
Formal Methods in Computer Scicene
UE 185.A93, WS 2019

Block 4: Model Checking

Florian Zuleger

Institute of Logic and Computation
Formal Methods in Systems Engineering

Slides by Laura Kovács

Introduction

I We will use the NuSMV symbolic model checker:

http : //nusmv.fbk.eu/

The first NuSMV program – alternated.smv

MODULE main
VAR
b0 : boolean;

ASSIGN
init(b0) := FALSE;
next(b0) := !b0;

b0!b0

0 1

An NuSMV program consists of:
I Declarations of the state variables (b0 in the example); the state

variables determine the state space of the model.
I Assignments that define the valid initial states

(init(b0):=FALSE).
I Assignments that define the transition relation

(next(b0):=!b0).

Declaring state variables

The NuSMV language provides booleans, enumerative, bounded
integers and words as data types:
boolean:

x : boolean;
enumerative:

st : {ready, busy, waiting, stopped};
bounded integers (intervals):

n : 1..8;
words:

w : word[8];

The NuSMV language provides also the possibility to define arrays.

Declaring the set of initial states

I For each variable, we constrain the values that it can assume in
the initial states.

init(<variable>) := <simple_expression> ;

I <simple expression> must evaluate to values in the domain
of <variable>.

I If the initial value for a variable is not specified, then the variable
can initially assume any value in its domain.

Expressions

I Arithmetic operators:
+ - * / mod - (unary)

I Comparison operators:
= != > < <= >=

I Logic operators:
& | xor ! (not) -> <->

I Conditional expression:
case

c1 : e1;
c2 : e2;
...
TRUE : en;

esac

if c1 then e1 else if c2 then e2 else if . . .
else en

I Set operators: {v1,v2,...,vn} (enumeration) in (set
inclusion) union (set union)

Expressions

I Expressions in NuSMV do not necessarily evaluate to one value.
In general, they can represent a set of possible values.

init(var) := {a,b,c} union {x,y,z} ;

I The meaning of := in assignments is that the lhs can assume
non-deterministically a value in the set of values represented by
the rhs.

I A constant c is considered as a syntactic abbreviation for {c}
(the singleton containing c).

Declaring the transition relation

I The transition relation is specified by constraining the values that
variables can assume in the next state.

next(<variable>) := <next_expression> ;

I <next expression> must evaluate to values in the domain of
<variable>.

I <next expression> depends on “current” and “next” variables:
next(a) := { a, a+1 } ;
next(b) := b + (next(a) - a) ;

I If no next() assignment is specified for a variable, then the
variable can evolve non deterministically, i.e. it is unconstrained.

Declaring the transition relation

Example: short.smv

MODULE main

VAR
request : boolean;
state : {ready,busy};

ASSIGN
init(state) := ready;
next(state) := case

state = ready & request : busy;
TRUE : {ready,busy};

esac;

Specifying normal assignments

I Normal assignments constrain the current value of a variable to
the current values of other variables.

I They can be used to model outputs of the system.

<variable> := <simple_expression> ;

I <simple expression> must evaluate to values in the domain
of the <variable>.

Specifying normal assignments

MODULE main
VAR
b0 : boolean;
out : 0..3;

ASSIGN
init(b0) := FALSE;
next(b0) := !b0;

out := 2*b0;

The DEFINE declaration

I DEFINE declarations can be used to define abbreviations.
I An alternative to normal assignments.
I Syntax:

DEFINE <id> := <simple_expression> ;

alternative to
VAR <id>:type; ASSIGN <id> := <simple_expression>;

I They are similar to macro definitions.

I No new state variable is created for defined symbols (hence, no
added complexity to model checking).

I Each occurrence of a defined symbol is replaced with the body of
the definition.

The DEFINE declaration

MODULE main
VAR
b0 : boolean;

ASSIGN
init(b0) := FALSE;
next(b0) := !b0;

DEFINE
out := 2*b0;

Modules

A NuSMV program can consist of one or more module declarations.

In each NuSMV specification there must be a module main.

Specifications

In the NuSMV language:
I Specifications can be added in any module of the program

I Each property is verified separately

I The result of a property verification is either “true” or “false”. In
the latter case, a counterexample is generated

Specifications

I We focus on the following properties:
I properties on the computation tree (branching time temporal

logics):
I CTL (SPEC)

I properties on the computation paths (linear time temporal logics):
I LTL (LTLSPEC)

CTL specifications

I CTL properties are specified via the keyword SPEC:

SPEC <ctl_expression>

where <ctl expression> can contain the following temporal
operators:

AX AF AG A[U]
EX EF EG E[U]

CTL specifications

Pfinally Pglobally Pnext P until q

PEF PEX P U q]E[PEG

AFP AXP P U qA[]AGP

CTL specifications

Examples of specifications aas:

I It is possible to reach a state in which out = 3

SPEC EF out = 3

I A state in which out = 3 is always reached

SPEC AF out = 3

I It is always possible to reach a state in which out = 3

SPEC AG EF out = 3

I Every time a state with out = 2 is reached, a state with out =
3 is reached afterward

SPEC AG (out = 2 -> AF out = 3)

CTL specifications

Examples of specifications:

I It is possible to reach a state in which out = 3

SPEC EF out = 3

I A state in which out = 3 is always reached

SPEC AF out = 3

I It is always possible to reach a state in which out = 3

SPEC AG EF out = 3

I Every time a state with out = 2 is reached, a state with out =
3 is reached afterward

SPEC AG (out = 2 -> AF out = 3)

A simple mutex example – semaphore ctl.smv

MODULE user(semaphore)
VAR
state : { idle, entering, critical, exiting };

ASSIGN
init(state) := idle;
next(state) :=
case
state = idle : { idle, entering };
state = entering & !semaphore : critical;
state = critical : { critical, exiting };
state = exiting : idle;
TRUE : state;

esac;
next(semaphore) :=
case
state = entering : TRUE;
state = exiting : FALSE;
FALSE : semaphore;

esac;
FAIRNESS

running

A simple mutex example

MODULE main
VAR

semaphore : boolean;
proc1 : process user(semaphore);
proc2 : process user(semaphore);

ASSIGN
init(semaphore) := FALSE;

SPEC
AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

> NuSMV semaphore.smv

-- specification AG (proc1.state = entering -> AF proc1.state = critical)
is false
-- as demonstrated by the following execution sequence [...]

LTL specifications

I LTL properties are specified via the keyword LTLSPEC:

LTLSPEC <ltl_expression>

where <ltl expression> can contain the following temporal
operators:

X F G U

LTL specifications

Pfinally

F P

Pglobally

PG

PX

Pnext P until q

P U q

LTL specifications

Examples of specifications:
I A state in which out = 3 is eventually reached

LTLSPEC F out = 3

I Every time a state with out = 2 is reached, a state with
out = 3 is reached afterward

LTLSPEC G (out = 2 -> F out = 3)

Example of annotated NuSMV program: semaphore ltl.smv

Bounded Model Checking

Key ideas:
I looks for counter-example paths of increasing length k

I oriented to finding bugs

I for each k , builds a boolean formula that is satisfiable iff there is
a counter-example of length k

I satisfiability of the boolean formulas is checked using a SAT
procedure

Bounded Model Checking

An example of a deterministic counter modulo 8 -- counter bmc.smv:

MODULE main
VAR

y : 0 .. 15;
ASSIGN

init(y) := 0;
TRANS

case
y=7 : next(y) = 0;
TRUE : next(y) = ((y+1) mod 16);

esac;
LTLSPEC G (y=4 -> X y=6)

> NuSMV -bmc counter bmc.smv

The Ferryman Puzzle in NuSMV

The Ferryman Puzzle:
A ferry-man has to bring a goat, a cabbage, and a wolf safely from
the right bank to the left bank of the river.

The ferry-man can cross the river alone or with exactly one of these
three passengers.

At any time, either the ferry-man should be on the same bank as the
goat, or the goat should be alone on a bank.
Otherwise, the goat could go ahead and eat the cabbage or the wolf
may eat the goat.

Nice visualisation at:
http://www.mathcats.com/explore/river/crossing.html

http://www.mathcats.com/explore/river/crossing.html

The Ferryman Puzzle - Variables

MODULE main
VAR
-- the man and the three items

cabbage : {right,left};
goat : {right,left};
wolf : {right,left};
man : {right,left};

-- possible moves
move : {c, g, w, e};

DEFINE
carry_cabbage := move=c;
carry_goat := move=g;
carry_wolf := move=w;
no_carry := move=e;

The Ferryman Puzzle

-- initially everything is on the right bank
ASSIGN

init(cabbage) := right;
init(goat) := right;
init(wolf) := right;
init(man) := right;

TRANS
carry_cabbage ->

cabbage=man &
next(cabbage)!=cabbage &
next(man)!=man &
next(goat)=goat &
next(wolf)=wolf

...

The Ferryman Puzzle – ferryman.smv

DEFINE

-- goat and wolf must not be left unattended !
-- goat and cabbage must not be left unattended !
safe_state := (goat = wolf | goat = cabbage) -> goat = man;

goal := cabbage = left & goat = left & wolf = left;

-- spec to find a solution to the problem
SPEC

! E[safe_state U goal]

	Modeling Problems in NuSMV
	Specifying properties in NuSMV
	CTL
	LTL

	BMC
	Exercise - The Ferryman Puzzle in NuSMV

