
Technische Universität Wien WS 2019
Fakultät für Informatik FMI UE Exercise Sheet (Block 2)

Uwe Egly

185.A93: Exercises on Formal Methods in Computer Science

The topic of these exercises related to block 2 (satisfiability) is modeling and solving
satisfiability modulo theories (SMT) problems using the theorem prover Z3:

https://github.com/Z3Prover/z3

The schedule of the exercises is as follows:

• November 5: Presentation of this exercise sheet and introduction.

• November 25: Submission deadline (upload in TUWEL).

• December 10: Presentation of solutions.

A brief introduction to SMT and Z3 will be given in the first meeting on November 5
(slides available in TUWEL). The following resources may be helpful:

• Tutorial on Z3 (highly recommended):

https://rise4fun.com/Z3/tutorial/guide

• Appendix chapter “SMT-LIB: A Brief Tutorial” (available as PDF from TUWEL) of
the book Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic
Point of View, Second Edition.

• SMT-LIB tutorial by David R. Cok:

http://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf

A total number of 15 points can be achieved by solving the exercises on this sheet.
Please consider the following important guidelines when preparing and sub-
mitting your solutions to the exercises:

• Your submission of the solution to a (sub-)exercise must contain the following two
files.

– A text file containing a list of commands that can be interpreted by Z3 as input.
Examples of input files and Z3 commands will be provided in the meeting on
November 5 when this exercise sheet is presented.

https://github.com/Z3Prover/z3
https://rise4fun.com/Z3/tutorial/guide
http://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf


– A text file containing the output of Z3 that is produced for the respective
input file.

Additionally, one pdf file containing your proofs and additional comments may be
uploaded.

Please note that your solution will not be considered for grading if either of the
first two files is missing.

• Please explain and comment each of your solutions in detail. Explanations and
comments are considered an essential part of your submission and are necessary to
receive full points for an exercise.

Explanations and comments should be included directly in the submitted input files
of Z3 by prefixing the comment lines with a semicolon “;”. Any line prefixed with “;”
is interpreted as a comment and hence ignored by Z3.

• Proofs and additional comments can be presented in the additional pdf file. Please
indicate precisely on which (sub-)exercise you comment on.

• Please submit the solutions to the exercises as separate text files by uploading them
in TUWEL, and adhere to the following file naming conventions:

<surname>-<matrnr>-<exnr>-input.txt

<surname>-<matrnr>-<exnr>-output.txt

<surname>-<matrnr>.pdf

where <surname> is your surname, <matrnr> is your matriculation number, <exnr>
is the number of the sub-exercise on this sheet, and input or output indicate
whether the file contains the input to or the output from Z3, respectively.

• Please submit your solution on time before the deadline. Late submissions will not
be considered for grading.

• Please make sure that the input text file <surname>-<matrnr>-<exnr>-input.txt
is free of syntactic errors. Note that your solution will not be considered for grading
if Z3 reports any syntactic errors.

General information on the organization of this course was presented in the kick-off
meeting (slides available in TUWEL).



Exercise 1 Installation of Z3 and Basic Use 1 Point

Download and install the current version 4.8.6 of Z3 from https://github.com/Z3Prover/
z3. It is recommended to clone the github repository or to take the zip file with the
source code and compile Z3 by yourself (preferably with python support). Read the Z3
tutorial (not all parts are relevant for this exercise sheet). You can find the tutorial at
https://rise4fun.com/Z3/tutorial/guide.
Given the propositional formulas φ1 := p→ q and φ2 := ¬q → ¬p, use Z3 to prove that
the formula φ1 ↔ φ2 is valid.

Exercise 2 Propositional Logic: Counterexamples to Validity 1+1 Points

(a) Use Z3 to show that the propositional formula φ := ((x⊕y)∧(y⊕z))→ (x∨z) is not
valid, where ⊕ denotes the XOR operator, and compute a concrete counterexample
(i.e., concrete truth assignments to x, y, and z).

(b) Use Z3 and its get-model command to iteratively and manually enumerate all
counterexamples to the validity of φ. When the formula becomes unsatisfiable,
retrieve a proof. Explain the generated Z3 proof and provide a resolution proof by
yourself (in the pdf file).

Exercise 3 Integer vs. Bit-vector Arithmetic 1+1+1 Points

(a) Consider line 6 of the binsearch program (cf lecture slides): m = (l + h) / 2.
Recall the use of data type (signed) int there. Use Z3 to check whether the assertion
l ≤ m∧m ≤ h holds in the theory of bit-vectors of size 32, assuming that 0 ≤ l ≤ h.
Justify your answer in detail, e.g., by providing a concrete counterexample.

(b) Like (a) but in the theory of integers.

(c) Like (a), but instead of the statement
m = (l + h) / 2

consider the statement
m = l + ((h - l) / 2) and check whether the assertion holds.

Exercise 4 Equality Logic and Uninterpreted Functions 2+2+0.5+0.5 Points

(a) Consider the EUF -formula

ϕEUF := x = y ∧ F (x) = G(y) ∧ z = G(F (y)) ∧ z 6= G(F (x))

where F and G denote uninterpreted functions. Use Z3 to check whether ϕEUF is
E -satisfiable. Use the semantic proof method from the lecture and perform a proof
of the result by yourself.

(b) Ackermanns’s translation as discussed in the lecture is validity-preserving. Develop
a variant of the Achermann’s translation which is satisfiablility-preserving and prove

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://rise4fun.com/Z3/tutorial/guide


its correctness. Apply this variant to ϕEUF to obtain the E -formula ϕE and use Z3
to check whether ϕE is E -satisfiable.

(c) Consider the formula ϕE from (b) that results from ϕEUF by Ackermann’s reduction.
Construct a formula ϕE

M from ϕE by removing as many functional consistency
constraints as possible such that ϕE

M and ϕE have the same logical status. Use Z3
to check whether ϕE

M is E -satisfiable.

(d) Like (c) but use the unsatisfiable core extraction of Z3 (get-unsat-core) to find a
not necessarily minimal subset of the functional consistency constraints in ϕE .

Exercise 5 Equality Logic and Uninterpreted Predicates 1+1 Points

Given the EUF -formula

ϕ := (y = z ∧Q(z, x) ∧ P (x, z))→ (P (x, y) ∧Q(x, y))

where P and Q denote uninterpreted predicates.

(a) Use Z3 to check whether ϕ is E -valid.

(b) Like (a) but assume that, in addition to the usual axioms of equality logic, the
following axiom is part of the theory: ∀x, y.

(
Q(x, y)↔ Q(y, x)

)
.

Exercise 6 Problem solving with Z3py 1 Point

Consider numbers with 2n decimal digits. How many numbers exist for which the sum of
the first n digits equals the sum of the last n digits, if n = 2, 3, 4?

Exercise 7 Verifcation of a C-program 1 Point

1 void xInts(unsigned int *x, unsigned int *y)
2 {
3 if(x != y) {
4 *x = *x + *y;
5 *y = *x - *y;
6 *x = *x - *y;
7 }
8 }

What is the program fragment supposed to do? Check the correctness of the procedure
using Z3. Can we change unsigned int to int? Check it with Z3 and explain your
answer.


