
UE: Formal Methods in Computer Science

Formal Methods in Computer Science
UE 185.A93 WS 2019/20

Exercise Sheet 1

Wolfgang Dvǒrák

Technische Universität Wien

WS 2019

W. Dvǒrák WS 2019 Page 1

UE: Formal Methods in Computer Science 1. Prolog 1.

Reductions

Reductions are a powerful tool in Complexity Theory to show

a problem to be undecidable

a problem to be NP-hard.

a problem to be at least as hard as some other problem

In practice reductions can be used to actually solve (hard) problems:

good performing systems

with relatively low effort

W. Dvǒrák WS 2019 Page 2

UE: Formal Methods in Computer Science 1. Prolog 1.

Reductions

Popular approach to tackle NP-hard problems

encode them in (reduce them to) a known NP hard formalisms,

use sophisticated systems for that formalisms;

and use the solution for the constructed problem to compute a
solution for the original problem.

Prominent target formalisms:

propositional logic (SAT), quantified Boolean formulas (QBFs)

logic programming (LP)

integer linear programming (ILP)

constraint satisfaction problems (CSP)

W. Dvǒrák WS 2019 Page 3

UE: Formal Methods in Computer Science 2. Exercise 2.

Exercise Sheet 1

In this exercise we aim to solve

graph coloring problems

with

a reduction to proposition logic and

exploiting SAT-Solver technology.

Additional information on the exercise sheet (in tuwel)!

W. Dvǒrák WS 2019 Page 4

UE: Formal Methods in Computer Science 2. Exercise 2.

Graph-Coloring - 3-COLORABILITY

We already know the 3-COLORABILITY problem

One is given an undirected graph and

three colors: red, green, blue.

We want to find a coloring of the vertices of the graph

such that no to adjacent vertices have to same color,

An easy way to set up a system for 3-COLORABILITY is

use the reduction from the lecture to propositional logic,
ϕG = ϕ1 ∧ ϕ2 ∧ ϕ3

use a SAT-solver to compute a model

extracting a coloring from the model of the formula.
e.g. color vertex i red if ari is in the model.

W. Dvǒrák WS 2019 Page 5

UE: Formal Methods in Computer Science 2. Exercise 2.

Graph-Coloring - Our notion of 4-COLORABILITY

We consider a graph coloring problems on directed graphs G = (V ,E).

A a set of agents,

R ⊆ A× A a relation of directed conflicts between vertices

A 4-coloring of a graph G = (V ,E) is a function C : V 7→ {r , g , b, o},
where r ,g ,b,o stand for the colors red, green, blue, and orange.

A 4-coloring is called a valid coloring iff it satisfies all of the following:

No two adjacent vertices are both colored red.

A vertex b is colored blue or green iff there is a vertex a that is
colored red and disables b.

If a vertex a disables a red colored vertex then a is colored green.

If a vertex a is colored orange then there is another vertex b that
disables a and is not colored green.

W. Dvǒrák WS 2019 Page 6

UE: Formal Methods in Computer Science 2. Exercise 2.

Graph-Coloring - Our notion of 4-COLORABILITY

1 2

34

invalid

1 2

34

invalid

1 2

34

invalid

1 2

34

valid

1 2

34

valid

1 2

34

valid

1 2

34

invalid

1 2

34

valid

1 2

34

valid

1 2

34

valid

1 2

34

invalid

1 2

34

valid

W. Dvǒrák WS 2019 Page 7

UE: Formal Methods in Computer Science 2. Exercise 2.

Exercise 1: Valid Colorings

Problem: Identifying valid colorings of a graph

Given: Graph G = (V ,E)

Goal: Find one (several/all resp.) valid coloring of G .

Tasks:

1 Provide a reduction that takes a graph G as input and provides a
propositional formula such that

• the models of the formula are in one-to-one correspondence with the
valid colorings of G and

• one can easily obtain a coloring from a model of the formula.

2 Use the reduction in a SAT-solving framework (provided in tuwel) to
• decide whether a given graph has a valid coloring
• if so compute such a coloring.

W. Dvǒrák WS 2019 Page 8

UE: Formal Methods in Computer Science 2. Exercise 2.

Exercise 2: Valid Colorings with a given set of red vertices

Problem: Identifying valid colorings that color certain vertices red.

Given: Graph G = (V ,E) and a set Sr ⊆ V .

Goal: Find one (several/all resp.) valid coloring C of G such that
C (v) = r for all v ∈ Sr .

Tasks:

1 Provide a reduction that takes a graph G and a set of Sr vertices as
input and provides a propositional formula such that

• the models of the formula are in one-to-one correspondence with the
valid colorings of G that color all vertices in Sr red, and

• one can easily obtain such a coloring from a model of the formula.

2 Use the reduction in a SAT-solving framework (provided in tuwel) to
• decide whether a given graph has a valid coloring that color all

vertices in Sr red
• if so compute such a coloring.

W. Dvǒrák WS 2019 Page 9

UE: Formal Methods in Computer Science 2. Exercise 2.

Exercise 3:

Problem: Identifying valid colorings that color certain vertices red and
the set of red colored vertices is maximal among all valid colorings.

Given: Graph G = (V ,E) and a set Sr ⊆ V .

Goal: Find one (several/all resp.) valid coloring C of G such that
C (v) = r for all v ∈ Sr and there is no coloring C ′ with
{v | C (v) = r} ⊂ {v | C ′(v) = r}.

Complexity

Testing maximality is an co-NP problem: ↪→ can be efficiently
reduced to a SAT-problem

while computing a maximal valid coloring is beyond NP/co-NP
↪→ cannot be efficiently reduced to a single SAT-problem

W. Dvǒrák WS 2019 Page 10

UE: Formal Methods in Computer Science 2. Exercise 2.

Exercise 3:

We can compute a maximal valid coloring as follows:

Compute a valid coloring C (cf. Exercise 1 & 2)

While C changes do
• Test whether C is maximal
• If not update C to the larger set computed in the previous step.

return C

Notice:
We need a procedure that returns a counter example if C is not maximal.

W. Dvǒrák WS 2019 Page 11

UE: Formal Methods in Computer Science 2. Exercise 2.

Exercise 3: Identifying Maximal Valid Colorings

Tasks:

1 Provide a reduction from testing maximality of a valid coloring to
SAT in propositional logic such that,

• the formula is satisfiable iff the graph has a “larger” valid coloring,
and

• one can easily obtain a “larger” valid coloring from a model of the
formula.

2 Use the reduction to complete the SAT-solving framework (provided
in tuwel) that deals with maximal valid colorings.

• decide whether a given valid coloring is maximal in a given graph.

W. Dvǒrák WS 2019 Page 12

UE: Formal Methods in Computer Science 3. Some Rules 3.1. Discuss but don’t copy

Discuss but don’t copy

Your are strongly encouraged to

discuss the problems with other participants of the course (e.g. in
the tuwel forum of the course) and

share benchmark graphs and other resources you find useful with
them.

Please obey the following rules:

Write your own code.

Write the report in your own words.

Submit your solution in time.

W. Dvǒrák WS 2019 Page 13

UE: Formal Methods in Computer Science 3. Some Rules 3.2. Deliveries

Deliveries
A short report (2-5 pages) on your solution (as pdf). In particular
such a report should contain:

• Your name
• A short description of the studied problems
• Your reductions to solve the exercises
• A correctness argument for each of your reductions. In particular,

explain how the models of the constructed SAT instance correspond
to valid colorings.

• A description of how the propositional atoms used in your reduction
are mapped to the integer representation (DIMACS format) used in
the implementation.

The java files you had to complete:
• SatEncodings.java
• Coloring.java

Test your implementations! (preferable under Java SE 11)

At least five graphs in the described DIMACS format (that you used
to test your system). Make sure your implementation works correctly
on those graphs.

W. Dvǒrák WS 2019 Page 14

UE: Formal Methods in Computer Science 3. Some Rules 3.3. Assessment

Assessment

Maximum score: 15 points.

The solution of each part must contain both the report and the
completed java classes.

Solutions where either the report or java classes are missing are not
considered for grading.

However, we accept solutions where exercise 2 and/or 3 are missing.

W. Dvǒrák WS 2019 Page 15

UE: Formal Methods in Computer Science 4. Used Libraries 4.

Used Libraries

The template for exercise exploits the following packages:

Sat4j1 SAT-solver
API: www.sat4j.org/maven234/org.ow2.sat4j.core/apidocs/

JGraphT2 package to process graphs.
API: http://jgrapht.org/javadoc/

1http://www.sat4j.org/
2http://jgrapht.org/

W. Dvǒrák WS 2019 Page 16

www.sat4j.org/maven234/org.ow2.sat4j.core/apidocs/
http://jgrapht.org/javadoc/
http://www.sat4j.org/
http://jgrapht.org/

UE: Formal Methods in Computer Science 4. Used Libraries 4.1. SAT4j

DIMACS-format

Modern SAT solver typically support

formulas in conjunctive normal form (CNF) only.

↪→ The reduction has to provide a CNF formula.

DIMACS format: Standard formats for SAT-solvers is the so called .

variables are represented by integers between 1 and n.

DIMACS files are text files with three types of lines
• Lines starting with a “c” are comments
• The line starting with “p” which is the problem line. For a CNF

formula with n variables and m clause the problem line is“p cnf n m“
• For each clause there is one line with a sequence of integers

corresponding to the literals of the clause. Negative literals are
represented by negative integers. The line is terminated by a final
value of 0.

W. Dvǒrák WS 2019 Page 17

UE: Formal Methods in Computer Science 4. Used Libraries 4.1. SAT4j

DIMACS-format - Example

Start with some formula:
ϕ = (a→ b) ∧ (c ∨ d ∨ ¬b)

We need a formula in CNF:
ϕ = (¬a ∨ b) ∧ (c ∨ d ∨ ¬b)

Map variables to integers:
ϕ = (¬x1 ∨ x2) ∧ (x3 ∨ x4 ∨ ¬x2)

DIMACS-Encoding:

c Example
c
p cnf 4 2
-1 2 0
3 4 -2 0

W. Dvǒrák WS 2019 Page 18

UE: Formal Methods in Computer Science 4. Used Libraries 4.1. SAT4j

SAT4j

Our framework uses an internal representation:

Formula is represented as Vector of Integer Vectors IVec<IVecInt>.

IVecInt is a vector of integers representing a clause

IVec<IVecInt> is a collection of clauses

Example:

IVec <IVecInt > cnf = new Vec <IVecInt >();

// First clause

IVecInt clause = new VecInt ();

clause.push (-1);

clause.push (2);

cnf.push(clause);

// Second clause

clause = new VecInt ();

clause.push (3);

clause.push (4);

clause.push (-2);

cnf.push(clause);

W. Dvǒrák WS 2019 Page 19

UE: Formal Methods in Computer Science 4. Used Libraries 4.1. SAT4j

SAT4j

// Initialize the SAT solver

ISolver solver = SolverFactory.newDefault ();

try {

// Feeds the formula to the solver

solver.addAllClauses(cnf);

IProblem instance = solver;

solver.setTimeout (3600);

// Computes a model

if (instance.isSatisfiable ()) {

int model[] = instance.model ();

... Use model to solve the original problem ...

}

} catch (ContradictionException e) {

System.out.println("There is no model.");

}

W. Dvǒrák WS 2019 Page 20

UE: Formal Methods in Computer Science 4. Used Libraries 4.2. JGraphT

JGraphT - DIMACS Graph format

The input graphs are stored in a DIMACS format:

The vertices of the graph are the integers from 1 up to n.

Lines starting with a “c” are comments

The line starting with “p” which is called the problem line. For a
graph with n vertices and m edges the problem line is“p edge n m“

For each edge there is one edge descriptor line starting with e. The
line corresponding to edge (v,w) is ”e v w ”.

1 2

34

DIMACS-Encoding:

c Example
p edge 4 4
e 1 2
e 2 3
e 3 4
e 4 1

W. Dvǒrák WS 2019 Page 21

UE: Formal Methods in Computer Science 4. Used Libraries 4.2. JGraphT

JGraphT - Code Snippets

Our template uses the org.jgrapht.graph.DefaultDirectedGraph class.

import org.jgrapht.graph.DefaultDirectedGraph;

import org.jgrapht.graph.DefaultEdge;

DefaultDirectedGraph <Integer , DefaultEdge > graph =

readGraphFromFile(file.graph);

// iterate over all vertices

for(int vertex : graph.vertexSet ()) {

...

}

// iterate over all edges

int source , target;

for (DefaultEdge edge : graph.edgeSet ()) {

source = graph.getEdgeSource(edge);

target = graph.getEdgeTarget(edge);

...

}

W. Dvǒrák WS 2019 Page 22

UE: Formal Methods in Computer Science 4. Used Libraries 4.2. JGraphT

JGraphT - Code Snippets

int source , target;

// iterate over the incoming edges of a vertex

for (DefaultEdge edge : graph.incomingEdgesOf(vertex)) {

source = graph.getEdgeSource(edge);

// graph. getEdgeTarget (edge);

...

}

// iterate over the outgoing edges of a vertex

for (DefaultEdge edge : graph.outgoingEdgesOf(vertex)) {

// graph. getEdgeSource (edge);

target = graph.getEdgeTarget(edge);

...

}

W. Dvǒrák WS 2019 Page 23

UE: Formal Methods in Computer Science 5. Questions& Discussion 5.

Questions?

W. Dvǒrák WS 2019 Page 24

	Prolog
	Exercise
	Some Rules
	Discuss but don't copy
	Deliveries
	Assessment

	Used Libraries
	SAT4j
	JGraphT

	Questions& Discussion

