
D1 – Introduction to High Level Synthesis (HLS)

Advanced Computer Architecture

Daniel Mueller-Gritschneder



Motivation for HLS

V1-0 ACA 2

Source: WALDEN C. RHINES
President and Chief Executive Officer , Mentor, a Siemens Business
24th IEEE International Symposium on On-Line Testing and Robust System Design 2018

High-Level Synthesis: 4x faster than RTL
RTL Bottleneck: Verification



Motivation for HLS

V1-0 ACA 3

Source: WALDEN C. RHINES
President and Chief Executive Officer , Mentor, a Siemens Business
24th IEEE International Symposium on On-Line Testing and Robust System Design 2018

High-Level Synthesis: 4x faster than RTL
RTL Bottleneck: Verification

High-Level Synthesis is the future of IC design



V1-0 ACA 4

D1-1 HW Design Flow in a Nutshell

• Literature:

• „Specification and Design of Embedded Systems“ Daniel D. Gajski, Prentice Hall 1994

• „Digitale Hardware/Software Systeme“, Jürgen Teich, Springer 1997

• „Embedded System Design“, Daniel D. Gajski et.al., Springer 2009 



Abstraction Levels & Design Views

Design View

Behavior Structure Geometry

A
b

s
tra

c
tio

n
 L

e
v
e
l

System
System 

Specification

Connected 

Components
Chip, Board

Architecture Algorithms
CPU, Bus, HW-

accelerator
Floor plan

Register 

Transfer

Register 

Transfers / 

FSMs

Module netlist

(ALU, Mux, Register)

Makro-cells

(IP-blocks)

Logic
Boolean 

Equations

Gate netlist

(Gates, FlipFlops)

Standard cells, 

library cells

Circuit
Differential 

Equations
Transistor netlist Mask data

ACAV1-0 5



A2.2. Y-chart

Behavioral view Structural view

Geometrical view

Polygons

Makro cells

Standard cells

Chip, Board

Algorithm

Boolean 

Equations

Register-

Transfers

Differential

Equations

Processor, 

Memory, Switch

ALU, Register, 

Mux

Gate, FF

Transistor

ACA
V1-0 6

Abstraction Levels & Design Views



Electronic System Level (ESL) Design Flow

System Specification

Specification of Components 
and Tasks

SW Code Generation HW Synthesis

Prototypes (Virtual)

System Synthesis

Interface 
Synthesis

Simulation

System models

ACA
V1-0 7



System Synthesis

• Inputs:

• Specification of the System: Description of the functionality and design constraints (Written text, specification languages) 

• Typical synthesis steps:
• Description of functionality as set of communicating g tasks 

• Description of behavior of tasks on algorithmic level

• Description of task communication 

• Allocation of system components such as processors, buses, memory, …  Buses, memory,…

• Binding of tasks and inter-task communication to system components (HW/SW Partitioning)

• Output

• Specification of components, tasks and Inter-task communication that guarantees to meet system specification 

ACA
V1-0 8



ASIC HW Synthesis Flow

Algorithmic description
of the task (C, SystemC)

Register Transfer Model (HDL)

High-level (HW) synthesis

Logic synthesis

Gate netlist

Layout synthesis

Layout / mask data

Simulation Te
st

 b
en

ch

Timing 
analysis 

Simulation 

ACA
V1-0 9



A2.6. High-level (HW) synthesis

• Input
• Algorithmic description of a task, e.g. in C, C++, SystemC

• Design constraints (Maximal latency, available resources, …)

• Synthesis steps:
• Static code analysis and code optimization

• Data path synthesis (Scheduling, allocation, binding)

• Control unit synthesis (FSM implementation) 

• Output:
• Description of hardware module on RT level

ACA
V1-0 10

HLS Synthesis Step



A2.7. Logic synthesis

• Input:
• Description of HW module on RT level

• Design constraints (minimal clock frequency, maximal area,…)

• Gate library

• Synthesis steps:
• Logic optimization

• Technology mapping

• Output:
• Gate netlist  

ACA
V1-0 11

Logic Synthesis Step



A2.8. Layout Synthesis

• Input
• Gate library

• Design constraints

• Layout library (P-cells)

• Synthesis steps:
• Placement of modules

• Routing of signal nets

• Output
• Layout, mask data

ACA
V1-0 12

Physical Synthesis Step (Layout and Routing Step)



Software Compilation

• Inputs
• Algorithmic description of task 

• Synthesis steps
• Static Code Analysis and Optimization

• Code Generation (Instruction Selection, Register Allocation and Assignment)

• Assembler/linker/loader

• Outputs:
• Assembly code/machine code for target processor

ACA
V1-0 13



Interface Synthesis Step

• Input
• Description of Inter-task communication

• Design constraints (protocols, data rates, …)

• Outputs
• Drivers, bus interfaces, …

ACA
V1-0 14



High level HW Synthesis (HLS) vs. SW Compilation Flow

Algorithmic Description of the task (C, SystemC)

Frontend (Lexical, Syntax, Semantical Analyzer)

Intermediate Code Representations

Static Code Analysis and Optimization

Optimized Intermediate Code Representations

SW Code Generation

Register Transfer Model (HDL)Assembler Code

High level HW Syn. Backend

So
ft

w
ar

e
 c

o
m

p
ila

ti
o

n

H
ig

h
-l

e
ve

l h
ar

d
w

ar
e

 s
yn

th
e

si
s

ACA
V1-0 15



V1-0 ACA 16

D1-2 The HLS Synthesis Task

• Literature:

• „Specification and Design of Embedded Systems“ Daniel D. Gajski, Prentice Hall 1994

• „Digitale Hardware/Software Systeme“, Jürgen Teich, Springer 1997

• „Embedded System Design“, Daniel D. Gajski et.al., Springer 2009 



Basic Task

Algorithmic description of 
the task (C, SystemC)

 RT model of Hardware 
module in VHDL or 

Verilog

DP_Status

DP_Control

Control_IN Data_INControl_OUT Data_OUT

Controller
Data path

HW Module Interface

Bus_Control
Bus_Address
Bus_Data

int function1(int x, int y, int z) 

{

int a;

a=x*(y*y+z);

return a; 

} 

High-level HW 
Synthesis

ACA
V1-0 17

This is called usually
an HW accelerator or

IP block



Other Names for HLS

Many names:

• High-level Hardware synthesis

• High-level synthesis (HLS)

• Algorithmic synthesis

• Behavioral synthesis

• C Synthesis

• …

ACA
V1-0 18



Classes of Hardware Components

• Data-oriented designs

 

Examples: Video signal processing, 
compression, encryption,…

Status

Control

Control_IN Data_IN

Control_OUT Data_OUT

Controller Data path

• Control-oriented designs

 

Examples: Traffic light control, industrial 
machines control, …  

Status

Control

Control_IN Data_IN

Control_OUT

Controller Data path

ACA
V1-0 19

HLS works better
on data-oriented
designs



Performance metrics (1/2)

• Clock Cycle Time
• Cycle duration of the driving clock of the HW module

• The combinatorial path in the circuit with largest delay places an 
lower limit on the clock cycle time (critical path).

• Latency  
• Number of clock cycles between the start of processing a block of 

data and the point of time at which the result is ready at the output.

• Processing time

• Throughput T
• Number of blocks of data that can be processed in a fixed time. 

ACA
V1-0 20



Performance metrics (2/2)

• Chip area (ASIC)
• Estimated via gate count.

• Data path: Number of Hardware Operation Units such as multipliers, ALUs, registers, multiplexers,…

• FPGA Resources
• Number of Luts, Number of DSP Blocks, …

• Power/Energy Consumption
• Dynamic power consumption: Power consumed by switching transistors in the circuit

• Static power consumption: Power consumed due to leakage currents. 

ACA
V1-0 21



Design Goals and Constraints

• Synthesis algorithms handle two typical cases: 

• Timing constrained: 
• Constrained: Implement task such that it can compute result in maximal number of clock cycles (maximal latency).

• Goal: Minimize number of functional units (adders, ALUs, multipliers) in data path.

• Second goal: Minimize number of registers (register sharing), multiplexers, control unit states, …

• Resource constrained: 
• Constrained: Implement task with fixed maximal number of functional units (adders, ALUs, multipliers) in data 

path. 

• Goal: Minimize latency.

• Second goal: Minimize number of registers (register sharing), multiplexers, control unit states, …

 

ACA
V1-0 22



Synchronous HW Design 

• All registers in control unit and data path share same clock.

• Assumptions for simplification: 
• Functional units have a fixed and known delay such that the number of clock 

cycles to execute operation is assumed to be fixed and data-independent. 
• The delay of interconnect and multiplexers can be neglected. 

• Real life: 
• Longest combinatorial path in the circuit will determine the maximal clock 

frequency.
• Logic synthesis will try to optimize circuit dependent on target clock frequency 

and area.

ACA
V1-0 23



High-level HW Synthesis Flow

Algorithmic description of the task (C, SystemC)

Frontend (Lexical, Syntax, Semantical Analyser)

Intermediate Representation (IR) Code 

Static Code Analysis and Optimization

Optimized IR Code 

Register Transfer Modell (HDL)

High-level HW Synthesis Backend C H
ig

h
-l

e
ve

l h
ar

d
w

ar
e

 s
yn

th
e

si
s

ACA
V1-0 24



High-level HW Synthesis Backend

Optimized IR Code 

RTL model of data path

Data path synthesis

Control unit synthesis

Interface specification

Interface synthesis

RTL model of interface

RTL model of hardware module with data path, interface 
and control unit

ACA
V1-0 25



C1.8. Data Path Synthesis

Optimized IR Code

Sequencing graph

Flow Analysis

Scheduling 
before Binding

Binding 
Before 

Scheduling

Allocation and RTL model generation

Binding & Schedule

ACA
V1-0 26



Data Path Synthesis Steps

• Scheduling: 
• Determines the start time of each operation

• Binding: 
• Determine on which functional units the operation is executed.

• Determine in which register variables are saved. 

• Allocation: 
• Selection of resources such as functional units, registers and multiplexers.

ACA
V1-0 27



Interface Synthesis

Interface Specification

RTL interface description

Interface Synthesis
• Interfaces can differ strongly. 

• Interface may consist of:

• Memory, Registers or FIFOS as data buffers.

• FSMs for communication (bus) protocols.

• Crossing of clock domains possible, e.g. 
between  bus clock and HW module clock.  

ACA
V1-0 28



Control Unit Synthesis

RTL description  of data path and 
interface

FSM with data specification 
(FSMD) + activation and status 

signals

Control analysis

FSM Synthesis

RTL description of control unit

ACA
V1-0 29



V1-0 ACA 30

D1-3 Data Path Synthesis
HW Resources

• Literature:

• „Specification and Design of Embedded Systems“ Daniel D. Gajski, Prentice Hall 1994

• „Digitale Hardware/Software Systeme“, Jürgen Teich, Springer 1997

• „Embedded System Design“, Daniel D. Gajski et.al., Springer 2009 



HW Resources in the Data Path

• Functional units: Adder, Multiplier, ALUs,… 
• Execute operations on data, e.g., Add, Shift, AND, OR, Mult, …

• Fixed and known delay 

• Fixed and known area demand

• Signal nets and multiplexers
• Delay and area demand is neglected.

• Memory elements: Registers 
• Delay and area demand is neglected.

• NFU (Nonfunctional Unit):
• Nonexistent  helper resource

• used to execute special NOP, LOOP, BRANCH, CALL operations (more later)

 

ACA
V1-0 31



HW Resources in the Data Path

• Functional units are identified by a pair 

• of their type:

• and an index

• Example:  

ACA
V1-0 32



Time-Resource-Plane (TRP) (1/4)

• X-axis: Resources
• List allocated operational units

• Assign operations to operational units (Binding)

• y-axis: Time
• Division in clock cycles.

• Plan temporal order of the operations

• Select start times of operations (Schedule)

• Values must be saved in registers between clock cycles. 

ACA
V1-0 33



Time-Resource-Plane (TRP)  (2/4)

CC 1

CC 4

CC 3

CC 2

Add,1 Mult,1 Mult,2

Time in clock cycles (CC)

Resources (Functional units)
• Example: Goertzel 

Algorithm 

    (Basic block B3)

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

t6= 

s_prev1* 

s_prev1

t7= 

s_prev2* 

s_prev2

t8= 

s_prev1* 

s_prev2

t9= t8* 

coeff

t10= 

t6+t7

power= 

t10–t9

ACA
V1-0 34



Time-Resource-Plane (TRP)  (3/4)

CC 2

CC 5

CC 4

CC 3

Add,1 Mult,1

CC 1

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

t6= 

s_prev1* 

s_prev1

t7= 

s_prev2* 

s_prev2

t8= 

s_prev1* 

s_prev2

t9= t8* 

coeff

t10= 

t6+t7

power= 

t10–t9

• Example: Goertzel 
Algorithm 

    (Basic block B3)

ACA
V1-0 35



Time-Resource-Plane (TRP)  (4/4)

CC 2

CC 3

Add,1 Mult,1

CC 1

Mult,2 Mult,3

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

t6= 

s_prev1* 

s_prev1

t7= 

s_prev2* 

s_prev2

t8= 

s_prev1* 

s_prev2

t9= t8* 

coeff

t10= 

t6+t7

power= 

t10–t9

• Example: Goertzel 
Algorithm 

(Basic block B3)

ACA
V1-0 36



Pareto-Optimality (1/2)

• Which is the best solution?

• Solution is Pareto optimal, if there exist no solution that is better in all design 
performance metrics.

• Different Pareto-optimal solutions  allow different trade-offs between the design 
performance metrics.

• Best solution is picked based on preferences on design performance metrics.

ACA
V1-0 37



Pareto-Optimality (2/2)

1 2 3 4 5 60

0

0

10

15

20

5

Chip Area [units] 

(Demand: Adder=2 area units, Multiplier=5 area units)

Latency [Clock cycles]

1 Adder, 3 Multiplier

Minimal Latency

1 Adder, 2 Multiplier

1 Adder, 1 Multiplier

Minimal chip area

12

7

17

ACA
V1-0 38



V1-0 ACA 39

D1-4 Sequencing Graphs



Sequencing Graph (SG)

• Sequencing graph:

• Hierarchy of directed acyclic graphs (DAGs). Each DAG is called a sequencing graph unit 
(SGU). 

• SGUs are polar: One source and one sink node is added, which is labeled No operation 
(NOP).  

• Nodes: 

• No operation (NOP)

• Operations (+,>,<,*,…)

• Hierarchical node (CALL, BR, LOOP)    

• Edges: 

• between nodes in one SGU unit: Data dependency between two operations

• between Source/sink and hierarchical nodes: Connections between SGU on different 
hierarchical levels

• Paths describe concurrent operations that may possibly be executed in parallel, 

ACA
V1-0 40



Sequencing Graph

• Example: SGU for basic block B3 of Goertzel algorithm



+

−

 



NOP

NOP



+

−

s_prev1 s_prev2 coeff

 


t6

t7

t10

t8

t9

power

Data flow graph Sequencing graph unit

ACA

return

return

op7
v8

V1-0 41

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

• Example: Goertzel 
Algorithm 

(Basic block B3)



Sequencing Graph

• Hierarchical nodes: CALL, LOOP, BR

LOOP
BR

CALL  −

+

NOP

NOP

Call to procedure Control flow branchControl flow loop

 −

+

NOP

NOP

Called SGU of one lower 
hierarchical level is executed 
once.

SGU of lower hierarchical level 
is executed 0 to N times.



+

NOP

NOP

+

NOP

NOP

Only one of the two SGU of lower 
hierarchical level is executed 
once.

ACA
V1-0 42



Sequencing Graph

• Example: Goertzel algorithm 

NOP

<

NOP

Loop



 

 +

−


−

+

+

NOP

NOP



B1: s_prev1 := 0.0

s_prev2 := 0.0

i:=0

t1 := 2*3.14 

f := t1 * freq

param f

t2 := call cos,1

coeff:=2.0*t2

B2: t3:= coeff * s_prev1

t4:= x[i] 

t5 := t4 - s_prev2

s := t3 + t5 

s_prev2 := s_prev1 

s_prev1 := s

i:=i+1

if i < 64 goto B2 

B3: t6:= s_prev1 * s_prev1

t7:= s_prev2 * s_prev2

t8:= s_prev1 * s_prev2

t9:= t8 * coeff

t10:= t6+t7

power:= t10 – t9

return power

SGU for cos



SGU for B2

SGU for B1 and B3

ACA

return

read x

= ==

CALL

=

=

V1-0 43



Sequencing Graph in the TRP

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

return power

• Example: Goertzel 
Algorithm 

    (Basic block B3)



+

−

 



NOP

NOP

ACA

return

V1-0 44



Sequencing Graph in the TRP

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

return power

• Example: Goertzel 
Algorithm 

    (Basic block B3)



+

−

 



NOP

NOP

CC 1

CC 2

CC 3

Scheduled sequencing graph

(Operations assigned to clock cycles)

ACA

return

V1-0 45



Sequencing Graph in the TRP

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

return power

• Example: Goertzel 
Algorithm 

    (Basic block B3)

***

+ *

-

NOP

NOP

CC 2

CC 3

Add,1 Mult,1

CC 1

Mult,2 Mult,3

Scheduled sequencing graph with binding

(Operations assigned to clock cycles and operational units)

NFU,1

ACA

return

V1-0 46



Operation Chaining

• Delay of operational units allow 
two operations in one clock cycle.

• Example: Goertzel Algorithm
• Addition and multiplication in 

same clock cycle possible.

• Operational units must be 
switched in series (chained).

*

**

+

*
-

NOP

NOP

CC 1

CC 3

CC 2

Add,1 Mult,1 Mult,2NFU,1

ACA

return

V1-0 47



Multi-cycle Operations

• Delay of functional elements requires several clock cycles for 
the execution of the operation.

• Example: 
Goertzel algorithm

***

+
*

-

NOP

NOP

CC 2

CC 3

Add,1 Mult,1

CC 1

Mult,2 Mult,3

CC 4

CC 5

NFU,1

ACA

return

V1-0 48



Pipelined Operational Units

• New operation can start before previous operation 
has finished. 

• Number of concurrent operations is equal to 
pipeline depth.

• Operational units has internal registers to save 
intermediate values.

*

*

*

+

*

-

NOP

NOP

CC 2

CC 5

CC 4

CC 3

Add,1 Mult,1

CC 1

• Example: Goertzel algorithm

CC 6

CC 7

NFU,1

ACA

return

V1-0 49



Summary



Where we are

• HLS is a step that uses C specification to design an HW IP block

• This HW IP block executes the algorithm specified in C

V1-0 ACA


	Folie 1
	Folie 2: Motivation for HLS
	Folie 3: Motivation for HLS
	Folie 4
	Folie 5: Abstraction Levels & Design Views
	Folie 6: A2.2. Y-chart
	Folie 7: Electronic System Level (ESL) Design Flow
	Folie 8: System Synthesis
	Folie 9: ASIC HW Synthesis Flow
	Folie 10: A2.6. High-level (HW) synthesis
	Folie 11: A2.7. Logic synthesis
	Folie 12: A2.8. Layout Synthesis
	Folie 13: Software Compilation
	Folie 14: Interface Synthesis Step
	Folie 15: High level HW Synthesis (HLS) vs. SW Compilation Flow
	Folie 16
	Folie 17: Basic Task
	Folie 18: Other Names for HLS
	Folie 19: Classes of Hardware Components
	Folie 20: Performance metrics (1/2)
	Folie 21: Performance metrics (2/2)
	Folie 22: Design Goals and Constraints
	Folie 23: Synchronous HW Design 
	Folie 24: High-level HW Synthesis Flow
	Folie 25: High-level HW Synthesis Backend
	Folie 26: C1.8. Data Path Synthesis
	Folie 27: Data Path Synthesis Steps
	Folie 28: Interface Synthesis
	Folie 29: Control Unit Synthesis
	Folie 30
	Folie 31: HW Resources in the Data Path
	Folie 32: HW Resources in the Data Path
	Folie 33: Time-Resource-Plane (TRP) (1/4)
	Folie 34: Time-Resource-Plane (TRP)  (2/4)
	Folie 35: Time-Resource-Plane (TRP)  (3/4)
	Folie 36: Time-Resource-Plane (TRP)  (4/4)
	Folie 37: Pareto-Optimality (1/2)
	Folie 38: Pareto-Optimality (2/2)
	Folie 39
	Folie 40: Sequencing Graph (SG)
	Folie 41: Sequencing Graph
	Folie 42: Sequencing Graph
	Folie 43: Sequencing Graph
	Folie 44: Sequencing Graph in the TRP
	Folie 45: Sequencing Graph in the TRP
	Folie 46: Sequencing Graph in the TRP
	Folie 47: Operation Chaining
	Folie 48: Multi-cycle Operations
	Folie 49: Pipelined Operational Units
	Folie 50: Summary
	Folie 51: Where we are

