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Motivation for HLS

Source: WALDEN C. RHINES
President and Chief Executive Officer , Mentor, a Siemens Business
24t |EEE International Symposium on On-Line Testing and Robust System Design 2018

High-Level Synthesis: 4x faster than RTL
RTL Bottleneck: Verification

Designers leverage HLS to and deliver
/ mmm«mﬁem more with quality than
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Motivation for HLS

Source: WALDEN C. RHINES
President and Chief Executive Officer , Mentor, a Siemens Business
24t |EEE International Symposium on On-Line Testing and Robust System Design 2018

High-Level Synthesis is the future of IC design

-




D1-1 HW Design Flow in a Nutshell

Literature:
»Specification and Design of Embedded Systems” Daniel D. Gajski, Prentice Hall 1994

,Digitale Hardware/Software Systeme*”, Jirgen Teich, Springer 1997
,Embedded System Design“, Daniel D. Gajski et.al., Springer 2009
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Abstraction Levels & Design Views

System Connected .
Specification Components Chip, Board
Algorithms CPU, Bus, HW- Floor plan

accelerator
T';engslfég / Module netlist Makro-cells
FSMs (ALU, Mux, Register) (IP-blocks)
Boolean Gate netlist Standard cells,
Equations (Gates, FlipFlops) library cells
Dlﬁergntlal Transistor netlist Mask data
Equations
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Abstraction Levels & Design Views
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Electronic System Level (ESL) Design Flow

System Specification
‘l' System models
[ System Synthesis l
Specification of Components Simulation }
and Tasks
W Code Generation < L HW Synthesis J Interfac.e
Prototypes (Virtualj Synthesis
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System Synthesis

* Inputs:
» Specification of the System: Description of the functionality and design constraints (Written text, specification languages)

* Typical synthesis steps:

* Description of functionality as set of communicating g tasks
* Description of behavior of tasks on algorithmic level
* Description of task communication

* Allocation of system components such as processors, buses, memory, ... Buses, memory,...
» Binding of tasks and inter-task communication to system components (HW/SW Partitioning)

* Output

* Specification of components, tasks and Inter-task communication that guarantees to meet system specification
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ASIC HW Synthesis Flow

Algorithmic description

of the task (C SystemC)
)
Simulation

-S { High-level (HW) synthesis J
c
S
o Register Transfer Model (HDL)
Q
|— . .

_{ Simulation Logic syntheS|s ]

|

Gate netlist

<i

Timing
analysis Layout synthesis J

S¢

Layout / mask data
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HLS Synthesis Step

* Input
* Algorithmic description of a task, e.g. in C, C++, SystemC
* Design constraints (Maximal latency, available resources, ...)

* Synthesis steps:
 Static code analysis and code optimization
* Data path synthesis (Scheduling, allocation, binding)
* Control unit synthesis (FSM implementation)

* Output:
e Description of hardware module on RT level

V1-0 ACA 10



Logic Synthesis Step

* Input:
* Description of HW module on RT level
* Design constraints (minimal clock frequency, maximal area,...)
e Gate library

* Synthesis steps:
* Logic optimization
* Technology mapping

* Output:
e Gate netlist
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Physical Synthesis Step (Layout and Routing Step)

* Input
e Gate library
* Design constraints
 Layout library (P-cells)

* Synthesis steps:
* Placement of modules
* Routing of signal nets

* Output
* Layout, mask data
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Software Compilation

* Inputs
* Algorithmic description of task

* Synthesis steps
 Static Code Analysis and Optimization
* Code Generation (Instruction Selection, Register Allocation and Assignment)
* Assembler/linker/loader

* Outputs:
* Assembly code/machine code for target processor
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Interface Synthesis Step

* Input
* Description of Inter-task communication
* Design constraints (protocols, data rates, ...)

* Outputs
* Drivers, bus interfaces, ...
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High level HW Synthesis (HLS) vs. SW Compilation Flow

V1-0

Software compilation

\4

Algorithmic Description of the task (C, SystemC)

@

[ Frontend (Lexical, Syntax, Semantical Analyzer)

¢

Intermediate Code Representations

a

[ Static Code Analysis and Optimization J

¢

Optimized Intermediate Code Representations

L i

[ SW Code Generation [ High level HW Syn. Backend

-

-

~ <

Assembler Code Register Transfer Model (HDL)

High-level hardware synthesis

<€
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V1-0

D1-2 The HLS Synthesis Task

Literature:
»Specification and Design of Embedded Systems” Daniel D. Gajski, Prentice Hall 1994

,Digitale Hardware/Software Systeme*”, Jirgen Teich, Springer 1997
,Embedded System Design“, Daniel D. Gajski et.al., Springer 2009
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cENEN

int functionl (int x, int y, int 2z)
{

int a;

a=x* (y*y+z) ;

Algorithmic description of s e

the task (C, SystemC) }
High-level HW DP_Control
Synthesis Controller >

Data path
@ P _Status
RT model of Hardware Control_OUT [ ] Control_IN { Data_OUT [ ] Data_IN

mOdU'\? |r)IVHDL or HW Module Interface
erilog AN ZON

This is called usually
Bus_Control [ ]
an HW accelerator or Bus Address t :
IP block Bus_Data ( ]
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Other Names for HLS

Many names:

* High-level Hardware synthesis
* High-level synthesis (HLS)

* Algorithmic synthesis

* Behavioral synthesis

* C Synthesis

V1-0 ACA 18



Classes of Hardware Components

* Data-oriented designs e Control-oriented designs

HLS works better
Control_IN Data_IN Control_IN Data_IN

on data-oriented
designs ﬂ ﬂ ﬂ ﬂ

Control

Controller :>' Data path Controller

| Status | :Status

Control_OUT Data_OUT Control_OUT

Control

v

Data path

Examples: Video signal processing,

: : Examples: Traffic light control, industrial
compression, encryption,...

machines control, ...
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Performance metrics (1/2)

Clock Cycle Time AT

e Cycle duration of the driving clock of the HW module

* The combinatorial path in the circuit with largest delay places an
lower limit on the clock cycle time (critical path).

* Latency A

* Number of clock cycles between the start of processing a block of
data and the point of time at which the result is ready at the output.

* Processing time tore = N - AT
* Throughput T

* Number of blocks of data that can be processed in a fixed time.
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Performance metrics (2/2)

* Chip area (ASIC)
e Estimated via gate count.
* Data path: Number of Hardware Operation Units such as multipliers, ALUs, registers, multiplexers,...

* FPGA Resources
* Number of Luts, Number of DSP Blocks, ...

* Power/Energy Consumption
* Dynamic power consumption: Power consumed by switching transistors in the circuit
 Static power consumption: Power consumed due to leakage currents.
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Design Goals and Constraints

* Synthesis algorithms handle two typical cases:

* Timing constrained:
e Constrained: Implement task such that it can compute result in maximal number of clock cycles (maximal latency).
e Goal: Minimize number of functional units (adders, ALUs, multipliers) in data path.
* Second goal: Minimize number of registers (register sharing), multiplexers, control unit states, ...

* Resource constrained:

* Constrained: Implement task with fixed maximal number of functional units (adders, ALUs, multipliers) in data
path.

e Goal: Minimize latency.
* Second goal: Minimize number of registers (register sharing), multiplexers, control unit states, ...
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Synchronous HW Design

* All registers in control unit and data path share same clock.

* Assumptions for simplification:
* Functional units have a fixed and known delay such that the number of clock
cycles to execute operation is assumed to be fixed and data-independent.

* The delay of interconnect and multiplexers can be neglected.

e Real life:
* Longest combinatorial path in the circuit will determine the maximal clock
frequency.
* Logic synthesis will try to optimize circuit dependent on target clock frequency
and area.
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High-level HW Synthesis Flow

Algorithmic description of the task (C, SystemC)

@

[ Frontend (Lexical, Syntax, Semantical Analyser) J

¢

Intermediate Representation (IR) Code

a

[ Static Code Analysis and Optimization J

¢

Optimized IR Code

High-level hardware synthesis

.

[ High-level HW Synthesis Backend J C

¢

Register Transfer Modell (HDL)
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High-level HW Synthesis Backend

V1-0

Optimized IR Code Interface specification
< <
{ Data path synthesis } [
RTL mi of data path RTL modelo@finterface
< T
Control unit synthesis J

<

RTL model of hardware module with data path, interface
and control unit

ACA
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C1.8. Data Path Synthesis

Optimized IR Code

L

[ Flow Analysis J

L

Sequencing graph

< <

Scheduling
before Binding

< <

Binding & Schedule

e

Allocation and RTL model generation

V1-0

ACA
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Data Path Synthesis Steps

* Scheduling:

* Determines the start time of each operation
* Binding:
* Determine on which functional units the operation is executed.

* Determine in which register variables are saved.

* Allocation:
e Selection of resources such as functional units, registers and multiplexers.

V1-0 ACA 27



Interface Synthesis

Interface Specification

@ * Interfaces can differ strongly.
[ Interface Synthesis J

* Interface may consist of:
@ « Memory, Registers or FIFOS as data buffers.

RTL interface description * FSMs for communication (bus) protocols.

* Crossing of clock domains possible, e.g.
between bus clock and HW module clock.

V1-0 ACA 28



Control Unit Synthesis

RTL description of data path and
interface

a0

[ Control analysis J

<

FSM with data specification
(FSMD) + activation and status
signals

a0

[ FSM Synthesis J

<

RTL description of control unit

V1-0

ACA
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V1-0

D1-3 Data Path Synthesis
HW Resources

Literature:
»Specification and Design of Embedded Systems” Daniel D. Gajski, Prentice Hall 1994

,Digitale Hardware/Software Systeme*”, Jirgen Teich, Springer 1997
,Embedded System Design“, Daniel D. Gajski et.al., Springer 2009

ACA

30



HW Resources in the Data Path

Functional units: Adder, Multiplier, ALUs,...
* Execute operations on data, e.g., Add, Shift, AND, OR, Mult, ...
* Fixed and known delay
* Fixed and known area demand

Signal nets and multiplexers
* Delay and area demand is neglected.

* Memory elements: Registers
* Delay and area demand is neglected.

NFU (Nonfunctional Unit):

* Nonexistent helper resource
* used to execute special NOP, LOOP, BRANCH, CALL operations (more later)
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HW Resources in the Data Path

e Functional units are identified by a pair

(Kry 2r)
e of their type:
k, € K
* and an index K = {ALU, MULT, }
zr=1,2, ...

 Example:

(ALU, 1), (ALU,?2), (MULT, 1)

V1-0 ACA 32



Time-Resource-Plane (TRP) (1/4)

* X-axis: Resources
 List allocated operational units
» Assign operations to operational units (Binding)

* y-axis: Time
 Division in clock cycles.
* Plan temporal order of the operations
» Select start times of operations (Schedule)
* Values must be saved in registers between clock cycles.

V1-0 ACA 33



Time-Resource-Plane (TRP) (2/4)

e Example: Goertzel
Algorithm

(Basic block B3)

to= s prevl * s prevl
t/7/= s prev2Z * s prev2
t8= s prevl * s prevZ
t9= t8 * coeff

t10= to+t7

power= tl0 - t9

V1-0 ACA

Resources (Functional units)

>
Add,1 Mult, 1 Mult,2
te= t8=
CC 1 s prevl*| s prevl*
s prevl | s prev?2
L= £9= t8x*
CC 2 S _prevz* cooff
S prevz
t10=
CC 3 to+t?
power=
CC4 £10-t9

Y Time in clock cycles (CC)




Time-Resource-Plane (TRP) (3/4)

e Example: Goertzel
Algorithm

(Basic block B3)

Add,1

Mult, 1

CC1

to=
S _prevl*
s prevl

to= s prevl * s prevl
t/7= s prev2z * s prevZ
t8= s prevl * s prevZ
t9= t8 * coeff

t10= to+t7

power= tl1l0 - t9

CC 2

t7=
S _prevz*
s _prev2

CC3

tl0=
toe+t7

t8=
S prevl*
S _prevz

V1-0 ACA

CC4

t9= t8~*
coeff

CC5

power=
£10-t9
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Time-Resource-Plane (TRP) (4/4)

e Example: Goertzel
Algorithm

(Basic block B3)

to= s prevl * s prevl
t/7/= s prev2z * s prevZ
t8= s prevl * s prev2
t9= t8 * coeff

t10= to+t7

power= tl0 - t9

Add,1 Mult,1 | Mult,2 | Mult,3
te= t7= £8=
CC 1 s_prevl*|s_prev2*gs prevl*
s prevl |s prev2 |s prev?
t10= t9= t8*
CC2 te+t7 coeff
power=
CC3 | ti0-t9
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Pareto-Optimality (1/2)

Which is the best solution?

 Solution is Pareto optimal, if there exist no solution that is better in all design
performance metrics.

Different Pareto-optimal solutions allow different trade-offs between the design
performance metrics.

* Best solution is picked based on preferences on design performance metrics.
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Pareto-Optimality (2/2)

Chip Area [units]
(Demand: Adder=2 area units, Multiplier=5 area units)

A
20 - 1 Adder, 3 Multiplier
Minimal Latency
17 fommmmmmmmme e 0
15 |
i 1 Adder, 2 Multiplier
12 [ Q@
7 § | 1 Adder, 1 Multiplier
7 b i EaERE ® Minimal chip area
5 | 1 i 1
0 . . i i i —>
0 1 2 3 4 5 6 Latency [Clock cycles]
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D1-4 Sequencing Graphs

ACA
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Sequencing Graph (SG)

V1-0

Sequencing graph: Gs(‘/sa ES)

Hierarchy of directed acyclic graphs (DAGs). Each DAG is called a sequencing graph unit
(SGU).

SGUs are polar: One source and one sink node is added, which is labeled No operation
(NOP).

Nodes: Vg — {’U@' D1 = 0, ,?’L}
e No operation (NOP)
e QOperations (+,>,<,%,...)
e Hierarchical node (CALL, BR, LOOP)

Edges: ES :{(”UZ',”UJ') : 1, ZO,...,’I’L}
e between nodes in one SGU unit: Data dependency between two operations

e between Source/sink and hierarchical nodes: Connections between SGU on different
hierarchical levels

Paths describe concurrent operations that may possibly be executed in parallel,

ACA
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Sequencing Graph

* Example: SGU for basic block B3 of Goertzel algorithm

Data flow graph Sequencing graph unit

e Example: Goertzel s_prevl s prev2  coeff

Algorithm
(Basic block B3)

té= s prevl * s prevl
t7= s prev2 * s prev2
t8= s prevl * s prev2
t9= t8 * coeff

t10= to+t7

power= tl1l0 - t9

V1-0 ACA 41



Sequencing Graph

V1-0

e Hierarchical nodes: CALL, LOOP, BR

Call to procedure

Control flow loop

Control flow branch

’-\

’—-
=~ ~

ke
J, 11
/7
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@
Vo @

N\

: (vor)
| @
o

'\
\
\

\

\
\ ~

—

Called SGU of one lower
hierarchical level is executed
once.

SGU of lower hierarchical level
is executed O to N times.

ACA

Only one of the two SGU of lower
hierarchical level is executed
once.
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Sequencing Graph

* Example: Goertzel algorithm

Bl: s prevl := 0.0
s prevz := 0.0
1:=0
tl := 2*3.14
f = tl * freq
param f
t2 := call cos,1

coeff:=2.0*t2

B2: t3:= coeff * s prevl

td:= x[1]

t5 := t4 - s prev2
s = t3 + t5

s _prev2Z := s prevl
s prevl := s
1:=1+1

if 1 < 64 goto B2

B3: t6:= s prevl * s prevl
t7:= s prev2 * s prev2
t8:= s prevl * s prev2
t9:= t8 * coeff
tl0:= te+t7

S~ - := t10 - t9
(eturn @ SGU for B1 and B3 etnen power
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Sequencing Graph in the TRP

e Example: Goertzel
Algorithm

(Basic block B3)

to= s prevl * s prevl

t8= s prevl * s prev2
t9= t8 * coeff

power= tl10 — t9
return power

V1-0 ACA

44



Sequencing Graph in the TRP

e Example: Goertzel
Algorithm

(Basic block B3)

to= s prevl * s prevl

t8= s prevl * s prev2 CC2
t9= t8 * coeff

power= tl10 — t9

CC3
return power ///ﬂ

Scheduled sequencing graph
(Operations assigned to clock cycles)
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Sequencing Graph in the TRP

e Example: Goertzel
Algorithm NFU,1 |Add,1 |Mult,1 | Mult,2 | Mult,3

(Basic block B3)

to= s prevl * s prevl CC 1

\ *
e1d

t8= s prevl * s prev2 CC 2

t9= t8 * coeff
’ /

power= t10 — t9 cC3 _@’
return power

Scheduled sequencing graph with binding
(Operations assigned to clock cycles and operational units)

T
_|_
|
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Operation Chaining

V1-0

* Delay of operational units allow
two operations in one clock cycle.

* Example: Goertzel Algorithm

e Addition and multiplication in
same clock cycle possible.

e Operational units must be
switched in series (chained).

ACA

NFU,1 |Add,1 | Mult,1 | Mult,2
\
R | %
_|_
CC?2 *
A
CC3 /@

(feturn)

:
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Multi-cycle Operations

* Delay of functional elements requires several clock cycles for
the execution of the operation.

e Example: NFU,1 |Add.1 |[Mult1 | Mult2 | Mult,3
Goertzel algorithm (o)
ﬁ\\
CC1 Al NARNA
CC 2 S \/
CC 3 ¥ A
CC4 BNy,
CC5 return —(—)‘—/
%
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Pipelined Operational Units

e Example: Goertzel algorithm

NFU,1 | Add,1 | Mult,1

@
* New operation can start before previous operation CC 1 -

has finished. \\ X
/
_l_

* Number of concurrent operations is equal to CC2

*
ipeline depth.
pIp p CC 3
e Operational units has internal registers to save X
intermediate values. CC 4
CC5 [\
*
CC6 | A
S
CC7 return>\<_)/
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Where we are

* HLS is a step that uses C specification to design an HW IP block
* This HW IP block executes the algorithm specified in C

V1-0 ACA
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