
A.1 The Satisfiability-Modulo-Theory Library and
Standard (SMT-LIB)

A bit of history: The growing interest and need for decision procedures such
as those described in this book led to the SMT-LIB initiative (short for
Satisfiability-Modulo-Theory Library). The main purpose of this initiative
was to streamline the research and tool development in the field to which this
book is dedicated. For this purpose, the organizers developed the SMT-LIB
standard [239], which formally specifies the theories that attract enough in-
terest in the research community, and that have a sufficiently large set of
publicly available benchmarks. As a second step, the organizers started col-
lecting benchmarks in this format, and today (2016) the SMT-LIB repository
includes more than 100 000 benchmarks in the SMT-LIB 2.5 format, classified
into dozens of logics. A third step was to initiate SMT-COMP, an annual
competition for SMT solvers, with a separate track for each division.

These three steps have promoted the field dramatically: only a few years
back, it was very hard to get benchmarks, every tool had its own language
standard and hence the benchmarks could not be migrated without trans-
lation, and there was no good way to compare tools and methods.1 These
problems have mostly been solved because of the above initiative, and, con-
sequently, the number of tools and research papers dedicated to this field is
now steadily growing.

The SMT-LIB initiative was born at FroCoS 2002, the fourth Workshop
on Frontiers of Combining Systems, after a proposal by Alessandro Armando.
At the time of writing this appendix, it is co-led by Clark Barrett, Pascal
Fontaine, and Cesare Tinelli. Clark Barrett, Leonardo de Moura, and Cesare
Tinelli currently manage the SMT-LIB benchmark repository.

1 In fact, it was reported in [94] that each tool tended to be the best on its own set
of benchmarks.

A

SMT-LIB: a Brief Tutorial

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0

309

310 A SMT-LIB: a Brief Tutorial

The current state: The current SMT-LIB standard is at version 2.5 (as
of 2015). It supports the theories that are presented in Fig. A.1. The symbols
should be interpreted as follows:

• QF for the restriction to quantifier-free formulas
• A or AX for arrays without or with extensionality
• BV for fixed-size bit-vectors
• FP for Floating-Point
• IA for integer arithmetic
• RA for real arithmetic
• IRA for mixed integer arithmetic
• IDL for integer difference logic
• RDL for rational difference logic
• L before IA, RA, or IRA for the linear fragment of those arithmetics
• N before IA, RA, or IRA for the nonlinear fragment of those arithmetics
• UF for the extension allowing free sort and function symbols

Fig. A.1. The theories supported by the SMT-LIB standard have associated bench-
marks and at least one tool that (attempts to) solve them. An arrow (T1, T2) means
that T1 is a special case of T2. The greyed nodes are theories that are covered in
this book. The figure is copied (with permission) from the SMT-LIB web-site

A.2 The SMT-LIB File Interface

The SMT-LIB standard defines a file format for describing decision problems.
The benefit of a standardized file format is that it is easy to experiment with

A.2 The SMT-LIB File Interface 311

a range of solvers, and to replace the solver used in case better solvers are
developed. The description below refers to ver. 2.0 of the standard, but ver.
2.5 is backward-compatible.

SMT-LIB files are ASCII text files, and as a consequence can be written
with any text editor that can save plain text files. The syntax is derived from
that of Common Lisp’s S-expressions. All popular solvers are able to read
formulas from files or the standard input of the program, which permits the
use of POSIX pipes to communicate with the solver. We will refrain from
giving a formal syntax and semantics for SMT-LIB files, and will instead give
examples for the most important theories.

A.2.1 Propositional Logic

We will begin with an example in propositional logic. Suppose we wanted to
check the satisfiability of

(a ∨ b) ∧ ¬a .
We first need to declare the Boolean variables a and b. The SMT-LIB syn-

tax offers the command declare-fun for declaring functions, i.e., mappings
from some sequence of function arguments to the domain of the function.
Variables are obtained by creating a function without arguments. Thus, we
will write

1 (declare-fun a () Bool)
2 (declare-fun b () Bool)

to obtain two Boolean variables named a and b. Note the empty sequence of
arguments after the name of the variable.

We can now write constraints over these variables. The syntax for the
usual Boolean constants and connectives is as follows:

true true
false false
¬a (not a)
a =⇒ b (=> a b)
a ∧ b (and a b)
a ∨ b (or a b)
a⊕ b (xor a b)

Using the operators in the table, we can write the formula above as follows:

1 (and (or a b) (not a))

Constraints are given to the SMT solver using the command assert. We
can add the formula above as a constraint by writing

1 (assert (and (or a b) (not a)))

As our formula is a conjunction of two constraints, we could have equivalently
written

312 A SMT-LIB: a Brief Tutorial

1 (assert (or a b))
2 (assert (not a))

After we have passed all constraints to the solver, we can check satisfiability
of the constraint system by issuing the following command:

1 (check-sat)

The solver will reply to this command with unsat or sat, respectively. In
the case of the formula above, we will get the answer sat. To inspect the
satisfying assignment, we issue the get-value command.

1 (get-value (a b))

This command takes a list of variables as argument. This makes it possible
to query the satisfying assignment for any subset of the variables that have
been declared.

A.2.2 Arithmetic

The SMT-LIB format standardizes syntax for arithmetic over integers and
over reals. The type of the variable is also called the sort. The SMT-LIB
syntax has a few constructs that can be used for all sorts. For instance, we
can write (= x y) to denote equality of x and y, provided that x and y have
the same sort. Similarly, we can write (disequal x y) to say that x and
y are different. The operator disequal can be applied to more than two
operands, e.g., as in (disequal a b c). This is equivalent to saying that
all the arguments are different.

The SMT-LIB syntax furthermore offers a trinary if-then-else operator,
which is denoted as (ite c x y). The first operand must be a Boolean
expression, whereas the second and third operands may have any sort as long
as the sort of x matches that of y. The expression evaluates to x if c evaluates
to true, and to y otherwise.

To write arithmetic expressions, SMT-LIB offers predefined sorts called
Real and Int. The obvious function symbols are defined, as given in the
table below.

addition +
subtraction -
unary minus -
multiplication *
division / (reals) div (integers)
remainder mod (integers only)
relations < > <= >=

Many of the operators can be chained, with the obvious meaning, as in, for
example, (+ x y z). The solver will check that the variables in an expression
have the same sort. The nonnegative integer and decimal constant symbols 1,

A.2 The SMT-LIB File Interface 313

2, 3.14, and so on are written in the obvious way. Thus, the expression 2x+ y
is written as (+ (* 2 x) y). To obtain a negative number, one uses the
unary minus operator, as in (- 1). By contrast, -1 is not accepted.

A.2.3 Bit-Vector Arithmetic

The SMT-LIB syntax offers a parametric sort BitVec, where the parameter
indicates the number of bits in the bit vector. The underscore symbol is used
to indicate that BitVec is parametric. As an example, we can define an 8-bit
bit vector a and a 16-bit bit vector b as follows:

1 (declare-fun a () (_ BitVec 8))
2 (declare-fun b () (_ BitVec 16))

Constants can be given in hexadecimal or binary notation, e.g., as follows:

1 (assert (= a #b11110000))
2 (assert (= b #xff00))

The operators are given in the table below. Recall from Chap. 6 that
the semantics of some of the arithmetic operators depend on whether the
bit vector is interpreted as an unsigned integer or as two’s complement. In
particular, the semantics differs for the division and remainder operators, and
the relational operators.

Unsigned Two’s complement

addition bvadd
subtraction bvsub
multiplication bvmul
division bvudiv bvsdiv
remainder bvurem bvsrem
relations bvult, bvugt, bvslt, bvsgt,

bvule, bvuge bvsle, bvsge
left shift bvshl
right shift bvlshr bvashr

Bit vector concatenation is done with concat. A subrange of the bits of a
bit vector can be extracted with (_ extract i j), which extracts the bits
from index j to index i (inclusive).

A.2.4 Arrays

Recall from Chap. 7 that arrays map an index type to an element type. As
an example, we would write

1 (declare-fun a () (Array Int Real))

in SMT-LIB syntax to obtain an array a that maps integers to reals. The
SMT-LIB syntax for a[i] is (select a i), and the syntax for the array
update operator a{i← e} is (store a i e).

314 A SMT-LIB: a Brief Tutorial

A.2.5 Equalities and Uninterpreted Functions

Equality logic can express equalities and disequalities over variables taken
from some unspecified set. The only assumption is that this set has an infinite
number of elements. To define the variables, we first need to declare the set
itself, i.e., in SMT-LIB terminology, we declare a new sort. The command is
declare-sort. We obtain a new sort my sort and variables a, b, and c of
that sort as follows:

(declare-sort my_sort 0)
(declare-fun a () my_sort)
(declare-fun b () my_sort)
(declare-fun c () my_sort)
(assert (= a b))
(assert (disequal a b c))

The number zero in the declare-sort command is the arity of the sort.
The arity can be used for subtyping, e.g., the arrays from above have arity
two.

B.1 Introduction

A decision procedure is always more than one algorithm. A lot of infrastructure
is required to implement even simple decision procedures. We provide a large
part of this infrastructure in the form of the DPlib library in order to simplify
the development of new procedures. DPlib is available for download,1 and
consists of the following parts:

• A template class for a basic data structure for graphs, described in
Sect. B.2.

• A parser for a simple fragment of first-order logic given in Sect. B.3.
• Code for generating propositional SAT instances in CNF format, shown

in Sect. B.4.
• A template for a decision procedure that performs a lazy encoding, de-

scribed in Sect. B.5.

To begin with, the decision problem (the formula) has to be read as input by
the procedure. The way this is done depends on how the decision procedure
interfaces with the program that generates the decision problem.

In industrial practice, many decision procedures are embedded into larger
programs in the form of a subprocedure. Programs that use a decision proce-
dure are called applications. If the run time of the decision procedure domi-
nates the total run time of the application, solvers for decision problems are
often interfaced to by means of a file interface. This chapter provides the ba-
sic ingredients for building a decision procedure that uses a file interface. We
focus on the C/C++ programming language, as all of the best-performing
decision procedures are written in this language.

The components of a decision procedure with a file interface are shown in
Fig. B.1. The first step is to parse the input file. This means that a sequence
of characters is transformed into a parse tree. The parse tree is subsequently

1 http://www.decision-procedures.org/

B

A C++ Library for Developing Decision
Procedures

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0

315

http://www.decision-procedures.org/

316 B A C++ Library for Developing Decision Procedures

checked for type errors (e.g., adding a Boolean to a real number can be con-
sidered a type error). This step is called type checking . The module of the
program that performs the parsing and type-checking phases is usually called
the front end.

Most of the decision procedures described in this book permit an arbitrary
Boolean structure in the formula, and thus have to reason about propositional
logic. The best method to do so is to use a modern SAT solver. We explain
how to interface to SAT solvers in Sect. B.4. A simple template for a decision
procedure that implements an incremental translation to propositional logic,
as described in Chap. 3, is given in Sect. B.5.

Front end

Parsing
Type

checking
Decision

procedure

Fig. B.1. Components of a decision procedure that implements a file interface

B.2 Graphs and Trees

Graphs are a basic data structure used by many decision procedures, and
can serve as a generalization of many more data structures. As an example,
trees and directed acyclic graphs are obvious special cases of graphs. We have
provided a template class that implements a generic graph container.

This class has the following design goals:

• It provides a numbering of the nodes. Accessing a node by its number is
an O(1) operation. The node numbers are stable, i.e., stay the same even
if the graph is changed or copied.

• The data structure is optimized for sparse graphs, i.e., with few edges.
Inserting or removing edges is an O(log k) operation, where k is the number
of edges. Similarly, determining if a particular edge exists is also O(log k).

• The nodes are stored densely in a vector, i.e., with very little overhead
per node. This permits a large number (millions) of nodes. However, adding
or removing nodes may invalidate references to already existing nodes.

An instance of a graph named G is created as follows:

#include "graph.h"
...
graph<graph_nodet<> > G;

B.2 Graphs and Trees 317

Initially, the graph is empty. Nodes can be added in two ways: a single node
is added using the method add node(). This method adds one node, and
returns the number of this node. If a larger number of nodes is to be added,
the method resize(i) can be used. This changes the number of nodes to i
by either adding or removing an appropriate number of nodes. Means to erase
individual nodes are not provided.

The class graph can be used for both directed and undirected graphs.
Undirected graphs are simply stored as directed graphs where edges always
exist in both directions. We write a −→ b for a directed edge from a to b, and
a←→ b for an undirected edge between a and b.

Class: graph<T>
Methods: add edge(a, b) adds a −→ b

remove edge(a, b) removes a −→ b, if it exists
add undirected
edge(a, b)

adds a←→ b

remove undirected
edge(a, b)

removes a←→ b

remove in edges(a) removes x −→ a, for any node x
remove out edges(a) removes a −→ x, for any node x
remove edges(a) removes a −→ x and x −→ a, for any node

x

Table B.1. Interface of the template class graph<T>

The methods of this template class are shown in Table B.1. The method
has edge(a, b) returns true if and only if a −→ b is in the graph. The
set of nodes x such that x −→ a is returned by in(a), and the set of nodes
x such that a −→ x is returned by out(a).

The class graph provides an implementation of the following two algo-
rithms:

• The set of nodes that are reachable from a given node a can be com-
puted using the method visit reachable(a). This method sets the
member .visited of all nodes that are reachable from node a to true.
This member can be set for all nodes to false by calling the method
clear visited().

• The shortest path from a given node a to a node b can be computed with
the method shortest path(a, b, p), which takes an object p of type
graph::patht (a list of node numbers) as its third argument, and stores
the shortest path between a and b in there. If b is not reachable from a,
then p is empty.

318 B A C++ Library for Developing Decision Procedures

B.2.1 Adding “Payload”

Many algorithms that operate on graphs may need to store additional infor-
mation per node or per edge. The container class provides a convenient way
to do so by defining a new class for this data, and using this new class as a
template argument for the template graph. As an example, this can be used
to define a graph that has an additional string member in each node:

#include "graph.h"

class my_nodet {
public:
std::string name;

};
...

graph<my_nodet> G;

Data members can be added to the edges by passing a class type as a
second template argument to the template graph nodet. As an example,
the following fragment allows a weight to be associated with each edge:

#include "graph.h"

class my_edget {
int weight;

my_edget():weight(0) {
}

};

class my_nodet {
};
...

graph<my_nodet, my_edget> G;

Individual edges can be accessed using the method edge(). The following
example sets the weight of edge a −→ b to 10:

G.edge(a, b).weight=10;

B.3 Parsing

B.3.1 A Grammar for First-Order Logic

Many decision problems are stored in a file. The decision procedure is then
passed the name of the file. The first step of the program that implements

B.3 Parsing 319

id : [a-zA-Z $][a-zA-Z0-9 $]+

N-elem : [0-9]+

Q-elem : [0-9]∗.[0-9]+

infix-function-id : + | − | ∗ | / | mod
boolop-id : ∧ | ∨ | ⇔ | =⇒
infix-relop-id : < | > | ≤ | ≥ | =
quantifier : ∀ | ∃
term : id

| N-elem | Q-elem
| id (term-list)
| term infix-function-id term
| − term
| (term)

formula : id
| id (term-list)
| term infix-relop-id term
| quantifier variable-list : formula
| (formula)
| formula boolop-id formula
| ¬ formula
| true | false

Fig. B.2. Simple BNF grammar for formulas

the decision procedure is therefore to parse the file. The file is assumed to
follow a particular syntax. We have provided a parser for a simple fragment
of first-order logic with quantifiers.

Figure B.2 shows a grammar of this fragment of first-order logic. The
grammar in Fig. B.2 uses mathematical notation. The corresponding ASCII
representations are listed in Table B.2.

All predicates, variables, and functions have identifiers. These identifiers
must be declared before they are used. Declarations of variables come with a
type. These types allow a problem that is in, for example, linear arithmetic
over the integers to be distinguished from a problem in linear arithmetic over
the reals. Figure B.3 lists the types that are predefined. The domain U is used
for types that do not fit into the other categories.

B boolean
N0 natural
Z int
R real
BN unsigned [N]
BN signed [N]
U untyped

Fig. B.3. Supported types and their ASCII representations

320 B A C++ Library for Developing Decision Procedures

Mathematical symbol Operation ASCII

¬ Negation not, !

∧ Conjunction and, &

∨ Disjunction or, |

⇔ Biimplication <=>
=⇒ Implication =>

< Less than <
> Greater than >
≤ Less than or equal to <=
≥ Greater than or equal to >=
= Equality =

∀ Universal quantification forall
∃ Existential quantification exists

− Unary minus -

· Multiplication *
/ Division /

mod Modulo (remainder) mod

+ Addition +
− Subtraction -

Table B.2. Built-in function symbols

Table B.2 also defines the precedence of the built-in operators: the op-
erators with higher precedence are listed first, and the precedence levels are
separated by horizontal lines. All operators are left-associative.

B.3.2 The Problem File Format

The input files for the parser consist of a sequence of declarations (Fig. B.4
shows an example). All variables, functions, and predicates are declared. The
declarations are separated by semicolons, and the elements in each declaration
are separated by commas. Each variable declaration is followed by a type (as
listed in Fig. B.3), which specifies the type of all variables in that declaration.

A declaration may also define a formula. Formulas are named and tagged.
Each entry starts with the name of the formula, followed by a colon and one
of the keywords theorem, axiom, or formula. The keyword is followed
by a formula. Note that the formulas are not necessarily closed : the formula
simplex contains the unquantified variables i and j. Variables that are not
quantified explicitly are implicitly quantified with a universal quantifier.

B.3 Parsing 321

a, b, x, p, n: int;
el: natural;
pi: real;
i, j: real;
u: untyped; -- an untyped variable
abs: function;
prime, divides: predicate;

absolute: axiom forall a: ((a >=0 ==> abs(a) = a) and
(a < 0 ==> abs(a) = -a)) ==>
(exists el: el = abs(a));

divides: axiom (forall a, b: divides (a, b) <=>
exists x: b = a * x);

simplex: formula (i + 5*j <= 3) and
(3*i < 3.7) and
(i > -1) and (j > 0.12)

Fig. B.4. A realistic example

B.3.3 A Class for Storing Identifiers

Decision problems often contain a large set of variables, which are represented
by identifier strings. The main operation on these identifiers is comparison.
We therefore provide a specialized string class that features string comparison
in time O(1). This is implemented by storing all identifiers inside a hash table.
Comparing strings then reduces to comparing indices for that table.

Identifiers are stored in objects of type dstring. This class offers most of
the methods that the other string container classes feature, with the exception
of any method that modifies the string. Instances of type dstring can be
copied, compared, ordered, and destroyed in time O(1), and use as much space
as an integer variable.

B.3.4 The Parse Tree

The parse tree is stored in a graph class ast::astt and is generated from a
file as follows (Fig. B.5):

1. Create an instance of the class ast::astt.
2. Call the method parse(file) with the name of the file as an argument.

The method returns true if an error was encountered during parsing.

The class ast::astt is a specialized form of a graph, and stores nodes of
type ast::nodet. The root node is returned by the method root() of the
class ast::astt. Each node stores the following information:

322 B A C++ Library for Developing Decision Procedures

#include "parsing/ast.h"

...

ast::astt ast;

if(ast.parse(argv[1])) {
std::cerr << "parsing failed" << std::endl;
exit(1);

}

Fig. B.5. Generating a parse tree

1. Each node has a numeric label (an integer). This is used to distinguish
the operators and the terminal symbols. Table B.3 contains a list of the
symbolic constants that are used for the numeric labels.

2. Nodes that contain identifiers or a numeric constant also have a string
label, which is of type dstring (see Sect. B.3.3). We use strings for the
numeric constants instead of the numeric types offered by C++ in order
to support unbounded numbers.

3. Each node may have up to two child nodes.

As described in Sect. B.2, the nodes of the graph are numbered. In fact,
the ast::nodet class is only a wrapper around these numbers, and thus
can be copied efficiently. The methods it offers are shown in Table B.4. The
methods c1() and c2() return NIL if there is no first or second child node,
respectively.

For convenience, the ast::astt class provides a symbol table, which is a
mapping from the set of identifiers to their types. Given an identifier s, the
method get type node(s) returns the node in the parse tree that corre-
sponds to the type of s.

B.4 CNF and SAT

B.4.1 Generating CNF

The library provides algorithms for converting propositional logic into CNF
using Tseitin’s method (see Sect. 1.3). The resulting clauses can be passed
directly to a propositional SAT solver. Alternatively, they can be written to
disk in the DIMACS format. The interface to both back ends is defined in the
propt base class. This class is used wherever the specific propositional back
end is to be left unspecified. Literals (i.e., variables or their negations) are

B.4 CNF and SAT 323

Name Used for

N_IDENTIFIER Identifier
N_INTEGER Integer constant
N_RATIONAL Rational constant
N_INT Integer type
N_REAL Real type
N_BOOLEAN Boolean type
N_UNSIGNED Unsigned type
N_SIGNED Signed type
N_AXIOM Axiom
N_DECLARATION Declaration
N_THEOREM Theorem
N_CONJUNCTION ∧
N_DISJUNCTION ∨
N_NEGATION ¬
N_BIIMPLICATION ⇐⇒
N_IMPLICATION =⇒
N_TRUE True
N_FALSE False
N_ADDITION +
N_SUBTRACTION −
N_MULTIPLICATION ∗
N_DIVISION /
N_MODULO mod
N_UMINUS Unary minus
N_LOWER <
N_GREATER >
N_LOWEREQUAL ≤
N_GREATEREQUAL ≥
N_EQUAL =
N_FORALL ∀
N_EXISTS ∃
N_LIST A list of nodes
N_PREDICATE Predicate
N_FUNCTION Function

Table B.3. Numeric labels of nodes and their meanings

324 B A C++ Library for Developing Decision Procedures

Class: ast::nodet
Methods: id() Returns the numeric label

string() Returns the string label
c1() Returns the first child node
c2() Returns the second child node
number() Returns the number of the node
is nil() Returns true if the node is NIL

Table B.4. Interface of the class ast::nodet

stored in objects of type literalt. The constants true and false are re-
turned by const literal(true) and const literal(false), respec-
tively.

Class: propt
Methods: land(a, b) Returns a literal l with l ⇐⇒ a ∧ b

land(v) Given a vector v = 〈v1, . . . , vn〉, returns a
literal l with l ⇐⇒

∧
i vi

lor(a, b) Returns a literal l with l ⇐⇒ a ∨ b
lor(v) Given a vector v = 〈v1, . . . , vn〉, returns a

literal l with l ⇐⇒
∨
i vi

lxor(a, b) Returns a literal l with l ⇐⇒ a⊕ b
lnot(a, b) Returns a literal l with l ⇐⇒ ¬a
lnand(a, b) Returns a literal l with l ⇐⇒ ¬(a ∧ b)
lnor(a, b) Returns a literal l with l ⇐⇒ ¬(a ∨ b)
lequal(a, b) Returns a literal l with l ⇐⇒ (a ⇐⇒ b)
limplies(a, b) Returns a literal l with l ⇐⇒ (a =⇒ b)
lselect(a, b, c) Returns a literal l with (a =⇒ (l ⇐⇒

b)) ∧ (¬a =⇒ (l ⇐⇒ c))
set equal(a, b) Adds the constraint a ⇐⇒ b
new variable() Returns a new variable
const literal(c) Returns a literal with a constant Boolean

truth value given by c

Table B.5. Interface of the class propt

The interface of the class propt is specified in Table B.5. The classes
satcheckt and dimacs cnft are derived from this class. An implemen-
tation of a state-of-the-art propositional SAT solver is given by the class
satcheckt. The additional methods it provides are shown in Table B.6.
The class dimacs cnft is used to store the clauses and dump them into a
text file that uses the DIMACS CNF format. Its interface is given in Table B.7.

B.5 A Template for a Lazy Decision Procedure 325

Class: satcheckt, derived from propt

Methods: prop solve() Returns P SATISFIABLE if the formula is
SAT

l get(l) Returns the value of l in the satisfying as-
signment

solver text() Returns a string that identifies the solver

Table B.6. Interface of the class satcheckt

Class: dimacs cnft, derived from propt

Methods: write dimacs
cnf(s)

Dumps the formula in DIMACS CNF for-
mat into the stream s

Table B.7. Interface of the class dimacs cnft

B.4.2 Converting the Propositional Skeleton

The propositional skeleton (see Chap. 3) of a parse tree can be generated
using the class skeletont. This offers an operator (), which can be applied
as follows, where root node is the root node of a formula, and prop is an
instance of propt:

#include "sat/skeleton.h"

...

skeletont skeleton;

skeleton(root_node, prop);

Besides converting the propositional part, the method also generates a vector
skeleton.nodes, where each element corresponds to a node in the parse
tree. Each node has two attributes:

• The attribute type is one of PROPOSITIONAL or THEORY, and distin-
guishes the skeleton from the theory atoms.

• In the case of a skeleton node, the attribute l is the literal that encodes
the node.

B.5 A Template for a Lazy Decision Procedure

The library provides two templates for decision procedures that compute a
propositional encoding of a given formula ϕ in the lazy manner. These algo-

326 B A C++ Library for Developing Decision Procedures

rithms are described in detail under the names Lazy-DPLL (Algorithm 3.3.2)
and DPLL(T) (Algorithm 3.4.1) in Chap. 3.

We first define a common interface for any kind of decision procedure. This
interface is defined by a class decision proceduret (Table B.8). This class
offers a method is satisfiable(ϕ), which returns true if and only if the
formula ϕ is satisfiable. If so, one may call the methods print assign-
ment(s) and get(n). The method print assignment(s) dumps the en-
tire satisfying assignment into a stream, whereas get(n) permits querying
the value of an individual node n of ϕ.

Class: decision proceduret
Methods: is satisfiable(ϕ) Returns true if the formula ϕ is found to

be SAT
print
assignment(s)

Dumps the satisfying assignment into the
stream s

get(n) Returns the value assigned to node n of ϕ

Table B.8. Interface of the class decision proceduret

Class: lazy dpllt, derived from decision proceduret

Methods: assignment(n, v) This method is called by the SAT solver
for every assignment to a Σ-literal in ϕ.
The node it corresponds to is n; the value
assigned is given by v.

deduce() This method is called once a satisfying as-
signment to the current propositional en-
coding is found.

add clause(c) Called by deduce() to add a clause as
a consequence of a T -inconsistent assign-
ment

Members: f A copy of ϕ
skeleton An instance of skeletont

Table B.9. Interface of the classes lazy dpllt and dpll tt, which are imple-
mentations of Lazy-DPLL (Algorithm 3.3.2) and DPLL(T) (Algorithm 3.4.1). The
theory T is assumed to be defined over a signature Σ

The templates that we have provided implement two of the algorithms
given in Chap. 3: Lazy-DPLL and DPLL(T). These templates include the
conversion of the propositional skeleton of ϕ into CNF, and the interface to

B.5 A Template for a Lazy Decision Procedure 327

the SAT solver. We provide a common interface to both algorithms, which is
given in Table B.9.

Class: dpll tt, derived from decision proceduret

Methods: deduce() This method is called by the SAT solver
to check a partial assignment for T -
consistency.

add clause(c) Called to add a clause as consequence of
assignment

theory
implication(n,
v)

Called to communicate a T -implication to
the SAT solver: n is the node implied, and
v is the value.

Members: f A copy of ϕ
skeleton An instance of skeletont

Table B.10. Interface of the class dpll tt, an implementation of DPLL(T) (Al-
gorithm 3.4.1)

The only part that is left open is the interface to the decision procedure for
the conjunction of Σ-literals. In the case of both algorithms, this is the method
deduce(). The assignment to the Σ-literals is passed from the SAT solver
to the deductive engine by means of calls to the method assignment(n,
v), where n is the node and v is the value that is assigned.

The method deduce() inspects this assignment to the Σ-literals. If it is
found to be consistent, deduce() is expected to return true. Otherwise, it
is expected to add appropriate constraints using the method add clause,
and to return false.

In the case of Lazy-DPLL, deduce() is called only for full assignments,
whereas DPLL(T) may call deduce() for partial assignments.

1. W. Ackermann. Solvable cases of the Decision Problem. Studies in Logic and
the Foundations of Mathematics. North-Holland, Amsterdam, 1954.

2. V. S. Adve and J. M. Mellor-Crummey. Using integer sets for data-parallel
program analysis and optimization. In J. W. Davidson, K. D. Cooper, and
A. M. Berman, editors, PLDI, pages 186–198. ACM, 1998.

3. J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient bounded
model checking of concurrent software. In N. Sharygina and H. Veith, editors,
Computer Aided Verification (CAV), volume 8044 of LNCS, pages 141–157.
Springer, 2013.

4. A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for
temporal reasoning. In 5th European Conference on Planning (ECP), volume
1809 of LNCS, pages 97–108. Springer, 1999.

5. A. Armando and E. Giunchiglia. Embedding complex decision procedures
inside an interactive theorem prover. Annals of Mathematics and Artificial
Intelligence, 8(3–4):475–502, 1993.

6. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfi-
ability procedures. Inf. Comput., 183(2):140–164, 2003.

7. G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani.
A SAT based approach for solving formulas over Boolean and linear mathemat-
ical propositions. In 18th International Conference on Automated Deduction
(CADE), volume 2392 of LNCS, pages 195–210. Springer, 2002.

8. G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT
solvers. In C. Boutilier, editor, 21st International Joint Conference on Artificial
Intelligence (IJCAI), pages 399–404, 2009.

9. A. Ayari and D. A. Basin. QUBOS: deciding quantified boolean logic using
propositional satisfiability solvers. In M. Aagaard and J. W. O’Leary, edi-
tors, Formal Methods in Computer-Aided Design, 4th International Conference
(FMCAD), volume 2517 of LNCS, pages 187–201. Springer, 2002.

10. L. Bachmair and A. Tiwari. Abstract congruence closure and specializations.
In D. A. McAllester, editor, 17th International Conference on Automated De-
duction (CADE), volume 1831 of LNCS, pages 64–78. Springer, 2000.

11. E. Balas, S. Ceria, G. Cornuejols, and N. Natraj. Gomory cuts revisited.
Operations Research Letters, 19:1–9, 1996.

References

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0

329

330 References

12. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian abstraction
for model checking C programs. In T. Margaria and W. Yi, editors, Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), volume
2031 of LNCS, pages 268–283. Springer, 2001.

13. T. Ball and S. Rajamani. Automatically validating temporal safety properties
of interfaces. In SPIN 2001 Workshop on Model Checking of Software, volume
2057 of LNCS, 2001.

14. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In International Conference on Computer-Aided Verification
(CAV), volume 3114 of LNCS. Springer, 2004.

15. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli. CVC4. In 23rd International Conference on
Computer Aided Verification (CAV), volume 6806 of LNCS, pages 171–177.
Springer, 2011.

16. C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories
with equality. In M. K. Srivas and A. J. Camilleri, editors, Formal Methods
in Computer-Aided Design, First International Conference (FMCAD), volume
1166 of LNCS, pages 187–201. Springer, 1996.

17. C. Barrett and C. Tinelli. CVC3. In 19th International Conference on
Computer Aided Verification (CAV), volume 4590 of LNCS, pages 298–302.
Springer, 2007.

18. C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for bit-vector
arithmetic. In Design Automation Conference (DAC), pages 522–527. ACM
Press, 1998.

19. C. W. Barrett, D. L. Dill, and A. Stump. Checking satisfiability of first-order
formulas by incremental translation to SAT. In 14th International Conference
on Computer Aided Verification (CAV), volume 2404 of LNCS, pages 236–249.
Springer, 2002.

20. C. W. Barrett, D. L. Dill, and A. Stump. A generalization of Shostak’s method
for combining decision procedures. In A. Armando, editor, Frontiers of Com-
bining Systems, 4th International Workshop (FroCos), volume 2309 of LNCS,
pages 132–146. Springer, 2002.

21. R. Bayardo and R. Schrag. Using CSP look-back techniques to solve real-
world SAT instances. In B. Kuipers and B. L. Webber, editors, Fourteenth
National Conference on Artificial Intelligence (AAAI), pages 203–208. AAAI
Press, 1997.

22. P. Beame, H. Kautz, and A. Sabharwal. Towards understanding and harnessing
the potential of clause learning. Journal of Artificial Intelligence Research,
22:319–351, 2004.

23. E. Ben-Sasson and A. Wigderson. Short proofs are narrow – resolution made
simple. J. ACM, 48(2):149–169, 2001.

24. M. Benedikt, T. W. Reps, and S. Sagiv. A decidable logic for describing linked
data structures. In Programming Languages and Systems, 8th European Sym-
posium on Programming (ESOP), volume 1576 of LNCS, pages 2–19. Springer,
1999.

25. J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of separa-
tion logic. In Foundations of Software Technology and Theoretical Computer
Science, 24th International Conference (FSTTCS), volume 3328 of LNCS,
pages 97–109. Springer, 2004.

References 331

26. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with sepa-
ration logic. In Programming Languages and Systems, 3rd Asian Symposium,
(APLAS), volume 3780 of LNCS, pages 52–68. Springer, 2005.

27. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic
assertion checking with separation logic. In Formal Methods for Components
and Objects (FMCO), volume 4111 of LNCS, pages 115–137. Springer, 2006.

28. D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy shape analysis. In Com-
puter Aided Verification, 18th International Conference (CAV), volume 4144
of LNCS, pages 532–546. Springer, 2006.

29. A. Biere. Resolve and expand. In 7th International Conference on Theory and
Applications of Satisfiability Testing (SAT), 2004.

30. A. Biere. PicoSAT essentials. JSAT, 4(2-4):75–97, 2008.
31. A. Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010.

SAT race: system description, 2010.
32. A. Biere, D. L. Berre, E. Lonca, and N. Manthey. Detecting cardinality con-

straints in CNF. In C. Sinz and U. Egly, editors, Theory and Applications
of Satisfiability Testing (SAT), 17th International Conference, volume 8561 of
LNCS, pages 285–301. Springer, 2014.

33. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking with-
out BDDs. In Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 1579 of LNCS, pages 193–207. Springer,
1999.

34. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs. In Design Automation Con-
ference (DAC), pages 317–320. ACM, 1999.

35. A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press,
Amsterdam, The Netherlands, 2009.

36. J. D. Bingham and Z. Rakamaric. A logic and decision procedure for predicate
abstraction of heap-manipulating programs. In Verification, Model Checking,
and Abstract Interpretation (VMCAI), volume 3855 of LNCS, pages 207–221.
Springer, 2006.

37. C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In 23rd In-
ternational Conference on Data Engineering (ICDE), pages 506–515. IEEE,
2007.

38. C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. QAGen: generating query-
aware test databases. In ACM SIGMOD International Conference on Man-
agement of Data, pages 341–352. ACM, 2007.

39. N. Bjørner. Linear quantifier elimination as an abstract decision procedure. In
J. Giesl and R. Hähnle, editors, Automated Reasoning, 5th International Joint
Conference (IJCAR), volume 6173 of LNCS, pages 316–330. Springer, 2010.

40. M. P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decid-
ability and undecidability results for Nelson–Oppen and rewrite-based decision
procedures. In Automated Reasoning (IJCAR), volume 4130 of LNCS, pages
513–527. Springer, 2006.

41. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P. van
Rossum, and R. Sebastiani. Efficient satisfiability modulo theories via delayed
theory combination. In 17th International Conference on Computer Aided Ver-
ification (CAV), volume 3576 of LNCS, pages 335–349, 2005.

332 References

42. A. R. Bradley. SAT-based model checking without unrolling. In Verification,
Model Checking, and Abstract Interpretation (VMCAI), volume 6538 of Lecture
Notes in Computer Science, pages 70–87, 2011.

43. A. R. Bradley and Z. Manna. The Calculus of Computation. Springer, 2007.
44. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays?

In Verification, Model Checking, and Abstract Interpretation, 7th International
Conference (VMCAI), volume 3855 of LNCS, pages 427–442. Springer, 2006.

45. M. Brain, V. D’Silva, A. Griggio, L. Haller, and D. Kroening. Deciding floating-
point logic with abstract conflict driven clause learning. Formal Methods in
System Design, 45(2):213–245, 2014.

46. M. Brain, L. Hadarean, D. Kroening, and R. Martins. Automatic generation
of propagation complete SAT encodings. In B. Jobstmann and K. R. M. Leino,
editors, Verification, Model Checking, and Abstract Interpretation (VMCAI),
volume 9583 of LNCS, pages 536–556. Springer, 2016.

47. M. Brain, C. Tinelli, P. Rümmer, and T. Wahl. An automatable formal se-
mantics for IEEE-754 floating-point arithmetic. In 22nd IEEE Symposium on
Computer Arithmetic (ARITH), pages 160–167. IEEE, 2015.

48. A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An algorithm
for satisfiability. Random Structures & Algorithms, 27(2):201–226, 2005.

49. A. Brillout, D. Kroening, and T. Wahl. Mixed abstractions for floating-point
arithmetic. In Proceedings of 9th International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pages 69–76. IEEE, 2009.

50. R. Brinkmann and R. Drechsler. RTL-datapath verification using integer linear
programming. In Proceedings of VLSI Design, pages 741–746. IEEE, 2002.

51. R. Brummayer and A. Biere. C32SAT: Checking C expressions. In Computer
Aided Verification (CAV), volume 4590 of LNCS, pages 294–297. Springer,
2007.

52. R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors
and arrays. In S. Kowalewski and A. Philippou, editors, Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 5505 of LNCS,
pages 174–177. Springer, 2009.

53. R. Brummayer and A. Biere. Lemmas on demand for the extensional theory
of arrays. JSAT, 6(1-3):165–201, 2009.

54. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel,
A. Palti, and R. Sebastiani. A lazy and layered SMT(BV) solver for hard in-
dustrial verification problems. In Computer Aided Verification (CAV), volume
4590 of LNCS, pages 547–560. Springer, 2007.

55. R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(12):1035–1044, 1986.

56. R. Bryant, S. German, and M. Velev. Exploiting positive equality in a logic
of equality with uninterpreted functions. In 11th International Conference on
Computer Aided Verification (CAV), volume 1633 of LNCS. Springer, 1999.

57. R. Bryant and M. Velev. Boolean satisfiability with transitivity constraints. In
12th International Conference on Computer Aided Verification (CAV), volume
1855 of LNCS. Springer, 2000.

58. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems
using a logic of counter arithmetic with lambda expressions and uninterpreted
functions. In 14th International Conference on Computer Aided Verification
(CAV), volume 2404 of LNCS. Springer, 2002.

References 333

59. H. K. Büning, M. Karpinski, and A. Flögel. Resolution for quantified Boolean
formulas. Information and Computation, 117(1):12–18, 1995.

60. R. Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 7:23–50, 1972.

61. W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding
dynamic programming errors. Softw., Pract. Exper., 30(7):775–802, 2000.

62. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In R. Draves
and R. van Renesse, editors, OSDI, pages 209–224. USENIX Association, 2008.

63. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond reachability:
Shape abstraction in the presence of pointer arithmetic. In Static Analysis,
13th International Symposium (SAS), volume 4134 of LNCS, pages 182–203.
Springer, 2006.

64. C. Calcagno, H. Yang, and P. W. O’Hearn. Computability and complexity
results for a spatial assertion language for data structures. In Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), volume
2245 of LNCS, pages 108–119. Springer, 2001.

65. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification
of software components in C. In L. A. Clarke, L. Dillon, and W. F. Tichy,
editors, ICSE, pages 385–395. IEEE Computer Society, 2003.

66. S. Chaki, A. Gurfinkel, and O. Strichman. Regression verification for multi-
threaded programs (with extensions to locks and dynamic thread creation).
Formal Methods in System Design, 47(3):287–301, 2015.

67. P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems
are. In 12th International Joint Conference on Artificial Intelligence (IJCAI),
pages 331–337, 1991.

68. H. Chen, C. David, D. Kroening, P. Schrammel, and B. Wachter. Synthesising
interprocedural bit-precise termination proofs. In M. B. Cohen, L. Grunske,
and M. Whalen, editors, Automated Software Engineering (ASE), pages 53–64.
IEEE, 2015.

69. Y. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik,
and G. Seelig. Programmable chemical controllers made from DNA. Nature
nanotechnology, 8(10):755–762, 2013.

70. J. Christ and J. Hoenicke. Weakly equivalent arrays. In P. Rümmer and C. M.
Wintersteiger, editors, Satisfiability Modulo Theories (SMT), volume 1163 of
CEUR Workshop Proceedings, pages 39–49, 2014.

71. A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. The MathSAT5 SMT
solver. In N. Piterman and S. Smolka, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 7795 of LNCS, pages
93–107. Springer, 2013.

72. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C pro-
grams. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 2988 of LNCS, pages 168–176. Springer, 2004.

73. E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction
of ANSI-C programs using SAT. Formal Methods in System Design, 25(2-
3):105–127, 2004.

74. B. Cook, D. Kroening, P. Rümmer, and C. M. Wintersteiger. Ranking function
synthesis for bit-vector relations. Formal Methods in System Design, 43(1):93–
120, 2013.

334 References

75. B. Cook, D. Kroening, and N. Sharygina. Accurate theorem proving for pro-
gram verification. In Leveraging Applications of Formal Methods, First Inter-
national Symposium (ISoLA), volume 4313 of LNCS, pages 96–114. Springer,
2006.

76. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems
code. In M. I. Schwartzbach and T. Ball, editors, ACM SIGPLAN 2006 Con-
ference on Programming Language Design and Implementation (PLDI), pages
415–426. ACM, 2006.

77. S. Cook. The complexity of theorem-proving procedures. In 3rd Annual ACM
Symposium on Theory of Computing, pages 151–158, 1971.

78. D. C. Cooper. Theorem proving in arithmetic without multiplication. In
Machine Intelligence, pages 91–100. Edinburgh University Press, 1972.

79. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y.
Vardi. Benefits of bounded model checking at an industrial setting. In 13th
International Conference on Computer Aided Verification (CAV), volume 2102
of LNCS, pages 436–453, 2001.

80. L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based Bounded Model
Checking for embedded ANSI-C software. In ASE, pages 137–148. IEEE Com-
puter Society, 2009.

81. F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway decision
graphs for automated hardware verification. Formal Methods in System Design,
10(1):7–46, 1997.

82. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms, chapter
25.3, pages 532–536. MIT Press, 2000.

83. D. W. Currie, A. J. Hu, and S. P. Rajan. Automatic formal verification of DSP
software. In Design Automation Conference (DAC), pages 130–135. ACM,
2000.

84. G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

85. C. David, D. Kroening, and M. Lewis. Propositional reasoning about safety and
termination of heap-manipulating programs. In J. Vitek, editor, Programming
Languages and Systems, 24th European Symposium on Programming (ESOP),
volume 9032 of LNCS, pages 661–684. Springer, 2015.

86. C. David, D. Kroening, and M. Lewis. Unrestricted termination and non-
termination arguments for bit-vector programs. In J. Vitek, editor, Program-
ming Languages and Systems, 24th European Symposium on Programming
(ESOP), volume 9032 of LNCS, pages 183–204. Springer, 2015.

87. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

88. M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

89. H. de Jong. Modeling and simulation of genetic regulatory systems: A literature
review. Journal of Computational Biology, 9(1):67–103, 2002.

90. L. de Moura. System description: Yices 0.1. Technical report, Computer Sci-
ence Laboratory, SRI International, 2005.

91. L. de Moura and N. Bjørner. Model-based theory combination. In Satisfiability
Modulo Theories (SMT), 2007.

92. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R. Ramakr-
ishnan and J. Rehof, editors, Tools and Algorithms for the Construction and

References 335

Analysis of Systems, 14th International Conference (TACAS), volume 4963 of
LNCS, pages 337–340. Springer, 2008.

93. L. de Moura and H. Ruess. Lemmas on demand for satisfiability solvers. In
Theory and Applications of Satisfiability Testing (SAT), 2002.

94. L. de Moura and H. Ruess. An experimental evaluation of ground decision
procedures. In 16th International Conference on Computer Aided Verification
(CAV), volume 3114 of LNCS, pages 162–174. Springer, 2004.

95. L. de Moura, H. Ruess, and N. Shankar. Justifying equality. In Second Work-
shop on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR),
2004.

96. L. M. de Moura and N. Bjørner. Efficient E-matching for SMT solvers. In
Automated Deduction, 21st International Conference on Automated Deduction
(CADE), volume 4603 of LNCS, pages 183–198. Springer, 2007.

97. L. M. de Moura and N. Bjørner. Generalized, efficient array decision proce-
dures. In 9th International Conference on Formal Methods in Computer-Aided
Design (FMCAD), pages 45–52, 2009.

98. R. Dechter. Constraint Processing. The Morgan Kaufmann Series in Artificial
Intelligence. Morgan Kaufmann, 2003.

99. N. Dershowitz, Z. Hanna, and A. Nadel. A clause-based heuristic for SAT
solvers. In F. Bacchus and T. Walsh, editors, Theory and Applications of Sat-
isfiability Testing, 8th International Conference (SAT), volume 3569 of LNCS,
pages 46–60. Springer, 2005.

100. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of The-
oretical Computer Science (Volume B): Formal Models and Semantics, pages
243–320. MIT Press, 1990.

101. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. Journal of the ACM, 52(3):365–473, May 2005.

102. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.
In Programming Language Design and Implementation (PLDI), pages 230–241.
ACM, 1994.

103. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 3920 of LNCS, pages 287–302. Springer, 2006.

104. A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in
practice. Technical Report MIP9720, FMI, Universität Passau, Dec. 1997.

105. P. J. Downey. Undecidability of Presburger arithmetic with a single monadic
predicate letter. Technical Report TR-18-72, Center for Research in Computing
Technology, Harvard University, 1972.

106. P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subex-
pression problem. J. ACM, 27(4):758–771, October 1980.

107. S. Dunn, G. Martello, B. Yordanov, S. Emmott, and A. Smith. Defining an es-
sential transcription factor program for näıve pluripotency. Science, 344(6188),
2014.

108. B. Dutertre and L. de Moura. A fast linear-arithmetic solver for DPLL(T). In
18th International Conference on Computer Aided Verification (CAV), volume
4144 of LNCS, pages 81–94. Springer, 2006.

109. B. Dutertre and L. de Moura. Integrating Simplex with DPLL(T). Technical
Report SRI-CSL-06-01, Stanford Research Institute (SRI), 2006.

336 References

110. N. Eén and N. Sörensson. An extensible SAT-solver [ver 1.2]. In Theory and
Applications of Satisfiability Testing, volume 2919 of LNCS, pages 512–518.
Springer, 2003.

111. D. R. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent behavior: A gen-
eral approach to inferring errors in systems code. In 18th ACM Symposium on
Operating System Principles (SOSP), pages 57–72. ACM, 2001.

112. J. Ferrante and C. Rackoff. A decision procedure for the first order theory of
real addition with order. SIAM J. Comput., 4(1):69–76, 1975.

113. J. Filliatre, S. Owre, H. Ruess, and N. Shankar. ICS: Integrated canonizer
and solver. In 13th International Conference on Computer Aided Verification
(CAV), volume 2102 of LNCS, pages 246–249. Springer, 2001.

114. M. J. Fischer and M. O. Rabin. Super-exponential complexity of Presburger
arithmetic. In SIAM-AMS Symposium in Applied Mathematics, volume 7,
pages 27–41, 1974.

115. C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using lazy
proof explication. In Computer Aided Verification (CAV), volume 2725 of
LNCS, pages 355–367. Springer, 2003.

116. R. Floyd. Assigning meanings to programs. Symposia in Applied Mathematics,
19:19–32, 1967.

117. V. Ganesh, S. Berezin, and D. Dill. Deciding Presburger arithmetic by
model checking and comparisons with other methods. In Formal Methods
in Computer-Aided Design (FMCAD), volume 2517 of LNCS, pages 171–186.
Springer, 2002.

118. V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays.
In Computer Aided Verification (CAV), volume 4590 of LNCS, pages 519–531.
Springer, 2007.

119. H. Ganzinger. Shostak light. In A. Voronkov, editor, Automated Deduction,
18th International Conference on Automated Deduction (CADE), volume 2392
of LNCS, pages 332–346. Springer, 2002.

120. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): Fast decision procedures. In 16th International Conference on
Computer Aided Verification (CAV), volume 3114 of LNCS, pages 175–188.
Springer, 2004.

121. Y. Ge, C. W. Barrett, and C. Tinelli. Solving quantified verification conditions
using satisfiability modulo theories. Ann. Math. Artif. Intell., 55(1-2):101–122,
2009.

122. A. V. Gelder and Y. Tsuji. Incomplete thoughts about incomplete satisfiabil-
ity procedures. In 2nd DIMACS Challenge Workshop: Cliques, Coloring and
Satisfiability, 1993.

123. R. Gershman, M. Koifman, and O. Strichman. Deriving small unsatisfiable
cores with dominators. In 18th International Conference on Computer Aided
Verification (CAV), volume 4144 of LNCS, pages 109–122. Springer, 2006.

124. R. Gershman and O. Strichman. HaifaSat: A new robust SAT solver. In
1st International Haifa Verification Conference, volume 3875 of LNCS, pages
76–89. Springer, 2005.

125. M. Ghasemzadeh, V. Klotz, and C. Meinel. Embedding memoization to the
semantic tree search for deciding QBFs. In Australian Conference on Artificial
Intelligence, pages 681–693, 2004.

References 337

126. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Deciding extensions of the
theory of arrays by integrating decision procedures and instantiation strategies.
In Logics in Artificial Intelligence (JELIA), volume 4160 of LNCS, pages 177–
189. Springer, 2006.

127. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for
extensions of the theory of arrays. Ann. Math. Artif. Intell., 50(3-4):231–254,
2007.

128. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas
satisfiability library (QBFLIB), 2001. www.qbflib.org.

129. F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics
from propositional decision procedures – the case study of modal K. In Au-
tomated Deduction (CADE), volume 1104 of LNCS, pages 583–597. Springer,
1996.

130. P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, W. Schulte, N. Till-
mann, and M. Y. Levin. Automating software testing using program analysis.
IEEE Software, 25(5):30–37, 2008.

131. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random
testing. In V. Sarkar and M. W. Hall, editors, PLDI, pages 213–223. ACM,
2005.

132. A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal. BDD based procedures
for a theory of equality with uninterpreted functions. In Computer Aided Ver-
ification, 10th International Conference (CAV), volume 1427 of LNCS, pages
244–255. Springer, 1998.

133. E. Goldberg and Y. Novikov. Berkmin: A fast and robust SAT-solver. In
Design, Automation and Test in Europe Conference and Exhibition (DATE),
page 142, 2002.

134. R. Gomory. An algorithm for integer solutions to linear problems. In Re-
cent Advances in Mathematical Programming, pages 269–302, New York, 1963.
McGraw-Hill.

135. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In
O. Grumberg, editor, Computer Aided Verification, 9th International Confer-
ence (CAV), volume 1254 of LNCS. Springer, 1997.

136. L. Hadarean, K. Bansal, D. Jovanovic, C. Barrett, and C. Tinelli. A tale of two
solvers: Eager and lazy approaches to bit-vectors. In A. Biere and R. Bloem,
editors, Computer Aided Verification (CAV), volume 8559 of LNCS, pages 680–
695. Springer, 2014.

137. A. Haken. The intractability of resolution. Theoretical Computer Science,
39:297–308, 1985.

138. J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2008.

139. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Symposium on Principles of Programming Languages, pages 58–70, 2002.

140. M. Heule, O. Kullmann, S. Wieringa, and A. Biere. Cube and conquer: Guiding
CDCL SAT solvers by lookaheads. In Haifa Verification Conference, volume
7261 of LNCS, pages 50–65. Springer, 2011.

141. J. Heusser and P. Malacaria. Quantifying information leaks in software. In
C. Gates, M. Franz, and J. P. McDermott, editors, Twenty-Sixth Annual Com-
puter Security Applications Conference (ACSAC), pages 261–269. ACM, 2010.

142. F. Hillier and G. Lieberman. Introduction to Mathematical Programming.
McGraw-Hill, 1990.

www.qbflib.org

338 References

143. E. A. Hirsch and A. Kojevnikov. UnitWalk: A new SAT solver that uses local
search guided by unit clause elimination. Annals of Mathematics and Artificial
Intelligence, 43(1):91–111, 2005.

144. C. Hoare. An axiomatic basis for computer programming. Comm. ACM,
12(10):576–580, 1969.

145. C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming
language PASCAL. Acta Informatica, 2(4):335–355, December 1973.

146. R. Hojati, A. Isles, D. Kirkpatrick, and R. Brayton. Verification using uninter-
preted functions and finite instantiations. In 1st International Conference on
Formal Methods in Computer-Aided Design (FMCAD), volume 1166 of LNCS,
pages 218–232. Springer, 1996.

147. R. Hojati, A. Kuehlmann, S. German, and R. Brayton. Validity checking in
the theory of equality using finite instantiations. In International Workshop
on Logic Synthesis, 1997.

148. J. N. Hooker. Solving the incremental satisfiability problem. Journal of Logic
Programming, 15:177–186, 1993.

149. I. Horrocks. The FaCT system. In H. de Swart, editor, TABLEAUX-98, volume
1397 of LNAI, pages 307–312. Springer, 1998.

150. J. Huang. MUP: A minimal unsatisfiability prover. In 10th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 432–437, 2005.

151. G. Huet and D. Oppen. Equations and rewrite rules: A survey. In Formal
Language Theory: Perspectives and Open Problems, pages 349–405. Academic
Press, 1980.

152. A. P. Hurst, P. Chong, and A. Kuehlmann. Physical placement driven by
sequential timing analysis. In International Conference on Computer-Aided
Design (ICCAD), pages 379–386. IEEE Computer Society/ACM, 2004.

153. N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G. Yorsh. The
boundary between decidability and undecidability for transitive-closure log-
ics. In Computer Science Logic (CSL), volume 3210 of LNCS, pages 160–174.
Springer, 2004.

154. O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Bounded
model checking of multi-threaded C programs via lazy sequentialization. In
A. Biere and R. Bloem, editors, Computer Aided Verification (CAV), volume
8559 of LNCS, pages 585–602. Springer, 2014.

155. F. Ivancic, I. Shlyakhter, A. Gupta, and M. K. Ganai. Model checking C
programs using F-SOFT. In International Conference on Computer Design
(ICCD), pages 297–308. IEEE Computer Society, 2005.

156. J. Jaffar. Presburger arithmetic with array segments. Inf. Process. Lett.,
12(2):79–82, 1981.

157. G. Johnson. Separating the insolvable and the merely difficult. New York
Times, July 13 1999.

158. D. Jovanovic and C. Barrett. Polite theories revisited. In C. G. Fermüller and
A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Rea-
soning, 17th International Conference (LPAR), volume 6397 of LNCS, pages
402–416. Springer, 2010.

159. D. Jovanovic and C. Barrett. Sharing is caring: Combination of theories. In
C. Tinelli and V. Sofronie-Stokkermans, editors, Frontiers of Combining Sys-
tems, 8th International Symposium (FroCoS), volume 6989 of LNCS, pages
195–210. Springer, 2011.

References 339

160. T. Jussila, A. Biere, C. Sinz, D. Kroening, and C. M. Wintersteiger. A first
step towards a unified proof checker for QBF. In Theory and Applications of
Satisfiability Testing (SAT), volume 4501 of LNCS, pages 201–214. Springer,
2007.

161. A. Kaiser, D. Kroening, and T. Wahl. Efficient coverability analysis by proof
minimization. In M. Koutny and I. Ulidowski, editors, CONCUR, volume 7454
of LNCS, pages 500–515. Springer, 2012.

162. M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic, 2000.

163. S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution
for model checking and testing. In Tools and Algorithms for the Construction
and Analysis of Systems, 9th International Conference (TACAS), pages 553–
568, 2003.

164. J. Kim, J. Whittemore, J. Silva, and K. Sakallah. Incremental Boolean satisfi-
ability and its application to delay fault testing. In IEEE/ACM International
Workshop on Logic Synthesis (IWLS), June 1999.

165. J. C. King. A new approach to program testing. In C. Hackl, editor, Program-
ming Methodology, volume 23 of LNCS, pages 278–290. Springer, 1974.

166. S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random
Boolean expressions. Science, 264(5163):1297–1301, 1994.

167. D. E. Knuth. The Art of Computer Programming Volume 4, Fascicle 1.
Addison-Wesley Professional, 2009. Bitwise tricks & techniques; Binary Deci-
sion Diagrams.

168. D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 6. Pear-
son Education, 2016. Satisfiability.

169. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In
N. Sharygina and H. Veith, editors, Computer Aided Verification, 25th Inter-
national Conference (CAV), volume 8044 of LNCS, pages 1–35. Springer, 2013.

170. D. Kroening, E. Clarke, and K. Yorav. Behavioral consistency of C and Verilog
programs using bounded model checking. In Design Automation Conference
(DAC), pages 368–371. ACM, 2003.

171. D. Kroening and O. Strichman. A framework for satisfiability modulo theories.
Formal Aspects of Computing, 21(5):485–494, 2009.

172. V. Kuncak and M. C. Rinard. Existential heap abstraction entailment is un-
decidable. In Static Analysis (SAS), volume 2694 of LNCS, pages 418–438.
Springer, 2003.

173. R. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton
University Press, 1994.

174. S. K. Lahiri, R. E. Bryant, A. Goel, and M. Talupur. Revisiting positive
equality. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 2988 of LNCS, pages 1–15. Springer, 2004.

175. S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists.
In Principles of Programming Languages (POPL), pages 115–126. ACM, 2006.

176. S. K. Lahiri and S. Qadeer. Back to the future: Revisiting precise program ver-
ification using SMT solvers. In Principles of Programming Languages (POPL),
pages 171–182. ACM, 2008.

177. A. Lal and S. Qadeer. Powering the Static Driver Verifier using Corral. In
S. Cheung, A. Orso, and M. D. Storey, editors, 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (FSE), pages
202–212. ACM, 2014.

340 References

178. A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo theories. In
P. Madhusudan and S. A. Seshia, editors, Computer Aided Verification (CAV),
volume 7358 of LNCS, pages 427–443. Springer, 2012.

179. A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. In A. Gupta and S. Malik, editors, Computer Aided
Verification (CAV), volume 5123 of LNCS, pages 37–51. Springer, 2008.

180. S. Lee and D. Plaisted. Eliminating duplication with the hyper-linking strategy.
Journal of Automated Reasoning, 9:25–42, 1992.

181. K. R. M. Leino. Toward reliable modular programs. PhD thesis, CalTech, 1995.
Available as Technical Report Caltech-CS-TR-95-03.

182. M. Levine and E. Davidson. Gene regulatory networks for development. Pro-
ceedings of the National Academy of Sciences, 102(14):4936–4942, 2005.

183. R. Loos and V. Weispfenning. Applying linear quantifier elimination. Comput.
J., 36(5):450–462, 1993.

184. I. Lynce and J. Marques-Silva. On computing minimum unsatisfiable cores. In
International Symposium on Theory and Applications of Satisfiability Testing
(SAT), pages 305–310, 2004.

185. M. Mahfoudh. On Satisfiability Checking for Difference Logic. PhD thesis,
Verimag, France, 2003.

186. M. Mahfoudh, P. Niebert, E. Asarin, and O. Maler. A satisfiability checker for
difference logic. In 5th International Conference on Theory and Applications
of Satisfiability Testing (SAT), pages 222–230, 2002.

187. R. Manevich, E. Yahav, G. Ramalingam, and S. Sagiv. Predicate abstraction
and canonical abstraction for singly-linked lists. In Verification, Model Check-
ing, and Abstract Interpretation, 6th International Conference (VMCAI), vol-
ume 3385 of LNCS, pages 181–198. Springer, 2005.

188. P. Manolios, S. K. Srinivasan, and D. Vroon. Automatic memory reductions
for RTL model verification. In International Conference on Computer-Aided
Design (ICCAD), pages 786–793. ACM, 2006.

189. P. Manolios and D. Vroon. Efficient circuit to CNF conversion. In Theory and
Applications of Satisfiability Testing (SAT), volume 4501 of LNCS, pages 4–9.
Springer, 2007.

190. P. Mateti. A decision procedure for the correctness of a class of programs. J.
ACM, 28(2):215–232, 1981.

191. J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expres-
sions. In Proceedings Symposium in Applied Mathematics, Volume 19, Math-
ematical Aspects of Computer Science, pages 33–41. American Mathematical
Society, 1967.

192. K. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.
193. K. L. McMillan. Interpolation and SAT-based model checking. In 15th Inter-

national Conference on Computer Aided Verification (CAV), volume 2725 of
LNCS, pages 1–13. Springer, Jul 2003.

194. O. Meir and O. Strichman. Yet another decision procedure for equality logic. In
17th International Conference on Computer Aided Verification (CAV), volume
3576 of LNCS, pages 307–320. Springer, 2005.

195. F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded model checking of C and
C++ programs using a compiler IR. In R. Joshi, P. Müller, and A. Podelski,
editors, VSTTE, volume 7152 of LNCS, pages 146–161. Springer, 2012.

196. M. Mezard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of
random satisfiability problems. Science, 297(5582):812–815, 2002.

References 341

197. D. G. Mitchell, B. Selman, and H. J. Levesque. Hard and easy distributions for
SAT problems. In Tenth National Conference on Artificial Intelligence, pages
459–465. AAAI Press, 1992.

198. A. Møller and M. I. Schwartzbach. The pointer assertion logic engine. In 2001
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 221–231. ACM, 2001.

199. J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference decision
diagrams. In 13th International Conference on Computer Science Logic, volume
1683 of LNCS, pages 111–125. Springer, 1999.

200. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. De-
termining computational complexity from characteristic phase transitions. Na-
ture, 400(8):133–137, 1999.

201. U. Montanari. Networks of constraints: fundamental properties and applica-
tions to picture processing. Information Science, 7, 1976.

202. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In 38th Design Automation Conference
(DAC), June 2001.

203. A. Nadel. Boosting minimal unsatisfiable core extraction. In R. Bloem and
N. Sharygina, editors, 10th International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pages 221–229. IEEE, 2010.

204. G. Nelson. Verifying reachability invariants of linked structures. In Tenth
Annual ACM Symposium on Principles of Programming Languages (POPL),
pages 38–47. ACM, 1983.

205. G. Nelson and D. C. Oppen. Fast decision procedures based on UNION
and FIND. In 18th Annual Symposium on Foundations of Computer Science
(FOCS), pages 114–119. IEEE, 1977.

206. G. Nelson and D. C. Oppen. Simplification by cooperating decision proce-
dures. ACM Transactions on Programming Languages and Systems, 1(2):245–
257, Oct 1979.

207. G. Nelson and F. F. Yao. Solving reachability constraints for linear lists.
Technical report, 1982.

208. G. Nemhauser and L. Wosley. Integer and Combinatorial Optimization. Wiley-
Interscience, 1999.

209. R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation
and its application to difference logic. In 17th International Conference on
Computer Aided Verification (CAV), volume 3576 of LNCS, pages 321–334.
Springer, 2005.

210. R. Nieuwenhuis and A. Oliveras. Proof-producing congruence closure. In 16th
International Conference on Term Rewriting and Applications (RTA), volume
3467 of LNCS, pages 453–468. Springer, 2005.

211. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo
theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to
DPLL(T). J. ACM, 53(6):937–977, 2006.

212. E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham. Un-
derstanding random SAT: Beyond the clauses-to-variables ratio. In Principles
and Practice of Constraint Programming (CP), pages 438–452, 2004.

213. C. Oh. Between SAT and UNSAT: the fundamental difference in CDCL SAT.
In M. Heule and S. Weaver, editors, Theory and Applications of Satisfiability
Testing - SAT, volume 9340 of LNCS, pages 307–323, 2015.

342 References

214. Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov.
AMUSE: A minimally-unsatisfiable subformula extractor. In Design Automa-
tion Conference (DAC), pages 518–523, 2004.

215. D. C. Oppen. Complexity, convexity and combinations of theories. Theoretical
Computer Science, 12(3):291–302, 1980.

216. N. Paoletti, B. Yordanov, Y. Hamadi, C. Wintersteiger, and H. Kugler. An-
alyzing and synthesizing genomic logic functions. In CAV, volume 8559 of
LNCS. Springer, 2014.

217. M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In
32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 247–258. ACM, 2005.

218. G. Parthasarathy, M. K. Iyer, K.-T. Cheng, and L.-C. Wang. An efficient
finite-domain constraint solver for circuits. In Design Automation Conference
(DAC), pages 212–217. ACM Press, 2004.

219. P. F. Patel-Schneider. DLP system description. In E. Franconi, G. D. Giacomo,
R. M. MacGregor, W. Nutt, and C. A. Welty, editors, International Workshop
on Description Logics (DL), volume 11 of CEUR Workshop Proceedings, pages
87–89, 1998.

220. J. Petke and P. Jeavons. The order encoding: From tractable CSP to tractable
SAT. In Theory and Applications of Satisfiability Testing (SAT), volume 6695
of Lecture Notes in Computer Science, pages 371–372. Springer, 2011.

221. A. Phillips and L. Cardelli. A programming language for composable DNA
circuits. Journal of The Royal Society Interface, 6(4):1470–1485, 2009.

222. K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme
for satisfiability solvers. In 10th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT), pages 294–299, 2007.

223. K. Pipatsrisawat and A. Darwiche. RSAT 2.0: SAT solver description, 2007.
SAT solvers competition.

224. R. Piskac, L. de Moura, and N. Bjørner. Deciding effectively propositional
logic with equality. Technical Report MSR-TR-2008-181, Microsoft Research,
2008.

225. D. A. Plaisted and S. Greenbaum. A structure-preserving clause form trans-
lation. Journal of Symbolic Computation, 2(3):293–304, September 1986.

226. A. Pnueli, Y. Rodeh, and O. Shtrichman. Range allocation for equivalence
logic. In R. Hariharan, M. Mukund, and V. Vinay, editors, 21st Confer-
ence on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), volume 2245 of LNCS, pages 317–333. Springer, 2001.

227. A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality for-
mulas by small-domains instantiations. In 11th International Conference on
Computer Aided Verification (CAV), volume 1633 of LNCS. Springer, 1999.

228. A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. The small model property:
How small can it be? Information and Computation, 178(1):279–293, Oct.
2002.

229. A. Pnueli and O. Strichman. Reduced functional consistency of uninterpreted
functions. In Pragmatics of Decision Procedures for Automated Reasoning
(PDPAR), number 898 in Electronic Notes in Computer Science, 2005.

230. A. Podelski and T. Wies. Boolean heaps. In Static Analysis, 12th International
Symposium (SAS), volume 3672 of LNCS, pages 268–283. Springer, 2005.

231. V. Pratt. Two easy theories whose combination is hard. Technical report,
Massachusetts Institute of Technology, 1977.

References 343

232. M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In
Comptes Rendus du I congrès de Mathématiciens des Pays Slaves, pages 92–
101, Warszawa, 1929.

233. W. Pugh. A practical algorithm for exact array dependence analysis. Commun.
ACM, 35(8):102–114, 1992.

234. L. Qian and E. Winfree. Scaling up digital circuit computation with DNA
strand displacement cascades. Science, 332(6034):1196–1201, 2011.

235. L. Qian, E. Winfree, and J. Bruck. Neural network computation with DNA
strand displacement cascades. Nature, 475(7356):368–372, 2011.

236. M. O. Rabin. Decidability of second-order theories and automata on infinite
trees. Transactions of the American Mathematical Society, 141:1–35, July 1969.

237. I. Rabinovitz and O. Grumberg. Bounded model checking of concurrent pro-
grams. In K. Etessami and S. K. Rajamani, editors, Computer Aided Veri-
fication, 17th International Conference (CAV), volume 3576 of LNCS, pages
82–97. Springer, 2005.

238. S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with
nonstably infinite theories using many-sorted logic. In B. Gramlich, editor,
Frontiers of Combining Systems, 5th International Workshop (FroCoS), vol-
ume 3717 of LNCS, pages 48–64. Springer, 2005.

239. S. Ranise and C. Tinelli. The SMT-LIB standard: Version 1.2. Technical report,
Department of Computer Science, The University of Iowa, 2006. Available at
www.SMT-LIB.org.

240. T. W. Reps, S. Sagiv, and R. Wilhelm. Static program analysis via 3-valued
logic. In Computer Aided Verification, 16th International Conference (CAV),
volume 3114 of LNCS, pages 15–30. Springer, 2004.

241. J. C. Reynolds. Reasoning about arrays. Communications of the ACM,
22(5):290–299, 1979.

242. J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
In 17th IEEE Symposium on Logic in Computer Science (LICS), pages 55–74.
IEEE Computer Society, 2002.

243. J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, January 1965.

244. J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning
(in 2 volumes). Elsevier and MIT Press, 2001.

245. Y. Rodeh. Techniques in Decision Procedures for Equality Logic and Improved
Model Checking Methods. PhD thesis, Weizmann Institute of Science, 2003.

246. Y. Rodeh and O. Shtrichman. Finite instantiations in equivalence logic with
uninterpreted functions. In Computer Aided Verification (CAV), 2001.

247. M. Rozanov and O. Strichman. Generating minimum transitivity constraints
in P-time for deciding equality logic. In Satisfiability Modulo Theories (SMT),
2007.

248. L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University, 2004.

249. V. Ryvchin and O. Strichman. Faster extraction of high-level minimal unsatis-
fiable cores. In K. A. Sakallah and L. Simon, editors, Theory and Applications
of Satisfiability Testing (SAT), volume 6695 of LNCS, pages 174–187. Springer,
2011.

344 References

250. A. Sabharwal, C. Ansótegui, C. P. Gomes, J. W. Hart, and B. Selman. QBF
modeling: Exploiting player symmetry for simplicity and efficiency. In 9th
International Conference on Theory and Applications of Satisfiability Testing
(SAT), pages 382–395, 2006.

251. S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. In POPL, pages 105–118, 1999.

252. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.
253. R. Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability,

Boolean Modeling and Computation, JSAT, 3, 2007.
254. B. Selman, H. J. Levesque, and D. G. Mitchell. A new method for solving hard

satisfiability problems. In 10th National Conference on Artificial Intelligence
(AAAI), pages 440–446, 1992.

255. K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In T. Ball and R. B. Jones, editors, 18th International
Conference on Computer Aided Verification (CAV), volume 4144 of LNCS,
pages 419–423. Springer, 2006.

256. S. Seshia, S. Lahiri, and R. Bryant. A hybrid SAT-based decision procedure for
separation logic with uninterpreted functions. In Proc. of Design Automation
Conference (DAC), pages 425–430, 2003.

257. N. Shankar and H. Ruess. Combining Shostak theories. In S. Tison, editor,
Rewriting Techniques and Applications, 13th International Conference (RTA),
volume 2378 of LNCS, pages 1–18. Springer, 2002.

258. R. E. Shostak. An algorithm for reasoning about equality. Commun. ACM,
21(7):583–585, 1978.

259. R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1–
12, January 1984.

260. O. Shtrichman. Sharing information between instances of a propositional sat-
isfiability (SAT) problem, Dec 2000. US Patent 2002/0123867 A1.

261. O. Shtrichman. Pruning techniques for the SAT-based bounded model checking
problem. In 11th Advanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARME), volume 2144 of LNCS, pages
58–70. Springer, 2001.

262. J. Silva and K. Sakallah. GRASP – a new search algorithm for satisfiability.
Technical Report TR-CSE-292996, University of Michigan, 1996.

263. E. Singerman. Challenges in making decision procedures applicable to industry.
In PDPAR 2005. Electronic Notes in Computer Science, 144(2), 2006.

264. L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1–22, 1977.

265. L. Stockmeyer and A. Meyer. Word problems requiring exponential time. In
5th Annual ACM Symposium on Theory of Computing (STOC), pages 1–9.
ACM, 1973.

266. O. Strichman. On solving Presburger and linear arithmetic with SAT. In
Formal Methods in Computer-Aided Design (FMCAD), volume 2517 of LNCS,
pages 160–170. Springer, 2002.

267. O. Strichman, S. Seshia, and R. Bryant. Deciding separation formulas with
SAT. In 14th International Conference on Computer Aided Verification (CAV),
volume 2404 of LNCS, pages 209–222. Springer, July 2002.

268. A. Stump, C. Barrett, and D. Dill. CVC: a cooperating validity checker. In
14th International Conference on Computer Aided Verification (CAV), volume
2404 of LNCS, pages 500–504. Springer, 2002.

References 345

269. A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure
for an extensional theory of arrays. In 16th Annual IEEE Symposium on Logic
in Computer Science (LICS), pages 29–37. IEEE, 2001.

270. A. Stump and L.-Y. Tan. The algebra of equality proofs. In Term Rewriting
and Applications, 16th International Conference (RTA), volume 3467 of LNCS,
pages 469–483. Springer, 2005.

271. G. Sutcliffe and C. Suttner. The state of CASC. AI Communications, 19(1):35–
48, 2006.

272. N. Suzuki and D. Jefferson. Verification decidability of Presburger array pro-
grams. J. ACM, 27(1):191–205, 1980.

273. M. Talupur, N. Sinha, O. Strichman, and A. Pnueli. Range-allocation for sepa-
ration logic. In 16th International Conference on Computer Aided Verification
(CAV), volume 3114 of LNCS, pages 148–161. Springer, July 2004.

274. C. Tinelli. A DPLL-based calculus for ground satisfiability modulo theories.
In Proc. 8th European Conference on Logics in Artificial Intelligence, volume
2424 of LNAI, pages 308–319. Springer, 2002.

275. C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen
combination procedure. In Frontiers of Combining Systems: 1st International
Workshop, pages 103–120. Kluwer Academic, 1996.

276. C. Tinelli and C. Zarba. Combining nonstably infinite theories. Journal of
Automated Reasoning, 34(3):209–238, 2005.

277. G. Tseitin. On the complexity of proofs in propositional logics. In Automation
of Reasoning: Classical Papers in Computational Logic 1967–1970, volume 2.
Springer, 1983. Originally published 1970.

278. R. J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer,
1996.

279. M. Veksler and O. Strichman. Learning general constraints in CSP. Artificial
Intelligence, 238:135–153, 2016.

280. W. Visser, S. Park, and J. Penix. Using predicate abstraction to reduce object-
oriented programs for model checking. In M. P. E. Heimdahl, editor, Third
Workshop on Formal Methods in Software Practic (FMSP), pages 3–182. ACM,
2000.

281. J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental satisfi-
ability engine. In IEEE/ACM Design Automation Conference (DAC), 2001.

282. R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. In Compiler Construc-
tion (CC), volume 1781 of LNCS, pages 1–17. Springer, 2000.

283. H. P. Williams. Fourier-Motzkin elimination extension to integer programming
problems. Journal of Combinatorial Theory, 21:118–123, July 1976.

284. R. Williams, C. P. Gomes, and B. Selman. Backdoors to typical case complex-
ity. In IJCAI, pages 1173–1178. Morgan Kaufmann, 2003.

285. J. Wilson. Compact normal forms in propositional logic. Computers and
Operations Research, 90:309–314, 1990.

286. S. A. Wolfman and D. S. Weld. The LPSAT engine & its application to resource
planning. In T. Dean, editor, International Joint Conference on Artificial
Intelligence (IJCAI), pages 310–317. Morgan Kaufmann, 1999.

287. P. Wolper and B. Boigelot. On the construction of automata from linear arith-
metic constraints. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 1785 of LNCS, pages 1–19. Springer, 2000.

288. L. Wolsey. Integer Programming. Wiley-Interscience, 1998.

346 References

289. L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla-07: The design
and analysis of an algorithm portfolio for SAT. In Principles and Practice of
Constraint Programming (CP), pages 712–727, 2007.

290. B. Yordanov, S.-J. Dunn, H. Kugler, A. Smith, G. Martello, and S. Emmott.
A method to identify and analyze biological programs through automated rea-
soning. Nature Systems Biology and Applications, In Press, 2016.

291. B. Yordanov, C. Wintersteiger, Y. Hamadi, and H. Kugler. SMT-based analysis
of biological computation. In NFM, volume 7871 of LNCS. Springer, 2013.

292. B. Yordanov, C. Wintersteiger, Y. Hamadi, and H. Kugler. Z34Bio: An SMT-
based framework for analyzing biological computation. In SMT, 2013.

293. B. Yordanov, C. Wintersteiger, Y. Hamadi, A. Phillips, and H. Kugler. Func-
tional analysis of large-scale DNA strand displacement circuits. In Proc. 19th
International Conference on DNA Computing and Molecular Programming
(DNA 2013), volume 8141 of LNCS, pages 189–203, 2013.

294. H. Zantema and J. F. Groote. Transforming equality logic to propositional
logic. Electronic Notes in Computer Science, 86(1), 2003.

295. L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In International Conference on Com-
puter Aided Design (ICCAD), pages 279–285. IEEE, 2001.

296. L. Zhang and S. Malik. Conflict driven learning in a quantified Boolean satisfia-
bility solver. In International Conference on Computer Aided Design (ICCAD),
2002.

297. L. Zhang and S. Malik. Towards symmetric treatment of conflicts and satisfac-
tion in quantified Boolean satisfiability solver. In P. V. Hentenryck, editor, 8th
International Conference on Principles and Practice of Constraint Program-
ming (CP), volume 2470 of LNCS, pages 200–215. Springer, 2002.

298. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable
Boolean formula. In Theory and Applications of Satisfiability Testing (SAT),
2003. Presentation only.

299. L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In Design and
Test in Europe Conference (DATE), pages 10880–10885. IEEE, 2003.

Alt-Ergo, 242
BFC, 307
BLAST, 306
Berkmin, 44, 55
Boolector, 75, 155, 171
C32SAT, 154
CBMC, 306
CUTE, 305
CVC, 74, 75, 154, 217
Chaff, 43, 55, 74
CodeSonar, 305
Cogent, 154
Coverity, 305
DART, 305
DLSAT, 74
ESBMC, 306
Eureka, 45
GRASP, 55
GSAT, 55
Glucose, 56
HaifaCSP, 55
HaifaSat, 45
ICS, 154
ICS-SAT, 74
IProver, 226
Java Path Finder, 305, 306
KLEE, 305
LASH, 226
LLBMC, 306

Lingeling, 56
Magic, 306
MathSAT, 74, 75
MiniSAT, 43, 44, 47, 55, 56
PREfix, 305, 306
PVS, 242
Pex, 305
PicoSAT, 56
Plingeling, 56
PrecoSAT, 56
SAGE, 305
SAT4J, 41
SDV, 306, 307
SLAM, 197, 306
STP, 154
SVC, 154
SatAbs, 306
Siege, 55
Simplify, 171, 217, 218, 222,

226
Terminator, 197
Treengeling, 56
Uclid, 277
UnitWalk, 55
Vampire, 226
VeriFun, 74
WalkSat, 55
Yices, 75, 154
Z3, IX, 74, 217, 222

Tools index

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0

347

Abstraction-Refinement, 88
Ackermann’s-Reduction, 247
AddClauses, 66–69
AllDifferent, 48, 49
Analyze-Conflict, 32–36,

38–41, 51, 67, 69, 71
Antecedent, 39, 41
Array-Encoding-Procedure,

166
Array-Reduction, 164
BCP, 33, 34, 67–69
BV-Constraint, 143, 144,

146, 148
BV-Flattening, 143
BackTrack, 33, 34, 68
Branch and Bound, 98, 106,

108, 109
Bryant’s-Reduction, 250
CDCL-SAT, 33, 66
Congruence-Closure, 85, 93
Conj-of-Equalities-with-

Equiv-Classes,
93

DPLL(T), 67, 69, 106, 326, 327
Decide, 33, 34, 66–69
Deduction, 64–73, 76
Domain-Allocation-for-

Equalities,
267

E-Matching, 220

Equality-Logic-to-
Propositional-Logic,
261, 264

Extensional-Array-
Encoding,
168

Feasibility-Branch-and-
Bound, 107,
108

General-Simplex, 103, 107
Incremental-BV-Flattening,

148
Last-assigned-literal, 39
Lazy-Basic, 64, 65
Lazy-CDCL, 67, 72
Lazy-DPLL, 326, 327
Nelson–Oppen, 236
Nelson–Oppen-for-Convex-

Theories,
233

Omega-Test, 119
Prenex, 204
Project, 205, 206
Quantifier-Elimination, 206
Remove-Constants, 78
Remove-Constants-

Optimized,
92

Resolve, 39, 40
SAT-Solver, 64, 65, 148

Algorithms index

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0

349

350 ALGORITHMS INDEX

Search-based-decision-of-
QBF,
212

Search-integral-solution,
107

Simplify-Equality-Formula,
256

Stop-criterion-met, 39
Variable-of-literal, 39
match, 220, 221

Note that there is a separate index page for tools on page 347, and
a separate index page for algorithms on page 349.

abstract decision procedure, 241
abstraction, 283
abstraction–refinement loop, 87
Ackermann’s reduction, 246
adder, 144

full adder, 144
adequate domain, 262
algorithm, 7
algorithm portfolio, 56
aliasing, 176
antecedent, 3
arithmetic right shift, 142
arrangement, 241
array, 157

bounds violation, 160
index operator, 158
store operator, 158

array property, 162
array theory, 157
assertion, 283
assignment, 5

full, 5
partial, 5

assumption (program
verification), 289

assumptions, 47
atom, 8, 253

automated reasoning, 27
axiom, 3, 80

backdoor variable, 30
BCP, 34, 50, 71
BDD, 57, 154, 226, 271, 277, 278,

306
Bellman–Ford algorithm, 128
Bernays–Schönfinkel class, see

effectively propositional
binary encoding, 139
binary tree, 183
binding scope, 200
bit vector, 138
bit-blasting, 142
bit-vector arithmetic, 137
blocking clause, 62, 65, 167
Boolean constraint propagation,

see BCP
Boolean encoder, 61
bounded model checking, 20, 155,

306
branch-and-cut, 108
Bryant’s reduction, 246

cardinality constraint, 41
carry bit, 144

Index

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0

351

352 INDEX

case-splitting, 11, 94
semantic, 11
syntactic, 11

CDCL, 30, 32, 52, 55, 66
certificate, 225
chord, 260
chord-free cycle, 260
chordal graph, 260
clause, 12

antecedent, 32
asserting, 36, 37, 68
conflicting, 32, 34, 41
satisfied, 32
unary, 32, 36
unit, 32
unresolved, 32

clause selectors, 48
CNF, 13, 29, 40, 136, 146, 206,

212, 223, 225, 322, 324, 326
2-CNF, 19

colorability, 28
compiler, 97
complete, 68, 69
completeness, 4, 7, 81
concatenation, 139
conflict clause, 35–38, 41, 45, 53,

66, 71
conflict graph, 35, 37, 41
conflict node, 34, 37, 39
conflict-driven backtracking,

36–38, 53
conflict-driven clause learning, see

CDCL
congruence closure, 85, 94, 166

abstract congruence closure, 94
conjunctive fragment, 17
conjunctive normal form, see CNF
consequent, 3
constraint satisfaction problem,

17, 48, 53, 55
constraint solving, 22
contradiction, 5
contradictory cycle, 255, 256

simple, 255
convex theory, 230

CSP, see constraint satisfaction
problem

cube-and-conquer, 56
cut

separating cut, 37
Gomory, see Gomory cut

cutting planes, 108, 132

Davis–Putnam–Loveland–
Logemann, see
DPLL

De Morgan’s rules, 8
decidability, 7, 23, 81
decision level, 31, 34
decision problem, 6
decision procedure, 7
delayed theory combination, 243
derivation tree, 12
difference logic, 126
DIMACS format, 322
disequality literals set, 253
disequality path, 70, 255

simple, 255
disjunctive normal form, see DNF
DNF, 10, 206
domain, 199
domain allocation, 262, 266, 271,

276
DPLL, 31, 55
DPLL(T), see algorithms index
dynamic data structure, 174

E-graph, 217
E-matching, 218
eager encoding, 245
effectively propositional, 212
ellipsoid method, 99
empirical hardness models, 56
encoder, 61
endianness, 181
EPR, see effectively propositional
equality graph, 60, 254–257, 266,

269
nonpolar, 259, 261

equality literals set, 253

INDEX 353

equality logic, 16, 77
equality path, 92, 254, 267, 269

simple, 255
equality sign, 230
equisatisfiable, 8, 78, 92, 256, 261
EUF, 79
execution path, 283
execution trace, 283
exhaustive theory propagation, 70
existential node, 210
existential quantification, 163
existential quantifier (∃), 199
explanation, 71
expressiveness, 19
extensional theory of arrays, 159
extensionality rule, 159

first UIP, 39
first-order logic, 14, 59
first-order theory, 2
fixed-point arithmetic, 149

saturation, 150
floating-point arithmetic, 149
forall reduction, 207
formal verification, 2
Fourier–Motzkin, 99, 112, 115,

119, 120, 131, 209, 277
fragments, 16
free variable, 16, 200
functional congruence, 80
functional consistency, 80, 160,

246

Gaussian variable elimination, 104
general form, 99
Gomory cut, 109
graph, 316
ground formula, 17, 216
ground level, 32, 36

high-level minimal unsatisfiable
core, 57

Hoare logic, 20

ILP, 98, 130, 155
0–1 linear systems, 126

relaxation, 106
implication graph, 33, 51
incomplete, 81, 282
incremental, 105
incremental satisfiability, 57, 66
induction, 294
inequality graph, 128
inference rule, 3
Binary Resolution, 40, 71
Contradiction, 3, 4
Double-negation, 4
Double-negation-AX, 4
instantiation, 4
M.P., 3, 4

inference system, 3
initialized diameter, 223
inprocessing, 56
integer linear arithmetic, 69
integer linear programming, see

ILP
interpretation, 15

job-shop scheduling, 127

languages, 18
lazy encoding, 245
learning, 11, 35, 36, 49, 52, 210,

212
least significant bit, 139
lemma, 62
lifetime, 175
linear arithmetic, 97
linear programming, 98
linked list, 182
literal, 8, 253

satisfied, 9
local-search, 55
lock, 291
logical axioms, 17, 230
logical gates, 12
logical right shift, 142
logical symbols, 230
loop invariant, 191, 294

match, 218

354 INDEX

mathematical programming, 22
matrix, see quantification suffix
maximally diverse, 238
memory

layout, 174
location, 174
model, 173
valuation, 174

miniscoping, 205
mixed integer programming, 108
model checking, 226
model-theoretic, 3
modular arithmetic, 136
modulo, 140
monadic second-order logic, 196
most significant bit, 139

negation normal form, see NNF
Nelson–Oppen, 229, 231, 232, 240,

243
NNF, 8, 14, 24, 61, 72, 163, 170,

253, 254, 258, 275
nonchronological backtracking,

210, 212
nondeterminism, 241
nonlinear real arithmetic, 226
nonlogical axioms, 230
nonlogical symbols, 230
normal form, 8
NP-complete, 201

Omega test, 99, 115, 277
dark shadow, 121
gray shadow, 123
real shadow, 120

operations research, 22
overflow, 136

parse tree, 315
parsing, 315, 319
partial implication graph, 35
partially interpreted functions, 87
path constraint, 285
Peano arithmetic, 17, 226
phase, 9, 206

phase transition, 57
pigeonhole problem, 41
pivot operation, 104
pivoting, 104
planning problem, 27, 202
plunging, 70
pointer, 173
pointer logic, 178
points-to set, 177
polarity, 9
polite theories, 242
predicate abstraction, 197
predicate logic, see first-order

logic
prenex normal form, 204, 205, 210
Presburger arithmetic, 17, 158,

161, 203, 226
procedure, 7
program analysis, 176
projection, 205
proof-theoretic, 3
propositional encoder, 142
propositional skeleton, 62, 143,

259, 325
PSPACE-complete, 201
pure literal, 9
pure variables, 188
purification, 232

Q-resolution, 225
QBF, see quantified Boolean

formula
QBF search tree, 210
quantification prefix, 204
quantification suffix, 204, 206, 211
quantified Boolean formula, 201

2-QBF, 209
quantified disjunctive linear

arithmetic, 203
quantifier, 199
quantifier alternation, 163, 199
quantifier elimination, 205
quantifier-free fragment, 16

reachability predicate, 190

INDEX 355

reachability predicate formula,
190

reachability problem, 281
read-over-write axiom, 159
reference, 175
resolution, 55

binary resolution, 40, 45, 206,
208

binary resolution graph, 45
hyper-resolution graph, 45
resolution graph, 45, 46
resolution variable, 40
resolvent clause, 40
resolving clauses, 40

restart, 50
rewriting rules, 88, 94
rewriting systems, 88
ripple carry adder, 144
rounding, 150
routing expressions, 196

SAT decision heuristic, 42
Berkmin, 44
CBH, 45
CMTF, 44
conflict-driven, 43
DLIS, 43
Jeroslow–Wang, 42
VSIDS, 43

SAT portfolio, 29
SAT solvers, 29, 277
satisfiability, 5
Satisfiability Modulo Theories, 6,

60, 282
semantics, 6
sentence, 16, 200, 230
separation logic, 132, 184, 197
Shannon expansion, 208, 226
shape analysis, 197
sign bit, 140
sign extension, 142
signature, 16, 59
Simplex, 11, 98

basic variable, 102
nonbasic variable, 102

additional variable, 100
Bland’s rule, 105
general Simplex, 98, 99
pivot column, 104
pivot element, 104
pivot operation, 103
pivoting, 104
problem variable, 100

Skolem normal form, 215
Skolem variable, 194
Skolemization, 194, 213, 216
small-domain instantiation, 263,

277
small-model property, 5, 94, 108,

197, 262
SMT, see Satisfiability Modulo

Theories
SMT solver, 6
SMT-COMP, 309
SMT-LIB, 23, 309
sort, 77
soundness, 4, 7, 81, 269
sparse method, 259
SSA, see static single assignment
state space, 263–266, 268, 276
static analysis, 177
static single assignment, 21, 82,

284, 302
stochastic search, 30
structure in formal logic, 15
structure type, 181
subsumption, 14
symbol table, 322
symbolic access paths, 196
symbolic simulation, 283
symmetric modulo, 117

T -satisfiable, 16, 230
T -valid, 16, 230
tableau, 102
tautology, 5
term, 10
theorem proving, 215, 226
theory, 2, 16, 59, 79
theory combination, 230

356 INDEX

theory of equality, 77
theory propagation, 63, 68, 69,

165
timed automata, 132
total order, 19
transition clause, 54
transitive closure, 185, 196
translation validation, 88, 91
trigger, 218

multitrigger, 218
truth table, 5, 6
Tseitin’s encoding, 12–14, 23, 146
Turing machine, 88
two’s complement, 139, 140, 142
two-counter machine, 169
two-player game, 201
type checking, 316

UIP, 39
unbounded variable, 114
uninterpreted functions, 79–91,

93–95, 148, 216, 229, 232,
233, 245–253, 279

uninterpreted predicates, 79
union–find, 86, 94
unique implication point, see UIP
unit clause rule, 32
universal node, 210
universal quantification, 163
universal quantifier (∀), 199
unsatisfiable core, 46, 71

validity, 5
verification condition, 20, 28, 157,

191, 286
virtual substitution, 131

weak equivalence graph, 166
well formed, 15
winning strategy, 201
write rule, 161

zero extension, 142
λ-notation, 137
Σ-formula, 16
Σ-theory, 16

	A
SMT-LIB: a Brief Tutorial
	A.1 The Satis�ability-Modulo-Theory Library and Standard (SMT-LIB)
	A.2 The SMT-LIB File Interface
	A.2.1 Propositional Logic
	A.2.2 Arithmetic
	A.2.3 Bit-Vector Arithmetic
	A.2.4 Arrays
	A.2.5 Equalities and Uninterpreted Functions

	B
A C++ Library for Developing Decision Procedures
	B.1 Introduction
	B.2 Graphs and Trees
	B.2.1 Adding \Payload"

	B.3 Parsing
	B.3.1 A Grammar for First-Order Logic
	B.3.2 The Problem File Format
	B.3.3 A Class for Storing Identi�ers
	B.3.4 The Parse Tree

	B.4 CNF and SAT
	B.4.1 Generating CNF
	B.4.2 Converting the Propositional Skeleton

	B.5 A Template for a Lazy Decision Procedure

	References
	Tools index
	Algorithms index
	Index

