
Formal Methods in Computer Science
Thanh-Hai Tran and Florian Zuleger

Exercise Sheet – Block 4
Due January 13, 2020

1 Overview

This exercise sheet is connected to Block 4 (Satsifiability Model Checking). It focuses on practical
aspects of model checking and requires using the NuSMV symbolic model checker developed at FBK-
IRST, Trento.

As a prerequisite, please get your own copy of NuSMV from:

http://nusmv.fbk.eu/

An introduction to NuSMV was given in the exercise session on December 17, 2019. The slides used in
that exercise session are available on TUWEL.

It is also recommended, but not required, to read a tutorial on NuSMV available at:

http://nusmv.fbk.eu/NuSMV/tutorial/

2 Exercise Sheet - Problems

There are three exercises, yielding a total of 15 points.

Exercise 1. (2+2 points) Consider the following NuSMV program implementing mutual exclusion
between two processes.

MODULE main
VAR

semaphore : boolean;
proc1 : process user(semaphore);
proc2 : process user(semaphore);

ASSIGN
init(semaphore) := FALSE;

MODULE user(semaphore)
VAR

state : {idle, entering, critical, exiting};
ASSIGN

init(state) := idle;
next(state) :=

case
state = idle : {idle, entering};
state = entering & !semaphore : critical;
state = critical : {critical, exiting};
state = exiting : idle;
TRUE : state;

esac;



next(semaphore) :
case

state = entering : TRUE;
state = exiting : FALSE;
TRUE : semaphore;

esac;
FAIRNESS
running

This NuSMV program uses the variable semaphore to implement mutual exclusion between the two
processes proc1 and proc2. Each process has four states: idle, entering, critical and
exiting. The entering state indicates that the process wants to enter its critical region. If the
variable semaphore is FALSE, it goes to the critical state, and sets semaphore to TRUE. On
exiting its critical region, the process sets semaphore to FALSE again.

(a) A safety property P of this program is that “it should never be the case that the two processes
proc1 and proc2 are at the same time in the critical state”. Express P as a CTL formula
and add it as a CTL specification to the above NuSMV program. Verify the CTL specification by
running NuSMV on the annotated program. If NuSMV produces a counterexample, explain the
counterexample!

(b) A liveness property Q of this program is that “whenever process proc2 wants to enter its
critical state, it eventually does”. Express Q as an LTL formula and add it as a LTL speci-
fication to the above NuSMV program. Verify the LTL specification by running NuSMV on the
annotated program. If NuSMV produces a counterexample, explain the counterexample!

Submission guidelines: For each taks, submit the annotated NuSMV program together with the output
of running NuSMV on it. In case a counterexample was generated, submit your narrative explanation
of the counterexample.

Exercise 1.2. (2+2 points) Consider the following NuSMV program implementing a simple, determin-
istic counter modulo 8.

MODULE main
VAR

y : 0..15;

ASSIGN
init(y) := 0;

TRANS
case

y = 7 : next(y) = 0;
TRUE : next(y) = (y + 1) mod 16;

esac

(a) Consider the property expressing that “there is a value of y whose next value is 8”. Express this
property as an LTL formula and add it as a LTL specification to the above NuSMV program.
Verify the LTL specification by running NuSMV on the annotated program. If NuSMV produces
a counterexample, explain the counterexample!



(b) Consider the property expressing that “there is a value of y whose next value is 7”. Express this
property as an LTL formula and add it as a LTL specification to the above NuSMV program.
Verify the LTL specification by running NuSMV on the annotated program. If NuSMV produces
a counterexample, explain the counterexample!

Submission guidelines: For each taks, submit the annotated NuSMV program together with the output
of running NuSMV on it. In case a counterexample was generated, submit your narrative explanation
of the counterexample.

Exercise 1.3. (1+4+2 points) Consider the following puzzle that is an instance of the puzzle known as
the “Tower of Hanoi”.

There are three poles (left, middle, right) and four ordered disks d1, d2, d3, d4 of different
sizes, with disk d1 being the biggest one. Initially, all four disks are on the left pole in ascending
order, the smallest at the top. The goal of the puzzle is to move all four disks to the right pole, using
the following simple rules:

• Only one disk can be moved at a time;

• Each move consists of taking the upper disk from one of the poles and placing it on top of another
pole;

• No disk may be placed on top of a smaller disk.

The NuSMV program below describes the skeleton of a Hanoi tower puzzle with four disks. The
skeleton declares the state variables of the puzzle and defines macros for moving a disk.

MODULE main
-- Hanoi tower with three poles (left, middle, right)
-- and four ordered disks d1, d2, d3, d4,
-- disk d1 is the biggest one
VAR
d1 : {left,middle,right};
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right};
move : 1..4; -- possible moves

DEFINE
move_d1 := move=1;
move_d2 := move=2;
move_d3 := move=3;
move_d4 := move=4;

-- di is on top of a pole iff di!=dj for every j>i

top_d1 :=
d1!=d2 &
d1!=d3 &
d1!=d4;

top_d2 :=
d2!=d3 &



d2!=d4;
top_d3 :=

d3!=d4;
top_d4 := TRUE;

Complete the program skeleton above to model the puzzle, ensuring that the puzzle yields a solution
(that is, all four disks are on the right pole). Your tasks are as follows:

(a) Declare the set of initial states;

(b) Formalize the transition relation for the existing variables;

(Hint: declare the transition relation by completing and continuing the following skeleton TRANS
move d1 -> ...)

(c) Formalize in CTL the requirement that the puzzle has a solution and make sure that your design
satisfies it.

Submission guidelines: Submit the NuSMV program completed with initial states and transition rela-
tion and annotated with the proper CTL specification. Submit and explain the output of running NuSMV
on your solution.


