
A.1 The Satisfiability-Modulo-Theory Library and
Standard (SMT-LIB)

A bit of history: The growing interest and need for decision procedures such
as those described in this book led to the SMT-LIB initiative (short for
Satisfiability-Modulo-Theory Library). The main purpose of this initiative
was to streamline the research and tool development in the field to which this
book is dedicated. For this purpose, the organizers developed the SMT-LIB
standard [239], which formally specifies the theories that attract enough in-
terest in the research community, and that have a sufficiently large set of
publicly available benchmarks. As a second step, the organizers started col-
lecting benchmarks in this format, and today (2016) the SMT-LIB repository
includes more than 100 000 benchmarks in the SMT-LIB 2.5 format, classified
into dozens of logics. A third step was to initiate SMT-COMP, an annual
competition for SMT solvers, with a separate track for each division.

These three steps have promoted the field dramatically: only a few years
back, it was very hard to get benchmarks, every tool had its own language
standard and hence the benchmarks could not be migrated without trans-
lation, and there was no good way to compare tools and methods.1 These
problems have mostly been solved because of the above initiative, and, con-
sequently, the number of tools and research papers dedicated to this field is
now steadily growing.

The SMT-LIB initiative was born at FroCoS 2002, the fourth Workshop
on Frontiers of Combining Systems, after a proposal by Alessandro Armando.
At the time of writing this appendix, it is co-led by Clark Barrett, Pascal
Fontaine, and Cesare Tinelli. Clark Barrett, Leonardo de Moura, and Cesare
Tinelli currently manage the SMT-LIB benchmark repository.

1 In fact, it was reported in [94] that each tool tended to be the best on its own set
of benchmarks.
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The current state: The current SMT-LIB standard is at version 2.5 (as
of 2015). It supports the theories that are presented in Fig. A.1. The symbols
should be interpreted as follows:

• QF for the restriction to quantifier-free formulas
• A or AX for arrays without or with extensionality
• BV for fixed-size bit-vectors
• FP for Floating-Point
• IA for integer arithmetic
• RA for real arithmetic
• IRA for mixed integer arithmetic
• IDL for integer difference logic
• RDL for rational difference logic
• L before IA, RA, or IRA for the linear fragment of those arithmetics
• N before IA, RA, or IRA for the nonlinear fragment of those arithmetics
• UF for the extension allowing free sort and function symbols

Fig. A.1. The theories supported by the SMT-LIB standard have associated bench-
marks and at least one tool that (attempts to) solve them. An arrow (T1, T2) means
that T1 is a special case of T2. The greyed nodes are theories that are covered in
this book. The figure is copied (with permission) from the SMT-LIB web-site

A.2 The SMT-LIB File Interface

The SMT-LIB standard defines a file format for describing decision problems.
The benefit of a standardized file format is that it is easy to experiment with
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a range of solvers, and to replace the solver used in case better solvers are
developed. The description below refers to ver. 2.0 of the standard, but ver.
2.5 is backward-compatible.

SMT-LIB files are ASCII text files, and as a consequence can be written
with any text editor that can save plain text files. The syntax is derived from
that of Common Lisp’s S-expressions. All popular solvers are able to read
formulas from files or the standard input of the program, which permits the
use of POSIX pipes to communicate with the solver. We will refrain from
giving a formal syntax and semantics for SMT-LIB files, and will instead give
examples for the most important theories.

A.2.1 Propositional Logic

We will begin with an example in propositional logic. Suppose we wanted to
check the satisfiability of

(a ∨ b) ∧ ¬a .
We first need to declare the Boolean variables a and b. The SMT-LIB syn-

tax offers the command declare-fun for declaring functions, i.e., mappings
from some sequence of function arguments to the domain of the function.
Variables are obtained by creating a function without arguments. Thus, we
will write

1 (declare-fun a () Bool)
2 (declare-fun b () Bool)

to obtain two Boolean variables named a and b. Note the empty sequence of
arguments after the name of the variable.

We can now write constraints over these variables. The syntax for the
usual Boolean constants and connectives is as follows:

true true
false false
¬a (not a)
a =⇒ b (=> a b)
a ∧ b (and a b)
a ∨ b (or a b)
a⊕ b (xor a b)

Using the operators in the table, we can write the formula above as follows:

1 (and (or a b) (not a))

Constraints are given to the SMT solver using the command assert. We
can add the formula above as a constraint by writing

1 (assert (and (or a b) (not a)))

As our formula is a conjunction of two constraints, we could have equivalently
written
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1 (assert (or a b))
2 (assert (not a))

After we have passed all constraints to the solver, we can check satisfiability
of the constraint system by issuing the following command:

1 (check-sat)

The solver will reply to this command with unsat or sat, respectively. In
the case of the formula above, we will get the answer sat. To inspect the
satisfying assignment, we issue the get-value command.

1 (get-value (a b))

This command takes a list of variables as argument. This makes it possible
to query the satisfying assignment for any subset of the variables that have
been declared.

A.2.2 Arithmetic

The SMT-LIB format standardizes syntax for arithmetic over integers and
over reals. The type of the variable is also called the sort. The SMT-LIB
syntax has a few constructs that can be used for all sorts. For instance, we
can write (= x y) to denote equality of x and y, provided that x and y have
the same sort. Similarly, we can write (disequal x y) to say that x and
y are different. The operator disequal can be applied to more than two
operands, e.g., as in (disequal a b c). This is equivalent to saying that
all the arguments are different.

The SMT-LIB syntax furthermore offers a trinary if-then-else operator,
which is denoted as (ite c x y). The first operand must be a Boolean
expression, whereas the second and third operands may have any sort as long
as the sort of x matches that of y. The expression evaluates to x if c evaluates
to true, and to y otherwise.

To write arithmetic expressions, SMT-LIB offers predefined sorts called
Real and Int. The obvious function symbols are defined, as given in the
table below.

addition +
subtraction -
unary minus -
multiplication *
division / (reals) div (integers)
remainder mod (integers only)
relations < > <= >=

Many of the operators can be chained, with the obvious meaning, as in, for
example, (+ x y z). The solver will check that the variables in an expression
have the same sort. The nonnegative integer and decimal constant symbols 1,
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2, 3.14, and so on are written in the obvious way. Thus, the expression 2x+ y
is written as (+ (* 2 x) y). To obtain a negative number, one uses the
unary minus operator, as in (- 1). By contrast, -1 is not accepted.

A.2.3 Bit-Vector Arithmetic

The SMT-LIB syntax offers a parametric sort BitVec, where the parameter
indicates the number of bits in the bit vector. The underscore symbol is used
to indicate that BitVec is parametric. As an example, we can define an 8-bit
bit vector a and a 16-bit bit vector b as follows:

1 (declare-fun a () (_ BitVec 8))
2 (declare-fun b () (_ BitVec 16))

Constants can be given in hexadecimal or binary notation, e.g., as follows:

1 (assert (= a #b11110000))
2 (assert (= b #xff00))

The operators are given in the table below. Recall from Chap. 6 that
the semantics of some of the arithmetic operators depend on whether the
bit vector is interpreted as an unsigned integer or as two’s complement. In
particular, the semantics differs for the division and remainder operators, and
the relational operators.

Unsigned Two’s complement

addition bvadd
subtraction bvsub
multiplication bvmul
division bvudiv bvsdiv
remainder bvurem bvsrem
relations bvult, bvugt, bvslt, bvsgt,

bvule, bvuge bvsle, bvsge
left shift bvshl
right shift bvlshr bvashr

Bit vector concatenation is done with concat. A subrange of the bits of a
bit vector can be extracted with (_ extract i j), which extracts the bits
from index j to index i (inclusive).

A.2.4 Arrays

Recall from Chap. 7 that arrays map an index type to an element type. As
an example, we would write

1 (declare-fun a () (Array Int Real))

in SMT-LIB syntax to obtain an array a that maps integers to reals. The
SMT-LIB syntax for a[i] is (select a i), and the syntax for the array
update operator a{i← e} is (store a i e).
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A.2.5 Equalities and Uninterpreted Functions

Equality logic can express equalities and disequalities over variables taken
from some unspecified set. The only assumption is that this set has an infinite
number of elements. To define the variables, we first need to declare the set
itself, i.e., in SMT-LIB terminology, we declare a new sort. The command is
declare-sort. We obtain a new sort my sort and variables a, b, and c of
that sort as follows:

(declare-sort my_sort 0)
(declare-fun a () my_sort)
(declare-fun b () my_sort)
(declare-fun c () my_sort)
(assert (= a b))
(assert (disequal a b c))

The number zero in the declare-sort command is the arity of the sort.
The arity can be used for subtyping, e.g., the arrays from above have arity
two.



B.1 Introduction

A decision procedure is always more than one algorithm. A lot of infrastructure
is required to implement even simple decision procedures. We provide a large
part of this infrastructure in the form of the DPlib library in order to simplify
the development of new procedures. DPlib is available for download,1 and
consists of the following parts:

• A template class for a basic data structure for graphs, described in
Sect. B.2.

• A parser for a simple fragment of first-order logic given in Sect. B.3.
• Code for generating propositional SAT instances in CNF format, shown

in Sect. B.4.
• A template for a decision procedure that performs a lazy encoding, de-

scribed in Sect. B.5.

To begin with, the decision problem (the formula) has to be read as input by
the procedure. The way this is done depends on how the decision procedure
interfaces with the program that generates the decision problem.

In industrial practice, many decision procedures are embedded into larger
programs in the form of a subprocedure. Programs that use a decision proce-
dure are called applications. If the run time of the decision procedure domi-
nates the total run time of the application, solvers for decision problems are
often interfaced to by means of a file interface. This chapter provides the ba-
sic ingredients for building a decision procedure that uses a file interface. We
focus on the C/C++ programming language, as all of the best-performing
decision procedures are written in this language.

The components of a decision procedure with a file interface are shown in
Fig. B.1. The first step is to parse the input file. This means that a sequence
of characters is transformed into a parse tree. The parse tree is subsequently

1 http://www.decision-procedures.org/
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checked for type errors (e.g., adding a Boolean to a real number can be con-
sidered a type error). This step is called type checking . The module of the
program that performs the parsing and type-checking phases is usually called
the front end.

Most of the decision procedures described in this book permit an arbitrary
Boolean structure in the formula, and thus have to reason about propositional
logic. The best method to do so is to use a modern SAT solver. We explain
how to interface to SAT solvers in Sect. B.4. A simple template for a decision
procedure that implements an incremental translation to propositional logic,
as described in Chap. 3, is given in Sect. B.5.

Front end

Parsing
Type

checking
Decision

procedure

Fig. B.1. Components of a decision procedure that implements a file interface

B.2 Graphs and Trees

Graphs are a basic data structure used by many decision procedures, and
can serve as a generalization of many more data structures. As an example,
trees and directed acyclic graphs are obvious special cases of graphs. We have
provided a template class that implements a generic graph container.

This class has the following design goals:

• It provides a numbering of the nodes. Accessing a node by its number is
an O(1) operation. The node numbers are stable, i.e., stay the same even
if the graph is changed or copied.

• The data structure is optimized for sparse graphs, i.e., with few edges.
Inserting or removing edges is an O(log k) operation, where k is the number
of edges. Similarly, determining if a particular edge exists is also O(log k).

• The nodes are stored densely in a vector, i.e., with very little overhead
per node. This permits a large number (millions) of nodes. However, adding
or removing nodes may invalidate references to already existing nodes.

An instance of a graph named G is created as follows:

#include "graph.h"
...
graph<graph_nodet<> > G;
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Initially, the graph is empty. Nodes can be added in two ways: a single node
is added using the method add node(). This method adds one node, and
returns the number of this node. If a larger number of nodes is to be added,
the method resize(i) can be used. This changes the number of nodes to i
by either adding or removing an appropriate number of nodes. Means to erase
individual nodes are not provided.

The class graph can be used for both directed and undirected graphs.
Undirected graphs are simply stored as directed graphs where edges always
exist in both directions. We write a −→ b for a directed edge from a to b, and
a←→ b for an undirected edge between a and b.

Class: graph<T>
Methods: add edge(a, b) adds a −→ b

remove edge(a, b) removes a −→ b, if it exists
add undirected
edge(a, b)

adds a←→ b

remove undirected
edge(a, b)

removes a←→ b

remove in edges(a) removes x −→ a, for any node x
remove out edges(a) removes a −→ x, for any node x
remove edges(a) removes a −→ x and x −→ a, for any node

x

Table B.1. Interface of the template class graph<T>

The methods of this template class are shown in Table B.1. The method
has edge(a, b) returns true if and only if a −→ b is in the graph. The
set of nodes x such that x −→ a is returned by in(a), and the set of nodes
x such that a −→ x is returned by out(a).

The class graph provides an implementation of the following two algo-
rithms:

• The set of nodes that are reachable from a given node a can be com-
puted using the method visit reachable(a). This method sets the
member .visited of all nodes that are reachable from node a to true.
This member can be set for all nodes to false by calling the method
clear visited().

• The shortest path from a given node a to a node b can be computed with
the method shortest path(a, b, p), which takes an object p of type
graph::patht (a list of node numbers) as its third argument, and stores
the shortest path between a and b in there. If b is not reachable from a,
then p is empty.
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B.2.1 Adding “Payload”

Many algorithms that operate on graphs may need to store additional infor-
mation per node or per edge. The container class provides a convenient way
to do so by defining a new class for this data, and using this new class as a
template argument for the template graph. As an example, this can be used
to define a graph that has an additional string member in each node:

#include "graph.h"

class my_nodet {
public:
std::string name;

};
...

graph<my_nodet> G;

Data members can be added to the edges by passing a class type as a
second template argument to the template graph nodet. As an example,
the following fragment allows a weight to be associated with each edge:

#include "graph.h"

class my_edget {
int weight;

my_edget():weight(0) {
}

};

class my_nodet {
};
...

graph<my_nodet, my_edget> G;

Individual edges can be accessed using the method edge(). The following
example sets the weight of edge a −→ b to 10:

G.edge(a, b).weight=10;

B.3 Parsing

B.3.1 A Grammar for First-Order Logic

Many decision problems are stored in a file. The decision procedure is then
passed the name of the file. The first step of the program that implements
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id : [a-zA-Z $][a-zA-Z0-9 $]+

N-elem : [0-9]+

Q-elem : [0-9]∗.[0-9]+

infix-function-id : + | − | ∗ | / | mod
boolop-id : ∧ | ∨ | ⇔ | =⇒
infix-relop-id : < | > | ≤ | ≥ | =
quantifier : ∀ | ∃
term : id

| N-elem | Q-elem
| id ( term-list )
| term infix-function-id term
| − term
| ( term )

formula : id
| id ( term-list )
| term infix-relop-id term
| quantifier variable-list : formula
| ( formula )
| formula boolop-id formula
| ¬ formula
| true | false

Fig. B.2. Simple BNF grammar for formulas

the decision procedure is therefore to parse the file. The file is assumed to
follow a particular syntax. We have provided a parser for a simple fragment
of first-order logic with quantifiers.

Figure B.2 shows a grammar of this fragment of first-order logic. The
grammar in Fig. B.2 uses mathematical notation. The corresponding ASCII
representations are listed in Table B.2.

All predicates, variables, and functions have identifiers. These identifiers
must be declared before they are used. Declarations of variables come with a
type. These types allow a problem that is in, for example, linear arithmetic
over the integers to be distinguished from a problem in linear arithmetic over
the reals. Figure B.3 lists the types that are predefined. The domain U is used
for types that do not fit into the other categories.

B boolean
N0 natural
Z int
R real
BN unsigned [N]
BN signed [N]
U untyped

Fig. B.3. Supported types and their ASCII representations
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Mathematical symbol Operation ASCII

¬ Negation not, !

∧ Conjunction and, &

∨ Disjunction or, |

⇔ Biimplication <=>
=⇒ Implication =>

< Less than <
> Greater than >
≤ Less than or equal to <=
≥ Greater than or equal to >=
= Equality =

∀ Universal quantification forall
∃ Existential quantification exists

− Unary minus -

· Multiplication *
/ Division /

mod Modulo (remainder) mod

+ Addition +
− Subtraction -

Table B.2. Built-in function symbols

Table B.2 also defines the precedence of the built-in operators: the op-
erators with higher precedence are listed first, and the precedence levels are
separated by horizontal lines. All operators are left-associative.

B.3.2 The Problem File Format

The input files for the parser consist of a sequence of declarations (Fig. B.4
shows an example). All variables, functions, and predicates are declared. The
declarations are separated by semicolons, and the elements in each declaration
are separated by commas. Each variable declaration is followed by a type (as
listed in Fig. B.3), which specifies the type of all variables in that declaration.

A declaration may also define a formula. Formulas are named and tagged.
Each entry starts with the name of the formula, followed by a colon and one
of the keywords theorem, axiom, or formula. The keyword is followed
by a formula. Note that the formulas are not necessarily closed : the formula
simplex contains the unquantified variables i and j. Variables that are not
quantified explicitly are implicitly quantified with a universal quantifier.
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a, b, x, p, n: int;
el: natural;
pi: real;
i, j: real;
u: untyped; -- an untyped variable
abs: function;
prime, divides: predicate;

absolute: axiom forall a: ((a >=0 ==> abs(a) = a) and
(a < 0 ==> abs(a) = -a)) ==>
(exists el: el = abs(a));

divides: axiom (forall a, b: divides (a, b) <=>
exists x: b = a * x);

simplex: formula (i + 5*j <= 3) and
(3*i < 3.7) and
(i > -1) and (j > 0.12)

Fig. B.4. A realistic example

B.3.3 A Class for Storing Identifiers

Decision problems often contain a large set of variables, which are represented
by identifier strings. The main operation on these identifiers is comparison.
We therefore provide a specialized string class that features string comparison
in time O(1). This is implemented by storing all identifiers inside a hash table.
Comparing strings then reduces to comparing indices for that table.

Identifiers are stored in objects of type dstring. This class offers most of
the methods that the other string container classes feature, with the exception
of any method that modifies the string. Instances of type dstring can be
copied, compared, ordered, and destroyed in time O(1), and use as much space
as an integer variable.

B.3.4 The Parse Tree

The parse tree is stored in a graph class ast::astt and is generated from a
file as follows (Fig. B.5):

1. Create an instance of the class ast::astt.
2. Call the method parse(file) with the name of the file as an argument.

The method returns true if an error was encountered during parsing.

The class ast::astt is a specialized form of a graph, and stores nodes of
type ast::nodet. The root node is returned by the method root() of the
class ast::astt. Each node stores the following information:
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#include "parsing/ast.h"

...

ast::astt ast;

if(ast.parse(argv[1])) {
std::cerr << "parsing failed" << std::endl;
exit(1);

}

Fig. B.5. Generating a parse tree

1. Each node has a numeric label (an integer). This is used to distinguish
the operators and the terminal symbols. Table B.3 contains a list of the
symbolic constants that are used for the numeric labels.

2. Nodes that contain identifiers or a numeric constant also have a string
label, which is of type dstring (see Sect. B.3.3). We use strings for the
numeric constants instead of the numeric types offered by C++ in order
to support unbounded numbers.

3. Each node may have up to two child nodes.

As described in Sect. B.2, the nodes of the graph are numbered. In fact,
the ast::nodet class is only a wrapper around these numbers, and thus
can be copied efficiently. The methods it offers are shown in Table B.4. The
methods c1() and c2() return NIL if there is no first or second child node,
respectively.

For convenience, the ast::astt class provides a symbol table, which is a
mapping from the set of identifiers to their types. Given an identifier s, the
method get type node(s) returns the node in the parse tree that corre-
sponds to the type of s.

B.4 CNF and SAT

B.4.1 Generating CNF

The library provides algorithms for converting propositional logic into CNF
using Tseitin’s method (see Sect. 1.3). The resulting clauses can be passed
directly to a propositional SAT solver. Alternatively, they can be written to
disk in the DIMACS format. The interface to both back ends is defined in the
propt base class. This class is used wherever the specific propositional back
end is to be left unspecified. Literals (i.e., variables or their negations) are
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Name Used for

N_IDENTIFIER Identifier
N_INTEGER Integer constant
N_RATIONAL Rational constant
N_INT Integer type
N_REAL Real type
N_BOOLEAN Boolean type
N_UNSIGNED Unsigned type
N_SIGNED Signed type
N_AXIOM Axiom
N_DECLARATION Declaration
N_THEOREM Theorem
N_CONJUNCTION ∧
N_DISJUNCTION ∨
N_NEGATION ¬
N_BIIMPLICATION ⇐⇒
N_IMPLICATION =⇒
N_TRUE True
N_FALSE False
N_ADDITION +
N_SUBTRACTION −
N_MULTIPLICATION ∗
N_DIVISION /
N_MODULO mod
N_UMINUS Unary minus
N_LOWER <
N_GREATER >
N_LOWEREQUAL ≤
N_GREATEREQUAL ≥
N_EQUAL =
N_FORALL ∀
N_EXISTS ∃
N_LIST A list of nodes
N_PREDICATE Predicate
N_FUNCTION Function

Table B.3. Numeric labels of nodes and their meanings
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Class: ast::nodet
Methods: id() Returns the numeric label

string() Returns the string label
c1() Returns the first child node
c2() Returns the second child node
number() Returns the number of the node
is nil() Returns true if the node is NIL

Table B.4. Interface of the class ast::nodet

stored in objects of type literalt. The constants true and false are re-
turned by const literal(true) and const literal(false), respec-
tively.

Class: propt
Methods: land(a, b) Returns a literal l with l ⇐⇒ a ∧ b

land(v) Given a vector v = 〈v1, . . . , vn〉, returns a
literal l with l ⇐⇒

∧
i vi

lor(a, b) Returns a literal l with l ⇐⇒ a ∨ b
lor(v) Given a vector v = 〈v1, . . . , vn〉, returns a

literal l with l ⇐⇒
∨
i vi

lxor(a, b) Returns a literal l with l ⇐⇒ a⊕ b
lnot(a, b) Returns a literal l with l ⇐⇒ ¬a
lnand(a, b) Returns a literal l with l ⇐⇒ ¬(a ∧ b)
lnor(a, b) Returns a literal l with l ⇐⇒ ¬(a ∨ b)
lequal(a, b) Returns a literal l with l ⇐⇒ (a ⇐⇒ b)
limplies(a, b) Returns a literal l with l ⇐⇒ (a =⇒ b)
lselect(a, b, c) Returns a literal l with (a =⇒ (l ⇐⇒

b)) ∧ (¬a =⇒ (l ⇐⇒ c))
set equal(a, b) Adds the constraint a ⇐⇒ b
new variable() Returns a new variable
const literal(c) Returns a literal with a constant Boolean

truth value given by c

Table B.5. Interface of the class propt

The interface of the class propt is specified in Table B.5. The classes
satcheckt and dimacs cnft are derived from this class. An implemen-
tation of a state-of-the-art propositional SAT solver is given by the class
satcheckt. The additional methods it provides are shown in Table B.6.
The class dimacs cnft is used to store the clauses and dump them into a
text file that uses the DIMACS CNF format. Its interface is given in Table B.7.
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Class: satcheckt, derived from propt

Methods: prop solve() Returns P SATISFIABLE if the formula is
SAT

l get(l) Returns the value of l in the satisfying as-
signment

solver text() Returns a string that identifies the solver

Table B.6. Interface of the class satcheckt

Class: dimacs cnft, derived from propt

Methods: write dimacs
cnf(s)

Dumps the formula in DIMACS CNF for-
mat into the stream s

Table B.7. Interface of the class dimacs cnft

B.4.2 Converting the Propositional Skeleton

The propositional skeleton (see Chap. 3) of a parse tree can be generated
using the class skeletont. This offers an operator (), which can be applied
as follows, where root node is the root node of a formula, and prop is an
instance of propt:

#include "sat/skeleton.h"

...

skeletont skeleton;

skeleton(root_node, prop);

Besides converting the propositional part, the method also generates a vector
skeleton.nodes, where each element corresponds to a node in the parse
tree. Each node has two attributes:

• The attribute type is one of PROPOSITIONAL or THEORY, and distin-
guishes the skeleton from the theory atoms.

• In the case of a skeleton node, the attribute l is the literal that encodes
the node.

B.5 A Template for a Lazy Decision Procedure

The library provides two templates for decision procedures that compute a
propositional encoding of a given formula ϕ in the lazy manner. These algo-
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rithms are described in detail under the names Lazy-DPLL (Algorithm 3.3.2)
and DPLL(T ) (Algorithm 3.4.1) in Chap. 3.

We first define a common interface for any kind of decision procedure. This
interface is defined by a class decision proceduret (Table B.8). This class
offers a method is satisfiable(ϕ), which returns true if and only if the
formula ϕ is satisfiable. If so, one may call the methods print assign-
ment(s) and get(n). The method print assignment(s) dumps the en-
tire satisfying assignment into a stream, whereas get(n) permits querying
the value of an individual node n of ϕ.

Class: decision proceduret
Methods: is satisfiable(ϕ) Returns true if the formula ϕ is found to

be SAT
print
assignment(s)

Dumps the satisfying assignment into the
stream s

get(n) Returns the value assigned to node n of ϕ

Table B.8. Interface of the class decision proceduret

Class: lazy dpllt, derived from decision proceduret

Methods: assignment(n, v) This method is called by the SAT solver
for every assignment to a Σ-literal in ϕ.
The node it corresponds to is n; the value
assigned is given by v.

deduce() This method is called once a satisfying as-
signment to the current propositional en-
coding is found.

add clause(c) Called by deduce() to add a clause as
a consequence of a T -inconsistent assign-
ment

Members: f A copy of ϕ
skeleton An instance of skeletont

Table B.9. Interface of the classes lazy dpllt and dpll tt, which are imple-
mentations of Lazy-DPLL (Algorithm 3.3.2) and DPLL(T ) (Algorithm 3.4.1). The
theory T is assumed to be defined over a signature Σ

The templates that we have provided implement two of the algorithms
given in Chap. 3: Lazy-DPLL and DPLL(T ). These templates include the
conversion of the propositional skeleton of ϕ into CNF, and the interface to
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the SAT solver. We provide a common interface to both algorithms, which is
given in Table B.9.

Class: dpll tt, derived from decision proceduret

Methods: deduce() This method is called by the SAT solver
to check a partial assignment for T -
consistency.

add clause(c) Called to add a clause as consequence of
assignment

theory
implication(n,
v)

Called to communicate a T -implication to
the SAT solver: n is the node implied, and
v is the value.

Members: f A copy of ϕ
skeleton An instance of skeletont

Table B.10. Interface of the class dpll tt, an implementation of DPLL(T ) (Al-
gorithm 3.4.1)

The only part that is left open is the interface to the decision procedure for
the conjunction of Σ-literals. In the case of both algorithms, this is the method
deduce(). The assignment to the Σ-literals is passed from the SAT solver
to the deductive engine by means of calls to the method assignment(n,
v), where n is the node and v is the value that is assigned.

The method deduce() inspects this assignment to the Σ-literals. If it is
found to be consistent, deduce() is expected to return true. Otherwise, it
is expected to add appropriate constraints using the method add clause,
and to return false.

In the case of Lazy-DPLL, deduce() is called only for full assignments,
whereas DPLL(T ) may call deduce() for partial assignments.
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Wintersteiger, editors, Satisfiability Modulo Theories (SMT), volume 1163 of
CEUR Workshop Proceedings, pages 39–49, 2014.

71. A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. The MathSAT5 SMT
solver. In N. Piterman and S. Smolka, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 7795 of LNCS, pages
93–107. Springer, 2013.

72. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C pro-
grams. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 2988 of LNCS, pages 168–176. Springer, 2004.

73. E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction
of ANSI-C programs using SAT. Formal Methods in System Design, 25(2-
3):105–127, 2004.
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