UE: Formal Methods in Computer Science

Formal Methods in Computer Science
UE 185.A93 WS 2019/20

Exercise Sheet 1

Wolfgang Dvorak
Technische Universitdt Wien

WS 2019

W. Dvoték WS 2019



UE: Formal Methods in Computer Science 1. Prolog

Reductions

Reductions are a powerful tool in Complexity Theory to show
m a problem to be undecidable
m a problem to be NP-hard.
m a problem to be at least as hard as some other problem

In practice reductions can be used to actually solve (hard) problems:
m good performing systems
m with relatively low effort

W. Dvoték WS 2019



UE: Formal Methods in Computer Science 1. Prolog

Reductions

Popular approach to tackle NP-hard problems

m encode them in (reduce them to) a known NP hard formalisms,
m use sophisticated systems for that formalisms;

m and use the solution for the constructed problem to compute a
solution for the original problem.

Prominent target formalisms:

propositional logic (SAT), quantified Boolean formulas (QBFs)
logic programming (LP)

]
|
m integer linear programming (ILP)
]

constraint satisfaction problems (CSP)

W. Dvoték WS 2019



UE: Formal Methods in Computer Science 2. Exercise

Exercise Sheet 1

In this exercise we aim to solve
m graph coloring problems
with

m a reduction to proposition logic and
m exploiting SAT-Solver technology.

Additional information on the exercise sheet (in tuwel)!

W. Dvofék WS 2019



Graph-Coloring - 3-COLORABILITY

We already know the 3-COLORABILITY problem
m One is given an undirected graph and
m three colors: red, green, blue.
m We want to find a coloring of the vertices of the graph

m such that no to adjacent vertices have to same color,

An easy way to set up a system for 3-COLORABILITY is
m use the reduction from the lecture to propositional logic,
w6 =p1 N2 A3
m use a SAT-solver to compute a model

m extracting a coloring from the model of the formula.
e.g. color vertex i red if af is in the model.

W. Dvofék WS 2019



Graph-Coloring - Our notion of 4-COLORABILITY

We consider a graph coloring problems on directed graphs G = (V, E).

m A a set of agents,
m R C A x A a relation of directed conflicts between vertices

A 4-coloring of a graph G = (V, E) is a function C: V — {r, g, b, 0},
where r,g,b,0 stand for the colors red, green, blue, and orange.

A 4-coloring is called a valid coloring iff it satisfies all of the following:

m No two adjacent vertices are both colored red.

m A vertex b is colored blue or green iff there is a vertex a that is
colored red and disables b.

m If a vertex a disables a red colored vertex then a is colored green.

m If a vertex a is colored orange then there is another vertex b that
disables a and is not colored green.

W. Dvoték WS 2019



UE: Formal Methods in Computer Science

Graph-Coloring - Our notion of 4-COLORABILITY

o
o
e
.

invalid

o
!
Ll

invalid

B

invalid

valid

valid

_O—6
L

invalid

valid

1l

valid

W. Dvoték

WS 2019

©®—0

valid

!

invalid

!

valid



UE: Formal Methods in Computer Science 2. Exercise

Exercise 1: Valid Colorings

Problem: ldentifying valid colorings of a graph
m Given: Graph G = (V,E)

m Goal: Find one (several/all resp.) valid coloring of G.

Tasks:
Provide a reduction that takes a graph G as input and provides a
propositional formula such that

e the models of the formula are in one-to-one correspondence with the
valid colorings of G and
e one can easily obtain a coloring from a model of the formula.

Use the reduction in a SAT-solving framework (provided in tuwel) to

o decide whether a given graph has a valid coloring
e if so compute such a coloring.

W. Dvoték WS 2019



UE: Formal Methods in Computer Science 2. Exercise

Exercise 2: Valid Colorings with a given set of red vertices

Problem: Identifying valid colorings that color certain vertices red.
m Given: Graph G = (V,E)and aset S, C V.

m Goal: Find one (several/all resp.) valid coloring C of G such that
C(v)=rforallves,.

Tasks:
Provide a reduction that takes a graph G and a set of S, vertices as
input and provides a propositional formula such that

e the models of the formula are in one-to-one correspondence with the
valid colorings of G that color all vertices in S, red, and
e one can easily obtain such a coloring from a model of the formula.

Use the reduction in a SAT-solving framework (provided in tuwel) to

e decide whether a given graph has a valid coloring that color all
vertices in S, red
e if so compute such a coloring.

W. Dvoték WS 2019



UE: Formal Methods in Computer Science 2. Exercise

Exercise 3:

Problem: Identifying valid colorings that color certain vertices red and
the set of red colored vertices is maximal among all valid colorings.

m Given: Graph G = (V,E)and aset 5, C V.

m Goal: Find one (several/all resp.) valid coloring C of G such that
C(v) =r for all v € S, and there is no coloring C’ with
{viClv)=r}c{v|C(v)=r}

Complexity

m Testing maximality is an co-NP problem: < can be efficiently
reduced to a SAT-problem

m while computing a maximal valid coloring is beyond NP /co-NP
< cannot be efficiently reduced to a single SAT-problem

W. Dvofék WS 2019



UE: Formal Methods in Computer Science 2. Exercise

Exercise 3:

We can compute a maximal valid coloring as follows:

m Compute a valid coloring C (cf. Exercise 1 & 2)
m While C changes do

e Test whether C is maximal
e If not update C to the larger set computed in the previous step.

m return C

Notice:
We need a procedure that returns a counter example if C is not maximal.

W. Dvoték WS 2019



Exercise 3: Identifying Maximal Valid Colorings

Tasks:
Provide a reduction from testing maximality of a valid coloring to
SAT in propositional logic such that,

e the formula is satisfiable iff the graph has a “larger” valid coloring,
and

e one can easily obtain a “larger” valid coloring from a model of the
formula.

Use the reduction to complete the SAT-solving framework (provided
in tuwel) that deals with maximal valid colorings.

o decide whether a given valid coloring is maximal in a given graph.

W. Dvoték WS 2019



Discuss but don't copy

Your are strongly encouraged to

m discuss the problems with other participants of the course (e.g. in
the tuwel forum of the course) and

m share benchmark graphs and other resources you find useful with
them.
Please obey the following rules:

m Write your own code.
m Write the report in your own words.

m Submit your solution in time.

W. Dvoték WS 2019



UE: Formal Methods in Computer Science 3. Some Rules

Deliveries

m A short report (2-5 pages) on your solution (as pdf). In particular
such a report should contain:

Your name

A short description of the studied problems

Your reductions to solve the exercises

A correctness argument for each of your reductions. In particular,

explain how the models of the constructed SAT instance correspond

to valid colorings.

e A description of how the propositional atoms used in your reduction
are mapped to the integer representation (DIMACS format) used in
the implementation.

m The java files you had to complete:

e SatEncodings.java
e Coloring.java

Test your implementations! (preferable under Java SE 11)

m At least five graphs in the described DIMACS format (that you used
to test your system). Make sure your implementation works correctly
on those graphs.

W. Dvoték WS 2019



UE: Formal Methods in Computer Science 3. Some Rules

Assessment

m Maximum score: 15 points.

m The solution of each part must contain both the report and the
completed java classes.

m Solutions where either the report or java classes are missing are not
considered for grading.

m However, we accept solutions where exercise 2 and/or 3 are missing.

W. Dvoték WS 2019



Used Libraries

The template for exercise exploits the following packages:

m Sat4j! SAT-solver
API: www.sat4j.org/maven234/org.ow2.sat4dj.core/apidocs/

m JGraphT? package to process graphs.
API: http://jgrapht.org/javadoc/

Ihttp://wuw.satdj.org/
’http://jgrapht.org/

W. Dvoték WS 2019


www.sat4j.org/maven234/org.ow2.sat4j.core/apidocs/
http://jgrapht.org/javadoc/
http://www.sat4j.org/
http://jgrapht.org/

UE: Formal Methods in Computer Science 4. Used Libraries

Modern SAT solver typically support
m formulas in conjunctive normal form (CNF) only.

< The reduction has to provide a CNF formula.

DIMACS format: Standard formats for SAT-solvers is the so called .
m variables are represented by integers between 1 and n.
m DIMACS files are text files with three types of lines

e Lines starting with a “c” are comments

e The line starting with “p” which is the problem line. For a CNF
formula with n variables and m clause the problem line is“p cnf n m*

e For each clause there is one line with a sequence of integers
corresponding to the literals of the clause. Negative literals are
represented by negative integers. The line is terminated by a final

value of 0.

W. Dvoték WS 2019



DIMACS-format - Example

m Start with some formula: DIMACS-Encoding:

p=(a—=b)A(cVdV~b) ¢ Example
m We need a formula in CNF: C
o= (-aVb)A(cVdV-b) p cnf 42
-120

m Map variables to integers:

e=(xVx)A(3VxV-x) 3420

W. Dvoték WS 2019



UE: Formal Methods in Computer Science 4. Used Libraries

Our framework uses an internal representation:
m Formula is represented as Vector of Integer Vectors IVec<IVecInt>.
m IVecInt is a vector of integers representing a clause
m IVec<IVecInt> is a collection of clauses

Example:

IVec<IVecInt> cnf = new Vec<IVecInt>();
// First clause

IVecInt clause = new VecInt();
clause.push(-1);
clause.push(2);

cnf .push(clause);

// Second clause

clause = new VecInt();
clause.push(3);
clause.push (4);
clause.push(-2);

cnf .push(clause);

W. Dvoték WS 2019



UE: Formal Methods in Computer Science 4. Used Libraries

// Initialize the SAT solwver
ISolver solver = SolverFactory.newDefault ();

try {
// Feeds the formula to the solver
solver.addAllClauses (cnf);

IProblem instance = solver;
solver.setTimeout (3600);

// Computes a model
if (instance.isSatisfiable()) {
int model[] = instance.model();
Use model to solve the original problem
}
} catch (ContradictionException e) {
System.out.println("There is noymodel.");

}

W. Dvoték WS 2019



JGraphT - DIMACS Graph format

The input graphs are stored in a DIMACS format:
m The vertices of the graph are the integers from 1 up to n.

“w_r

m Lines starting with a “c” are comments

wn

m The line starting with “p"” which is called the problem line. For a
graph with n vertices and m edges the problem line is“p edge n m*

m For each edge there is one edge descriptor line starting with e. The
line corresponding to edge (v,w) is "e vw "

DIMACS-Encoding:
e e c Example

p edge 4 4

el?2

c e e23

e34
ed1l

W. Dvoték WS 2019



JGraphT - Code Snippets

Our template uses the org.jgrapht.graph.DefaultDirectedGraph class.

import org.jgrapht.graph.DefaultDirectedGraph;
import org.jgrapht.graph.DefaultEdge;

DefaultDirectedGraph<Integer, DefaultEdge> graph =

readGraphFromFile(file.graph);

//iterate over all wvertices
for (int vertex : graph.vertexSet()) {

}

//iterate over all edges

int source, target;

for (DefaultEdge edge : graph.edgeSet()) {
source = graph.getEdgeSource (edge);
target = graph.getEdgeTarget (edge);

W. Dvoték WS 2019



JGraphT - Code Snippets

int source, target;

//iterate over the incoming edges of a vertezx

for (DefaultEdge edge : graph.incomingEdgesOf (vertex)) {
source = graph.getEdgeSource (edge);
// graph.getEdgeTarget (edge);

}
//iterate over the outgoing edges of a wvertecx
for (DefaultEdge edge : graph.outgoingEdgesOf (vertex)) {

//graph.getEdgeSource (edge);
target = graph.getEdgeTarget (edge);

W. Dvoték WS 2019



in Computer Science Questions& Discussion

Questions?

vorak WS 2019




	Prolog
	Exercise
	Some Rules
	Discuss but don't copy
	Deliveries
	Assessment

	Used Libraries
	SAT4j
	JGraphT

	Questions& Discussion

