
UE Formal Methods in Computer Science
185.A93 WS 2019/20

Block 2: Satisfiability (SAT)

Uwe Egly

Knowledge-Based Systems Group
Institute of Logic and Computation
Vienna University of Technology

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 1 / 13

Why SAT modulo theories (SMT)?
Almost all binary searches (and mergesorts) are broken (here: binsearch from K & R)

1 int binsearch (int x, int *v, int n) {
2 int l, h, m;
3 l = 0; h = n -1;
4 while (l <= h) {
5 printf (" INT_MAX =%d, l=%d h=%d\n", INT_MAX , l, h);
6 m = (l + h) / 2};
7 if (x < v[m]) h = m - 1;
8 else if (x > v[m]) l = m + 1;
9 else return m;
10 }
11 return -1;
12 }
13 int main (void) {
14 int n = (INT_MAX /4) * 3;
15 int *v = calloc (n, sizeof (int));
16 (void) binsearch (1, v, n); free(v);
17 }

./a.out
INT_MAX=2147483647, l=0 h=1610612732
INT_MAX=2147483647, l=805306367 h=1610612732
Segmentation fault (core dumped)

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 1 / 13

Satisfiability Modulo Theories (SMT)

Satisfiability checking of a first-order logic (FOL) formula with
equality with respect to a background theory.
E.g., theory Tcons of lists: theory of equality TE + list-specific axioms.
Theories of interest: integers, real numbers, arrays, bitvectors,. . .
Most theories are quantifier-free.
Potentially higher expressiveness compared to propositional logic.
Specialized theory-specific inference methods.
Practically relevant in industry: verification, model checking,. . .

Example
The formula (x − y) > 0↔ (x > y) is valid over the theory of integers
but not valid over the theory of fixed-size bitvectors, i.e., modular
arithmetic with under/overflow.
Counterexample: x := #000, y := #110, x − y = #010.

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 2 / 13

SMT-LIB: Satisfiability Modulo Theories Library

Website: http://smtlib.cs.uiowa.edu/index.shtml

SMT-LIB is an international initiative aimed at facilitating research
and development in Satisfiability Modulo Theories.

Goals:
Provide standard rigorous descriptions of background theories.
Promote common input and output languages for SMT solvers.
Develop a community of researchers and users of SMT technology.
Make available a large library of benchmarks for SMT solvers.
Collect and promote software tools useful to the SMT community.

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 3 / 13

http://smtlib.cs.uiowa.edu/index.shtml

Z3: SMT Solver and Theorem Prover

Website: https://github.com/Z3Prover/z3

SMT solver and theorem prover developed by Microsoft Research.
Supports input in the SMT-LIB format (and variations thereof).
API to construct formulas over various theories and logics.

⇒ In exercises of block 2 (SAT), we apply Z3 to model and
solve problems related to topics from the lecture.

Recommended Z3 Tutorial: https://rise4fun.com/z3/tutorial

Further Resources:
http://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf

http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.
6-r2017-07-18.pdf

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 4 / 13

https://github.com/Z3Prover/z3
https://rise4fun.com/z3/tutorial
http://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf

Z3: Input Language and Basic Use (1/2)

LISP-like syntax: s-expressions.
E.g., a × (b + c) is represented as (× a (+ b c)).
Prefix notation: function (e.g., ×, +) followed by arguments.
Basic building blocks of SMT formulas: constants and functions.
Constants are just functions that take no arguments.

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 5 / 13

Z3: Input Language and Basic Use (1/2)

Z3 input:

; lines like these prefixed with ’;’ are comments
; define integer constants ’a’, ’b’, ’c’, and ’res’
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)
(declare-const res Int)
; compute ’res := a * (b + c)’
(assert (= res (* a (+ b c))))
(check-sat)
; extract a model of the formula
(get-model)

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 5 / 13

Z3: Input Language and Basic Use (1/2)

Z3 output: model (i.e., concrete interpretation)

sat
(model

(define-fun a () Int
0)

(define-fun res () Int
0)

(define-fun c () Int
0)

(define-fun b () Int
0)

)

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 5 / 13

Z3: Input Language and Basic Use (2/2)

Z3 maintains a stack of assertions added by assert function.
Each call of assert conjunctively adds a new assertion to the stack.
check-sat: check if there is a model wrt. all added assertions.
check-sat checks for satisfiability, not validity.
Validity checking: check satisfiability of the negation of a formula.
Recall: ϕ is valid if and only if ¬ϕ is unsatisfiable
E.g., to prove validity of (α ∧ β)→ γ, first assert α, then β, and
finally ¬γ, and call check-sat.

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 6 / 13

Propositional Logic

Basic Boolean operators.
Constants true and false.
Negation not.
Implication (=>), disjunction (or), conjunction (and), and exclusive
OR (xor).
Definition of Boolean functions by define-fun allows to build
arbitrarily complex subformulas (see example on next slide).

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 7 / 13

Example
We prove that the formula (x − y) > 0↔ (x > y) from the beginning is
valid over the theory of integers.

Z3 input:
(declare-const x Int)
(declare-const y Int)
(define-fun LHS () Bool

(> (- x y) 0))
(define-fun RHS () Bool

(> x y))
(define-fun IFF () Bool

(and
(=> LHS RHS)
(=> RHS LHS)

)
)
(assert (not IFF))
(check-sat)

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 8 / 13

Fixed Size Bitvectors

Ordered sequence 〈bn−1, bn−2, . . . , b0〉 of n bits.
Like binary numbers in computers: applications in verification.
Bitvector constants:

Must be declared with constant size (i.e., number of bits).
Binary or hexadecimal notation: #b010, #xf.

Bitvector operations: sizes of operands must match.
Addition (bvadd), subtraction (bvsub), multiplication (bvmul).
Division (bvudiv, bvsdiv) and remainder (bvurem, bvsrem).
Relational operators: < (bvult), ≤ (bvule), > (bvugt), ≥ (bvuge),
and respective signed variants, e.g.:

(bvslt #b111 #b000) is true (because #b111 is -1 and #b000 is 0).
(bvult #b111 #b000) is false.

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 9 / 13

Fixed Size Bitvectors

Z3 input:

; We want to prove that bitvector division by two
; is equivalent to bitvector logical right shift by 1
(declare-const x (_ BitVec 8))
(declare-const res_shift (_ BitVec 8))
(declare-const res_div (_ BitVec 8))
; compute res_div := x / 2
; the size of the constant ’2’ must be equal to
; the size of ’x’
(assert (= (bvudiv x (_ bv2 8)) res_div))
; compute res_shift := x >> 1
(assert (= (bvlshr x (_ bv1 8)) res_shift))
; check if ’res_shift == res_div’ is valid
(assert (not (= res_shift res_div)))
(check-sat)

Z3 output: unsat

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 9 / 13

Integers

Signed integers.
Arithmetic operators: addition (+), subtraction (-), multiplication
(*), division (div), modulo (mod).
Relational operators: <, >, <=, >=.
Usual semantics of arithmetic operations (see example on next slide).

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 10 / 13

Integers

Z3 input:

(declare-const x Int)
(declare-const a Int)
(declare-const b Int)
(declare-const res1 Int)
(declare-const res2 Int)
; compute res1 := x * (a + b)
(assert (= (* x (+ a b)) res1))
; compute res2 := x * a + x * b
(assert (= (+ (* x a) (* x b)) res2))
; check validity of res1 = res2, which is the
; case due to the built-in distributivity axioms
; of * and + in theory of integers
(assert (not (= res1 res2)))
(check-sat)

Z3 output: unsat

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 10 / 13

Be careful with int2bv

(declare-const im1 Int) (declare-const ip1 Int)
(declare-const im2 Int) (declare-const ip2 Int)
(declare-const bv1 (_ BitVec 2))
(declare-const bv1p (_ BitVec 2))
(declare-const bv2 (_ BitVec 2))
(declare-const bv2p (_ BitVec 2))
(assert (= im1 -1)) (assert (= ip1 1))
(assert (= im2 -2)) (assert (= ip2 2))
(assert (= ((_ int2bv 2) im1) bv1))
(assert (= ((_ int2bv 2) ip1) bv1p))
(assert (= ((_ int2bv 2) im2) bv2))
(assert (= ((_ int2bv 2) ip2) bv2p))
(check-sat)
(get-value (im1 bv1 ip1 bv1p im2 bv2 ip2 bv2p))

Z3 output: sat
((im1 (-1)) (bv1 #b11) (ip1 1) (bv1p #b01)
(im2 (-2)) (bv2 #b10) (ip2 2) (bv2p #b10))

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 11 / 13

Equality and Uninterpreted Functions

Similar to the theory TE presented in the lecture.
Equality predicate (=): function that takes two arguments of the
same sort (e.g., integers, bitvectors,. . .) and returns a Boolean value.
Arbitrary sorts can be defined.
Uninterpreted functions can be defined (declare-fun).
Usual semantics (TE axioms), see examples on next slide.

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 12 / 13

Equality and Uninterpreted Functions

Z3 input:

; declare a new custom sort ’MySort’
(declare-sort MySort)
; declare constants of type ’MySort’
(declare-const x MySort)
(declare-const y MySort)
; declare a unary uninterpreted function ’F’ that maps a
; value of type ’MySort’ to a value of type ’MySort’
(declare-fun F (MySort) MySort)
; check validity of ’x == y => F(x) == F(y)’, which
; holds due to functional consistency.
(assert (= x y))
(assert (not (= (F x) (F y))))
(check-sat)

Z3 output: unsat
Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 12 / 13

Equality and Uninterpreted Functions
(Compare to previous example on distributivity of * over + in theory of integers.)

Z3 input (formula is satisfiable):
(declare-const x Int)
(declare-const a Int) (declare-const b Int)
(declare-const res1 Int) (declare-const res2 Int)
; declare a new uninterpreted integer operator
; (i.e., a function) ’myop’ with two arguments
(declare-fun myop (Int Int) Int)
; compute res1 := myop (x, (a + b))
(assert (= (myop x (+ a b)) res1))
; compute res2 := myop(x, a) + myop (x, b)
(assert (= (+ (myop x a) (myop x b)) res2))
; check whether ’res1 == res2’, which is NOT the
; case since the theory of integers has no axioms
; for our custom operator ’myop’
(assert (not (= res1 res2)))
(check-sat)

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 12 / 13

Exercise Sheet

Schedule in WS 2019/20:
November 5: presentation of exercise sheet and introduction.
November 25: submission deadline (upload in TUWEL).
December 10: presentation of solutions and feedback.

Important Notes:
Please keep in mind the general information and guidelines presented
during the kick-off meeting (slides available in TUWEL).
Please follow the submission instructions and guidelines on the
exercise sheet (available in TUWEL).

Uwe Egly (Vienna University of Technology) UE FMI 185.A93: Block 2 (Satisfiability) 13 / 13

