it is usually avoided due to the cost considerations.

slide 15 - pivoting

4.5 Condition number of a matrix A

An important quantity to assess the effect of errors in the data (i.e., the right-hand side b or
the matrix A) on the solution is the condition number (see (4.13) ahead). In order to define it,
let ∥ · ∥ be a norm on Rn. On the space of matrices A ∈ Rn×n, we define the induced matrix
norm by

∥A∥ := max
0̸=x∈Rn

∥Ax∥
∥x∥

. (4.12)

78

Exercise 4.29 Show:

1. If ∥ · ∥ = ∥ · ∥∞, then the induced matrix norm ∥ · ∥∞ is given by (“row sum norm”)

∥A∥∞ = max
i

n∑
j=1

|aij|

2. If ∥ · ∥ = ∥ · ∥1, then the induced matrix norm ∥ · ∥∞ is given by (“column sum norm”)

∥A∥1 = max
j

n∑
i=1

|aij|

3. For ∥ · ∥2 one has ∥A∥22 = λmax(A
⊤A), where λmax denotes the maximal eigenvalue.

Exercise 4.30 Prove: For A, B ∈ Rn×n there holds ∥AB∥ ≤ ∥A∥∥B∥.

We study the effect of perturbing the right-hand side b. We consider

Ax = b

A(x+∆x) = b+∆b

In order to estimate ∆x in terms of ∆b we note A∆x = ∆b as well as ∥b∥ = ∥AA−1b∥ ≤
∥A∥∥A−1b∥ so that

absolute error: ∥∆x∥ = ∥A−1∆b∥ ≤ ∥A−1∥∥∆b∥,

relative error:
∥∆x∥
∥x∥

=
∥A−1∆b∥
∥A−1b∥

≤ ∥A
−1∥∥∆b∥
∥b∥/∥A∥

= ∥A∥∥A−1∥∥∆b∥
∥b∥

.

The quantity
κ(A) := ∥A∥∥A−1∥ (4.13)

is called the condition number of the matrix A (with respect to the norm ∥ · ∥). It measures
how a perturbation in the right-hand side b could impact the solution of the linear system.

Remark 4.31 In floating point arithmetic, a rounding error ∥∆b∥/∥b∥ = O(ε) with machine
precision ε is typically unavoidable. Thus, εκ(A) indicates of the level of accuracy that could
at best be expected.

Remark 4.32 The condition number also appears when one assesses the impact of perturba-
tions of matrix entries. One has (see literature)

∥∆x∥
∥x̃∥

≤ κ(A)
∥∆A∥
∥A∥

where x and x̃ solve

Ax = b, (A+∆A)x̃ = b

79

4.6 Fill-in and ordering strategies (CSE)

We go back to the example of the skyline matrix from Figure 4.5. For this class of matrices,
the LU-decomposition inherits the sparsity pattern as a result of Theorem 4.18.

However, flipping the ordering of the matrix (which corresponds to relabeling the unknowns
backwards in the linear system of equations) destroys the property of being a skyline ma-
trix. Figure 4.6 shows the corresponding decomposition factor (in fact, this is the Cholesky
decomposition).
One observes that changing the ordering caused the effect that now, the Cholesky factor is a
fully populated lower triangular matrix – significant fill-in has occurred! Thus, the ordering of
the unknowns has direct impact on the efficiency of the Cholesky algorithm.

A =

1 1 1
1 2 2

1 3 3
1 2 3 5 18

1 5
1 6

1 2 3 18 5 6 92

L = UT =

1
1

1
1 2 3 1

1
1

1 2 3 4 5 6 1

Â =

92 6 5 18 3 2 1
6 1
5 1
18 15 3 2 1
3 3 1
2 2 1
l1 1 1

L̂ =

9.591
0.625 0.780
0.521 −0.418 0.744
1.876 −1.504 −2.160 2.132
0.312 −0.250 −0.360 0.589 0.601
0.208 −0.167 −0.240 0.393 −0.707 0.464
0.104 −0.083 −0.120 0.196 −0.353 −0.844 0.301

Figure 4.6: Top: skyline matrix A ∈ R7×7 and its Cholesky factor L with A = LLT . Bottom:
effect of reversing the numbering.

The main practical issues in direct solvers are

• pivoting (to ensure numerical stability), and

• reordering strategies for the unknowns so as to keep fill-in small.

These two requirements are usually incompatible, and a compromise has to be made, e.g. by
allowing non-optimal pivot elements to some extent. Here we consider the important special
case of sparse SPD matrices, since these can be factored without pivoting in a numerically
stable way via the Cholesky algorithm. For SPD matrices, one may therefore concentrate on
reordering strategies to minimize fill-in.

4.6.1 Fill-in for SPD matrices

In the following, we aim to generalize Theorem 4.18 to SPD matrices A ∈ Rn×n. In order to
do so, we need the notion of the envelope of a matrix.

80

Definition 4.33 Let A ∈ Rn×n be SPD. Then, the envelope of A, is defined as the set of
double indices

Env(A) = {(i, j) : Ji(A) ≤ j < i}, where Ji(A) = min{j : Aij ̸= 0}.

The envelope corresponds to a variable band structure which contains the indices of all non-
zeros entries of the (strictly) lower part of A.

Example 4.34 Let A be a tridiagonal matrix. Then, Aij = 0 for all j < i − 1 and we have
that Ji(A) = i− 1. More general, for a symmetric banded matrix with bandwidth b, we have

Ji(A) = max{1, i− b}.

For the examples in Figure 4.6, there holds J4(A) = 1 = J7(A) and Ji(A) = i for i ̸= 4, 7 and
the envelope coincides with the index pairs of all non-zero entries in the lower triangular part.
For the reordered matrix Â there holds Ji(A) = 1 for all i and consequently the envelope is the
whole lower triangular part.

A key observation, which can be made by inspection of the calculation of the decomposition,
is that also the Cholesky factor has non-zero entries only within the envelope of A.

Theorem 4.35 Let A ∈ Rn×n be SPD, and let L ∈ Rn×n be its lower triangular Cholesky
factor, i.e., LLT = A. Then Lij = 0 for j < i and (i, j) ̸∈ Env(A).

Theorem 4.35 shows that the sparsity pattern of a matrixA is roughly inherited by the Cholesky
factor. More precisely, the envelope is inherited. Indices (i, j) ∈ Env(A) for which Aij = 0 but
Lij ̸= 0 are called fill-in.

Example 4.36 Theorem 4.35 gives an explanation for Figure 4.6. In the top row, the envelope
of A are exactly the non-zero entries in the lower diagonal part of A and no fill-in can occur.
For the reordered matrix Â the envelope is the complete lower diagonal part, and, by Theo-
rem 4.35, fill-in may occur everywhere, and the calculation of L̂ shows that indeed complete
fill-in has taken place.

Since, generally speaking, the majority of the (i, j) ∈ Env(A) will be filled in during the
factorization, many efficient sparse direct solvers aim at finding a reordering of the unknowns
such that the envelope is small. In other words: they are based on finding a permutation matrix
P such that Env(PTAP) is small. The Reverse Cuthill-McKee (RCM) ordering (see Sec. 4.6.2)
is a classical example.

A closer look at fill-in for SPD matrices.

We now determine the fill-in more precisely by means of an inductive procedure describing
Cholesky elimination. LetA ∈ Rn×n be SPD. Elementary calculations then show (with a11 ∈ R,
a = A([2 :n], 1) ∈ Rn−1, Ā = A([2 :n], [2 :n]) ∈ R(n−1)×(n−1))

A = A(1) =

 a11 aT

a Ā

=

√a11 0
a√
a11

In−1

︸ ︷︷ ︸
=: L1

1 0

0 Ā− aaT

a11︸ ︷︷ ︸
=: A(2)

 √a11 aT

√
a11

0 In−1

︸ ︷︷ ︸
= LT

1

(4.14a)

81

In this way we have eliminated the first row and column, and the rest of the job consists in
continuing this procedure by factoring the matrix A(2) = Ā − 1

a11
aaT ∈ R(n−1)×(n−1) in an

analogous way. This gives

A(2) = L2

 1 0

0 A(3)

LT
2 , (4.14b)

where A(3) ∈ R(n−2)×(n−2) is again SPD, and L2 ∈ R(n−1)×(n−1) has a structure similar to that of
L1. Thus,

A = A(1) = L1︸︷︷︸
=: L̃1

 1 0

0 L2

︸ ︷︷ ︸
=: L̃2

1 0 0

0 1 0

0 0 A(3)

 1 0

0 L2

T

︸ ︷︷ ︸
= L̃T

2

LT
1︸︷︷︸

= L̃T
1

(4.14c)

Proceeding in this way, we obtain a factorization

A = L̃1L̃2 · · · L̃n−1 I L̃
T
n−1 · · · L̃T

2 L̃
T
1 =: LLT , with L = L̃1L̃2 · · · L̃n−1

We see how fill-in arises: The first column L :,1 =
1

a11
A([2 : n], 1) of the Cholesky factor L has

non-zero entries only where the first column of A(1) = A has non-zero entries, see (4.14a).
The second column of L has non-zero entries where the first column of the submatrix A(2) =
Ā − 1

a11
aaT ∈ R(n−1)×(n−1) has non-zero entries, and so on. In general, we expect Lik ̸= 0 if

A
(k)
ik ̸= 0. From the update formula for the matrices A(k), we have

A
(k+1)
ij = A

(k)
ij −

1

A
(k)
kk

A
(k)
ik A

(k)
kj , i, j = k+1, . . . , n

Hence, for i, j ≥ k+1, we have A
(k+1)
ij ̸= 0 if 6

A
(k)
ij ̸= 0 or A

(k)
ik A

(k)
kj ̸= 0

Another way of putting it is: A
(k+1)
ij ̸= 0 if either A

(k)
ij ̸= 0, or if in A(k) the indices i, j are

connected to each other via the index k, i.e., A
(k)
ik ̸= 0 together with A

(k)
kj ̸= 0. Based on this

observation, one can precisely characterize the fill-in process for the Cholesky decomposition.

Fill-in from a graph theoretical point of view.

An elegant way to study fill-in is done in terms of graphs. A graph G = (V,E) consists of a set
V of nodes and a set of edges E ⊆ V ×V . Edges are denoted as pairs (v, v′) ∈ V ×V with two
distinct elements.
The sparsity pattern of a general matrix A can be represented by a graph G = (V,E) with
nodes V and edges E, its so-called adjacency graph. Here,

• the set V of nodes is simply the set of unknowns {xi, i = 1 . . . n} (or the corresponding
indices i),

6 In a strict sense, this is not an ‘if and only if’ situation since cancellation can take place, i.e., A
(k)
ij =

1

A
(k)
kk

A
(k)
ik A

(k)
kj . This (unlikely) cancellation will be ignored.

82

• two nodes xi ̸= xj are connected by an edge (xi, xj) ∈ E iff Aij ̸= 0, i.e. if equation i
involves the unknown xj.

A neighbor of a node v is another node that is connected to v by an edge.
The degree of a node v ∈ V is the number of edges emanating from v or in other words the
number of neighbors of the node v.

4.6.2 Standard ordering strategies

Modern sparse direct solvers analyze the matrixA prior to factorization and aim at determining
a good ordering of the unknowns. Since the problem of finding a permutation matrix P that
minimizes the amount of fill-in is a very hard problem, various heuristic strategies have been
devised. Popular ordering methods are:

1. Reverse Cuthill-McKee: Realized in Matlab as symrcm (symmetric version). This or-
dering may be motivated by minimizing the bandwidth of the reordered matrix PTAP.

2. (Approximate) minimum degree: The approximate minimum degree ordering is currently
the most popular choice, realized in Matlab as symamd (symmetric version). It aims at
minimizing the amount of fill-in.

c
b

j

e

g

hf

d
i

a

i v content of FIFO

1 g h, e, b, f
2 h e, b, f
3 e b, f, c
4 b f, c, j
5 f c, j, a, d
6 c j, a, d
7 j a, d
8 a d
9 d i
10 i –

Figure 4.7: Example of Cuthill-McKee algorithm with non-peripheral starting node g.

[Reverse] Cuthill-McKee.

The Cuthill-McKee (CM) and the Reverse Cuthill-McKee (RCM) orderings can be viewed
as attempts to minimize the bandwidth of a sparse matrix in a cheap way. The underlying
heuristic idea is as follows:
In order to obtain a small bandwidth, it is important to assign neighboring nodes in the graph
G numbers that are close together. Hence, as soon as one node is assigned a number, then all its
neighbors that have not been assigned a number yet should be numbered as quickly as possible
– see Alg. 12.
This is a typical example of a ‘greedy algorithm’ based at a brute force, locally optimal strategy
with the hope that the outcome is also near to optimal in the global sense.

83

Algorithm 12 Cuthill-McKee

1: choose a starting node v and put it into a FIFO % ‘first in – first out’ – a queue, or pipe
2: while (FIFO ̸= ∅) {
3: take first element v of FIFO and assign it a number
4: let V ′ be those neighbors of v that have not been numbered yet;
5: put them into the FIFO in ascending order of degree (ties are broken arbitrarily).
6: }

The choice of a starting node is, of course, important. One wishes to choose a peripheral node
as a starting node. Since these are in practice difficult to find, one settles for a pseudo (‘nearly’)
peripheral node.
It has been observed that better orderings are obtained by reversing the Cuthill-McKee or-
dering. In fact, it can be shown that RCM is always better than CM in the sense that
|Env(PT

RCMAPRCM)| ≤ |Env(PT
CMAPCM)|. The RCM algorithm is shown in Alg. 13.

Algorithm 13 Reverse Cuthill-McKee

1: choose as a starting node v a peripheral or pseudo-peripheral node
2: determine the CM ordering using Alg. 12.
3: reverse the CM ordering to get the RCM ordering.

Minimum degree ordering

RCM ordering aims at minimizing the bandwidth of a matrix A. The ultimate goal, however,
is to minimize the fill-in rather than the bandwidth. This is the starting point of the minimum
degree algorithm. Finding the ordering that really minimizes the fill-in is a hard problem;
the minimum degree algorithm is a greedy algorithm that aims at minimizing the fill for each
column L:,k of the Cholesky factor separately.

The algorithm proceeds by selecting a starting node v1 of minimal degree in the graph. Then,
this node is eliminated and one computes the graph G(2) of the eliminated matrix. There, again
a node of minimal degree is chosen and so on.

Algorithm 14 Minimum degree ordering

1: set up the graph G(1) for the matrix A(1) = A
¯

2: for k = 1 :N do
3: select a node of V (k) with minimum degree and label it xk

4: determine the graph G(k+1) obtained from G(k) by eliminating node xk

5: end for

The minimum degree algorithm is quite costly – various cheaper variations such as as the
approximate minimum degree algorithm are used in practice.

84

Example 4.37 (fill-in) We take a matrix A ∈ R900×900 (c.f. discretization of a partial differ-
ential equation, the so called Poisson problem), which has 5 non-zero entries per row. Different
orderings have a considerable effect on the amount of fill-in (see Fig. 4.8): Whereas the lower
part of A has 2.640 non-zero entries, the Cholesky factor of A has 27.029.
Using RCM ordering reduces this to 19.315, approximate minimum degree leads to only 10.042
non-zero entries.

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

nz = 4380

A, 2D Poisson problem

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

nz = 27029

Cholesky factor (lexicographic)

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

nz = 19315

Cholesky factor (reverse Cuthill−McKee)

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

nz = 10042

Cholesky factor (minimum degree)

Figure 4.8: Fill-in for gallery(’poisson’,30) and various ordering strategies.

85

4.7 QR-factorization

The basic idea above to solve linear systems is to write Ax = b as LUx = b since the linear
systems Ly = b and Ux = y are easily solved by forward and back substitution. We now
present a further factorization A = QR, the QR-factorization, where the factors Q and R
are such that the linear systems Qy = b and Rx = y are easily solved as well. Although
computing the QR-factorization is about twice as expensive as the LU -factorization it is the
preferred method for ill-conditioned matrices A.

4.7.1 Orthogonal matrices

Definition 4.38 A matrix Q ∈ Rn×n is orthogonal, if Q⊤Q = I. On denotes the set of all
orthogonal n× n-matrices.

By defintion, this means that, for orthogonal matrices, the inverse of Q is actually the trans-
position of Q, i.e., Q−1 = QT and thus the solution to Qy = b is given by y = QTy, which
can be computed in O(n2).

Example 4.39 For n = 3 orthogonal matrices are reflections at a plane, rotations, or permu-
tations matrices: 1

1
−1

 ,

 1
cos θ sin θ
− sin θ cos θ

 ,

 1
1

1

More general, orthgonal matrices realize transformations of Rn that preserve a) (euklidean)
length and b) angles:

Theorem 4.40 (i) The product of two orthogonal matrices is orthogonal; the inverse of an
orthogonal matrix is orthogonal.7

(ii) If Q ∈ On−k, then

(
Ik 0
0 Q

)
∈ On

(iii) Q ∈ On ⇒ ∥Qx∥2 = ∥x∥2 ∀x ∈ Rn J that is, Q preserves length/euclidean norm—it is
this property that makes orthogonal matrices so attractive in numerics. K Note that this
also implies that κ(Q) = 1 (with respect to ∥ · ∥2).

(iv) Q ∈ On ⇒ x⊤y = (Qx)⊤(Qy) for all x, y ∈ Rn .

Remark 4.41 (multiplication by Q ∈ On is numerically stable) Consider relative errors:

∥Q(x+∆x)−Qx∥2
∥Qx∥2

=
∥Q∆x∥2
∥Qx∥2

= 1 ·︸︷︷︸
“amplification” factor

for rel. error

∥∆x∥2
∥x∥2

7In other words: On is a group with respect to matrix multiplication.

86

4.7.2 QR-factorization

The QR-factorization writes a matrix as a product of an orthogonal matrix and a triangular
matrix. In fact, this can also be done more general for non-square matrices A ∈ Rm×n, where
the triangular matrix is replaced by a generalized triangular matrix. This will be used in the
next chapter, when dealing with overdetermined linear systems of equations.

Definition 4.42 Let m ≥ n.

(i) R ∈ Rm×n is a generalized upper triangular matrix if Rij = 0 ∀i > j, i.e.,

R =

(
R̃
0

)
with R̃ ∈ Un.

Un denotes the set of n× n upper triangular matrices.

(ii) A factorization A = QR of a matrix A ∈ Rm×n with an orthogonal Q ∈ Om and a
generalized upper triangular matrix R is called a QR-factorization of A.

We start with a squared, invertible matrix A ∈ Rn×n. The existence of a QR-factorization
follows from application of the Gram-Schmidt orthogonalization process to the set of column
vectors aj := A:,j, j = 1, . . . , n of the matrix A. This produces a set of vectors qj satisfying

(qi, qj)2 = δij ∀i, j, (qi, aj)2 = 0 ∀i > j.

Taking the vectors qj as columns, produces the orthogonal matrixQ. Then, definingR := QTA
gives the factorization A = QR, since Q is orthogonal. The matrix R is indeed an upper
triangular matrix, as by construction of the qi, we have

Rij = (qi, aj)2 = 0 ∀i > j.

Note that the factorization can not be unique, as changing the sign of one of the vectors qi still
produces an orthonormal system of vectors with the same properties and thus an orthogonal
matrix Q̃. Defining R̃ := Q̃TA again gives an upper triangular matrix, which differs from R
only by different signs in some entries.
We summarize the findings in the following theorem.

Theorem 4.43 Let A ∈ Rn×n be invertible. Then: A has a QR-factorization. It is unique if
one fixes the signs of the diagonal entries Rii of R.

In a similar way, one obtains aQR-factorization for a non-square matrixA ∈ Rm×n withm ≥ n.
Note that the condition of invertibility of A is replaced by A having n linearly independent
columns.
Applying the Gram-Schmidt orthogonalization process to the vectors A:,1, A:,2, . . . ,A:,n then
yields the first n columns of Q as well as R. The remaining m − n columns of Q have to be
selected such that the Q is orthogonal.

Theorem 4.44 Let A ∈ Rm×n with linearly independent columns. Then A can be written as
A = QR, where Q ∈ Rm×m is orthogonal and R is a generalized upper triangular matrix.

87

The Gram-Schmidt process, however, contains many subtractions and is not numerically stable.
Therefore, different constructions are employed in practice. In the following subsection, we
introduce a stable possibility using elementary orthogonal transformations.

Remark 4.45 There are several algorithms to compute the QR-factorization of A. Their cost
is O(m2n). In matlab, QR-factorization is realized with qr, in python as numpy.linalg.qr.

Remark 4.46 The QR-factorization can also be used in the case m = n to solve a linear
system Ax = b with the following three steps:

1. compute the QR-factorization of A

2. solve Qy = b by computing y = Q⊤b

3. solve Rx = y by back substitution

The cost is about twice that of the procedure using an LU-factorization. It is, however, preferred
if κ(A) is large.
In fact, as R = QTA, one directly sees that the condition number of R can not be larger than
the condition number of A.

slide 16a - Comparison LU,QR

4.7.3 Householder reflections (CSE)

The goal of this subsection is to provide a stable algorithm for the computation of the QR-
factorization. The idea is to employ a step-by-step construction that only uses orthogonal
transformations in each step. By Remark 4.41 these are numerically stable.

The QR-factorization of A is schematically obtained as follows:

A =: A(0) =

 ∗ . . . ∗
...

...
∗ . . . ∗

 Q1∈On

−−−−−→ Q1A
(0) =: A(1) =

∗ ∗
0 ∗ . . . ∗
...

...
...

0 ∗ . . . ∗

A(1) =

∗ ∗
0 ∗ . . . ∗
...

...
...

0 ∗ . . . ∗

 Q2∈On

−−−−−→ Q2A
(1) =: A(2) =

∗ ∗
0 ∗ ∗
... 0 ∗ . . . ∗
...

...
...

...
0 0 ∗ . . . ∗

A(2) =

∗ ∗
0 ∗ ∗
... 0 ∗ . . . ∗
...

...
...

...
0 0 ∗ . . . ∗

Q3∈On

−−−−−→ . . .
Qn−1∈On

−−−−−→A(n−1) =

∗ ∗

0
. . .

...
...

. . .
. . .

...
0 . . . 0 ∗

88

Then: Qn−1Qn−2 . . .Q1A = R.
That is, the sought QR-factorization is A = Q⊤

1 . . .Q⊤
n−1R. The Qi are “elementary” orthog-

onal transformations, the so-called Householder reflections.

Definition 4.47 (Householder reflections) Given v ∈ Rn with ∥v∥2 = 1 the matrix H =
I− 2vv⊤ is called the induced Householder reflection.

The geometric interpretation of H is that the linear map represented by H is a reflection at
the hyperplane {x ∈ Rn|v⊤x = 0}.

Lemma 4.48 (properties of Householder reflections) Let v ∈ Rn with ∥v∥2 = 1. Then
the matrix H = I− 2vv⊤ satisfies:

(i) H is symmetric, i.e., H⊤ = H.

(ii) H is an involution, i.e, H2 = I.

(iii) H is orthogonal, i.e., H⊤H = I.

By the schematic description of the fractorization algorthm above, we want that – after the
first transformation – the first column should be a multiple of the first unit vector e1 =
(1, 0, . . . , 0)⊤ ∈ Rn. Thus, we need a Householder transformation that maps a given vector
to the span of the first unit vector.

Let x ̸∥ e1. Set λ = signx1∥x∥2 (where we assume that for x1 = 0, we set signx1 = 1) and take

v =
x+ λe1

∥x+ λe1∥2

We calculate

x+ λe1 =

x1 + (signx1)∥x∥2

x2

...
xn

∥x+ λe1∥22 =

(
|x1|+ ∥x∥2

)2
+

n∑
i=2

x2
i = 2∥x∥22 + 2|x1|∥x∥2 ̸= 0.

Computing the induced Housholder reflection indeed provides

(
I− 2vv⊤)x = x− 2

x+ λe1

2∥x∥22 + 2|x1|∥x∥2

(
x+ signx1∥x∥2e1

)⊤
x︸ ︷︷ ︸

∥x∥22+|x1|∥x∥2

= −λe1,

i.e., a vector in the span of the first unit vector e1.

We summarize this in the following lemma.

89

e1

e2

v

hyp.pl.
•x

•
Hx

Figure 4.9: The Householder H with Hx ∥ e1.

Lemma 4.49 Let x ∈ Rn \ {0}. Then ∃ Q ∈ On with Qx ∈ span{e1}. In particular:

(i) if x ∥ e1, then Q := I

(ii) if x ̸∥ e1, set λ = signx1∥x∥2 ̸= 0 and take v = x+λe1

∥x+λe1∥2 Then, H = I − 2vv⊤ has the

desired property Hx = −λe1.

Remark 4.50 (choice of λ) Househoulder reflections H with Hx ∈ span{e1} are not unique.
For example, v = x+λe1

∥x+λe1∥2 with λ = −
(
signx1

)
∥x∥2 is also possible. This choice, however, is

numerically unstable if x and e1 are nearly parallel, i.e., |x1| ≈ ∥x∥2. Then cancellation occurs
when computing x+ λe1.

Algorithm 4.51 (Householder QR-factorization) Input: A ∈ Rm×n, m ≥ n, rank(A) =
n
Output: factorization A = QR with Q ∈ Om and R ∈ Rm×n generalized upper triangular
matrix. Q is given implicitly as Q−1 = Qn−1 · · ·Q1 J note: Q = Q1 · · ·Qn−1 since the Qi are
symmetric, i.e., Q⊤

i = Qi K

• set A(0) := A and select Q1 as a Householder reflection s.t. QA
(0)
:,1 ∥ e1 ∈ Rm

• “Householder step”:

A(1) := Q1A
(0) =

a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(1)
22 . . . a

(1)
2n

...
...

...

0 a
(1)
m2 . . . a

(1)
mn

• select Q̃1 as a Householder reflection s.t. Q̃1A

(1)
[2:m],2 ∥ e1 ∈ Rm−1

• set

Q2 =

1 0

0 Q̃1

90

• “Householder step”:

a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(1)
22 . . . a

(1)
2n

...
...

...

0 a
(1)
m2 . . . a

(1)
mn

 = A(1) −→ Q2A
(1) =: A(2) =

a
(1)
11 a

(1)
1n

0 a
(2)
22 a

(2)
2n

... 0 a
(2)
33 . . . a

(2)
3n

...
...

...
...

0 0 a
(2)
m3 . . . a

(2)
mn

• analogously, the next steps are:

a
(1)
11 a

(1)
1n

0 a
(2)
22 a

(2)
2n

... 0 a
(2)
33 . . . a

(2)
3n

...
...

...
...

0 0 a
(2)
m3 . . . a

(2)
mn

= A(2) −→

1 0
0 1

Q̃2

A(2) −→ . . .

· · · −→ A(n) =

∗ ∗

0
. . .

...
...

. . .
. . .

...
...

. . . ∗
0 0
...

...
0 0

Remark 4.52 (i) See literature (e.g., the book by Golub–van Loan) for a precise formulation.

(ii) Algorithm 4.51 does not stop prematurely since rankA = n J if a column (a
(k)
k,k, . . . , a

(k)
m,k)

⊤

is zero, then A cannot have full column rank n! K.

(iii) cost: For A ∈ Rn×n the algorithm requires 4
3
n3 arithmetic operations→ twice as expense

as LU-factorization and 4 times as expensive as a Cholesky decomposition.

(iv) storage: Q is typically not stored explicitly but merely the Householder vectors are stored.
One possibility of storing the factorization in place of A:

• store the entries rij , j > i in place of aij

• store the k-th Householder vector wk ∈ Rm−k in place of aik , i ≥ k

• store the rii separately

91

4.7.4 QR-factorization with pivoting (CSE)

Analogously to LU-factorizations with pivoting one can perform QR-factorizations with piv-
oting by constructing factorizations QR = AP for a permutation matrix P. This is useful, for
example, to treat the case when m ≥ n and rankA < n (“rank-deficient case”).

Procedure:

A(0)
P1= permutation matrix that moves the column of

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
A(0) with the largest ∥ · ∥2 norm to the first column

Ã(1) := A(0)P1

Householder
−−−−−−−−→ A(1) := Q1Ã

(1)

A(1)
P2: exchange columns 2 and p where

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
p≥2 and ∥A(1)

[2:n],p
∥2 = maxi≥2 ∥A

(1)
[2:n],i

∥2
Ã(2) := A(1)P2

Householder
−−−−−−−−→ A(2) := Q2Ã

(2)

A(2) −→ . . . −→ A(k) =

∗ · · · · · · · · · · · · · · · ∗

0
. . .

...
...

. . .
. . .

...
...

. . . ∗ · · · · · · ∗
... 0 · · · · · · 0
...

...
...

...
0 · · · · · · · · · · · · · · · 0

= final form

termination:

• The procedure termines if the “remaining matrix”
(
a
(k)
ij

)
i,j,≥k+1

is the null matrix. Then

rankA = k

• The diagonal entries rii satisfy |r11| ≥ |r22| ≥ · · · ≥ |rkk| > 0 (exercise: why?). If the

submatrix A
(k)
[k′+1:end],[k′+1:end] has small norm, e.g., ∥A(k)

[k′+1:end],[k′+1:end]∥2 ≤ εmach∥A(k)∥2
with εmach being on the order of machine precision, then the rank of A is effectively k′.

4.7.5 Givens rotations (CSE)

The application of a single Householder reflection affects many entries of the matrix. Some-
times, it is useful to work with orthogonal matrices that introduce zeros in a matrix in more
selective way, i.e., affect rather few entries at the same time. Givens rotations are then typically
employed. We mention that, for full matrices, a QR-factorization using Givens rotations is (by
a factor) more expensive than with Householder reflections.
For θ ∈ [0, 2π) set c := cos θ, s := sin θ. Then the Givens rotation G(i, j, θ) with i ̸= j is

92

defined as

G(i, j, θ) :=

1
. . .

1
c +s

1
. . .

1
−s c

1
. . .

Geometrically, G(i, j, θ) is a rotation by an angle θ in the two-dimensional plane span{ei, ej}.
Thus is an orthogonal matrix. We have

Lemma 4.53 Given i ̸= j, θ ∈ [0, 2π) abbreviate

Ĝ :=

(
c s
−s c

)
Then:

(i) G(i, j, θ) is orthogonal

(ii) AG differs from A only in columns i and j and these are linear combinations of the
columns i, j of A:

(AG)(:, [i, j]) = A(:, [i, j])Ĝ

(iii) G⊤A differs from A only in rows i and j and these are linear combinations of the rows
i, j of A:

(G⊤A)([i, j], :) = Ĝ⊤A([i, j], :)

(iv) Let i ̸= j and i′ ̸= i. Then there is a Givens rotation G(i, i′, θ) such that (G⊤A)ij = 0.

Proof: We only show (iv). For that, we note

(G⊤A)([i, i′], [i, j]) = Ĝ⊤A([i, i′], [i, j]) =

(
c −s
s c

)(
Aii Aij

Ai′i Ai′j

)
=

(
∗ cAij − sAi′j

∗ ∗

)
.

Hence, the requirement (G⊤A)ij = 0 implies that θ should be chosen such that sAi′j = cAij.
1. case: Aij = 0: select c = 1, s = 0.

2. case: Aij ̸= 0: select θ ∈ (0, π) as the solution of cot θ =
Ai′j
Aij

. 2

93

Lemma 4.53 informs us that one could also compute a QR-factorization of A using Givens
rotations. We sketch the procedure:

A =

∗ . . . ∗
∗ . . . ∗
...

...
∗ . . . ∗

 G(1,2)

−−−−−→

∗ ∗
0 ∗ . . . ∗
∗ ∗ . . . ∗
...

...
...

∗ ∗ . . . ∗

G(1,3)

−−−−−→

∗ ∗
0 ∗ . . . ∗

0 ∗
...

∗
...

...
...

...
...

∗ ∗ . . . ∗

→ · · · G(1,n)−→

∗ ∗
0 ∗ . . . ∗

0 ∗
...

0
...

...
...

...
...

0 ∗ . . . ∗

G(2,3)−→

∗ ∗ . . . ∗
0 ∗ . . . ∗

0 0
...

0 ∗
...

...
...

...
0 ∗ . . . ∗

→ · · · G(n−1,n)→

∗ ∗ . . . ∗
0 ∗ . . . ∗

0 0
...

0 0
...

...
...

...
0 0 . . . ∗

The construction of a QR-factorization using Givens rotations is more expensive than the one
using Householder reflections for full matrices. By the procedure above, one in fact needs
O(n2)-Givens rotations to do that.
Givens rotations are typically employed if the matrix has already many zeros that one wishes
to preserve by orthogonal transformations as the following example shows.

Example 4.54 The QR-factorization works very well for so called upper Hessenberg matrices,
which are upper triangular matrices with an additional lower diagonal, i.e,

aij = 0 ∀i > j + 1 structure:

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

We compute the QR-factorization of the upper Hessenberg matrix

A =

 1 1 1
1 0 1
0 1 1

→ G(1, 2) =

 1/
√
2 −1/

√
2 0

1/
√
2 1/

√
2 0

0 0 1

→ G(1, 2)TA =

 √2 2/
√
2
√
2

0 −2/
√
2 0

0 1 1

→ G(2, 3) =

 1 0 0

0 −1/
√
3 −

√
2/
√
3

0
√
2/
√
3 −1/

√
3

→ G(2, 3)TG(1, 2)TA =

 √2 2/
√
2

√
2

0
√
3/
√
2
√
2/
√
3

0 0 −1/
√
3

Example 4.55 The QR-factorization for upper Hessenberg matrices only needs O(n) Givens
rotations and thus can be done in O(n2) (in the special case of symmetric Hessenberg matrices,
which actually are tridiagonal matrices, this even reduces to O(n)).

94

This property is very important for the efficient numerical computation of eigenvalues of ma-
trices (done later in class!). We note that there the QR-factorization is employed and then the
product of the factors in reverse order, i.e., RQ is used.
Using Givens roations, one can actually show that the reverse product RQ is again an upper
Hessenberg matrices, provided A = QR is upper Hessenberg:
We compute the matrix Q⊤ as the product Q⊤ = G(n − 1, n) · · ·G(2, 3)G(1, 2) of n − 1
Givens rotation to annihilate the subdiagonal entries of A. By construction Q⊤A is thus
upper triangular and is the factor R. Next, we multiply from the right by Q, i.e., we com-
pute (Q⊤A)Q = (Q⊤A)G(1, 2)⊤G(2, 3)⊤ · · ·G(n− 1, n)⊤. One then checks the multiplication
of (Q⊤A) by G(1, 2) introduces an additional non-zero term in the (2, 1) position. The subse-
quent multiplication by G(2, 3) introduces one in the (3, 2) position. Continuing in this fashion,
we see that Q⊤AQ is an (upper) Hessenberg matrix.

95

5 Least Squares

goal: Given A ∈ Rm×n (i.e. n ̸= m is also allowed), b ∈ Rm, determine a “reasonable” solution
to

Ax = b. (5.1)

Remark 5.1 For m > n, problem (5.1) is overdetermined so one cannot expect existence
of a classical solution. For m < n, problem (5.1) is underdetermined so one cannot expect
uniqueness.

A reasonable approach is to minimize the residual b − Ax in some norm of interest. The
ℓ2-norm ∥ · ∥2 is particularly convenient as we will later see.

Definition 5.2 (least squares solution) x ∈ Rn is called a least squares solution of Ax =
b, if it solves the following minimization problem:

Find x ∈ Rn s.t.∥b−Ax∥2 = min {∥b−Ay∥2 |y ∈ Rn} (5.2)

Although a theory for general A ∈ Rm×n can be developed, we consider, in the interest of
simplicity and brevity, in the present section only the case that A has full rank. That is, if
m ≥ n, then A has n linearly independent columns and if n ≥ m, then A has m linearly
independent rows.

Example 5.3 The matlab command polyfit actually solves a least squares problem: given
n + 1 data points (xi, yi), i = 0, . . . , n and m ≤ n, the coefficients (aj)

m
j=0 of the polynomial

π(x) :=
∑m

j=0 ajx
j are found such that

∑n
i=0(π(xi) − yi)

2 is minimized. matlab actually uses
the technique based on the QR-factorization described below.

finis 8.DS

5.1 Method of the normal equations

goal: derive a linear system of equations for the solution x of (5.2).
To that end, let x ∈ Rn be the solution of (5.2) and let v ∈ Rn be arbitrary but fixed. Define

π : R→ R
t 7→ ∥b−A(x+ tv)∥22 = ∥b−Ax− tAv∥22 = ⟨b−Ax,b−Ax⟩2 − 2t⟨b−Ax,Av⟩2 + t2∥Av∥22

π is (as a function of t) a quadratic polynomial and has, by the choice of x, a minimum at t = 0(
choose y = x+ tv in (5.2)

)
. Hence,

0 = π′(0) = 2⟨b−Ax,Av⟩2 = 2v⊤A⊤(b−Ax).

Since v ∈ Rn is arbitrary, we conclude that

0 = v⊤A⊤(b−Ax) ∀v ∈ Rn ⇒ A⊤(b−Ax) = 0 ∈ Rn.

Hence, x satisfies the normal equations

A⊤Ax = A⊤b (5.3)

96

The normal equations (5.3) are a necessary condition for solutions x of (5.2). They are also
sufficient: By tracing back the above steps, one observes that, if x solves (5.3) then for every
fixed v the polynomial t 7→ ∥b−A(x+tv)∥22 has a minimum at t = 0. Since also ∥b−Ax∥22 =
π(0) ≤ π(1) = ∥b−A(x+v)∥22 for every v, one concludes ∥b−Ax∥22 ≤ ∥b−Ay∥22 ∀y ∈ Rn.
We have thus proved:

Theorem 5.4 x ∈ Rn solves (5.2), if and only if it solves (5.3).

In many applications the square system (5.3) is solvable and thus an option to solve the least
squares problem.

Theorem 5.5 Let m ≥ n and let the columns of A be linearly independent. Then A⊤A is an
invertible matrix, and the unique solution of (5.3) is the unique solution of (5.2).

Proof: If the columns ofA are linearly independent, thenA⊤Ay = 0 implies y = 0 (Exercise!).
Since A⊤A ∈ Rn×n is a square matrix, it is invertible. Thus (5.3) is uniquely solvable. By
Theorem 5.4 the problem (5.2) is uniquely solvable. 2

5.2 Least squares using QR-factorizations

A problem often encountered when solving the least squares problem (5.2) using the normal
equations (5.3) is that the matrix A⊤A is ill-conditioned, i.e., κ(A⊤A) is very large. In many
applications, therefore, one solves (5.2) using the QR-factorization of A in spite of the increased
cost.1

5.2.1 Solving least squares problems with QR-factorization

We assume m ≥ n. Let A = QR, where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is generalized
upper triangular. We write

R =

(
R⋆

0

)
, R∗ ∈ Rn×n upper triangular.

If we assume that the columns of A are linearly independent, then the diagonal entries of the
matrix R∗ are non-zero, i.e., R∗ is invertible (since the columns of R are linearly independent).
We partition Q⊤b as

Q⊤b =

(
b∗

b̃

)
, b∗ = (Q⊤b)([1 : n]) ∈ Rn, b̃ = (Q⊤b)([n+ 1 : m]) ∈ Rm−n,

We observe that for arbitrary y ∈ Rn we have

∥Ay − b∥22 = ∥QRy − b∥22 = ∥Q(Ry −Q⊤b)∥22
Q orth.
= ∥Ry −Q⊤b∥2 = ∥R∗y − b∗∥22 + ∥b̃∥22.

This expression is minimized for the choice y = (R∗)−1b∗.

1In the typically setting of m >> n, the cost based on QR-factorization is 2mn2 versus mn2 for the method
based on the normal equations.

97

We have thus arrived at the following way to compute the minimizer:

1. [Q,R] = qr(A)

2. compute Q⊤b and set b∗ = (Q⊤b)([1 : n])

3. solve R∗x = b∗ with back substitution

slide 17 - Least Squares examples

Example 5.6 Consider

A =

 1 1
ε 0
0 ε

 , b =

 2
ε
ε

 , x =

(
1
1

)
, A⊤A =

(
1 + ε2 1

1 1 + ε2

)
.

Note Ax = b so that x is the exact solution of the least squares problem. We note κ(A⊤A) =
2
ε2
+ 1 so that A is ill-conditioned for small ε.

Solving the problem in MATLAB produces:

>> e = 1e-7;

>> A = [1 1; e 0; 0 e]; b = [2;e;e];

>> x = (A’*A)\(A’*b) %solution using normal equations

x =

1.011235955056180

0.988764044943820

>> [Q,R] = qr(A) ;

>> bb=Q’*b ;

>> xx = R(1:2,1:2)\bb(1:2) %solution using QR-factorization

xx =

1.000000000000000

1.000000000000000

The method using the normal equations yields a solution with two digits of accuracy (consistent
with κ(A⊤A) ≈ 1014) whereas the method based on the QR-factorization yields the correct
solution.

5.3 Underdetermined systems

The system (5.1) is underdetermined if m < n. Let us assume that A has full rank m, i.e.,
it has m linearly independent rows. Then (5.1) has a solution. However, the solution is not
unique. One way to fix the solution is to seek the minimum norm solution, i.e., to find x∗ such
that

∥x∗∥2 = min{∥y∥2 |Ay = b}.

A convenient tool to solve this minimization problem is the singular value decomposition (SVD)
of A.

98

A =

 ∗ ∗∗ ∗
∗ ∗

 = U

 σ1 0
0 σ2

0 0

V⊤

Figure 5.1: structure of the SVD of an 3× 2 matrix; U, V are orthogonal

5.3.1 SVD

The SVD is a very important tool in the analysis of matrices. Without proof, we state its
existence:

Theorem 5.7 (SVD) Let A ∈ Rm×n (m, n arbitrary). Then there exist σ1 ≥ σ2 ≥ · · · ≥
σmin{m,n} ≥ 0 and orthogonal matrices U ∈ Rm×m, V ∈ Rn×n, and Σ ∈ Rm×n with Σij = δijσi,
σi ≥ 0, such that

A = UΣV⊤, (5.4)

The values σi are called the singular values, the columns of U the left singular vectors and the
columns of the V the right singular vectors.
The SVD of a matrix A reveals many important properties of A:

Exercise 5.8 Let the singular values σi be sorted in descending order. Then:

1. Let σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = σr+2 = · · · = σmin{m,n} = 0. Then r is the rank of A.
(If all singular values are positive, then the matrix A has full rank).

2. The columns U(:, [1 : r]) form an orthogonal basis of the range ImA of A

3. The columms V(:, [r + 1 : n]) form an orthogonal basis of the kernel of A. The columns
V(:, [1 : r]) form an orthogonal basis of (kerA)⊥, the orthogonal complement of the kernel
of A.

Hint: The range ImB of a matrix B ∈ Rm×n is defined as {Bx |x ∈ Rn}. One way to define
the rank of B is to set rankB = dim ImB. Try to show that ImΣ = span{e1, . . . , er}. Con-
vince yourself that also ImΣV⊤ = span{e1, . . . , er} and that therefore ImUΣV⊤ = span{U(:
, 1), . . . ,U(:, r)}.

Exercise 5.9 Let UΣV⊤ be the SVD of A. Show: the eigenvalues of A⊤A are the eigenvalues
of the diagonal matrix Σ⊤Σ and those of AA⊤ the eigenvalues of the diagonal matrix ΣΣ⊤.
What can you say about the eigenvectors of the matrices A⊤A and AA⊤?

Remark 5.10 In matlab/python, the SVD is available as svd/numpy.linalg.svd.

For r = rank(A), we introduce the matrices

Ũ = U(:, [1 : r]), Ṽ = V(:, [1 : r]), Σ̃ = Σ([1 : r], [1 : r]), V′ := V(:, [r + 1, n]).

We note that A = ŨΣ̃Ṽ⊤ and Σ̃ is invertible. This factorization of A is called the reduced
SVD. We also note that the columns ov V′ span the kernel of A.

99

Remark 5.11 A slightly different interpretation of the SVD is obtained by writing it as AV =
UΣ. Writing V = (v1, . . . ,vn), U = (u1, . . . ,um), this means Avi = σiui, i = 1, . . . , r, where
r = rank(A). That is, we have found pairwise orthogonal vectors vi that are mapped under A
to an orthogonal basis of the range of A.

Exercise 5.12 Show: V′(V′)⊤x is the orthogonal projection of x onto KerA. ṼṼ⊤x is the

orthogonal projection of of x onto (KerA)⊥. Analogously, ŨŨ⊤x is the orthgonal projection
of x onto RangeA.

5.3.2 Finding the minimum norm solution using the SVD

Let m ≤ n and assume (for simplicity) that A has full rank, i.e., r = rank(A) = m. Then

Ũ = U and the reduced SVD then takes the form A = UΣ̃Ṽ⊤. We observe that

x̃∗ := ṼΣ̃−1U⊤b

satisfies Ax∗ = b since

Ax̃∗ = UΣ̃Ṽ⊤ṼΣ̃−1U⊤b = UΣ̃Σ̃−1U⊤b = UU⊤b = b

We note that every solution x of Ax = b has the form x = x̃∗ +V′y for a y ∈ Rn−r. We also
note that x̃∗ is orthogonal to kerA (which is spanned by V′). That is: for every solution x of
Ax = b we have

∥x∥2 = ∥x̃∗∥2 + ∥V′y∥2,

which is obviously minimized by y = 0. Hence, x̃∗ is the sought minimum norm solution.

5.3.3 Solution of the least squares problem with the SVD

The least squares problem could, alternatively to using the QR-factorization, also be solved
with the SVD:

Exercise 5.13 Assume that m ≥ n and that an SVD of A (with full rank) is given. Formulate
a method to compute the solution of (5.2). Remark: Since computing an SVD is more expensive
than computing a QR-factorization, this is rarely done in practice.

5.3.4 Further properties of the SVD

Exercise 5.14 Let A = UΣV⊤ be the SVD of a matrix A. Show:

(a) ∥A∥2F =
∑

i σ
2
i , where the Frobenius norm of A is given by ∥A∥2F =

∑
i,j |Aij|2.

(b) ∥A∥22 = maxi σ
2
i = σ2

1.

We have:

100

Theorem 5.15 Let A = UΣV⊤ be the SVD of the matrix A with rank r. Let the singular
values be sorted in descending order. Then for every ν ∈ {1, . . . , r} the matrix Aν := U(:, [1 :
ν])Σ([1 : ν], [1 : ν])V(:, [1 : ν])⊤ satisfies

∥A−Aν∥2 = min
B∈Rm×n : rank(B)=ν

∥A−B∥2,

∥A−Aν∥F = min
B∈Rm×n : rank(B)=ν

∥A−B∥F .

slide 18 - SVD

Remark 5.16 The SVD can be used to determine the rank of a matrix by checking the number
of non-zero singular values. In practice, one has to select a cut-off ε > 0 (typically a little larger
than machine precision) and defines the rank r = #{σi |σi ≥ ε}.

5.3.5 The Moore-Penrose Pseudoinverse (CSE)

We consider the least squares problem without conditions on m, n, and the rank of A:

find x ∈ Rn s.t. ∥Ax− b∥2 ≤ ∥Ay − b∥2 ∀y ∈ Rn. (5.5)

This problem has solutions but possibly more than one. To enforce uniqueness, we seek again
the “minimum norm” solution, i.e., the x∗ ∈ Rn with the smallest norm. We have:

Theorem 5.17 Let A ∈ Rm×n with rankA = r. Let A = ŨΣ̃Ṽ⊤ be the reduced SVD of A.
Then x∗ := A+b with the Moore-Penrose pseudoinverse

A+ := ṼΣ̃−1Ũ⊤ (5.6)

is the minimum norm solution of the least squares problem (5.5).

Before proving Theorem 5.17, we formulate a representation of the orthogonal projection onto
a subspace, which takes a particularly simple form if an orthonormal basis of the space is
available:

Lemma 5.18 Let V ∈ Rn×k have orthonormal columns. Then the map x 7→ VV⊤x is the
orthogonal projection onto the subspace V spanned by the columns of V. If Ṽ ∈ Rn×(n−k) is
such that (V, Ṽ) is an orthogonal matrix (i.e., the space Ṽ spanned by the columns of Ṽ is the
orthogonal complement of V) then

x = VV⊤x+ ṼṼ⊤x ∀x ∈ Rn. (5.7)

Proof: We recall that the orthogonal projection Px ∈ V of x onto V is characterized by

(x− Px,y)2 = 0 ∀y ∈ V . (5.8)

We now check that Px := VV⊤x satisfies (5.8). We note that VV⊤x ∈ V and that any y′ ∈ V
can be written as y′ = Vy for some y ∈ Rk. We compute for arbitrary x ∈ Rn, y ∈ Rk:

(x−VV⊤x,Vy)2 = (V⊤(x−VV⊤x),y)2 = ((V⊤x−V⊤V︸ ︷︷ ︸
=I

V⊤x),y)2 = 0,

101

which shows (5.8). Similarly, ṼṼ⊤x is the orthogonal projection of x onto the space Ṽ . By

construction x−VV⊤x is in the orthogonal complement of V , i.e., in the space Ṽ . Hence, by
the projection property ṼṼ⊤(x − VV′x) = x − VV′x. Since Ṽ⊤V = 0, we obtain (5.7) by
rearranging the terms. 2

Proof of Theorem 5.17: We decompose b into its component in RangeA and the rest using
Lemma 5.18:

b = ŨŨ⊤b+U′(U′)⊤b, U′ := U(:, [r + 1 : n]).

Next, we compute for arbitrary x ∈ Rn

∥Ax− b∥22 = ∥ŨΣ̃Ṽ⊤x− b∥22 = ∥Ũ(Σ̃Ṽ⊤x− Ũ⊤b) +U′(U′)⊤b∥22
= ∥Ũ(Σ̃Ṽ⊤x− Ũ⊤b)∥22 + ∥U′(U′)⊤b∥22
= ∥Σ̃Ṽ⊤x− Ũ⊤b∥22 + ∥U′(U′)⊤b∥22

This expression is minimal if we can find x such that

Ṽ⊤x = Σ̃−1Ũ⊤b. (5.9)

(We will see at the end of the proof that indeed such x exist.) Let us now seek the x∗ from all
x satisfying (5.9) with minimal norm. We write again with Lemma 5.18

x = ṼṼ⊤x+V′(V′)⊤x.

Hence, any x that satisfies (5.9) has to satisfy

∥x∥22 = ∥ṼṼ⊤x∥22 + ∥V′(V′)⊤x∥22
(5.9)
= ∥ṼΣ̃Ũ⊤b∥22 + ∥V′(V′)⊤x∥22.

We see that x∗ with the smallest norm should be such that (V′)⊤x∗ = 0. Then, we get

x∗ (V′)⊤x∗=0
= ṼṼ⊤x∗ (5.9)

= ṼΣ̃−1Ũ⊤b.

Indeed, this x∗ satisfies (V′)⊤x∗ = 0 as well as (5.9). Hence, we have found the unique minimum
norm solution. 2

Let us interpret the Moore-Penrose pseudoinverse. To that end, we let us restrictA to (KerA)⊥,
which we denote by AK to emphasize that the domain of definition and range has changed:

AK : (KerA)⊥ → RangeA

Ṽz 7→ AṼz = ŨΣ̃Ṽ⊤Ṽz = ŨΣ̃z

This map is a bijection. Indeed, since the columns of Ũ and Ṽ are linearly independent, the
inverse A−1

K is easily read off to be:2

A−1
K : Ũζ 7→ ṼΣ̃−1ζ

2An alternative way to see that AK is a bijection is to check the dimensions: dim(KerA)⊥ = n−dimKerA
and by a linear algebra fact n = dim(KerA)⊥ + dimRangeA so that dim(KerA)⊥ = dimRangeA

102

We now consider

Rm ortho. Proj.−→ RangeA
A−1

K−→ (KerA)⊥

b 7→ Ũ(Ũ⊤b) 7→ ṼΣ̃−1Ũ⊤b

This is precisely A+! Hence, the Moore-Penrose pseudoinverse takes from a vector b its com-
ponent in RangeA and then applies the well-defined inverse A−1

K that maps from RangeA to
(KerA)⊥.

Exercise 5.19 Let rankA = r. Show: ∥A+∥2 = σ−1
r .

5.3.6 Further remarks

• The Moore-Penrose pseudoinverse is the inverse of A if A ∈ Rn×n is invertible.

• In general, A+ shares some properties with the inverse: AA+A = A and (A+)+ = A.

Computing the SVD

The SVD is computed with variants of algorithms that compute eigenvalues and eigenvectors.
Since A⊤A = V⊤Σ⊤ΣV and AA⊤ = U⊤ΣΣ⊤U⊤, one could compute the SVD by computing
the eigenvalues and eigenvectors of A⊤A or AA⊤. However, since A⊤A and AA⊤ are typically
ill conditioned, one resorts to computing the eigenvalues and eigenvectors of the symmetric
matrix (

0 A⊤

A 0

)
,

whose eigenvalues are ±σi.

103

6 Nonlinear Equations and Newton’s Method

goal: determine zero x∗ of f(x∗) = 0 (for a function f : Rn → Rm).

Since there are typically no exact solution formulas, the zero x∗ is approximated by iterates xn

with limn→∞ xn = x∗. The most common form is that of a fixed point iteration

xn+1 = Φ(xn) (6.1)

with an initial guess x0 that is taken sufficiently close to x∗. Thus, the iterative method is
described by the function Φ.

Exercise 6.1 Show: If xn → x∗ then x∗ is a fixed point of Φ, i.e., x∗ = Φ(x∗) (assumption:
Φ is continuous at x∗).

6.1 Newton’s method in 1D

goal: Find zero x∗ of f(x∗) = 0.
idea: linearize f at the current iterate xn and find zero of the linearization.
procedure:

1. xn = current iterate

2. L(x) := f(xn) + f ′(xn)(x − xn) J linearization is the tangent at xn, i.e., the Taylor
expansion up to the linear term K

3. xn+1 := zero of L, i.e.,

xn+1 = xn −
f(xn)

f ′(xn)
(6.2)

We recognize that the 1D-Newton method (6.2) has the form xn+1 = ΦNewton(xn) of a fixed
point iteration with ΦNewton given by

ΦNewton(x) = x− f(x)

f ′(x)
. (6.3)

Example 6.2 x∗ =
√
a is the zero of f(x) = x2 − a. With f ′(x) = 2x, Newton’s method is

xn+1 = ΦNewton(xn) = xn −
f(xn)

f ′(xn)
= xn −

x2
n − a

2xn

.

The rapid convergence of the method is visible in Fig. 6.1 for the choice a = 2 and initial
value x0 = 2. In fact, we observe so-called quadratic convergence in that the error behaves like
|x∗ − xn+1| ≈ C|x∗ − xn|2 for some C > 0.

104

Newton iterates error
(x0 = 2)

x1 1.5 8.578643762690485−2

x2 1.416666666666667 2.453104293571595−3

x3 1.414215686274510 2.1239014147411694−6

x4 1.414213562374690 1.5947243525715749−12

exact: 1.414213562373095

Figure 6.1: Newton’s method for computing
√
2 (cf. Example 6.2)

6.2 Convergence of fixed point iterations

The key property that ensures convergence of the fixed point iteration (6.1) is that Φ is a
contraction:

Definition 6.3 The function Φ : Rd → Rd is a contraction (with respect to the norm ∥ · ∥)
near the point x∗ if there are q ∈ (0, 1) and ε > 0 such that

∥Φ(x)− Φ(y)∥ ≤ q∥x− y∥ ∀x,y ∈ Bε(x
∗) = {z ∈ Rd : ∥x∗ − z∥ ≤ ε}. (6.4)

Exercise 6.4 Consider the case d = 1. Show: If Φ ∈ C1 and |Φ′(x∗)| < 1 near a point x∗,
then Φ is a contraction near x∗.

finis 9.DS

The following result shows that the contraction property implies convergence of the fixed point
iteration (6.1) if the initial value x0 is sufficiently close to the fixed point x∗.

Theorem 6.5 Let Φ be a contraction with contraction constant q ∈ (0, 1) near the fixed point
x∗ = Φ(x∗). Then there is ε > 0 such that for x0 ∈ Bε(x

∗) the iterates xn given by (6.1)
converge to x∗. Moreover,

∥x∗ − xn+1∥ ≤ q∥x∗ − xn∥ ∀n ∈ N0. (6.5)

Proof: Let ε > 0 be given by Def. 6.3 and xn ∈ Bε(x
∗). Then:

∥x∗ − xn+1∥ = ∥x∗ − Φ(xn)∥
x∗ fixed pt

= ∥Φ(x∗)− Φ(xn)∥
contraction property

≤ q∥x∗ − xn∥.

Hence, if x0 ∈ Bε(x
∗), then by induction all iterates xn ∈ Bε(x

∗) and ∥x∗ − xn∥ → 0. 2

Exercise 6.4 gives an easy condition (in the scalar case d = 1) when the iteration (6.1) converges:

Exercise 6.6 Let d = 1 and Φ ∈ C1 satisfy |Φ′(x∗)| < 1 at the fixed point x∗ of Φ. Then the
iterates xn given by (6.1) converge to x∗ provided the initial value x0 is sufficiently close to x∗.
Remark: The vector-valued analog is as follows: The derivative Φ′ is a d×d matrix and if there
is a norm ∥ · ∥ such that ∥Φ′(x∗)∥ < 1 at a fixed point x∗ of Φ, then Φ is a contraction near x∗.

105

n xn+1 = Φ1(xn) xn+1 = Φ2(xn)
0 0.592687716508341 0.559615787935423
1 0.437214425050104 0.522851128605001
2 0.672020792350124 0.546169619063046
3 0.204473907097276 0.531627015197373
4 0.879272743474883 0.540795632739194
5 stop: (2− e0.87 < 0) 0.535053787215218
6 0.538664955236433
7 0.536399837485597
8 0.537823020842571
9 0.536929765486145

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

x

2− x2

exp(x)

Figure 6.2: Left: fixed point iteration of Example 6.7. Right: x 7→ ex and x 7→ 2− x2.

Example 6.7 slide 19 - Convergence of fixed point iterations
We seek a solution of the nonlinear equation

2− x2 − ex = 0. (6.6)

Graphical considerations show that there is exactly one positive solution x∗ ≈ 0.5. For x > 0
equation (6.6) can be converted to a fixed point form in several ways:

x =
√
2− ex =: Φ1(x), x = ln(2− x2) =: Φ2(x), (6.7)

The fixed point iterations based on Φ1 and Φ2 behave differently when initialized with x0 = 0.5
as is visible in Table 6.2: Whereas the iteration xn+1 = Φ2(xn) converges to the correct value
x∗ = 0.5372744491738 . . . the iteration xn+1 = Φ1(xn) does not converge. The reason is that
|Φ′

1(x
∗)| ≈ | − 1.59| > 1 whereas |Φ′

2(x
∗)| ≈ 0.31 < 1.

Theorem 6.5 shows that if Φ is a contraction, then one has linear convergence, i.e., the error
decreases by a factor q ∈ (0, 1) in each step. A special situation arises if Φ′(x∗) = 0. Then
faster convergence is possible:

Theorem 6.8 Let d = 1 and Φ ∈ Cp(R), p ≥ 2. Assume x∗ = Φ(x∗) and 0 = Φ(j)(x∗) for
j = 1, . . . , p − 1. Then there are C, ε > 0 such that for x0 ∈ Bε(x

∗) the iterates xn given by
(6.1) converge to x∗ and

|x∗ − xn+1| ≤ C|x∗ − xn|p ∀n ∈ N0.

Proof: By Theorem 6.5 we already know that the iterates converge to x∗ if ε is sufficiently
small. For the estimate, we modify the proof of Theorem 6.5. By Taylor expansion around x∗

we have

|x∗ − xn+1| = |Φ(x∗)− Φ(xn)| =
∣∣∣∣ 1

(p− 1)!

∫ xn

x∗
(xn − t)p−1Φ(p)(t) dt

∣∣∣∣
≤
∥Φ(p)∥∞,Bε(x∗)

(p− 1)!
|x∗ − xn|p.

2

106

In the setting of Theorem 6.8, we say that the iteration converges with order p. In particular,
for p = 2 the method converges quadratically. Example 6.2 shows that the Newton method
applied to the problem f(x) = x2 − a = 0 convergence quadratically. This is typical of the
Newton method:

Corollary 6.9 Let d = 1 and f ∈ C2. Assume f(x∗) = 0 and f ′(x∗) ̸= 0. Then Newton’s
method converges quadratically. That is, there are constants C, ε > 0 such that if |x∗− x0| ≤ ε
then the sequence (xn)n converges to x∗ and

|x∗ − xn+1| ≤ C|x∗ − xn|2 ∀n.

Proof: One computes (exercise!) dΦNewton

dx
(x∗) = 0. Hence, Theorem 6.8 implies (at least)

quadratic convergence. 2

The quadratric convergence asserted in Cor. 6.9 requires f ′(x∗) ̸= 0. This is not an artefact of
the proof:

Exercise 6.10 Apply Newton’s method to find the zero of f(x) = x2. Show that Newton’s
method converges only linearly.

6.3 Newton’s method in higher dimensions

here: Find zero x∗ ∈ Rd of f : Rd → Rd.
idea: as in 1D: linearize (= Taylor expansion up to linear terms) and find zero of linearization
procedure:

• in Rd: xn = current iterate

• linearization L(x) := f(xn) + f ′(xn)(x− xn) = linearization of f at xn, where

f ′(x) =

∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xd

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xd

(x)
...

...
. . .

...
∂fd
∂x1

(x) ∂fd
∂x2

(x) · · · ∂fd
∂xd

(x)

• determine xn+1 as the zero of L , i.e.,

xn+1 := xn −
(
f ′(xn)

)−1

f(xn).

That is, the iteration function Φ is

ΦNewton(x) = x−
(
f ′(x)

)−1

f(x) (6.8)

The convergence of the method is analogous to the 1D situation:

107

Theorem 6.11 Let f ∈ C2(Bδ(x
∗)) for some δ > 0. Assume f(x∗) = 0 and f ′(x∗) is an

invertible matrix. Then there exist ε > 0 and C > 0 such that if x0 ∈ Bε(x
∗), then all iterates

xn are in Bε(x
∗), one has convergence xn → x∗, and

∥x∗ − xn+1∥ ≤ C∥x∗ − xn∥2 ∀n.

Theorem 6.11 states quadratic convergence of Newton’s method (provided the starting value is
sufficiently close to x∗) provided f ′(x∗) is invertible.

Remark 6.12 In practice the Newton step is not realized by computing the inverse (f ′)−1 but
by solving a linear system:

1. compute f(xn) and f ′(xn)

2. compute the correction by solving the linear system f ′(xn)δ = −f(xn)

3. perform the update xn+1 := xn + δ

Remark 6.13 The residual f(xn) is some measure for the error x∗−xn. If f
′(x∗) is invertible,

then for xn sufficiently close to x∗, Taylor expansion indicates

f(xn) = f(xn)− f(x∗) ≈ f ′(x∗)(xn − x∗)

so that we can expect

∥(f ′(x∗))−1f(xn)∥ ≈ ∥x∗ − xn∥. (6.9)

The residual f(xn) still is a measure for the error, however, only up to a constant depending
on f ′(x∗):

∥f(xn)∥ ≤ ∥f ′(x∗)∥∥x∗ − xn∥+O(∥x∗ − xn∥2), (6.10)

∥x∗ − xn∥ ≤ ∥(f ′(x∗))−1∥∥f(xn)∥+O(∥x∗ − xn∥2). (6.11)

6.4 Implementation aspects of Newton methods

stopping criteria

1. xn close to x∗ ⇒ quadratic convergence ⇒ ∥xn+1 − xn∥ is a good estimate for
∥xn − x∗∥:

∥xn − x∗∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − x∗∥︸ ︷︷ ︸
≤ c ∥xn−x∗∥2
≪ ∥xn−x∗∥

⇒ If each Newton step is cheap, then the stopping criterion is

∥xn+1 − xn∥ ≤ given tolerance

108

2. If Newton steps are expensive (e.g., for large systems of equations) then one can approx-
imate ∥xn+1 − xn∥ as follows:

∥xn+1 − xn∥ = ∥
(
f ′(xn)

)−1

f(xn)∥ ≈ ∥
(
f ′(xn−1)

)−1

f(xn)∥

This expression is computable since f ′(xn−1) has been determined for the computa-
tion of xn. If an LU -factorization of f ′(xn−1) is available, then the computation of
f ′−1(xn−1)f(xn) is comparatively cheap.

computing the Jacobian f ′(xn)

1. problem: often f ′ is not explicitly available but only f (e.g., if f is available as a
C-code). Then f ′(xn) can be approximated by difference quotients.

2. problem: Computing f ′(xn) can be expensive (for example: for large d the d×d-matrix
f ′ has many entries) Then one often uses the simplified Newton method

xn+1 = xn −
(
f ′(x0)

)−1

f(xn)

Since one uses the same, fixed derivative (at the point x0), the method is only linearly
convergent.

Exercise 6.14 Let B ∈ Rd×d be invertible, f̃(x) := Bf(x). Then: f(x∗) = 0 if and only if

f̃(x∗) = 0, and the Newton iterates for computing the zeros of f and of f̃ coincide.

6.5 Damped and globalized Newton methods

Problem: Newton’s method converges only locally, i.e., if x0 is sufficiently close to the zero x∗.
goal: methods that cope (reasonably well) with poor initial values x0.

6.5.1 Damped Newton method

Problem: quite often, the Newton steps xn+1 − xn are too large for convergence.

slide 20 - Damped Newton method

The way to cope with this problem is the damped Newton method where, for chosen λn ∈ (0, 1],
the update is

xn+1 := xn − λn(f
′(xn))

−1f(xn) (6.12)

For suitably small λn, this method converges for a larger regime of initial values x0. However,
the convergence is only linear. One is therefore interested in methods where the parameters λn

are selected adaptively and in particular λn = 1 for the iterates sufficiently close to x∗ so as
to obtain the quadratic convergence of the Newton method. An algorithm that realizes this is
given in Alg. 15.

109

6.5.2 A digression: descent methods

goal: provide a simple method to compute a minimum if a given function g : Rd → R.
here: descent methods, which are iterative methods that determine the next iterate xn+1 from
a current iterate xn as follows:

1. select a search direction dn ∈ Rd.

2. select a step length λn ∈ R such that for xn+1 := xn + λndn one has g(xn+1) < g(xn).

The search direction dn is called a descent direction, if the 1D function g̃ : R → R, g̃(t) :=
g(xn + tdn) satisfies g̃

′(0) < 0, i.e., is decreasing for small t > 0. Put differently, dn needs to
satisfy

∇g(xn) · dn < 0.

The method of steepest descent (also called gradient descent) corresponds to the choice
dn = −∇g(xn), which guarantees

∇g(xn) · dn = −∥∇g(xn)∥2 < 0.

as long as ∇g(xn) ̸= 0.

The second ingredient of a descent method is the choice of the step length λn.:

• The “greedy” approach would be to select λn such that

min
t>0

g̃(t) = g̃(λn).

Since this “line search” is still quite expensive, several other options are common that
realize the idea of selecting a step size with “sufficient” descent.

• Armijo-rule: Given σ ∈ (0, 1) and q ∈ (0, 1) one selects the largest step length of the
form qk, k = 0, 1, . . . , such that

g̃(qk) < g̃(0) + σg̃′(0)qk,

or, written in terms of g

g(xn + qkdn) < g(xn) + σ(∇g(xn) · dn)q
k. (6.13)

This can be realized by trying the cases k = 0, 1, . . . in turn until (6.13) is satisfied. This
step length choice can be interpreted as trying to make fairly large steps with a reasonable
reduction of the function g.

6.5.3 Globalized Newton method as a descent method

observe: zeros of f are minima of x 7→ ∥f(x)∥22 = f(x)⊤f(x).

idea: View the damped Newton method as a descent method with search direction dn :=
−(f ′(xn))

−1f(xn) and step length parameter λn.
For this idea to work, we need to know that the so-called Newton direction

dn := −(f ′(xn))
−1f(xn) (6.14)

is a descent direction for g(x) := ∥f(x)∥22.

110

Lemma 6.15 Let f ∈ C2(Rd). Then: For given x and d := −(f ′(x))−1f(x) the function
g̃(λ) := g(x+ λd) has the Taylor expansion g̃(λ) = g(x)− 2λg(x) +O(λ2) for small λ.

Lemma 6.15 shows that the Newton direction is a descent direction and that, for λ sufficiently
small, we may achieve a descent

g(xn + λndn)− g(xn) ≈ 2λng(xn) (6.15)

⇒ sensible goals for selecting λn are:

• if xn is close to x∗ then select λn = 1 (so that actual Newton steps with quadratic
convergence are performed!). We note that the quadratic convergence implies a descent
of almost ∥f(xn)∥2: for xn near x∗ we have

∥f(xn+1)∥2
(6.10)

≤ C1∥x∗ − xn+1∥22
quad. conv.

≤ C2∥x∗ − xn∥42
(6.11)

≤ C3∥f(xn)∥42.

In other words: for actual Newton steps, we expect ∥f(xn)∥22 − ∥f(xn+1)∥22 ≈ ∥f(xn)∥22.

• If xn is far from x∗, then select λn small but s.t. the descent ∥f(xn)∥22−∥f
(
xn+λn d(xn)

)
∥22

is large. By (6.15), a descent ∥f(xn + λndn)∥22 − ∥f(xn)∥22 ≈ 2λn∥f(xn)∥22 is possible for
small λn.

We wish to require the descent to be compatible with Newton steps. Therefore, we require a
descent of ≈ λn∥f(xn)∥22 rather than the “greedy” 2λn∥f(xn)∥22. This is what we enforce in the
following algorithm:

Algorithm 15 (Newton as descent method)

1: % Input: functions f ,f ′, initial value x0, parameter µ, q ∈ (0, 1)
2: % Output: approximation to zero of f

3: λ0 := 1
4: n := 0
5: while (stopping criterion not satisfied) do

6: dn := −
(
f ′(xn)

)−1

f(xn)

7: while
(
∥f(xn)∥22 − ∥f(xn + λn dn)∥22 < µλn∥f(xn)∥22

)
do

8: λn := λn · q ▷ reduce λ until sufficient amount of descent

9: end while
10: xn+1 := xn + λn dn

11: λn+1 := min
(
1, λn

q

)
▷ try a little large λ next time

12: end while

Remark 6.16 The ∥ · ∥2-norm was selected for convenience of exposition. Especially for large
systems, other norms may be more appropriate.

111

6.6 Gauss-Newton

A practically relevant case is that of “nonlinear least squares problems”: given a function
F : Rd → Rm the goal is

Find x⋆ ∈ Rd s.t. ∥F (x⋆)∥2 ≤ ∥F (x)∥2 ∀x ∈ Rd. (6.16)

Such problems arise, for example when fitting parameters x to measurements of a nonlinear
model.
(Local) minima x⋆ of the function g(x) := ∥F (x)∥22 satisfy ∇g(x⋆) = 0, i.e.,

G(x) := (F ′(x))⊤F (x)
!
= 0.

The Newton iteration is then1

G′(xn)∆xn = −G(xn), G′(x) = (F ′(x))⊤F ′(x) + (F ′′(x))⊤F (x). (6.17)

Let us next assume that F ′(x) has full rank near a solution x⋆ so that (F ′(x))⊤F ′(x) is invertible.
Let us also assume that

F (x⋆) = 0.

Then, F ′′(x)F (x) is small near the solution x⋆ so that one could replace in (6.17) the full deriva-
tive G′(x) = (F ′(x))⊤F ′(x) + (F ′′(x))⊤F (x) with a simplified version G′(x) ≈ (F ′(x))⊤F ′(x).
The resulting method is

(F ′(xn))
⊤F ′(xn)∆xn = −(F ′(xn))

⊤F (xn). (6.18)

These are the normal equations for the following linear least squares problem:

Find ∆xn s.t.∥F ′(xn)∆xn + F (xn)∥22 ≤ ∥F ′(xn)y + F (xn)∥22 ∀y ∈ Rd. (6.19)

Thus, the nonlinear least squares problem (6.16) has been reduced to a sequence of linear least
squares problems. The simplification is quite significant in that the second derivative G′′ does
not have to be computed! Normally in Newton methods, an approximation of the derivative
(here: G′) leads to a convergence reduction from quadratic to linear. In the present case, the
neglected term F ′′(x)F (x) is small and even vanishes asymptotically as x → x⋆. Hence, there
is hope that the Gauss-Newton method still converges quadratically:

Theorem 6.17 Assume that F is sufficiently smooth, that F (x∗) = 0 and that F ′(x∗) has
full rank. Then, the Gauss-Newton method (6.19) converges locally quadratically, i.e., for x0

sufficiently close to x∗, the sequence of iterates xn satisfies

∥x∗ − xn+1∥2 ≤ C∥x∗ − xn∥22 ∀n.

If F (x∗) ̸= 0 but still F ′(x∗) has full rank, then the Gauss-Newton method converges but only
linearly for starting values sufficiently close to the solution x∗.

Exercise 6.18 Consider the case n = m = 1. Formulate the Gauss-Newton method for solving
f(x⋆) = 0. Under the assumption f(x⋆) = 0 and f ′(x∗) ̸= 0, show that the Gauss-Newton
method reduces to the standard Newton iteration for the problem of finding x⋆ with f(x∗) = 0.

1The second derivative G′′ is a third order tensor but we will not formally define this object as we will not
need it in the sequel. At this point, it suffices to accept that the notation is set up in such a way that what one
expects from simple calculus in 1D extends to multi-d

112

6.7 Quasi-Newton methods (CSE)

Problem: often, the computation of f ′ is expensive.

simple solution: simplified Newton method where f ′(xn) is replaced with f ′(x0).
Downside: linear convergence

goal: methods that converge superlinearly but are cheaper than full Newton method

6.7.1 Broyden method

Setting: f ∈ C1(Rd;Rd), f(x∗) = 0, f ′(x∗) invertible
Broyden methods are iterative methods of the form xn+1 = xn−H−1

n f(xn) with suitable matrices
Hn.
idea of Broyden’s method

• after computing xn+1 compute the next Hn+1 from Hn

• Hn+1 is some kind of “approximation” to f ′(xn+1)

Taylor yields −f(xn+1) + f(xn) = f ′(xn+1)(xn − xn+1) + O(∥xn+1 − xn∥2) so that we expect
f ′(xn+1)(xn+1 − xn) ≈ f(xn+1) − f(xn) Hence, a resonable condition on Hn+1 is the “secant
condition”

Hn+1(xn+1 − xn)
!
= f(xn+1)− f(xn) (6.20)

Condition (6.20) does not fix Hn+1 (unless d = 1). A reasonable further condition is that Hn+1

does not deviate much from Hn, i.e., that Hn+1 −Hn be small. This leads to the problem:

Find Hn+1 satisfying (6.20) s.t. ∥Hn+1−Hn∥F = min{∥A−Hn∥F |A(xn+1−xn) = f(xn+1)−f(xn)}
(6.21)

This constrained minimization problem has a unique solution:

Hn+1 = Hn +
1

∥s∥22
(y −Hns) s

⊤, s = xn+1 − xn, y = f(xn+1)− f(xn). (6.22)

The reason is the following, more general result:

Lemma 6.19 Let B ∈ Rd×d, s, y ∈ Rd with s ̸= 0. Then the matrix B+ ∈ Rd×d given by

B+ = B+
1

∥s∥22
(y −Bs)s⊤

solves the following constrained minimization problem:

Find the minimizer A of ∥A−B∥F under the constraint As = y

Furthermore, the minimizer is unique.

113

Proof: We will only show that the given B+ solves the minimization problem. By construction,
B+s = y. For arbitrary A with As = y, we compute

∥B+ −B∥F = ∥ 1

∥s∥22
(y −Bs)s⊤∥F = ∥ 1

∥s∥22
(As−Bs)s⊤∥F = ∥(A−B)

s⊤

∥s∥22
∥F

∥GH∥F≤∥G∥F ∥H∥2
≤ ∥A−B∥F ∥ ss

⊤

∥s∥22
∥2︸ ︷︷ ︸

=1 since ss⊤ is sym. with d− 1 EVs 0 and one EV 1

2

The update formula (6.19) yields the following Broyden method :

1. given Hn compute xn+1 = xn −H−1
n f(xn)

2. compute Hn+1 via (6.22).

Important features of this method are:

1. The method converges (locally) superlinearly, i.e., for some sequence εn → 0 there holds

∥xn+1 − xn∥ ≤ εn∥xn − xn−1∥

2. The Broyden updates are rank-1 updates. For rank-1 updates of matrices, the inverses can
be computed fairly cheaply with the Sherman-Morrison-Woodbury formula, which asserts
(exercise!) that for arbitrary invertible A ∈ Rd×d and vectors u, v (with v⊤A−1u ̸= −1)
there holds

(A+ uv⊤)−1 = A−1 − 1

1 + v⊤A−1u
A−1uv⊤A−1. (6.23)

Example 6.20 slide 20a - Broyden method

We seek the zero x∗ = (0, 1)T of

F (x) =

(
(x1 + 3)(x3

2 − 7) + 18
sin(x2e

x1 − 1)

)
= 0

with initial value x0 = (−0.5, 1.4)T . The classical Broyden method is started with H0 = F ′(x0).
One observes in Fig. 6.3 in particular superlinear convergence of the Broyden method. For
comparison purposes also the gradient method (steepest descent) for f(x) := ∥F (x)∥22 with
σ = 0.9 and q = 0.5 (see Sec. 6.5.2) is shown.

Remark 6.21 There are many important variations of the Broyden method. Consider for
example the case that Newton’s method is applied to find the minimum of a function f (see
Section 6.5.2). Then the Hessian of f is symmetric and — at least in the vicinity of the sought
minimum — positive definite. One would like to make Broyden-like updates that preserve sym-
metric and positive definiteness. Such methods exist: see PSB (“Powell symmetric Broyden”),
DFP (“Davidson-Fletcher-Powell”), BFGS (“Broyden-Fletcher-Goldfarb-Shanno”).

Remark 6.22 Just like globalized Newton methods, Broyden and Broyden-like methods are in
practice combined with algorithms that select the step length.

114

1 2 3 4 5 6 7 8
10−18

10−13

10−8

10−3

number of iterations

er
ro
r
(E

u
cl
id
ea
n
n
or
m
)

Newton

Broyden

steepest desc.

Figure 6.3: Comparison of Newton method, Broyden method, and gradient method (See Ex-
ample 6.20).

6.8 Unconstrained minimization problems (CSE)

goal: minimize a function f : Rd → R
This problem can be approached in several ways, for example:

1. The minimizer satisfies ∇f(x∗) = 0 so that a (globalized) Newton method could be used.
We note that then the Hessian of f is required.

2. Descent method: These methods identify a descent direction for f (e.g., −∇f(xn)) and
then make a step that reduces f . These methods typically require only ∇f and are
discussed in Sec. 6.5.2. A special case of a quadratic minimization problem is discussed
in the following subsection.

3. Trust region methods: these methods approximate f locally by a quadratic function that
is minimized in a region where the quadratic approximation is deemed reliable. This is
sketched in Sec. 6.8.2.

6.8.1 Gradient method with quadratic cost function

We consider the special case of a quadratric function f :

f(x) = γ + c⊤x+
1

2
x⊤Qx (6.24)

where γ ∈ R, c ∈ Rd, Q is SPD. J note: in the vicinity of a minimum of f , one expects
f to be close to a quadratic polynomial of this form by Taylor K. We employ as the search
direction dn := −∇f(xn). Rather than using the Armijo rule, we use the minimum rule since
the minimum can be computed: The minimum of φ : t 7→ f(xn + tdn) is explicitly given by

t = −∇f(xn) · dn

d⊤
nQdn

115

since

φ(t) = f(xn + tdn) = f(xn) + t∇f(xn) · dn +
1

2
t2d⊤

nQdn,

φ′(t) = ∇f(xn) · dn + td⊤
nQdn;

therefore, one step of the gradient method is

xn+1 = xn + tdn = xn −
∇f(xn) · dn

d⊤
nQdn

dn

The convergence can be estimate:

Lemma 6.23 Let f be given by (6.24) with an SPD matrix Q. Consider steepest descent, i.e.,
dn := −∇f(xn). Then:

f(xn+1)− f(x∗) ≤
(
λmax − λmin

λmax + λmin

)2

(f(xn)− f(x∗)) =

(
κ− 1

κ+ 1

)2

(f(xn)− f(x∗)),

∥xn+1 − x∗∥2Q ≤
(
λmax − λmin

λmax + λmin

)2

∥xn − x∗∥2Q =

(
κ− 1

κ+ 1

)2

∥xn − x∗∥2Q,

where ∥z∥2Q = z⊤Qz and κ = λmax/λmin is the condition number of Q.

Proof: Literature. 2

Lemma 6.23 shows that the steepest descent method degrades if Q has widely differing eigen-
values (i.e., large condition number κ). This problem can be solved or at least mitigated by
selecting the search directions in a different way. In fact, if one takes an SPD matrix H (as a
“preconditioner”) and considers as the search direction

dn = −H∇f(xn)

then, one can show that

f(xn+1)− f(x∗) ≤
(
λmax(H

−1Q)− λmin(H
−1Q)

λmax(H−1Q) + λmin(H−1Q)

)2

(f(xn)− f(x∗)),

so that the contraction factor can be much smaller than in the unpreconditioned case. The
extreme case H = Q leads to convergence in one step.

Remark 6.24 The minimization of the quadratic function f can be done explicitly with solution
x∗ = −Q−1c so that a (steepest) descent method seems useless. Nevertheless, the discussion of
quadratic functions f is of interest as it indicates weaknesses of the steepest descent methods
for general f : one should expect slow convergence if, for example, the Hessian of f has a large
condition number.

Returning to the quadratic problem, it is of interest to note that the minimum can also be
found as the zero of the function x 7→ ∇f(x). This is a linear function. The Hessian of f is
H = Q. Applying the Newton method yields convergence in one step. The Newton step is

xn+1 = xn −H−1∇f(xn).

This is precisely the preconditioned gradient method with the above identified optimal precon-
ditioner H = Q.

116

6.8.2 Trust region methods

starting point: many minimization techniques are based on “sequential quadratic program-
ming”, i.e., the function f is approximated locally by a quadratric “model” of the form

qk(x) = f(xk) + gk · (x− xk) +
1

2
(x− xk)

TBk(x− xk), (6.25)

that is then minimized instead. Examples are:

• gk = ∇f(xk) and Bk = H(xk), where H(xk) is the Hessian of f at xn: → Newton’s
method if H(xk) SPD

• gk = ∇f(xk) and Bk = Id: → gradient method (with step length tk = 1)

Problems:

• the quadratic model is only valid in a small region near xk. Too large steps of the
minimization algorithm may lead to leaving the region of validity of the model.

• If Bk is not SPD, then the minimization problem is not meaningful.

In trust region methods the model qk is not minimized over Rd but merely on a ball B∆k
(xk)

for given ∆k:

Minimize qk(x) under the constraint ∥xk+1 − xk∥ ≤ ∆k. (6.26)

• (6.26) has a solution
• key ingredient of the algorithm is the steering of the ∆k.
• in order to assess whether the quadratic model is “good”, one defines

ρk :=
f(xk)− f(xk+1)

qk(xk)− qk(xk+1)
. (6.27)

Note thate this is the ratio of actual descent and descent predicted by the model!

If the model is “good”, then ρk ≈ 1 will be close to 1. In particular, for ρk ≤ 0 no descent is
achieved (since the denominator is positive!).

In trust region methods, the search directions and the step lengths are not selected separately.
Rather, they are selected in some sense simultaneously.

117

Algorithm 16 (Trust region method)

1: % Input: function f , x0, quadratic model q0, parameters: ∆̂, ∆0 ∈ (0, ∆̂), η ∈ [0, 1/4)
2: % Output: approximation to minimizer of f

3: for k = 0, 1, . . . do
4: minimize qk with minimizer x̂k+1

5: ρk = (f(x̂k+1)− f(xk))/(qk(x̂k+1)− qk(xk))
6: if ρk < 1/4 then
7: ∆k+1 :=

1
4
∆k ▷ model “bad” → reduce trust region

8: else
9: if (ρk > 3/4 and ∥x̂k+1 − xk∥ = ∆k) then

10: ∆k+1 = min(2∆k, ∆̂) ▷ model “good”, minimizer at boundary → TR too small

11: else
12: ∆k+1 = ∆k

13: end if
14: end if
15: if ρk > η then
16: xk+1 := x̂k+1 ▷ model OK, → accept step

17: else
18: xk+1 := xk ▷ model not OK → reject the step

19: end if
20: end for

Remark 6.25 The actual realization of a trust region method is non-trivial as the constrained
minimization problem of finding x̂k+1 has to be (approximately) solved. For actual realizations
of trust region methods: see literature.

118

7 Eigenvalue Problems

goal: compute some or all eigenvalues of a given matrix A ∈ Rn×n, i.e., values λ ∈ R such that

Ax = λx

for eigenvectors 0 ̸= x ∈ Rn.

note: eigenvalues are characterized as zeros of the characteristic polynomial of A, given by

p(λ) := det(A− λI) ∈ Pn

In principle, such a zero can be computed using e.g. Newton’s method. However, this would
not lead to a stable algorithm. Therefore, in the following, we present different approaches
based on iterative procedures.

note: Once an eigenvalue λ is known, corresponding eigenvectors satisfy the linear system of
equations

(A− λI)x = 0,

which may have more than one linearly independent solution!

Conversely, if the eigenvector x ∈ Rn is known, the corresponding eigenvalue can be computed
by

xTAx = λxTx =⇒ λ =
xTAx

∥x∥22
and the quantity xTAx

∥x∥22
is called the Rayleigh quotient.

7.1 The power method

goal: compute largest (in absolute value) eigenvalue and corresponding eigenvector.

applications: Google PageRank algorithm, computation of condition number κ2(A) = λmax

λmin
of

a SPD matrix A ∈ Rn×n.

setting: A diagonalizable, i.e., Rn has a basis of eigenvectors of A, denoted by {v1, . . . ,vn},
assume |λ1| > |λ2| ≥ · · · ≥ |λn|.
idea of power iteration: Let x0 ∈ Rn. As we have a basis of eigenvectors, we can write

x0 =
n∑

i=1

αivi.

Application of A produces

Ax0 =
n∑

i=1

αiAvi =
n∑

i=1

αiλivi

and thus inductively for ℓ ≥ 1

Aℓx0 =
n∑

i=1

αiλ
ℓ
ivi = λℓ

1

n∑
i=1

αi

(
λi

λ1

)ℓ

vi.

119

As by assumption, we have
∣∣∣ λi

λ1

∣∣∣ < 1 for all i = 2, . . . , n, we obtain
∣∣∣ λi

λ1

∣∣∣ℓ → 0 for ℓ→∞. Conse-

quently, provided α1 ̸= 0, we can choose ℓ large enough such that Aℓx0 is almost parallel to v1.
As v1 is the eigenvector corresponding to the largest eigenvalue, computing the corresponding
Rayleigh coefficient (to a normalized version of Aℓx0) gives an approximation to the largest
eigenvalue.
The procedure is formalized in the following algorithm.

Algorithm 17 (Power iteration method)

1: % Input: A ∈ Rn×n, 0 ̸= x0 ∈ Rn

2: % Output: approximation to largest eigenvalue and corresp. eigenvector

3: ℓ := 0
4: x0 :=

x0

∥x0∥2
5: repeat
6: xℓ+1 :=

Axℓ

∥Axℓ∥2
▷ approx. eigenvector

7: λ̃ℓ+1 := xT
ℓ+1Axℓ+1 ▷ approx. eigenvalue

8: ℓ := ℓ+ 1
9: until sufficiently accurate

Algorithm 17 does indeed converge and the rate of convergence is the quotient between the two
largest eigenvalues.

Theorem 7.1 Let A ∈ Rn×n be diagonalizable with eigenvectors {v1, . . . ,vn} corresponding to
the eigenvalues λ1, . . . , λn satisfying |λ1| > |λ2| ≥ · · · ≥ |λn|. Let x0 =

∑n
i=1 αivi with α1 ̸= 0

Then:

(i) The xℓ of Alg. 17 are well-defined.

(ii) ∃C > 0 s.t. |λ̃ℓ − λ1| ≤ C|λ2

λ1
|ℓ, ℓ = 0, 1, . . .

Remark 7.2 1. Since v1 is not known, the requirement α1 ̸= 0 cannot be checked. In
practice, this is not a problem since:

• a randomly chosen x0 satisfies α1 ̸= 0 with probability 1

• rounding errors create a component in the direction of v1

2. analogous result holds for the eigenvalue converge if λ1 is a multiple eigenvalue

3. Algorithm 17 does not converge, if λ1 ̸= λ2 but |λ1| = |λ2|. This case arises, e.g., when
A ∈ Rn×n but A has complex eigenvalues.

4. greatest weakness of Algorithm 17: slow convergence if λ1 is not well-separated from

σ(A) \ {λ1}, i.e.,
∣∣∣λ2

λ1

∣∣∣ is close to 1.

5. common application: estimate ∥A∥22 = λmax(A
HA)

120

In addition to providing approximations to the largest eigenvalue, Algorithm 17 also yields an
approximation to the corresponding eigenvector. To capture this convergence mathematically,
we introduce the notion of “distance” between the spaces spanned by two vectors:

Definition 7.3 Let {0} ≠ S = span{x} and {0} ≠ T = span{y}. We define

d(S, T) := | sinφ| =
√

1− cos2 φ, cosφ =
x · y

∥x∥2∥y∥2
.

Remark 7.4 (geometric intepretation) φ is the angle between the vectors x and y. If
x ∥ y, then φ = 0, i.e., S = T and indeed d(S, T) = 0. If x ⊥ y, then d(S, T) = 1.

The following Theorem 7.5 shows that | sin∠(v1,xℓ)| → 0:

Theorem 7.5 Assumptions as in Theorem 7.1. Then ∃ C > 0 such that

d(span{v1}, span{xℓ}) ≤ C

∣∣∣∣λ2

λ1

∣∣∣∣ℓ , ℓ = 0, 1, . . .

7.2 Inverse Iteration

goal: eigenvalue other than the largest one.

observation: if A is invertible and σ(A) = {λi | i = 1, . . . , n} then σ(A−1) = { 1
λi
| i = 1, . . . , n}

i.e., the largest (in absolute value) eigenvalue of A−1 is the reciprocal of the smallest one (in
absolute value) of A.

Algorithm 18 (Inverse iteration)

1: % Input: A ∈ Rn×n, 0 ̸= x0 ∈ Rn

2: % Output: approximation to smallest eigenvalue and corresp. eigenvector

3: ℓ := 0
4: x0 :=

x0

∥x0∥2
5: repeat
6: solve Ax̃ℓ+1 = xℓ

7: xℓ+1 :=
x̃ℓ+1

∥x̃ℓ+1∥2
▷ approx. eigenvector

8: λ̃ℓ+1 := xT
ℓ+1Axℓ+1 ▷ approx. eigenvalue

9: ℓ := ℓ+ 1
10: until sufficiently accurate

Remark 7.6 1. If 0 < |λn| < |λn−1| ≤ · · · ≤ |λ1|, then, analogous to Theorem 7.1, one has

|λn − λ̃l| ≤ C
∣∣∣ λn

λn−1

∣∣∣ℓ J exercise K

2. since a linear system is solved in each step → perform an LU-factorization of A at the
beginning

The inverse iteration is a special case of an inverse iteration with shift:

121

Algorithm 19 (Inverse iteration with shift)

1: % Input: A ∈ Rn×n, 0 ̸= x0 ∈ Rn, shift λ ∈ R
2: % Output: approximation to eigenvalue closest to λ and corresp. eigenvector

3: ℓ := 0
4: x0 :=

x0

∥x0∥2
5: repeat
6: solve (A− λ)x̃ℓ+1 = xℓ

7: xℓ+1 :=
x̃ℓ+1

∥x̃ℓ+1∥2
▷ approx. eigenvector

8: λ̃ℓ+1 := xT
ℓ+1Axℓ+1 ▷ approx. eigenvalue

9: ℓ := ℓ+ 1
10: until sufficiently accurate

Theorem 7.7 Let A ∈ Rn×n be diagonalizable; λ ∈ R. Let the eigenvalues of A be numbered
such that |λ1 − λ| ≥ |λ2 − λ| ≥ · · · ≥ |λn−1 − λ| > |λn − λ| > 0.
Then: ∃ C > 0 such that the approximation λ̃ℓ computed by Algorithmus 19 satisfies:

|λn − λ̃ℓ| ≤ C

∣∣∣∣ λn − λ

λn−1 − λ

∣∣∣∣ℓ
observation:

• inverse iteration with shift converges to the eigenvalue closest to the shift parameter λ→
it is possible to seek specific eigenvalues

• the closer λ is to an eigenvalue, the faster the convergence

idea: use, in each step of the iteration, as a shift parameter λ the best available approximation
to an eigenvalue → Rayleigh quotient iteration with shift λℓ = xH

ℓ Axℓ.

Algorithm 20 (Rayleigh quotient iteration)

1: % Input: A ∈ Rn×n, 0 ̸= x0 ∈ Rn (initial guess for eigenvector corresponding to sought
eigenvalue)

2: % Output: approximation to eigenvalue closest to initial guess and corresp. eigenvector

3: ℓ := 0
4: x0 :=

x0

∥x0∥2
5: repeat
6: λ̃ℓ := xT

ℓ Axℓ ▷ approx. eigenvalue

7: solve (A− λ̃ℓ)x̃ℓ+1 = xℓ

8: xℓ+1 :=
x̃ℓ+1

∥x̃ℓ+1∥2
▷ approx. eigenvector

9: ℓ := ℓ+ 1
10: until sufficiently accurate

One expects better convergence of the Rayleigh quotient iteration than in the case of a fixed
shift. One has, for example:

122

Theorem 7.8 Let A ∈ Rn×n be symmetric, λ be a simple eigenvalue with corresponding eigen-
vector v. Then: ∃ C > 0, ϵ0 > 0 such that ∀ϵ ∈ (0, ϵ0): If x0 ∈ Rn\{0} satisfies the condition
d(span{x0}, span{v}) < ϵ, then x1 (= one step of Algorithm 20) satisfies

d(span{x1}, span{v}) ≤ Cϵ3 and

∣∣∣∣xH
0 Ax0

∥x0∥22
− λ

∣∣∣∣ ≤ Cϵ2.

Remark 7.9 1. Analogous result holds also for general diagonalizable matrices: One then
has locally quadratic (instead of cubic) convergence.

2. Iterations with variable shift are more expensive than those with fixed shift for which a
factorization can be amortized over several iterations.

slide 21 - Vector iteration

7.3 Stopping Criteria

A pair (x, λ̃) ∈ Rn \ {0} × R is an eigenpair, if Ax− λ̃x = 0.
hope: For (x, λ̃) not necessarily an eigenpair, the residual Ax− λ̃x is a useful measure for the
deviation from an eigenpair. We have

Theorem 7.10 A ∈ Rn×n diagonalizable, (T−1AT = D), ∥x∥2 = 1, λ̃ ∈ R. Set r := Ax− λ̃x.
Then:

(i) minλ∈σ(A) |λ− λ̃| ≤ cond2(T)∥r∥2

(ii) minλ∈σ(A) |λ− λ̃| ≤ ∥r∥2 if A is selfadjoint (symmetric).

(iii) If λ̃ = xHAx and A is selfadjoint and λ̃ sufficiently close to a simple eigenvalue of A,
then

min
λ∈σ(A)

|λ− λ̃| ≤ C∥r∥22

END OF LECTURE FOR VISUAL COMPUTING finis 10.DS

123

7.4 Orthogonal Iteration (CSE)

recall: power iteration generates a sequence (Aℓ span{x0})∞l=0 of 1-dimensional spaces that con-
verge to an invariant subspace of the matrix A (in fact, the eigenspace corresponding to the
largest eigenvalue).

idea: Perform power iteration on a k-dimensional space (described by X0 ∈ Rn×k)

hope: The sequence (AℓX0)
∞
ℓ=0 of k-dimensional spaces converges1 to the invariant subspace

that is spanned by the k dominant eigenvectors.

essential for the numerical realization: Power iteration in Sec. 7.1 used a normalization of the
vector in each space (i.e., an ONB of the space spanned by Aℓx0 was created). Here, an ONB
of the space spanned by the columns of AℓX0 is created.

slide 21a - Orthogonal iteration

Algorithm 21 (Orthogonal iteration)

1: % Input: A ∈ Rn×n, X0 ∈ Rn×k with linearly independent columns.
2: % Output: approximation to k-largest eigenvectors

3: ℓ := 0
4: X0 =: Q0R0 ▷ Q0 ∈ Rn×k orthogonal columns, R0 ∈ Rk×k upper triangular

5: repeat
6: Xℓ+1 := AQℓ

7: Xℓ+1 =: Qℓ+1Rℓ+1 ▷ reduced QR-decomposition of Xℓ+1

8: ℓ := ℓ+ 1
9: until sufficiently accurate

Remark 7.11 1. The columns of Qℓ form an ONB of the space AℓS0 where S0 is the space
spanned by the columns of X0.

2. Orthogonalization is numerically essential: without orthogonalization one performs only
k independent vector iterations that all converge to the same dominant eigenspace.

Theorem 7.12 Let A ∈ Rn×n be diagonalizable, {v1, . . . ,vn} basis of Rn of eigenvectors with
corresponding eigenvalues λ1, . . . , λn. Let |λ1| ≥ |λ2| ≥ . . . |λk| > |λk+1| ≥ · · · ≥ |λn|.
Let S0 ⊂ Rn be the k-dimensional subspace spanned by the columns of X0 ∈ Rn×k and assume
S0 ∩ span{vk+1, . . . ,vn} = {0}. Then, there exists C > 0 such that the k eigenvalues λ̃i,ℓ,
i = 1, . . . , k, of QT

ℓ AQℓ satisfy

min
λ∈EVal(A)

|λ̃i,ℓ − λ| ≤ C

∣∣∣∣λk+1

λk

∣∣∣∣ℓ , i = 1, . . . , k, ℓ = 0, 1, . . . ,

1actually, we haven’t introduced the notion of distance on the space of k-dimensional spaces, so that this
statement has to remain vague

124

Furthermore, for any matrix Q′
ℓ ∈ Rn×(n−k) such that (Qℓ,Q

′
ℓ) is an orthogonal matrix, one

has for the block matrix

Aℓ := (Qℓ,Q
′
ℓ)

HA(Qℓ,Q
′
ℓ) =

(
A11 A12

A21 A22

)
that

∥A21∥2 ≤ C

∣∣∣∣λk+1

λk

∣∣∣∣ℓ .
Remark 7.13 The matrix (Qℓ,Q

′
ℓ)

HA(Qℓ,Q
′
ℓ) is similar to the matrix A. Hence, its eigen-

values are the same as those of A. Theorem 7.12 states that the eigenvalues of the block A11

are close to the k largest eigenvalues of A. Theorem 7.12 also states that the block A21 tends
to zero as ℓ→∞. That is, the sequence of matrices Aℓ tends to block diagonal form.

7.5 Basic QR-algorithm (CSE)

A first way to understand the classical QR-algorithm (without refinements such as shift strate-
gies) is to view it as the orthogonal iteration with starting matrix X0 = I ∈ Rn×n:

Algorithm 22 (Orthogonal iteration with X0 = I)

1: % Input: A ∈ Rn×n,X0 := I ∈ Rn×n

2: % Output: approximation to all eigenvectors

3: ℓ := 0
4: X0 =: Q0R0 ▷ Q0 ∈ Rn×n orthogonal, R0 ∈ Rn×n upper triangular

5: repeat
6: Xℓ+1 := AQℓ

7: Xℓ+1 =: Qℓ+1Rℓ+1 ▷ QR-decomposition of Xℓ+1

8: ℓ := ℓ+ 1
9: until sufficiently accurate

Remark 7.14 Algorithm 22 actually performs n orthogonal iterations simultaneously. That
is, for each k ∈ {1, . . . , n}, the first k columns of Qℓ are those that would be created by the
orthogonal iteration Alg. 21 started with X0 = [e1, . . . , ek]. To see this, we compute with X0 = I

AℓI = AℓX0 = Aℓ−1AX0 = Aℓ−1Q1R1 = Aℓ−2AQ1R1 = Aℓ−2Q2R2R1 = · · · = QℓRℓ · · ·R1

Since the product Rℓ · · ·R1 is upper triangular as a product of upper triangular matrices, we see
that the columns of Aℓ[e1, . . . , ek] are linear combinations of the first k columns of Qℓ. Hence,
for invertible A, the first k columns of Qℓ form an ONB of the space AℓS0, where S0 is the
space spanned by X0 = [e1, . . . , ek]. See also Remark 7.11.

Since Alg. 22 performs n simultanenous orthogonal iterations (by Remark 7.14), Theorem 7.12
suggests that the sequence of matrices

Aℓ := QT
ℓ AQℓ

125

converges to upper triangular form. Indeed, if |λ1| > |λ2| > · · · > |λn| (and the technical condi-
tions span{e1, . . . , ek}∩ span{vk+1, . . . ,vn} = {0} for every k ∈ {1, . . . , n}) then Theorem 7.12
asserts that each block Aℓ([1 : k], [k + 1 : n]) of Aℓ tend to zero. Since the matrices Aℓ are
similar to A, the eigenvalues of Aℓ and A coincide. Thus, the diagonal entries of the matrices
Aℓ converge to the eigenvalues of A.

The basic QR-algorithm creates the matricesAℓ in a more efficient way than computingQH
ℓ AQ

directly. One makes the following observations:

Xℓ+1 = AQℓ = Qℓ+1Rℓ+1,

Aℓ = QT
ℓ AQℓ = QT

ℓ Qℓ+1︸ ︷︷ ︸
=:Q̂ℓ+1

Rℓ+1 is “the” QR-decomposition of Aℓ,

Aℓ+1 = QT
ℓ+1AQℓ+1 = (QℓQ̂ℓ+1)

TAQℓ+1 = Q̂T
ℓ+1Q

T
ℓ AQℓQ̂ℓ+1 = Q̂T

ℓ+1AℓQ̂ℓ+1 = Rℓ+1Q̂ℓ+1.

We conclude that Aℓ+1 is obtained from Aℓ by computing “the” QR-factorization of Aℓ and
then multiplying the factors in reverse order. This is the classical QR-algorithm:

Algorithm 23 (Basic form of classical QR-algorithm)

1: % Input: A ∈ Rn×n

2: % Output: approximation to all eigenvectors

3: ℓ := 0
4: A0 := A
5: repeat
6: Aℓ =: QℓRℓ ▷ QR-decomposition of Aℓ

7: Aℓ+1 := RℓQℓ

8: ℓ := ℓ+ 1
9: until sufficiently accurate

Remark 7.15 Computationally, Alg. 23 is very expensive as each QR-decomposition costs
O(n3). Assuming that O(n) QR-steps are needed to compute the n eigenvalues, this gives a
total cost of O(n4).

7.6 Improvements for the QR-algorithm (CSE)

In the following, we aim to introduce different variants of the QR-algorithm that improve the
computational complexity and convergence of the algorithm.

7.6.1 Hessenberg form

Computationally, each QR-factorization in the basic QR-algorithm (Algorithm 23) incurs cost
O(n3). The situation changes if A has Hessenberg form2.

2recall: upper triangular and one subdiagonal is allowed to be nonzero, i.e., Aij = 0 for j > i+ 1

126

As discussed in Example 4.55 it is possible to compute the QR-factorization of a Hessenberg
matrix with cost O(n2) (using Givens rotations). Moreover, the multiplication RQ is also
achieved with cost O(n2) and the resulting matrix RQ has again upper Hessenberg form.
This gives rise to the procedure:

1. Transform A to upper Hesseberg form (e.g. with Givens rotations) H = QTAQ in O(n3)
operations. Note that A and H have the same eigenvalues.

2. Use H = H0 in the QR-algorithm, i.e., compute

• Hℓ =: QR in O(n2) operations (by Example 4.55)

• Hℓ+1 =: RQ in O(n2) operations (by Example 4.55)

and iterate these two steps.

In total this gives a complexity of

O(n3) + 2O(n)O(n2) = O(n3).

7.6.2 Deflation

Suppose that the matrix A has the form

A =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 · · · 0 µ

 ,

i.e., A(n, :) = (0, 0, . . . , 0, µ). Then µ is an eigenvalue of A and the remaining eigenvalues of
A are the eigenvalues of the matrix A([1 : n− 1], [1 : n− 1]). This can obviously be exploited
algorithmically. In practice, two things are done:

1. if the “off-diagonal” part of A(n, :) is small, i.e., if ∥A(n, [1 : n− 1])∥ is small (compared
to ε∥A(n, :)∥ for some ε close to machine precision), then A(n, n) will be a good approx-
imation to a true eigenvalue of A. In the context of QR-iterations, one will therefore
monitor the size of the Aℓ(n, [1 : n − 1]), identify Aℓ(n, n) as an eigenvalue if possible
and continue the search for eigenvalues with Aℓ([1 : n − 1], [1 : n − 1]). Computational
savings are achieved because of the reduction in size the matrix.3

2. The QR-algorithm with shift is designed such that deflation happens quickly: the shift
parameters (later!) are chosen cleverly in such a way that ∥Aℓ(n, [1 : n− 1])∥ converges
quickly (in fact, quadratically) to zero. Hence, quickly, one eigenvalue is identified and
the iteration can be continued with a matrix whose size is reduced by 1.

3Significant savings arise in practice, because in the course of the iteration, one repeatedly reduces the size.

127

7.6.3 QR-algorithm with shift

goal: convergence acceleration of QR-algorithm using shifts.

mathematical background: Implicitly the QR-algorithm with shift performs an inverse iteration

for AT so that choosing Rayleigh quotients as shift leads to rapid convergence.
So far, we assumed A to be real (although this is by no means essential). Since we want to allow
complex shifts, we allow A to be complex. We note that the concept of QR-factorizations also
holds for complex matrices (transpositions T have to be replaced by conjugated transpositions
denoted by H).4

A generalization of the basic QR-algorithm is the QR-algorithm with shift:

Algorithm 24 (QR-algorithm with shift)

1: % Input: A ∈ Rn×n

2: % Output: approximation to all eigenvalues

3: ℓ := 0
4: A0 := A
5: repeat
6: choose shift µ(ℓ)

7: Aℓ − µ(ℓ) =: Qℓ+1Rℓ+1

8: Aℓ+1 := Rℓ+1Qℓ+1 + µ(ℓ)

9: ℓ := ℓ+ 1
10: until Aℓ is sufficiently close to upper triangular form

Exercise 7.16 Check that Aℓ and Aℓ+1 are similar and hence have the same eigenvalues.

Lemma 7.17 Let the shifts µ(ℓ) be such that µ(ℓ) is not an eigenvalue of A. ∀ℓ.

orthogonal iteration with shift QR-iteration with shift

Q̂0 := I A0 := A(
A− µ(ℓ)

)
Q̂ℓ =: Q̂ℓ+1Rℓ+1 Aℓ − µ(l) =: Qℓ+1Rℓ+1

Aℓ+1 := Rℓ+1Qℓ+1 + µ(ℓ)

Then: ∀ℓ:

(i)
(
A− µ(ℓ)

) (
A− µ(ℓ−1)

)
. . .
(
A− µ(0)

)
Q̂0 = Q̂ℓ+1R̂ℓ+1 with R̂ℓ+1 = Rℓ+1 . . .R1

(ii) Aℓ = Q̂H
ℓ AQ̂ℓ

(iii) Q̂ℓ = Q1 · · ·Qℓ

We have observed in Remark 7.14 that the orthogonal iteration (with X0 = I) performs several

orthogonal iterations simultaneously. That is, the first k columns of Q̂ℓ are an ONB of the

4in fact, the eigenvalue algorithms are probably better understood by viewing A ∈ Cn×n and specializing to
real matrices if necessary.

128

space Aℓ[e1, . . . , ek]. More generally, Lemma 7.17 shows that the first k columns of Q̂ℓ are an
ONB of (A− µ(ℓ)) · · · (A− µ(0))[e1, . . . , ek].
The following Lema 7.18 shows that in the case without shift that (AH)−ℓen is a multiple of

the last column of Q̂ℓ:

Lemma 7.18 Let A ∈ Cn×n be invertible. Define the permutation matrix

P =

 1

. .
.

1

Let Aℓ = Q̂ℓR̂ℓ with Q̂ℓ unitary and R̂ℓ upper triangular. Then:

(AH)−ℓen = (AH)−ℓPe1 = Q̂ℓ(P (PHR̂−H
ℓ P)e1︸ ︷︷ ︸
∥e1

)

︸ ︷︷ ︸
∥en

= multiple of last column of Q̂ℓ

Lemma 7.18 shows that the last columns of the matrices Qℓ correspond to an inverse iteration
for AH . More generally, one can show for the case with shifts:

Lemma 7.19

(AH − µ(ℓ))−1 · · · (AH − µ(0))−1en = multiple of Q̂ℓ(:, n).

with Q̂ℓ given by Lemma 7.17.

Exercise 7.20 Show that if µ is an eigenvalue of A, then µ is an eigenvalue of AH .

Lemma 7.19 shows the last column of Q̂ℓ corresponds to an inverse iteration for AH with shifts
related to the shifts of the QR-iteration. Hence it is sensible to select the shifts µ(ℓ) of the
QR-iteration such that µ(ℓ) is the Rayleigh quotient for qn := Q̂ℓ(:, n):

µ(ℓ) :=
qH
n A

Hqn

∥qn∥22
= qH

n A
Hqn = (Q̂ℓen)

HAH(Q̂ℓen).

Hence,

µ(ℓ) :=
(
(Q̂ℓen)

HAH(Q̂ℓen)
)H

= eHn Q̂
H
ℓ AQ̂ℓen = eHn Aℓ+1en = Aℓ+1(n, n).

That is, the shift should be taken as the bottom lower entry Aℓ+1(n, n) of Aℓ+1. We have arrive
at the classical QR-algorithm with (single) shift:

129

Algorithm 25 (Classical QR-Algorithm with (Rayleigh) shift and Hessenberg form)

1: % Input: A ∈ Rn×n

2: % Output: approximation to all eigenvalues

3: ℓ := 0
4: A0 := hessenberg(A)
5: repeat
6: choose shift µ(ℓ) := Aℓ(n, n)
7: Aℓ − µ(ℓ) =: Qℓ+1Rℓ+1

8: Aℓ+1 := Rℓ+1Qℓ+1 + µ(ℓ)

9: ℓ := ℓ+ 1
10: until Aℓ is sufficiently close to upper triangular form

A few comments are in order:

1. The general behavior of the QR-algorithm with (Rayleigh) shift is that one has rapid con-
vergence (quadratic convergence!) towards one eigenvalue since it behaves like a Rayleigh
quotient method. Furthermore, one has linear convergence towards the remaining eigen-
values.

2. The rapid convergence towards one eigenvalue makes deflation possible → iterate on a
smaller matrix!

3. For deflation, monitor Aℓ(n − 1, n): Since one will perform the QR-algorithm for A0

in Hessenberg form (so that all Aℓ have Hessenberg form — cf. Remark 7.15) Aℓ is
Hessenberg, and it has only two non-zero entries in the nth row, namely, Aℓ(n, n − 1)
and Aℓ(n, n). Hence, deflation can be done when Aℓ(n, n− 1) is sufficiently small (e.g., a
small multiple of machine precision). That is, if Aℓ(n− 1, n) is deemed sufficiently small,
the entry Aℓ(n, n) is recognized as an eigenvalue and the search for further eigenvalues is
done by applying the QR-method to the (n−1)×(n−1) submatrix A(1 : n−1, 1 : n−1).
This reduction has two positive effects: a) one reduces the size of the matrix one operators
one (i.e., reduction in computational cost) and b) the shift strategy (leading to quadratric
convergence!) focuses on the next eigenvalue.

Given the importance of the potential of deflation, we reformulate Algorithm 25 to include
deflation.

slide 21b - QR with shift

130

Algorithm 26 (QR-algor. with (Rayleigh) shift, Hessenberg form and deflation)

1: signature: [ev] = qr(A)
2: % Input: A ∈ Rn×n in Hessenberg form
3: % Output: approximation to all eigenvalues as list ev

4: ℓ := 0
5: repeat
6: choose shift µ(ℓ) := Aℓ(n, n)
7: Aℓ − µ(ℓ) =: Qℓ+1Rℓ+1

8: Aℓ+1 := Rℓ+1Qℓ+1 + µ(ℓ)

9: ℓ := ℓ+ 1
10: until |Aℓ(n− 1, n)| is sufficiently small
11: [ev′] = qr(Aℓ(1 : n− 1, 1 : n− 1)) ▷ recursive call with submatrix Aℓ(1 : n− 1, 1 : n− 1)

return [ev′,Aℓ(n, n)] ▷ return Aℓ(n, n) and the eigenvalues of Aℓ(1 : n− 1, 1 : n− 1)

7.6.4 further comments on QR

problem: in particular, for real matrices with eigenvalues appearing in complex conjugate pairs,

it is possible for the Rayleigh quotient method to fail: A =

(
0 1
1 0

)
. Then the QR-iteration

(with shift) yields Aℓ = A ∀ℓ.

solution:(Wilkinson-shift): consider the two eigenvalues λ1, λ2 of A(n − 1 : n, n − 1 : n) and
choose the shift as the eigenvalue that is closer to A(n, n).

problem: QR-algorithm does not converge with Wilkinson shift:

A =

 0 0 1
1 0 0
0 1 0

 σ(A) = {1, 1
2
(−1 +

√
3i),

1

2
(−1−

√
3i)}

Here, the (Wilkinson) shift is 0 and all eigenvalues have absolute value 1. Indeed, Aℓ = A for
all ℓ.

solution: If the QR-iteration does not converge, then make a “random shift”. In general, this
leads to a separation (in absolute value) of the eigenvalues and thus convergence: If λ3 ̸= λ1 ̸=
λ2 ̸= λ3, but |λ1| = |λ2| = |λ3|, then |λ2 − λ| ≠ |λ1 − λ| ≠ |λ2 − λ| ≠ |λ3 − λ|.

7.6.5 real matrices

Suppose A is real and one is not interested in complex shifts (e.g., because one wishes to stay
with real arithmetic). In this case, eigenvalues appear in complex conjugate pairs λ, λ. One
can therefore makes two QR-steps with shifts λ and λ. It is possible to combine these two steps
purely in real arithmetic.

131

8 Iterative solution of linear systems (CSE)

Goal: approximative solution of Ax = b, A ∈ RN×N invertible.

“rules”: employ solely the matrix-vector multiplication x 7→ Ax.

reason: in many applicationsA can be very large but sparse (lots of zero entries). Then, matrix-
vector multiplication is fairly cheap, but factorization of A may be infeasible (Cholesky factors
of A may need much more memory than A, see Sec. 4.6).

In the following, we will employ two scalar products:

• (x,y)2 := xTy =
∑

i xiyi (“euklidean scalar product”)

• (x,y)A := xTAy (“energy scalar product”)

• ∥x∥A:=
√
(x,x)A (“energy norm’)

Exercise 8.1 (·, ·)A is a scalar product and ∥x∥A:=
√
(x,x)A is a norm on RN .

Common iterative methods to solve large linear systems of equations are:

1. Basic iterative methods: Rewrite the problem as fixed point iteration

xk+1 = Φ(xk).

Possible choices are:

• Richardson method:
xk+1 = xk + (b−Axk)

• Jacobi method: Let D := diag(A) be a diagonal matrix containing the diagonal
entries of A. Then, the method is given as

xk+1 = xk +D−1(b−Axk)

• Gauss-Seidel method: Denote by L ∈ RN×N a matrix containing the lower trian-
gular entries of the matrix A. Then, the method is given as

xk+1 = xk + (L+D)−1(b−Axk)

For all three methods, we have that fixed points x∗ of the iterations correspond to solutions
of Ax∗ = b.

Basic iterative methods are very easy to implement, but do not always converge (this is
usually improved by introducing damping, see literature), and if they converge, they do
not converge very fast.

132

2. Gradient methods: Reformulate the linear system as minimization problem of a quadratic
function

ϕ(x) =
1

2
(Ax,x)− (b,x)

for some inner product (·, ·) and employ a descent method, e.g., steepest descent.
Here the search direction is dk = −∇ϕ(xk) = b − Axk = rk the residual and, by

Section 6.8.1, the optimal step size is αk =
(rk,rk)2
(rk,rk)A

. Note that consecutive search directions

are orthogonal in the Euclidean inner product (·, ·)2.

3. Krylov space methods: Find approximations that minimize the error/residual in some
finite dimensional space spanned by powers of A.

• Conjugate Gradient (CG) method: CG tries to minimize the error in the energy
norm. It can also be seen as a descent method with search directions chosen to be
orthogonal w.r.t. the energy inner product (·, ·)A. (CG works only for A SPD.)

• Generalized minimal residual (GMRES) method: GMRES tries to minimize
the residual over a certain finite dimensional space. (GMRES works forA invertible.)

In the following, we will focus on the two most popular methods, the CG and GMRES methods.

8.1 Conjugate Gradient method

here: A ∈ RN×N symmetric positive definite.

idea: The Cayley-Hamilton theorem (see any text book on linear algebra) gives that any ma-
trix A ∈ RN×N satisfies its own characteristic equation, meaning that with the characteristic
polynomial

p(z) = det(A− zI) =
N∑
j=0

αjz
j αN = 1

there holds
p(A) = AN + αN−1A

N−1 + · · ·+ α1A+ α0I = 0.

Consequently, the inverse matrix can be written as

A−1 = − 1

α0

AN−1 − αN−1

α0

AN−2 − · · · − α1

α0

I (8.1)

or in other words: the inverse can be exactly written as a linear combination of the matrix
powers A0, . . . ,AN−1. This motivates the following definition.

Definition 8.2 Let x0 ∈ RN . For each ℓ ∈ N the Krylov space Kℓ(A, x0) is defined as

Kℓ(A, x0) := span{x0,Ax0, . . . ,A
ℓ−1x0} ⊆ RN .

The motivation above shows that the exact solution of the linear systemAx = b lies in a Krylov
space with ℓ = N . However, the coefficients in the basis expansion are not easily computed
(note that formula (8.1) has explicit coefficients, but computing those is too expensive).

The idea of the CG method is to seek an approximative solution in a low dimensional Krylov
space with ℓ << N . In order to make this more precise, we introduce some notations:

133

• x0 ∈ RN arbitrary (=initial value)

• x∗ solution of Ax∗ = b

• r0 := b−Ax0 = initial residual

• e0 := x∗ − x0 = initial error

• We have the residual equation
Ae0 = r0 (8.2)

Question: Can one approximate e0 well from the spaces Kℓ := Kℓ(A, r0) (for “small” ℓ)?
Consider the best approximation

find ẽℓ ∈ Kℓ, s.t. ∥e0 − ẽℓ∥A ≤ ∥e0 − x∥A ∀x ∈ Kℓ (8.3)

Correspondingly, one obtains an approximation xℓ := x0 + ẽℓ of the original problem. Since
e0 = x∗ − x0, we may characterize xℓ also as:

find xℓ ∈ x0 +Kℓ s.t. ∥x∗ − xℓ∥A ≤ ∥x∗ − x∥A ∀x ∈ x0 +Kℓ (8.4)

Characterization of the solution xℓ of (8.4): By definition xℓ minimizes the error x∗−xℓ in the
∥ · ∥A-norm over the space x0+Kℓ. Thus, defining for arbitrary v ∈ Kℓ the function π : R→ R
by

π(t) := ∥x∗ − xℓ + tv∥2A = ∥x∗ − xℓ∥2A + 2t(x∗ − xℓ, v)A + t2|v|2A,
π has a minimum at t = 0. This implies

0 = π′(0) = (x∗ − xℓ,v)A

or in other words, the error is (·, ·)A-orthogonal to the Krylov space Kℓ.

The converse is true as well. If (x∗ − xℓ,v)A = 0 ∀v ∈ Kℓ, then the function π has a minimum
at t = 0, which gives

π(0) = ∥x∗ − xℓ∥A ≤ ∥x∗ − xℓ + tv∥A = π(t) ∀t ∈ R

and thus the minimization property.

Moreover, by definition of the (·, ·)A-inner product, we calculate

(x∗ − xℓ,v)A = (A(x∗ − xℓ),v)2 = (b−Axℓ,v)2

and therefore, the (·, ·)A-orthogonality of the error is equivalent to the (·, ·)2-orthogonality of
the residual.
We summarize the findings in the following lemma.

Lemma 8.3 The following are equivalent for xℓ ∈ x0 +Kℓ:

(i) xℓ solves (8.4)

(ii) (x∗ − xℓ,v)A = 0 ∀v ∈ Kℓ

(iii) (rℓ,v)2 = 0 ∀v ∈ Kℓ, where rℓ := b−Axℓ

134

8.1.1 The CG algorithm

For small ℓ, the ℓ× ℓ linear system of equations corresponding to (8.3) (or, alternatively, (8.4))
could be set up and solved (exercise!). However, the CG-algorithm proceeds in a much more
economical way that determines xℓ as a cheap update of xℓ−1.

Since xℓ − x0 ∈ Kℓ, we have

rℓ = b−Axℓ = b−Ax0 −A(xℓ − x0) = r0︸︷︷︸
∈K0⊂Kℓ+1

−A(xℓ − x0︸ ︷︷ ︸
∈Kℓ

)

︸ ︷︷ ︸
∈Kℓ+1

∈ Kℓ+1,

i.e., rℓ ∈ Kℓ+1. Since rℓ is orthogonal to Kℓ (cf. Lemma 8.3,(iii)), we obtain inductively that1

Kℓ+1 = span{r0, r1, . . . , rℓ}.

Construction of the approximations xℓ

• (·, ·)A−orthogonalization: It is convenient to determine vectors d0, d1, . . . , such that
{d0, . . . ,dℓ} is an orthogonal basis (w.r.t. the (·, ·)A-scalar product) of Kℓ+1. This is
achieved with Gram-Schmidt orthogonalization: In view of Kℓ = span{r0, . . . , rℓ−1} =
span{d0, . . . ,dℓ−1} and Kℓ+1 = span{r0, . . . , rℓ}, we have that dℓ has the form

dℓ = rℓ −
ℓ−1∑
i=0

βidi

for suitable βi. The orthogonality conditions

(dℓ,di)A = 0 for 0 ≤ i ≤ ℓ− 1

produce

βi =
(rℓ,di)A
∥di∥2A

, i = 0, . . . , ℓ− 1.

For i ≤ ℓ− 2 we have

βi =
(rℓ,di)A
∥di∥2A

=
(rℓ,

∈AKi+1⊂Ki+2⊂Kℓ=span{r0,...,rℓ−1}︷︸︸︷
Adi)2
∥di∥2A

Lemma 8.3,(iii)
= 0.

Therefore,

dℓ = rℓ − βℓ−1dℓ−1, βℓ−1 =
(rℓ,dℓ−1)A
∥dℓ−1∥2A

. (8.5)

• Next, we derive recursions for the xℓ and rℓ: Since xℓ−xℓ−1 = (xℓ−x0)−(x0−xℓ−1) ∈ Kℓ

and the orthogonality of Lemma 8.3,(ii) implies that xℓ − xℓ−1 = (xℓ − x∗)− (x∗ − xℓ−1)
is (·, ·)A-orthogonal to Kℓ−1 we conclude

xℓ − xℓ−1 = αℓdℓ−1

for some αℓ ∈ R.
1in fact, Lemma 8.3, (iii) shows that {r0, . . . , rℓ} is an orthogonal basis of Kℓ+1 (unless one of the ri is zero).

135

• To derive an equation for the unknown αℓ we note that applying A to this equation yields

αℓAdℓ−1 = A(xℓ − xℓ−1) = Axℓ − b− (Axℓ−1 − b) = −rℓ + rℓ−1

so that

αℓ(Adℓ−1, rℓ−1)2 = (−rℓ + rℓ−1, rℓ−1)2
Lemma 8.3, (iii)

= ∥rℓ−1∥22. (8.6)

• We have thus obtained:

(i) dℓ = rℓ − βℓ−1dℓ−1, βℓ−1 given by (8.5)

(ii) rℓ = rℓ−1 − αℓAdℓ−1, αℓ given by (8.6).

(iii) xℓ = xℓ−1 + αℓdℓ−1

Remark 8.4 Computationally, is it better to compute αℓ, βℓ as follows:

αℓ =
∥rℓ−1∥22

(dℓ−1, rℓ−1)A
=

∥rℓ−1∥22
(dℓ−1,dℓ−1 + βℓ−2dℓ−2)A

=
∥rℓ−1∥22
∥dℓ−1∥2A

βℓ−1 =
(rℓ,dℓ−1)A
∥dℓ−1∥2A

=
(rℓ,Adℓ−1)2
∥dℓ−1∥2A

= −
(rℓ,

rℓ−rℓ−1

αℓ
)2

∥dℓ−1∥2A
=
−∥rℓ∥22

αℓ∥dℓ−1∥2A
= − ∥rℓ∥

2
2

∥rℓ−1∥22

We have thus derived the following algorithm:

Algorithm 27 (CG)

1: % Input: A ∈ RN×N SPD, b ∈ RN , initial vector x0

2: % Output: (approx.) solution xn ≈ A−1b

3: r0 := b−Ax0, d0 := r0
4: for ℓ = 1, . . . , until stopping criterion is satisfied do

5: αℓ :=
∥rℓ−1∥22
∥dℓ−1∥2A

6: rℓ := rℓ−1 − αℓAdℓ−1

7: xℓ := xℓ−1 + αℓdℓ−1

8: βℓ−1 := − ∥rℓ∥22
∥rℓ−1∥22

9: dℓ := rℓ − βℓ−1dℓ−1

10: end for

slide 22 - CG method

Remark 8.5 • CG ist very economical w.r.t. memory requirements: merely 4 vectors of
length N have to be kept in memory concurrently (xℓ, rℓ, dℓ, Adℓ).

• In exact arithmetic, CG terminates with the exact solution after at most N steps. Tech-
nically, one may view CG therefore as a direct solver. Round-off problems, however, stop
the method from realizing the exact solution after N steps.

136

8.1.2 Convergence behavior of CG

For the CG-method it is possible to derive a precise error estimate and a rate of convergence,
which we motivate in the following.

We start with some key observations:

1. By assumption we haveA ∈ RN×N SPD, which gives the existence of an ONB {ξ1, . . . , ξN}
of RN consisting of eigenvectors of A with corresponding eigenvalues λi, i = 1, . . . , N.

2. Thus, any vector x ∈ RN can be written in terms of this ONB x =
∑N

i=1 xiξi. This
implies

∥x∥2A = (x,Ax)2 =
∑
i,j

(xiξi, λjxjξj) =
∑
i,j

x2
iλjδij =

N∑
i=1

x2
iλi

3. Let p ∈ Pm with p(z) =
∑m

j=0 pjz
j. Then, p(A) =

∑m
j=0 pjA

j and using Ajξi = λj
iξi, we

arrive at
p(A)x =

∑
j

pjA
j
∑
i

xiξi =
∑
i,j

pjxiλ
j
iξi =

∑
i

xiξip(λi)

4. Using that, we calculate

∥p(A)x∥2A = (p(A)x,Ap(A)x)2 =
∑
i,j

(xiξip(λi),xjξjλjp(λj))2

=
∑
i,j

xixjp(λi)p(λj)λj (ξi, ξj)2︸ ︷︷ ︸
δi,j

=
∑
i

|xi|2λi|p(λi)|2

5. There holds Kℓ = span{r0, . . . ,Aℓ−1r0} = {q(A)r0 | q ∈ Pℓ−1}.

In view of the residual equation r0 = Ae0, we have

∥x∗ − xℓ∥A = min
x∈x0+Kℓ

∥x∗ − x∥A = min
z∈Kℓ

∥e0 − z∥A = min
z∈Kℓ=span{r0,...,Aℓ−1r0}

∥e0 − z∥A

= min
q∈Pℓ−1

∥e0 − q(A)r0∥A = min
q∈Pℓ: q(0)=0

∥e0 − q(A)e0∥A = min
q∈Pℓ: q(0)=1

∥q(A)e0∥A.

Therefore:

Theorem 8.6 The iterates xℓ of the CG method satisfy

∥x∗ − xℓ∥A = min
q∈Pℓ: q(0)=1

∥q(A)e0∥A

We estimate further with e0 =
∑

xiξi:

∥q(A)e0∥2A ≤
∑
i

x2
iλiq

2(λi) = max
λ∈EVal(A)

q2(λ)
∑
i

x2
iλi = max

λ∈EVal(A)
q2(λ)∥e0∥2A

Hence:
∥x∗ − xℓ∥A ≤ min

q∈Pℓ: q(0)=1
max

λ∈EVal(A)
|q(λ)| ∥e0∥A

We note that this min-max quantity can be estimated by selecting a Chebyshev polynomial for
q, which leads to the following convergence result.

137

Theorem 8.7 Let A ∈ RN×N be SPD , 0 < λmin(A) ≤ λmax(A), κ := cond2(A) = λmax(A)
λmin(A)

.
Then: The iterates of the CG method satisfy

∥x∗ − xℓ∥A ≤ 2

(√
κ− 1√
κ+ 1

)ℓ

∥e0∥A

Remark 8.8 Theorem 8.7 shows that the condition number of A is very important for the
convergence behavior of the CG method. For matrices A with large condition number, one will
therefore apply the CG not to A directly but to B−1A where the SPD matrix B is SPD. For
more, see literature on the so-called “preconditioned CG” (PCG).

8.2 GMRES

goal: iterative methods for non-symmetric matrices A ∈ RN×N .

idea: for the Krylov space Kℓ := span{r0, . . . ,Aℓ−1r0} seek xℓ ∈ x0 +Kℓ such that

∥b−Axℓ∥2 ≤ ∥b−Ax∥2 ∀x ∈ x0 +Kℓ (8.7)

The minimization property (8.7) implies an orthogonality condition:

Exercise 8.9 Show that the residual rℓ := b−Axℓ satisfies

(b−Axℓ,v)2 = (rℓ,v)2 = 0 ∀v ∈ AKℓ. (8.8)

Hint: Proceed as in the proof of Lemma 8.3 or in the derivation of the normal equations in
Least Squares. (Note: GMRES can effectively be understood as a Least Squares method!)

•r0

•
•0

AKℓ

·

w.r.t. (·, ·)2

•e0

•
•0

Kℓ

·

w.r.t. (·, ·)A

Figure 8.1: The orthogonality conditions (8.8) for GMRES and Lemma 8.3, (ii) for CG.

Remark 8.10 The form (8.8) of GMRES suggests generalizations of GMRES: given a second
space Lℓ one could consider: Find xℓ ∈ x0 +Kℓ such that

(b−Axℓ,v)2 = (rℓ,v)2 = 0 ∀v ∈ Lℓ. (8.9)

Different choices of Lℓ lead to different method. The choice Lℓ = Kℓ leads (for SPD matrices)
to the CG-method (cf. Lemma 8.3), the choice Lℓ = AKℓ to the classical GMRES.

138

One can show (this is not complicated, see literature) that for invertible matrices A GMRES
finds (in exact arithmetic) the exact solution in N steps. As with the CG method, the impor-
tance lies in the fact that in practice good approximations are obtained ℓ << N .

8.2.1 Computation of xℓ

As in the CG method, one computes the approximations xℓ successively until one is found that
is sufficiently accurate. It is, of course, essential that the xℓ be computed efficiently from the
orthogonality conditions (8.8). The general procedure is:

• Construct matrix V = [v1, . . . ,vℓ] ∈ RN×ℓ with columns that form a basis for the space
Kℓ. It will be computationally convenient to choose the vectors v1, . . . ,vℓ orthogonal.

• Construct matrix W = [w1, . . . ,wℓ] ∈ RN×ℓ with columns that form a basis for the space
AKℓ.

• Write the approximate solution as

xℓ = x0 +Vy,

where y ∈ Rℓ is the vector of weights to be determined.

• Enforcing the orthogonality conditions (8.8) the system of equations

WTAVy = WT r0, (8.10)

from which the approximate solution xℓ can be written as

xℓ = x0 +V(WTAV)−1WT r0. (8.11)

We note that the matrix WTAV is only of the size ℓ× ℓ; therefore its inversion is cheap
(for ℓ ≪ N). In exact arithmetic the choice of the basis of Kℓ (i.e., the choice of V) is
immaterial and the vectors {r0,Ar0, . . . ,A

ℓ−1r0} could be used. However, then the cor-
responding matrix V is rather ill-conditioned (recall: the vectors Ajr0 are scaled versions
of the vectors of the power method, and they converge to the dominant eigenvector!) so
that one expects numerical difficulties when solving (8.10). In practice, therefore, some
orthogonalization as discussed next is advised.

8.2.2 Realization of the GMRES method

GMRES computes the vectors v1, . . . , successively such that the {v1, . . . ,vℓ} is a basis of Kℓ.
Then the linear system described by (8.11) – as usual one does not invert the matrix there, but
solves a linear system instead – is solved in an efficient way.

We note (exercise!) that Kℓ+1 ⊇ Kℓ for all ℓ. In the following, we will make the assumption
that the inclusion is strict: Kℓ ⫋ Kℓ+1 for all ℓ of interest. That is, dimKℓ = ℓ + 1. One
can show (see literature) that the case Kℓ = Kℓ+1 is a fortuitous case as then xℓ = x∗ (“lucky
breakdown”).

139

The first step of the GMRES algorithm is to generate a vectors v1, . . . ,. Since we want the
vectors vj, j = 1, . . . , ℓ, to be orthogonal, we will construct them using a variant of the Gram-
Schmidt orthogonalization procedure given in Alg. 28 (in practice, a variant, the so-called
“modified Gram-Schmidt” procedure, is used that is numerically more stable—see lines 5–8 of
Alg. 29).

Algorithm 28 (Arnoldi, standard Gram-Schmidt variant)

1: % Input: r0
2: % Output: ONB of Kℓ = span{r0, . . . ,Aℓ−1r0}
3: v1 = r0/∥r0∥2
4: for j = 1, 2, . . . , ℓ do
5: for i = 1, 2, . . . , j do
6: hij = (Avj,vi)2
7: end for
8: wj = Avj −

∑j
i=1 hijvi

9: hj+1,j = ∥wj∥2
10: vj+1 = wj/hj+1,j

11: end for

The algorithm generates the (ℓ+ 1)× ℓ Hessenberg matrix

H̄ℓ =

(Av1,v1) (Av2,v1) (Av3,v1) . . . (Avℓ,v1)
(Av1,v2) (Av2,v2) (Av3,v2)

(Av2,v3) (Av3,v3)

(Av3,v4)
. . .
. . . (Avℓ,vℓ)

(Avℓ,vℓ+1)

∈ R(ℓ+1)×ℓ

together with the orthonormal vectors vi =
wi−1

∥wi−1∥2 that are produced by the Gram-Schmidt

orthogonalization procedure:

w1 = Av1 − (Av1,v1)v1

w2 = Av2 − (Av2,v1)v1 − (Av2,v2)v2

...

as well as (note vℓ+1 = wℓ/∥wℓ∥2 implies (wℓ,vℓ+1)2 = ∥wℓ∥2)

∥wℓ∥2 = (wℓ,vℓ+1)2 = (Avℓ,vℓ+1)2 = hℓ+1,ℓ.

Exercise 8.11 Assuming that Alg. 28 doesn’t terminate prematurely, the vectors vj, j =
1, . . . , ℓ, form an orthonormal basis of the Krylov space Kℓ.

140

We set Vℓ := (v1,v2, . . . ,vℓ) ∈ RN×ℓ. Since the vectors vj, j = 1, . . . , ℓ, are orthonormal and
since Avj ∈ span{v1, . . . ,vj+1} and thus Avj =

∑j+1
i=1 (Avj,vi)vi we get

AVℓ = [Av1 . . . Avℓ]

=

[
(Av1,v1)v1 + (Av1,v2)v2 . . .

ℓ+1∑
i=1

(Avℓ,vi)vi

]
= Vℓ+1H̄ℓ. (8.12)

Additionally,

V⊤
ℓ AVℓ = V⊤

ℓ Vℓ+1H̄ℓ = [I | 0]H̄ℓ = Hℓ (8.13)

where Hℓ is the square matrix obtained by removing the last row of H̄ℓ.

We abbreviate
β := ∥r0∥2

and note that βv1 = r0. Additionally, we observe βVℓ+1e1 = βv1 = r0, where e1 =
(1, 0, 0, . . . , 0)⊤ ∈ Rℓ+1.

GMRES minimizes the residuum (cf. (8.7)). Hence, seeking xℓ in the form xℓ = x0 +Vℓy we
can write

b−Axℓ = b−A(x0 +Vℓy) = r0 −AVℓy = βv1 −Vℓ+1H̄ℓy

= Vℓ+1(βe1 − H̄ℓy);

exploiting the fact that the columns of Vℓ+1 are orthonormal, we can determine the vector y
by (8.7), i.e., y is the minimizer of

∥b−Axℓ∥2 = min
x∈x0+Kℓ

∥b−Ax∥2 = min
y∈Rℓ
∥βe1 − H̄ℓy∥2. (8.14)

One way to solve for y is to set up and solve the normal equations using the Cholesky factor-
ization with cost O(ℓ3). However, since H̄ has Hessenberg form, its QR-factorization can be
computed with O(ℓ2) using, e.g., Givens rotations. The pseudo-code for the GMRES-algorithm
can now be given as Algorithm 29.

141

Algorithm 29 (GMRES (basic form))

1: % Input: x0, number of steps ℓ
2: % Output: approximate solution to LSE

3: Compute r0 = b−Ax0, β = ∥r0∥2, and v1 = r0/β
4: Initialize the (ℓ+ 1)× ℓ matrix H̄ℓ and set its elements hij to zero
5: for j = 1, 2, . . . , ℓ do
6: wj = Avj

7: for i = 1, . . . , j do
8: hij = (wj,vi)2
9: wj = wj − hijvi

10: end for
11: hj+1,j = ∥wj∥2.
12: If hj+1,j = 0 goto 12 ▷ lucky break—exact solution found

13: vj+1 = wj/hj+1,j

14: end for
15: Compute yℓ as the minimizer of ∥βe1 − H̄ℓ([1 : ℓ+ 1], [1 : ℓ])y∥22 (e.g., QR-factorization)
16: xℓ = x0 +Vℓyℓ

A few comments concerning Alg. 29 are:

Remark 8.12 • The derivation of Alg. 29 assumed that matrix H̄ℓ has full rank since we
assumed that dimKℓ = ℓ + 1. Alg. 29 takes this into account by stopping if hj+1,j = 0,
which happens if Kj+1 = Kj. However, a more careful analysis of the algorithm reveals
that if H̄ℓ does not have full rank, i.e., if Kj = Kj+1, then GMRES has actually found
the exact solution x∗. This situation is therefore called a “lucky breakdown”.

• Solving the minimization problem in line 13 is done by QR-factorization of the Hessenberg
matrix H̄ℓ, e.g., with Givens rotations.

• The algorithm is implemented differently in practice. The parameter ℓ is not determined
a priori. Instead, a maximum number ℓmax is given (typically dictated by the computa-
tional resources). The vectors v1,v2, . . . ,vℓ are computed successively together with the
matrices H̄ℓ; that is, if the vectors vj, 1 ≤ j ≤ ℓ − 1 and the matrix H̄ℓ−1 have already
been computed, one merely needs to compute vℓ and the matrix H̄ℓ is obtained from
H̄ℓ−1 by adding one column and the entry hℓ+1,ℓ. An appropriate termination condition
(typically, the size of the residual ∥b −Axℓ∥2) is employed to stop the iteration. If the
maximum number of iterations has been reached without triggering the termination con-
dition, then a restart is done, i.e., GMRES is started afresh with the last approximation
xℓmax as the initial guess. This is called restarted GMRES(ℓmax) in the literature.

slide 22a - GMRES

Remark 8.13 Faute de mieux, the residual ∥b−Axℓ∥2 is typically used as a stopping criterion
in GMRES. It should be noted that for matrices A with large κ2(A), the error may be large in
spite of the residual being small:

∥x− xℓ∥2
∥x∥2

≤ κ2(A)
∥b−Axℓ∥2
∥b∥2

.

142

100 101 102 103
10−2

101

104

107

1010

number of iterations

re
si
d
u
al

GMRES applied to bcsstk14.mtx, x = (1, . . . , 1)T

GMRES

Figure 8.2: Convergence history of GMRES (A is SPD).

Example 8.14 Matlab has a robust version of restarted GMRES that can be used for exper-
imentation. Applying this version of GMRES to the SPD matrix A ∈ R1806×1806 bcsstk14.mtx

of MatrixMarket with exact solution x = (1, 1, · · · , 1)⊤ results in the convergence history plot-
ted in Fig. 8.2. We note that the residual decays as the number if iterations increases. If the
number of iterations reaches the problem size, the exact solution should be found. As in this
example, this doesn’t happen in practice due to round-off problems, but the residual is quite
small. It should be noted that, generally speaking, GMRES is employed in connection with a
suitable preconditioner. We expect this to greatly improve the convergence behavior.

143

9 Numerical Methods for ODEs (CSE)

goal: solve, for given y0 ∈ R and function f the initial value problem

y′(t) = f(t, y(t)), y(0) = y0 (9.1)

We will be interested in the solution y in the interval [0, T]. The numerical methods will seek
approximations yi ≈ y(ti) in the points

0 = t0 < t1 < · · · < tN = T.

We denote by hi := ti+1 − ti the step lengths and by h := maxi hi the maximal step length.

9.1 The explicit Euler method

The simplest numerical method for ODEs is the explicit Euler method. Starting from the
known value y0 = y(t0) we seek an approximation y1. By Taylor approximation we observe

y(t1) = y(t0) + h0y
′(t0) +O(h2

0)
(9.1)
= y0 + h0f(t0, y0) +O(h2).

Hence, we are led to the approximation

y1 := y0 + h0f(t0, y0).

Since we assume that y1 is a good approximation to y(t1), we may repeat the Taylor argument to
obtain y2 := y1+h1f(t1, y1). This leads to the explicit Euler method : define the approximations
yi to the exact values y(ti) successively by

yi+1 := yi + hif(ti, yi), i = 0, . . . , N − 1. (9.2)

It is not obvious that the final approximation y(T) − yN = y(tN) − yN really is a good one
as errors over many steps may accumulate. Indeed, while the Taylor approximation is valid in
the first step (y0 is exact), already in the second step we replace y(t1) with the approximation
y1 in the Taylor approximation and we have to expect that this additional error is potentially
amplified by the recursion (9.2). Nevertheless, under reasonable assumptions the explicit Euler
method converges.

Error estimates for explicit Euler

In the following, we want to obtain convergence and error estimates (in terms of the maximal
step length h) for the explicit Euler method.
We start with the notion of the consistency error, which measures the error of one step of the
method when started with the exact value y(t).

Definition 9.1 Let t 7→ y(t) be the exact solution. The consistency error τeE(t, h) of the
explicit Euler method at t is defined as

τeE(t, h) := y(t+ h)− [y(t) + hf(t, y(t))] (9.3)

144

We note that Taylor’s formula gives an upper bound for the consistency error

|τeE(t, h)| ≤
1

2
h2∥y′′∥∞,[0,T+h] (9.4)

We now aim to derive an estimate for the accumulated error in the explicit Euler method. For
simplicity, we assume hi = h for all i (exercise: check that the following derivation can also be
done for variable step lengts).

• Recursion for the error: We define the errors

ei := y(ti)− yi

and note that e0 = 0. We write

yi+1 = yi + hf(ti, yi)

y(ti+1) = y(ti) + hf(ti, y(ti)) + τ(ti, h)

and subtraction as well as assuming that f ∈ C1(R2) lead to

ei+1 = ei + h [f(ti, y(ti))− f(ti, yi)]︸ ︷︷ ︸
(y(ti)−yi)∂yf(ti,ξ)

+τ(ti, h),

where used the intermediate value theorem for some ξ between yi and y(ti). With
∥∇f∥∞ ≤ L, we obtain

|ei+1| ≤ |ei|+ h |y(ti)− yi|︸ ︷︷ ︸
=|ei|

|∂yf(ti, ξ)|︸ ︷︷ ︸
≤L

+|τ(ti, h)| ≤ (1 + hL)|ei|+ |τ(ti, h)|

≤ ehL|ei|+ |τ(ti, h)|

• Iteration of the estimate: repeatedly using this estimate provides

|ei| ≤ ehL|ei−1|+ |τ(ti−1, h)| ≤ ehL
[
ehL|ei−2|+ |τ(τi−2, h)|

]
+ |τ(ti−1, h)|

= e2hL|ei−2|+ ehL|τ(τi−2, h)|+ |τ(ti−1, h)|

≤ · · · ≤ eihL|e0|+
i−1∑
j=0

ejhL|τ(ti−j−1, h)| =
i−1∑
j=0

ejhL|τ(ti−j−1, h)|

as e0 = 0.

• Estimate for the sum: For the sum, we use that jh = tj ≤ T and (9.4) to infer

|ei| ≤
i−1∑
j=0

ejhL|τ(ti−j−1, h)| ≤
1

2
eTL

i−1∑
j=0

h2∥y′′∥∞,[0,T+h] =
1

2
eTL∥y′′∥∞,[0,T+h]ih

2

≤ 1

2
eTL∥y′′∥∞,[0,T+h]Th,

which is first oder convergence.

145

We summarize the findings in the following theorem.

Theorem 9.2 (convergence of explicit Euler) Let f ∈ C1(R2) with bounded derivatives,
i.e., there is L > 0 such that |∇f(t, x)| ≤ L for all (t, x) ∈ R2. Then there exists C > 0 such
that for the approximation yi obtained by (9.2)

max
i=0,...,N−1

|y(ti)− yi| ≤ CeLTh.

slide 23 - Euler method

9.2 The implicit Euler method

The explicit Euler method was motivated by Taylor expansion around ti to obtain the value
yi+1 at ti+1. Alternatively, one could perform Taylor expansion around ti+1. That is,

y(ti) = y(ti+1) + (ti − ti+1) y′(ti+1)︸ ︷︷ ︸
=f(ti+1,y(ti+1))

+O(h2
i),

so that, by replacing y(ti) with yi and y(ti+1) with yi+1 and dropping the O(h2
i), we get the

implicit Euler method
yi+1 = yi + hif(ti+1, yi+1). (9.5)

The method is implicit since yi+1 is obtained from yi by solving a (in general) nonlinear equation.

Exercise 9.3 Formulate the Newton method to compute yi+1 given yi.

Analogous to the consistency error for the explicit Euler method (9.4), we have for the consis-
tency error for the implicit Euler method the equation

τiE(t, h) = y(t+ h)− [y(t) + hf(t+ h, y(t+ h))] , (9.6)

where t 7→ y(t) is again the exact solution of y′(t) = f(t, y(t)). Taylor expansion again gives
τiE(t, h) = O(h2) for exact solutions y ∈ C2. One can show that the implicit Euler method
satisfies

max
i
|y(ti)− yi| ≤ Ch.

Both explicit and implicit Euler method are first order methods.

9.3 Runge-Kutta methods

The explicit and implicit Euler methods are one-step methods1 of order 1. A generalization of
these two one-step methods are methods of the form

yi+1 = yi + hiΦ(ti, hi, yi, yi+1) (9.7)

for some given increment function Φ.

1that is, the value yi+1 is determined by yi and not, for example, by yi and yi−1

146

For the explicit Euler, we actually have the increment function Φ(ti, hi, yi, yi+1) = f(ti, yi), for
the implicit Euler Φ(ti, hi, yi, yi+1) = f(ti + hi, yi+1).

We are interested in deriving increment functions Φ such that the method is of order p, i.e.,
that (given sufficient smoothness of f) one has

max
i
|y(ti)− yi| ≤ Chp.

9.3.1 Explicit Runge-Kutta methods

There are many different ways to introduce one-step methods of order higher than 1. Here, we
motivate the structure of so-called Runge-Kutta-methods by extrapolation techniques, which
we encountered already in Section 1.4. The extrapolation technique relies on comparing two
different approximations: a) one step of the explicit Euler with step length h and b) two steps
of the explicit Euler method with step length h/2, viz

y
(1)
1 = y0 + hf(t0, y0),

y
(2)
1 = y1/2 +

h

2
f(t1/2, y1/2), y1/2 = y0 +

h

2
f(t0, y0), t1/2 = t0 +

h

2

From the above developments, each of these approximations has error O(h2), i.e.,

y(t1)− y
(1)
1 = τ (1)(t0, h) = O(h2),

y(t1)− y
(2)
1 = τ (2)(t0, h) = O(h2).

We define the actual step of the method as a linear combination of y
(1)
1 and y

(2)
1 in such a way

that the resulting consistency error is y(t1) − y1 = O(h3). To that end, we carefully employ
Taylor’s theorem:

y(t1) = y(t0)︸︷︷︸
y=y0

+hy′(t0) +
1

2
h2y′′(t0) +O(h3),

y
(1)
1 = y0 + hy′(t0)

y
(2)
1 = y1/2 +

h

2
f(t1/2, y1/2) = y0 +

h

2
f(t0, y0) +

h

2
f(t0 +

h

2
, y0 +

h

2
f(t0, y0))

= y0 +
h

2
f(t0, y0) +

h

2

[
f(t0, y0) + ∂tf(t0, y0)

h

2
+ ∂yf(t0, y0)

h

2
f(t0, y0) +O(h2)

]
= y0 + hf(t0, y0) +

h2

4
[∂tf(t0, y0) + ∂yf(t0, y0)f(t0, y0)] +O(h3)

Next, we use that t 7→ y(t) is a solution of the differential equation, i.e., y′(t) = f(t, y(t)).
Hence, by differentation with respect to t we get with the chain rule

y′′(t) = ∂tf(t, y(t)) + ∂yf(t, y(t))y
′(t) = ∂tf(t, y(t)) + ∂yf(t, y(t))f(t, y(t)).

In particular, for t = t0 and y(t0) = y0, we obtain

y
(2)
1 = y0 + hy′(t0) +

h2

4
y′′(t0) +O(h3)

147

Therefore, for parameters α, β we can compute

y(t1)− [αy
(1)
1 + βy

(2)
1]

= y0 + hy′(t0) +
h2

2
y′′(t0) +O(h3)− α[y0 + hy′(t0)]− β[y0 + hy′(t0) +

h2

4
y′′(t0) +O(h3)]

= y0(1− α− β) + y′(t0)h[1− α− β] + y′′(t0)h
2

[
1

2
− β

1

4

]
+O(h3)

The conditions on α and β are therefore

1− α− β = 0

2− β = 0

with solution β = 2 and α = −1. The method is therefore y1 = 2y
(2)
1 − y

(1)
1 or, more explicitly,

k1 := f(t0, y0), (9.8a)

k2 := f(t0 +
h

2
, y0 +

h

2
k1), (9.8b)

y1 := 2

(
y0 +

h

2
k1 +

h

2
k2

)
− (y0 + hk1) = y0 + hk2 (9.8c)

This method is of order 2, i.e., maxi |y(ti)−yi| ≤ Ch2 (for sufficiently smooth exact solution y).
In principle, even higher order methods can be constructed by this extrapolation idea. However,
a more general class of methods emerges from the structure in (9.8), the explicit Runge-Kutta
methods :

Definition 9.4 (explicit Runge-Kutta method) For a given number of stages s ∈ N, pa-
rameters ci ∈ [0, 1], bi ∈ R and aij ∈ R define

k1 = f(t0, y0),

k2 = f(t0 + c2h, y0 + ha21k1),

...

ks = f(t0 + csh, y0 + h

s−1∑
j=1

asjkj)

and the update y1 = y0+h
∑s

i=1 biki. The method is compactly described by the Butcher tableau:

0 0
c2 a21 0
c3 a31 a32 0
...

...
cs as1 · · · as,s−1 0

b1 b2 · · · bs

Exercise 9.5 Write down the Butcher tableau for the explicit Euler method and the method of
order 2 derived above.

148

Example 9.6 (RK4) A popular explicit Runge-Kutta method is RK4 with 4 stages and order
4 given by y1 = y0 + hΦ(t0, y0, h), where

Φ(t0, y0, h) :=
1

6
[k1 + 2k2 + 2k3 + k4] ,

k1 := f(t0, y0),

k2 := f

(
t0 +

h

2
, y0 +

1

2
hk1

)
,

k3 := f

(
t0 +

h

2
, y0 +

1

2
hk2

)
,

k4 := f (t0 + h, y + hk3) .

The corresponding Butcher tableau is

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

2
6

2
6

1
6

Exercise 9.7 Program RK4 and apply it to the right-hand side f1(t, y) = y and y0 = 1. Plot
the error at T = 1 versus h for h = 2−n, n = 1, . . . , 10.

Exercise 9.8 The solution of y′(t) = f(t), y(t0) = 0 is given by y(t) =
∫ t

t0
f(τ) dτ . Hence,

for right-hand sides of the form f(t, y) = f(t), a Runge-Kutta method results in a quadrature
formula. Which quadrature formula is obtained for RK4?

9.3.2 implicit Runge-Kutta methods

The form of the explicit Runge-Kutta methods in Def. 9.4 suggests a generalization, the so-
called implicit Runge-Kutta methods :

Definition 9.9 (implicit Runge-Kutta method) For a given number of stages s ∈ N, pa-
rameters ci ∈ [0, 1], bi ∈ R and aij ∈ R define the stages ki, i = 1, . . . , s as the solution of the
following (nonlinear) system of equations:

ki = f(t0 + cih, y0 + h
s∑

j=1

aijkj), i = 1, . . . , s.

One step of the implicit Runge-Kutta is then given by y1 = y0 + h
∑s

i=1 biki. The method is
compactly described by the Butcher tableau:

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
. . .

...
cs as1 · · · as,s−1 ass

b1 b2 · · · bs

149

Exercise 9.10 Show that the implicit Euler method is a 1-stage implicit Runge-Kutta method
by writing down the corresponding Butcher tableau.

Example 9.11 (θ-scheme) For θ ∈ [0, 1] the scheme with Butcher tableau

θ θ
1

is called the θ-scheme. It is given by

k1 = f(t0 + θh, y0 + θhk1), y1 = y0 + hk1

The auxiliary variable k1 can be eliminated using y0 + θhk1 = θ(y0 + hk1) + (1 − θ)y0 =
θy1 + (1− θ)y1 so that it is

y1 = y0 + hf(t0 + θh, θy1 + (1− θ)y0)

We recognize the explicit Euler method for θ = 0 and the implicit Euler method for θ = 1. For
θ = 1/2, the method is called “midpoint rule” (the simplest Gauss rule). We mention that the
θ-scheme is of order 1 for θ ̸= 1/2 and it is of order 2 for θ = 1/2.

9.3.3 Why implicit methods?

Explicit Runge-Kutta methods are usually preferred over implicit methods as they do not
require solving a (nonlinear) equation in each step. These nonlinear equations are typically
solved by Newton’s method (or some variant), and the user has to provide the derivative ∂yf .
Nevertheless, implicit Runge-Kutta methods (or variants) are the method of choice for certain
classes of problems such as stiff ODEs. A typical situation where implicit methods shine are
problems that describe problems with vastly differing time-scales. In these situations, explicit
methods would require very small step sizes for reasonable results whereas implicit methods
achieve good accuracy with much larger step sizes.

Example 9.12 Consider the solution of initial value problem

y′ = Ay, y(0) =

 1
0
−1

 , A =

 −21 19 −20
19 −21 20
40 −40 −40

 .

The eigenvalues of A are given by λ1 = −2, λ2 = −40(1 + i), λ3 = −40(1− i). The solution is:

y1(t) =
1

2
e−2t +

1

2
e−40t (cos 40t+ sin 40t) ,

y2(t) =
1

2
e−2t − 1

2
e−40t (cos 40t+ sin 40t) ,

y3(t) = −e−40t (cos 40t− sin 40t) .

All 3 solution components vary rather rapidly in the regime 0 ≤ t ≤ 0.1 so that a step length
restriction h << 1 seems plausible. For t > 0.1, however, the components y1 and y2 vary rather
slowly (the rapidly oscillatory contribution has been damped out due to the factor e−40t) and

150

y3 is close to zero. From an approximation point of view, therefore, one would hope that larger
time steps are possible. However, Fig. 9.1 shows that, for example, for h = 0.05, the explicit
Euler method yields completely unacceptable results. Indeed, one can show that the explicit
Euler method can only be expected to yield acceptable results if the step length h satisfies the
stability condition

|1 + hz| ≤ 1 z ∈ {λ1, λ2, λ3}

i.e., it has to satisfy h ≤ 1
40

= 0.025. In contrast, the implicit Euler method, which is also visible
in Fig. 9.1 performs much better since it does not have to satisfy such a stability condition.

0 0.1 0.2 0.3 0.4

−1

−0.5

0

0.5

1

t

Solution components for Lambert ODE

y1
y2
y3

0 0.1 0.2 0.3 0.4

−5

0

5

10

t

y 1

Euler for Lambert ODE - y1

y1 exact

expl. Euler

impl. Euler

0 0.1 0.2 0.3 0.4

−5

0

5

t

y 2

Euler for Lambert ODE - y2

y1 exact

expl. Euler

impl. Euler

0 0.1 0.2 0.3 0.4
−20

−10

0

10

t

y 3

Euler for Lambert ODE - y3

y1 exact

expl. Euler

impl. Euler

Figure 9.1: Comparison of explicit and implicit Euler method for the stiff problem of Exam-
ple 9.12: exact solution (top left) and numerical approximation.

slide 24 - Implicit vs. explicit methods

151

9.3.4 The concept of A-stability

The above examples have shown that for certain examples of ODEs explicit methods “fail” in
the sense that convergence only sets in for very small step sizes. In contrast, (certain) implicit
methods perform well for much larger step sizes. Mathematically, the notion of A-stability
captures the difference in behavior.

The stability function R

Consider the scalar model equation

y′ = λy, y(0) = y0 (9.9)

where λ ∈ C. The exact solution is y(t) = eλty0. One step of length h of an RK-method has
the form

y1 = R(λh)y0, (9.10)

where R(z) is a polynomial for an explicit method and a rational function for an implicit
method:

Exercise 9.13 Show:

1. explicit Euler method: R(z) = 1 + z

2. implicit Euler method: R(z) = 1/(1− z)

3. θ-scheme with θ = 1/2: R(z) = 1+z/2
1−z/2

4. RK4: R(z) = 1 + z + z2

2!
+ z3

3!
+ z4

4!

Without proof, we mention that for any RK-method that leads to a convergent method the
stability function R has the form R(z) = 1 + z +O(|z|2) as z → 0.

Definition 9.14 An RK-method is said to be A-stable, if

|R(z)| ≤ 1 ∀z with Re z ≤ 0.

Exercise 9.15 If R is a polynomial, then the corresponding RK-method cannot be A-stable.
Since the function R associated with an explicit RK-method is a polyomial, explicit RK-methods
cannot be A-stable.
In particular, the explicit Euler method is not A-stable whereas the implicit Euler method is.
The θ-scheme with θ = 1/2 is A-stable. See also Fig. 9.2.

Consider the case Reλ ≤ 0. Then the exact solution y(t) = eλty0 stays bounded for t → ∞.
(For Reλ < 0 the solution even decays to 0.) From (9.10) we see that the discrete solutions yi
are given by

yi = (R(λh))iy0, i = 0, 1, . . . ,

Hence, for the discrete approximations to be bounded (as i→∞), we have to require |R(λh)| ≤
1. Since Reλ ≤ 0 and h > 0, we see that this is ensured for A-stable methods irrespective of
h > 0.
Put differently: A-stability of an RK-method ensures that the property that the solution y(t) =
eλty0 is bounded (for Reλ ≤ 0) is reproduced by the numerical method for any h > 0.

152

−5 −4 −3 −2 −1 0
−3

−2

−1

0

1

2

3

stabil

instabil

Stabilitaetsgebiet von expl. Euler

−1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

stabil instabil

Stabilitaetsgebiet von impl. Euler

−5 −4 −3 −2 −1 0
−3

−2

−1

0

1

2

3

stabil

instabil

Stabilitaetsgebiet von RK4

−1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

stabil instabil

Stabilitaetsgebiet der impliziten Mittelpunktsregel

Figure 9.2: stability regions {z ∈ C | |R(z)| ≤ 1} for explicit Euler, implicit Euler, RK4, and
implicit midpoint rule.

Example 9.16 A-stability ensures boundedness of the discrete solution for Reλ ≤ 0 and any
h. For Reλ < 0 and sufficiently small h the condition |R(λh)| ≤ 1 is ensured. We illustrate
this for the explicit Euler method: For the explicit Euler method, one has R(λh) = 1 + λh.
Hence, for λ < 0 one has

|R(λh)| ≤ 1 ⇐⇒ |1 + λh| ≤ 1 ⇐⇒ h ≤ 2

|λ|
.

If λ << −1, then this condition on h is very restrictive.

slide 25 - Stability regions

Stability of RK-methods

To get insight into the performance of an RK-method, we consider the model

y′ = Ay, y(t0) = y0 (9.11)

153

where A ∈ Cn×n is a (constant) matrix. Such a model may be viewed as a linearization of a
more complex ODE and one hopes that studying the RK-method applied to the linearization
captures the key properties. We assume additionally that A can be diagonalized:

A = T−1DT

so that after the change of variables ŷ = Ty the ODE (9.11) is equivalent to

ŷ′ = Dŷ, ŷ(t0) = ŷ0 = Ty0. (9.12)

It can be checked that for RK-methods, one step of the RK-method could be computed in
two different ways: either one applies the RK-method directly to (9.11) or one applies it to the
transformed equation (9.12) and transforms back. This is depicted in Fig. 9.3. The RK-method
applied to (9.12) is simpler to understand since it reduces to the application of the RK-method
to scalar problems of the form (9.9) where λ ∈ C is a diagonal entry of D, i.e., an eigenvalue
of A. One step of length h of an RK-method applied to (9.9) has the form ŷi+1

k = R(λkh)ŷ
i
k

where R(z) is the stability function and we use the subscript k to indicate the component of
the vector ŷ while the superscripts i+1 and i indicate the association with time steps ti+1 and
ti. Hence,

ŷi+1
k = R(λkh)ŷ

i
k = · · · = (R(λkh))

i+1ŷ0
k, k = 1, . . . , n,

If Reλk << −1 then one is well-advised to ensure |R(λkh)| ≤ 1 to reproduce this boundedness
of the exact solution component. For A-stable methods, this is ensured no matter what h is.
The following considerations argue why this is a sensible condition. For simplicity of notation,
we assume that the eigenvalues λk are real (so as to be able to formulate conditions on λk

instead of on Reλk):

• One may expect a good approximation for those components ŷk for which |λkh| is small.
For these components, one has R(λkh) ≈ 1 (note that R(z) = 1 + O(z) in the examples
of Exercise 9.13). Suppose that for some λk << −1 and an h > 0 one has |R(λkh)| > 1. If
the RK-method is applied to the diagonalized form (9.12), then the error in these compo-
nent ŷk is very large while the other components may be reasonably well approximated.
One may be tempted to argue that this is acceptable since that solution component is
practically zero (and thus known!) so that there is no need to approximate it numeri-
cally anyway. However, if the RK-method is applied to the original form (9.11), then the
presence of a single eigenvalue λk with |R(λkh)| > 1 will ruin all components since the
transformation y = T−1ŷ mixes all components of ŷ so that one expects that all compo-
nents of y1 have contributions of ŷ1

k (unless T−1 has special structure). In other words:
When applying the RK-method to (9.11), the time step h > 0 is dictated by
the maximum of {−λj | j = 1, . . . , n}. However, is very unsatisfactory that solution
components ŷk with large −λk dictate the step size although they hardly contribute to
the exact solution.

• Related to the above point is a consideration of error propagation. In each step of the
RK, some consistency error is made. Consider again the RK-method in the variable ŷ
and an initial error ê0. For λk << −1 and |R(λkh)| > 1 the error in the kth component
is actually damped by the exact evolution (by a factor eλkh) whereas it is amplified by a

154

yi change of variables−−−−−−−−−−−−−−→
ŷi = Tyi

ŷi

RK method
y yRK method

yi+1 change of variables←−−−−−−−−−−−−−−
yi = T−1ŷi

ŷi+1

Figure 9.3: RK-method applied to y′ = Ay and to ŷ = Dŷ after change of variables. The
superscripts i and i+ 1 refer to the time steps ti and ti+1.

factor |R(λkh)| by the RK-method. Thus, initial errors are amplified by a factor |R(λkh)|i
in the ith step. Fixing ti = ih, we rewrite this amplification factor as

|R(λkh)|i = |R(λkh)|ti/h =
(
|R(λkh)|1/h

)ti
.

For fixed ti and |R(λkh)| > 1, we have that |R(λkh)|1/h is very large. In conclusion,
we have to expect that the method will dramatically amplify initial errors for small h.
Again, this error amplification in one component will affect all components if one applies
the RK-method to the original form (9.11).

What about λk > 0? In a nutshell: large (positive) λk also impose step size restrictions, i.e.,
they also require that λkh be small. However, this step size restriction is acceptable since it is
necessary to approximate the solution. To be more specific, we note that the error amplification
discussed above arises for |R(λkh)| > 1 and this situation occurs also for λk > 0 (e.g., for the
explicit Euler method is R(λkh) = 1 + λkh). However, the exact solution grows as well so that
the amplification of the relative error is not dramatic. To fix ideas, consider the explicit Euler
method. Then with initial error êk the relative error at ti is

|R(λkh)|i|ê0k|
|ŷ0

k|
eλkti =

|ê0k|
|ŷ0

k|
(1 + λkh)

ti/h

eλkti
≤ |ê

0
k|
|ŷ0

k|
= rel. error at t0,

where we used (1 + x) ≤ ex so that (1 + λkh)
tiλk/(λkh) ≤ etiλk .

155

9.4 Boundary value problems - Shooting methods

model problem: Second order ODE on interval [0, T] with prescribed values at 0 and T , i.e.,

y′′(t) = f(t, y(t), y′(t)) on (0, T)

y(0) = y0

y(T) = yT

This is called a boundary value problem (BVP). We assume that the given function f is
sufficiently smooth. A classical physical example is the vibration of a clamped string.

Example 9.17 • Consider the BVP

y′′(t) = −y(t) on (0, π/2)

y(0) = 0

y(π/2) = 1

Then, the (unique!) exact solution is given by y(t) = sin(t).

• Changeing the BVP to

y′′(t) = −y(t) on (0, π)

y(0) = 0

y(π) = 0

leads to non-uniqueness of solutions, as y(t) = c sin(t) solves the BVP for all c ∈ R.

• Changeing the BVP to

y′′(t) = −y(t) on (0, π)

y(0) = 0

y(π) = 1

leads to non-solvability of the BVP!

The previous example shows that in contrast to initial value problems (where in this setting
values for y(0) and y′(0) are prescribed), the solvability of the BVP is not clear.
In the following, we assume that the given model BVP has a unique solution and derive a
numerical method to approximate the solution.

Shooting methods

As a first step, we reformulate the second order BVP as a first order system by introducing a
new variable u = y′. This leads to

y′ = u

u′ = y′′ = f(t, y, u)

156

We now look at the initial value problem(
y
u

)′

=

(
u

f(t, y, u)

) (
y(0)
u(0)

)
=

(
y0
s0

)
(9.13)

where s0 = y′(0).
Note that s0 is not known for our model problem! However, for any fixed number s0 ∈ R, the
problem (9.13) can be uniquely solved, which gives a solution, depending on the choice of s0
denoted by

y(t; s0).

Now, this leads to an equation for the unknown s0, by imposing the second boundary condition

y(T ; s0) = yT .

In general, this is a nonlinear equation and can be solved, e.g., by Newton’s method. As the
Newton method needs the derivative w.r.t. the unknown, i.e., ∂s0y(T ; s0), we now derive an
equation for it.

Differentiation of the equation y′′ = f(t, y, y′) with respect to s0 using the chain rule gives that
the function v : t 7→ ∂s0y(t; s0) solves the initial value problem

v′′(t) = ∂yf(t, y(t; s0), y
′(t; s0))v(t) + ∂y′f(t, y(t; s0), y

′(t; s0))v
′(t) (9.14)

v(0) = 0

v′(0) = 1

Note that this is now a linear ODE for v, which can be very easily solved numerically (e.g. with
a one-step method as described in previous sections). This leads to the following algorithm.

Algorithm 30 (Shooting method)

1: % Input: f , T , y0, yT , s
(0)
0

2: % Output: approximate solution to BVP

3: ℓ := 0
4: repeat
5: Compute solution y(t; s0) to (9.13) with s0 = s

(ℓ)
0 numerically

6: Compute solution ∂s0y(T ; s0) to (9.14) with s0 = s
(ℓ)
0 numerically

7: Make Newton step s
(ℓ+1)
0 = s

(ℓ)
0 − ∂s0y(T ; s

(ℓ)
0)−1(y(T ; s

(ℓ)
0)− yT)

8: ℓ := ℓ+ 1
9: until Newton accurate enough

The advantage of shooting methods is that they are very simple to perform and only need an
implementation of a standard ODE solver for initial value problems.
A disadvantage of the method is that it is very sensible to perturbations in s as one has

|y(T ; s)− y(T ; s+ ε)| ≤ CeLT ε,

where L is the Lipschitz constant of f , i.e., |f(t, y) − f(t, z)| ≤ L|y − z|. Note that for
L = T = 10, this would lead to a possible amplification factor of e100 ≃ 2.7 · 1043!

157

Alternative methods for BVPs are finite difference or finite element methods (introduced in
other lectures).

We finish this section with an example for the shooting method.

Example 9.18 Consider the BVP y′′ = −y, y(0) = 0, y(π/2) = 1, with the exact solution
y(t) = sin(t). The initial value problem (9.13) here reads as(

y
u

)′

=

(
u
−y

) (
y(0)
u(0)

)
=

(
0
s0

)
Given s0, the unique solution of the problem is y(t; s0) = s0 sin(t). [[Note that for this simple
problem, we could directly enforce the boundary condition y(π/2) = 1 to obtain s0 = 1 as we
are able to compute the exact solution to the ODE by hand without the need of a numerical
method.]]

The initial value problem (9.14) for the derivative reads as

v′′ = −1 · v
v(0) = 0, v′(0) = 1

which has the unique solution v = sin(t). Note that v = ∂s0y!

Now, making one Newton step with s
(0)
0 = 0 gives

s
(1)
0 = 0− 1

sin(π/2)
· (0− 1) = 1,

which already produced the exact value for s0 (as the function y(t; s0) is linear in s0, Newton
converges after one step!).

158

A Notations and facts from other lectures

A.1 Function spaces

Functions spaces are special vector spaces (i.e. spaces that allow operations + and scalar
multiplication together with some rules), where every object in the space is a function f : Ω→
R, where Ω is some set.
Hereby, the vector space operations read as: For any x ∈ Ω and any λ ∈ R, there holds

(f + g)(x) = f(x) + g(x)

(λf)(x) = λf(x)

In this lecture notes, we use the following function spaces:

• Polynomials: A polynomial is a function

x 7→
n∑

ℓ=0

pℓx
ℓ

with pℓ ∈ R, ℓ = 0, . . . , n being the coefficients of the polynomial and n being the degree.

The function space of polynomials of maximal degree n is denoted by Pn.

• Continuous functions: Let [a, b] ⊂ R be an intervall. Then, by C([a, b]), we denote the
set of all continuous functions on [a, b].

• Continuously differentiable functions: Let [a, b] ⊂ R be an intervall and p ∈ N.
Then,

Cp([a, b]) := {f ∈ C([a, b]) : f (p) ∈ C([a, b])}

denote the set of all p-times continuously differentiable functions on [a, b].

Sometimes, the term smooth functions is loosely used, which means that the number p ∈ N,
such that f ∈ Cp([a, b]) holds, is as large as one needs.

A.2 Norms and inner products

Definition A.1 Let V be a vector space. A mapping ∥ · ∥ : V → R is called a norm, if

(i) (triangle inequality) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ V

(ii) (homogeneity) ∥λx∥ = |λ|∥x∥ for all x ∈ V , λ ∈ R

(iii) (definiteness) ∥x∥ ≥ 0 for all x ∈ V , and ∥x∥ = 0 implies x = 0.

Important norms on V = Rn are:

1. the euklidian norm ∥x∥2 :=
√∑n

i=1 |xi|2

159

2. the ∞-norm ∥x∥∞ := maxi=1,...,n |xi|

3. the 1-norm ∥x∥1 :=
∑n

i=1 |xi|

Important norms on function spaces (e.g. C([a, b])) are:

1. the maximum norm ∥f∥∞,[a,b] := maxx∈[a,b] |f(x)|

2. the L2-norm ∥f∥L2(a,b) :=
√∫ b

a
f(x)2 dx

Definition A.2 An inner-product (also called scalar-product) is a scalar-valued function (·, ·) :
V × V → R, which acts on tuples of vectors of a vector space V , and satisfies

1. (symmetry) (x, y) = (y, x) for all x, y ∈ V .

2. (linearity) (αx+ βy, z) = α(x, z) + β(y, z) α, β ∈ R, x, y, z ∈ V .

3. (definiteness) (x, x) ≥ 0 for all x ∈ V and (x, x) = 0⇐⇒ x = 0.

Example A.3 • The Euclidean scalar product on Rn is defined as

(x, y)2 := x1y1 + · · ·+ xnyn.

• Let A ∈ Rn×n be a symmetrix, positive definite matrix. Then, A induces the inner product

(x, y)A := (Ax, y)2.

On inner product spaces (vector spaces V with an inner product (·, ·) defined on V × V) we
have several important geometric properties.

• Schwarz inequality: For all x, y ∈ V , we have

|(x, y)| ≤ ∥x∥ · ∥y∥.

• Measuring of angles: For all x, y ∈ V , we can define the angle α between the vectors x, y
by

cosα =
(x, y)

∥x∥ · ∥y∥
,

which generalizes the formula in the Euclidean space by using the (general) inner product
and norm.

• Orthogonality: Let x, y ∈ V . We call x, y orthogonal, if

(x, y) = 0.

Note that using that in the above formula for the angle gives cos(α) = 0 or α = π
2
,

which coincides with the geometric interpretation of orthogonality as vectors which span
an angle of 90 degrees.

160

A.3 Linear algebra notations

A.3.1 Linear combinations, basis

Let V be a vector space. Let {v1, . . . , vn} ⊂ V be a set of vectors. A linear combination of
vectors in {v1, . . . , vn} is a sum of the form

n∑
i=1

αivi with αi ∈ R.

The set of all possible linear combinations of vectors in {v1, . . . , vn} is called span, i.e.,

span(v1, . . . , vn) =
{ n∑

i=1

αivi : αi ∈ R ∀i = 1, . . . , n
}
.

In particular, span(v) = {αv : α ∈ R} are all multiples of v.

A set of vectors {v1, . . . , vn} ⊂ V is called linearly independent, if from

α1v1 + α2v2 + · · ·+ αnvn = 0 αi ∈ R

follows that α1 = α2 = · · · = αn = 0. Or in other words, no vector in {v1, . . . , vn} can be
written as linear combination of the other vectors.

A basis of a (finite dimensional) vector space V is a set of linearly independent vectors {bi :
i = 1, . . . , n} ⊂ V such that every x ∈ V can be written as a linear combination of the basis
vectors, i.e.,

x =
n∑

i=1

αibi.

If the vectors {bi : i = 1, . . . , n} are pairwise orthogonal and normalized (i.e. ∥bi∥ = 1), we
call it an orthonormal basis (ONB).

A.3.2 The Gram-Schmidt process

With the help of the so-called Gram-Schmidt process, one can always construct an orthonormal
basis out of a given basis. The Gram-Schmidt process works as follows: Let {b1, . . . , bn} be a
set of linearly independent vectors of an inner-product space (V, (·, ·)). Then, one can construct
an orthonormal set {v1, . . . , vn} by the following algorithm:

v1 =
b1
∥b1∥

v2 =
w2

∥w2∥
with w2 = b2 − (v1, b2)v1

v3 =
w3

∥w3∥
with w3 = b3 − (v1, b3)v1 − (v2, b3)v2

...

vn =
wn

∥wn∥
with wn = bn −

n−1∑
i=1

(vi, bn)vi.

161

A.3.3 Matrix notations

We denote by A ∈ Rn×m a matrix with n rows and m columns of the form

A =

a11 · · · a1m
...

...
an1 · · · anm

 aij ∈ R ∀i = 1, . . . , n, j = 1, . . . ,m

and call aij the entry at row i and column j.
Sometimes, we write a matrix as collection of its columns (denoted by a:,j)

A = (a:,1, a:,2, . . . , a:,m)

The rank of a matrix A ∈ Rn×m is the maximal number of linearly independent columns or
rows. By definition, this gives rank(A) ≤ min{n,m}.

We say that a matrix A has full rank, if rank(A) = min{n,m}.

A.4 Further notations

• The Kronecker Delta δij is a shorthand for

δij :=

{
1 if i = j

0 otherwise

A.4.1 The O(·)-notation

• Let x 7→ f(x) be a function and x0 ∈ R ∪ ±∞. The notation (called Landau symbol)

O(f(x)) x→ x0

describes a (non-specified) function g with the property that

|g(x)| ≤ C|f(x)| for all x sufficiently close to x0.

• Oftentimes the O(·)-notation is used to describe some asymptotics for n→∞ or h→ 0.
Examples can be found throughout these lecture notes, such as cost of an algorithm in
O(n2). E.g., the function f(n) = 2n(n+ 1) is O(n2) as there holds

2n(n+ 1) ≤ 4n2 for all n > 0.

A.5 Polynomial approximation

By the following theorem, called Weierstraß theorem, it is always possible to approximate a
given continuous function by a polynomial up to a prescribed tolerance.

162

Theorem A.4 (Weierstraß) Let f ∈ C([a, b]). Then, for every ε > 0, there exists a polyno-
mial p such that

∥f − p∥∞,[a,b] ≤ ε.

Note that this theorem does not provide a way to construct a polynomial approximation. For
smooth function, a possible approximation is given by the Taylor polynomial, recalled in the
following theorem.

Theorem A.5 (Taylor) Let f ∈ Cp+1([a, b]) and x0 ∈ (a, b). Define the p-th order Taylor
polynomial of f about the point x0

Tp(x) :=

p∑
j=0

1

j!
f (j)(x0)(x− x0)

j. (A.1)

Then, there holds

f(x) = Tp(x) +
1

p!

∫ x

x0

(x− t)pf (p+1)(t) dt.

Thus, every function f ∈ Cp+1([a, b]) can be written as a sum of a polynomial and a remainder

Rp(x) :=
1

p!

∫ x

x0

(x− t)pf (p+1)(t) dt.

In other words: The function f can be approximated by its Taylor polynomial with pointwise
error Rp(x). From the definition, one directly infers the error bound

|Rp(x)| ≤
1

p!
|x− x0|p+1 max

ξ∈⟨x0,x⟩
|f (p+1)(ξ)|. (A.2)

Often, one simply writes
f(x) = Tp(x) +O(|x− x0|p+1).

163

