Problem Set 4

Problem 4.1 Consider binary phase shift keying transmission of a symbol $s \in$ $\{-a, a\}, a>0$, with $\mathrm{P}\{\mathrm{s}=-a\}=1 / 2$. The symbol is transmitted over a fading channel with coefficient $\mathrm{h} \sim \mathcal{N}\left(\mu_{\mathrm{h}}, \sigma_{\mathrm{h}}^{2}\right)$, $\mu_{\mathrm{h}}>0$. Let $\mathrm{r}=\mathrm{h} \cdot \mathrm{s}$ denote the received symbol. The channel coefficient is statistically independent of the source symbol.
a) Find a such that $\sigma_{\mathrm{s}}^{2}=2$.
b) Specify and sketch both conditional pdfs of r given the source symbol.
c) Specify and sketch the unconditional pdf of the received symbol.
d) Find the conditional probability that $\mathrm{r}>0$ given $\mathrm{s}=-a$ and sketch it in your figure. Hint: use the Q-function to express the probability.
e) The detected symbol is $\hat{\mathrm{s}}=a \cdot \operatorname{sign}(\mathrm{r})$. Calculate the probability of a symbol error, i.e., $\hat{\mathrm{s}} \neq \mathrm{s}$, for $\mu_{\mathrm{h}}=\sqrt{2}$ and $\sigma_{\mathrm{h}}^{2}=1 / 4$.
f) Assume a block of 400 independent symbols is transmitted. Calculate the probability that the entire block is received correctly.
g) Is data detection possible if $\mu_{\mathrm{h}}<0$? How about $\mu_{\mathrm{h}}=0$? Justify your answers.

Problem 4.2 Consider the joint pdf

$$
f_{x, y}(x, y)=\left\{\begin{array}{ll}
x e^{-x(y+1)}, & x \geq 0 \wedge y \geq 0 \\
0, & \text { otherwise }
\end{array} .\right.
$$

a) Find the marginal pdfs $f_{\mathrm{x}}(x)$ and $f_{\mathrm{y}}(y)$.
b) Find the conditional pdfs $f_{\mathrm{x} \mid \mathrm{y}}(x \mid y)$ and $f_{\mathrm{y} \mid \mathrm{x}}(y \mid x)$.
c) Are x and y statistically independent? Justify your answer.

Problem 4.3 Let x and y be two statistically independent random variables, distributed according to the following pdfs:

$$
f_{\mathrm{x}}(x)=\frac{1}{3} e^{-x / 3} u(x), \quad f_{\mathrm{y}}(y)=\frac{1}{2} e^{-y / 2} u(y), \quad \text { where } \quad u(z)=\left\{\begin{array}{ll}
1, & z \geq 0 \\
0, & z<0
\end{array} .\right.
$$

a) Calculate the probability $\mathrm{P}\{\mathrm{x}>5 \wedge \mathrm{y}>10\}$.
b) Let $\mathrm{z}=\mathrm{x}+\mathrm{y}$. Find the mean μ_{z} of the random variable z .
c) Calculate the characteristic function $\Phi_{z}(\omega)$.

Problem 4.4 Consider two statistically independent random variables x and y with

$$
f_{\mathrm{x}}(x)=\left\{\begin{array}{ll}
\frac{x}{\alpha^{2}} e^{-\frac{x^{2}}{2 \alpha^{2}},} & x \geq 0 \\
0, & x<0
\end{array}, \quad f_{\mathrm{y}}(y)=\left\{\begin{array}{ll}
\frac{1}{\pi \sqrt{1-y^{2}}}, & |y|<1 \\
0, & |y| \geq 1
\end{array} .\right.\right.
$$

a) Show that $z=x y$ is Gaussian distributed.
b) Specify the mean and variance of \mathbf{z}.

Hint: $\int_{0}^{\infty} e^{-a x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{a}}, a>0$.

