
1 Equivalence Classes & Boundary Values

A local flower shop offers discounts to its most valuable customers. Function discountPer-
cent calculates the percentage of discount that should be applied to a purchase. Purchases
of more than 10 flowers are given 10discount. (The discounts are cumulative.) Function
discountPercent throws an InvalidOrderException if the number of flowers is zero.

p u b l i c i n t d i s c o u n t P e r c e n t (i n t f l o w e r s , b o o l e a n membershipCard) ;

a) What are the partitions for each parameter? How many partitions are there in total?

b) What partitions can be combined?

c) What are the boundary values? Which are the on and off points?

d) Construct test cases for function discountPercent according to your analysis. Give
inputs and expected outputs.

1.1 Solution

a) Values for flowers:

• < 0

• = 0

• between 1 and 10

• > 10

Values for membershipCard:

• true

• false

Combinations of inputs:

• flowers is < 0 and membershipCard is true

• flowers is < 0 and membershipCard is false

• flowers is = 0 and membershipCard is true

• flowers is = 0 and membershipCard is false

• flowers is between 1 and 10 and membershipCard is true

• flowers is between 1 and 10 and membershipCard is false

• flowers is > 10 and membershipCard is true

• flowers is > 10 and membershipCard is false

Outputs are:

1

Meo

--

• InvalidOrderException

• 0%

• 5%

• 10%

• 15%

In total there are 8 Partitions

b) We could combine the cases for flowers being smaller or equal to 0 as there is either
no defined behavoir or an Error is thrown.

c) Boundary values would be (depending on the value of flowers):

• 0, On: the function throws an Error; Off: the function returns either 0% or 5%

• 10, On: the function returns either 10% or 15%; Off: the function returns either
0% or 5%

d) d i s c o u n t P e r c e n t (−1 , t r u e) ; / / Expec ted : I n v a l i d O r d e r E x c e p t i o n
d i s c o u n t P e r c e n t (0 , t r u e) ; / / Expec ted : I n v a l i d O r d e r E x c e p t i o n
d i s c o u n t P e r c e n t (1 , t r u e) ; / / Expec ted : 5
d i s c o u n t P e r c e n t (1 , f a l s e) ; / / Expec ted : 0
d i s c o u n t P e r c e n t (9 , t r u e) ; / / Expec ted : 5
d i s c o u n t P e r c e n t (1 0 , t r u e) ; / / Expec ted : 15
d i s c o u n t P e r c e n t (1 1 , f a l s e) ; / / Expec ted : 10

2 Specification-Based & Structural Testing

a) Which of these software testing activities correspond to specification-based testing,
which correspond to structural testing, and which correspond to neither?

(a) Asking a colleague to check if the tests match the documentation. Specification-

Based Testing

(b) Measuring which statements are executed by each test case. Structural Testing

(c) Doing test-driven development. Specification-Based Testing

(d) Testing with random data to find crashes. Structural Testing

(e) Constructing test cases to cover all branches. Structural Testing

b) Which of the following statements are correct?

(a) MC/DC is a stronger property than branch coverage. True

(b) Programs that have 100% path coverage do not contain any kind of bugs. False

2

(c) Boundary values are extracted from the source code. False

(d) Loop coverage is a stronger property than branch coverage. True

(e) A test suite constructed from boundary values has 100% branch coverage. True

3 Basic-Block & Branch Coverage

p u b l i c i n t compute (i n t [] x) {
i f (x == n u l l) {

r e t u r n 0 ;
}
i n t sum = 0 ;
f o r (i n t i = 0 ; i < x . l e n g t h ; i ++) {

i f (x [i] % 2 == 0) {
sum += x [i] ;

}
}
r e t u r n sum ;

}

a) Draw the control flow graph. Count the basic blocks and branches

Figure 1: Control Flow Graph with 8 basic blocks, and 6 branches

b) Define test cases that achieve 100% basic-block coverage, but not 100% branch
coverage.

x = null

3

x = { 0, 2, 4 }

c) Define test cases that achieve 100% branch coverage.

x = null

x = { 0, 2, 4 }

x = { 1, 3, 5 }

4 Path & Loop Coverage

a) Consider function max

p u b l i c i n t max (i n t a , i n t b , i n t c) {
i n t max = a ;
i f (max < b) {

max = b ;
}
i f (max < c) {

max = c ;
}
r e t u r n max ;

}

(a) Count the paths in function max. 4 Paths

(b) List a set of test cases that achieve 100% path coverage.

(a=1, b=0, c=0)

(a=0, b=1, c=0)

(a=0, b=0, c=1)

(a=0, b=1, c=2)

(c) Which of these test cases are sufficient for 100% branch coverage?

(a=1, b=0, c=0) (a=0, b=1, c=2)

(d) Which of these test cases are sufficient for 100% basic block coverage? (a=0,

b=1, c=2)

(e) How many paths does function max4 have? How many test cases are necessary
to reach 100% path coverage?

p u b l i c i n t max (i n t a , i n t b , i n t c , i n t d) {
i n t max = a ;
i f (max < b) {

max = b ;
}

4

i f (max < c) {
max = c ;

}
i f (max < d) {

max = d ;
}
r e t u r n max ;

}

8 Paths, so 8 tests are necessary

b) Consider function sumRange.

p u b l i c i n t sumRange (i n t [] a r r a y , i n t l , i n t r) {
i f (a r r a y == n u l l | | a r r a y . l e n g t h != 4 | | l < 0 | | 4 <= r) {

throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
}
i n t sum = 0 ;
w h i l e (l < r) {

sum += a r r a y [l] ;
l ++;

}
r e t u r n sum ;

}

(a) Construct a minimal set of test cases that achieve 100% loop coverage. (array =

null, l = 0, r = 0)

(array = {1, 2, 3, 4}, l = 0, r = 1)

(array = {1, 2, 3, 4}, l = 0, r = 3)

(b) Do these tests reach 100

Yes, but if we didn’t use array = null in the first test, the first branch wouldn’t

be fully covered.

5 Condition + Branch Coverage

p u b l i c S t r i n g t r i a n g l e (i n t a , i n t b , i n t c) {
i f (a + b < c | | a + c < b | | b + c < a) {

r e t u r n " i n v a l i d " ;
}

i f (a * a + b * b == c * c | | a * a + c * c == b * b

5

| | b * b + c * c == a * a) {
r e t u r n " r i g h t _ a n g l e d " ;

}
r e t u r n " o t h e r " ;

}

a) Count the number of condition values + branches.

b) How much branch coverage does the test (a=1, b=1, c=1) reach?

c) How much C+B coverage does the test (a=1, b=1, c=1) reach?

d) Construct test cases that reach 100% C+B coverage.

5.1 Solution

a) A= a+b< c, B= a+c< b, C = b+c< a, D= a2+b2 = c2, E = a2+c2 = b2, F =

b2 + c2 = a2 So in total there are 12 condition values and 4 branches.

b) 2
4 = 50% Branch coverage

c) 2+6
4+12 = 50%

d) (a=0, b=0, c=1): A=true, B=false, C=false, D=false, E=false, F=false

(a=0, b=1, c=0): A=false, B=true, C=false, D=false, E=false, F=false

(a=1, b=0, c=0): A=false, B=false, C=true, D=false, E=false, F=false

(a=0, b=1, c=1): A=false, B=false, C=false, D=true, E=false, F=false

(a=1, b=0, c=1): A=false, B=false, C=false, D=false, E=false, F=true

(a=1, b=1, c=0): A=false, B=false, C=false, D=false, E=true, F=false

(a=1, b=2, c=3): A=false, B=false, C=false, D=false, E=false, F=false

6 MC/DC

p u b l i c i n t compute (i n t a , i n t b) {
i f ((a * b == 20 | | a + b == 12) && a < 10) {

r e t u r n a ;
} e l s e {

r e t u r n b ;
}

}

6

a) Construct test cases that reach 100% MC/DC. List for each test case which conditions
are true and which are false.

b) List the independence pair for each condition.

6.1 Solution

a) Construct test cases that reach 100% MC/DC. List for each test case which conditions
are true and which are false.

We can define Condition Variables, A := a < 10, B := a · b = 20, C := a+ b = 12,
such that the condition we want to evaluate is: A^ (B_C)

Test A B C Result
a = 2,b = 10 T T T a
a = 5,b = 4 T T F a
a = 6,b = 6 T F T a
a = 1,b = 0 T F F b
a = 10,b = 2 F T T b
a = 20,b = 1 F T F b
a = 11,b = 1 F F T b
a = 10,b = 0 F F F b

Using MC/DC we can define minimal test cases {(a = 5,b = 4),(a = 6,b = 6),(a =

1,b = 0),(a = 20,b = 1)}

b) List the independence pair for each condition.
A : {(a= 2,b= 10), (a= 10,b= 2)}, {(a= 5,b= 4), (a= 20,b= 1)}, {(a= 6,b=
6), (a = 11,b = 1)}
B : {(a = 5,b = 4), (a = 1,b = 0)}
C : {(a = 6,b = 66), (a = 1,b = 0)}

7 DU-Pairs Coverage

p u b l i c i n t r a n g e (i n t a , i n t b , i n t c) {
i n t max = a ;
i n t min = a ;
i f (a < b) {

max = b ;
} e l s e {

min = b ;
}
i f (max < c) {

max = c ;

7

%o
this

a

} e l s e {
min = c ;

}
r e t u r n max − min ;

}

a) List all DU pairs for variables max and min. For max: {(1, 3), (1, 5), (1, 9), (3, 5), (3,

9), (6, 9)}, For min: {(1, 4), (1, 7), (1, 9), (4, 7), (4, 9), (8, 9) }

b) Construct test cases that reach 100% DU-pairs coverage. For each test, list all DU
pairs it covers. (a=1, b=2, c=3): (1, 3), (3, 5), (6, 9); (1, 7), (1, 9)

(a=3, b=2, c=1): (1, 5), (1, 9); (1, 4), (4, 7), (8, 9)

(a=1, b=3, c=2): (1, 3), (3, 5), (3, 9); (1, 7), (1, 9)

(a=3, b=2, c=3): (1, 9); (1, 4), (4, 7), (4, 9)

8 Measuring DU-Pairs Coverage

p u b l i c v o id c o u n t F l i p s (b o o l e a n [] c o i n F l i p s , b o o l e a n coun tHeads {
i n t heads = 0 ;
i n t t a i l s = 0 ;
i n t r e s u l t = 0 ;

f o r (b o o l e a n i s H e a d s : c o i n F l i p s) {
i f (i s H e a d s) {

heads = heads + 1 ;
} e l s e {

t a i l s = t a i l s + 1 ;
}

}
i f (coun tHeads) {

r e s u l t = heads ;
} e l s e {

r e s u l t = t a i l s ;
}
r e t u r n r e s u l t ;

}

a) Draw the control flow graph for function countFlips and apply the algorithm for
computing reaching definitions for variables heads, tails and result.

b) List the DU pairs for variables heads, tails and result.

8

n Reach(n) ReachOut(n)

1 /0 heads1, tails1,result1
2 heads1,heads5, tails1, tails6,result1 heads1,heads5, tails1, tails6,result1
3 heads1,heads5, tails1, tails6,result1 heads1,heads5, tails1, tails6,result1
4 heads1,heads5, tails1, tails6,result1 heads1,heads5, tails1, tails6,result1
5 heads1,heads5, tails1, tails6,result1 heads5, tails1, tails6,result1
6 heads1,heads5, tails1, tails6,result1 heads1,heads5, tails6,result1
7 heads1,heads5, tails1, tails6,result1 heads1,heads5, tails1, tails6,result1
8 heads1,heads5, tails1, tails6,result1 heads1,heads5, tails1, tails6,result8
9 heads1,heads5, tails1, tails6,result1 heads1,heads5, tails1, tails6,result9
10 heads1,heads5, tails1, tails6,result1,result8,result9 heads1,heads5, tails1, tails6,result1,result8,result9

c) Instrument the code as shown in the lecture to measure DU-pairs coverage. What is
the state of maps defCover and useCover after running the test case (coinFlips=[true,
true], countHeads = false)? You may assume the maps start freshly initialized.

8.1 Solution

a) The table:

b) DU-Pairs for heads: (1,5),(5,5),(1,8),(5,8)
DU-Pairs for tails: (1,6),(6,6),(1,9),(6,9)
DU-Pairs for result: (1,8),(1,9),(8,10),(9,10)

c) Instrument the code as shown in the lecture to measure DU-pairs coverage.

p u b l i c v o id c o u n t F l i p s (b o o l e a n [] c o i n F l i p s , b o o l e a n coun tHeads {
1 i n t heads =0; de fCover [" heads "] = 1 ;
1 i n t t a i l s =0 ; de fCover [" t a i l s "] = 1 ;
1 i n t r e s u l t =0 ; de fCover [" r e s u l t "] = 1 ;

2 ,3 f o r (b o o l e a n i s H e a d s : c o i n F l i p s) {
4 i f (i s H e a d s) {
5 heads = heads +1; useCover [" heads " , de fCover [" heads "] , 5] + + ;

de fCover [" heads "] = 5 ;
} e l s e {

6 t a i l s = t a i l s +1 ; useCover [" t a i l s " , de fCover [" t a i l s "] , 6] + + ;
de fCover [" t a i l s "] = 6 ;

}

9

Lukas Leskovar, i17057

Lukas Leskovar, i17057

Lukas Leskovar, i17057

Lukas Leskovar, i17057

Lukas Leskovar, i17057
See next page for better version

Lukas Leskovar, i17057

}
7 i f (coun tHeads) {
8 r e s u l t = heads ; useCover [" heads " , de fCover [" heads "] , 8] + + ;

de fCover [" r e s u l t "] = 8 ;
} e l s e {

9 r e s u l t = t a i l s ; useCover [" t a i l s " , de fCover [" t a i l s "] , 9] + + ;
de fCover [" r e s u l t "] = 9 ;

}
10 r e t u r n r e s u l t ; useCover [" r e s u l t " , de fCover [" r e s u l t "] , 10]++ ;
}

What is the state of maps defCover and useCover after running the test case (coin-
Flips=[true, true], countHeads = false)? You may assume the maps start freshly initial-
ized.

de fCover [" heads "] = 5 ;
de fCover [" t a i l s "] = 1 ;
de fCover [" r e s u l t "] = 9 ;
useCover [" heads " , 1 , 5] = 1 ;
useCover [" heads " , 5 , 5] = 1 ;
useCover [" heads " , 1 , 8] = 0 ;
useCover [" heads " , 5 , 8] = 0 ;
useCover [" t a i l s " , 1 , 9] = 1 ;
useCover [" t a i l s " , 1 , 6] = 0 ;
useCover [" t a i l s " , 6 , 6] = 0 ;
useCover [" t a i l s " , 6 , 9] = 0 ;
useCover [" r e s u l t " , 9 , 10] = 1 ;
useCover [" r e s u l t " , 8 , 10] = 0 ;

9 Property-Based Testing

a) An Austrian drink wholesaler would like to apply property-based testing to their web
shop. The company offers beverages with alcohol ranging from 0% to 53%. The policy
of the web shop states that customers under 16 are only allowed to buy non-alcoholic
beverages (0% alcohol). Customers between 16 and 17 are allowed to buy drinks with
under 20% of alcohol. There are no restrictions for customers of age 18 or older.

Apply property-based testing to function canOrderDrink.

p u b l i c b o o l e a n canOrde rDr ink (i n t age , i n t a l c o h o l P e r c e n t) { . . . }

In particular, design property-based tests for the following requirements:

10

(a) People under the age of 16 are allowed to order alcohol-free drinks.

(b) From the age of 16 to 17, people are allowed to order drinks whose alcohol
percentage is under 20.

(c) From the age of 18, people are allowed to order any kind of drink.

(d) People under the age of 16 are not allowed to order any alcoholic drink.

(e) From the age of 16 to 17, people are not allowed to order drinks with an alcohol
percentage of 20 or above.

b) Which of the following statements are correct about property-based testing?

• Writing properties is easier than constructing tests manually

• Property-based testing should always be used instead of example-based testing

• With property-based testing, it may be difficult to get an adequate distribution of
input values.

• With property-based testing, it is always inexpensive to generate the desired data.

• A property-based testing framework tries to find a counterexample to break the
defined properties.

c) Consider function compute

p u b l i c v o id compute (i n t a , i n t b) ;
@Proper ty
vo id computeTes t (

@ForAll @IntRange (min = 1 , max = 100) i n t a ,
@ForAll @IntRange (min = 1 , max = 100) i n t b

) {
/ / . . .

}

Function compute has a bug and incorrectly throws an exception if inputs a and b are
equal. Assume that for each run of property computeTest the values for a and b are
sampled independently and uniformly in the given range.

• What is the probability that a generated pair of input values reveals the bug?

• What is the probability if the max value for both variables a and b is increased to
1000?

9.1 Solution

a) @Proper ty
vo id t e s t P r o p e r t y 1 C a n O r d e r D r i n k (

@ForAll

11

@IntRange (min = 0 , max = 15)
i n t age ,
@ForAll
@IntRange (min = 0 , max = 0)
i n t a l c o h o l P e r c e n t) {
System . o u t . p r i n t l n (" Age : " + age + " Alcoho l : " + a l c o h o l P e r c e n t) ;
a s s e r t T r u e (c a nO rde rDr ink (age , a l c o h o l P e r c e n t)) ;

}

@Proper ty
vo id t e s t P r o p e r t y 2 C a n O r d e r D r i n k (

@ForAll
@IntRange (min = 16 , max = 17)
i n t age ,
@ForAll
@IntRange (min = 0 , max = 19)
i n t a l c o h o l P e r c e n t) {
System . o u t . p r i n t l n (" Age : " + age + " Alcoho l : " + a l c o h o l P e r c e n t) ;
a s s e r t T r u e (c a nO rde rDr ink (age , a l c o h o l P e r c e n t)) ;

}

@Proper ty
vo id t e s t P r o p e r t y 3 C a n O r d e r D r i n k (

@ForAll
@IntRange (min = 18 , max = 100)
i n t age ,
@ForAll
@IntRange (min = 0 , max = 53)
i n t a l c o h o l P e r c e n t) {
System . o u t . p r i n t l n (" Age : " + age + " Alcoho l : " + a l c o h o l P e r c e n t) ;
a s s e r t T r u e (c a nO rde rDr ink (age , a l c o h o l P e r c e n t)) ;

}

@Proper ty
vo id t e s t P r o p e r t y 4 C a n O r d e r D r i n k (

@ForAll
@IntRange (min = 0 , max = 15)
i n t age ,
@ForAll
@IntRange (min = 1 , max = 53)

12

~

~

~

i n t a l c o h o l P e r c e n t) {
System . o u t . p r i n t l n (" Age : " + age + " Alcoho l : " + a l c o h o l P e r c e n t) ;
a s s e r t F a l s e (ca n Orde rDr ink (age , a l c o h o l P e r c e n t)) ;

}

@Proper ty
vo id t e s t P r o p e r t y 5 C a n O r d e r D r i n k (

@ForAll
@IntRange (min = 16 , max = 17)
i n t age ,
@ForAll
@IntRange (min = 20 , max = 53)
i n t a l c o h o l P e r c e n t) {
System . o u t . p r i n t l n (" Age : " + age + " Alcoho l : " + a l c o h o l P e r c e n t) ;
a s s e r t F a l s e (ca n Orde rDr ink (age , a l c o h o l P e r c e n t)) ;

}

b) • Writing properties is easier than constructing tests manually true

• Property-based testing should always be used instead of example-based testing
false

• With property-based testing, it may be difficult to get an adequate distribution of
input values. true

• With property-based testing, it is always inexpensive to generate the desired data.
false

• A property-based testing framework tries to find a counterexample to break the
defined properties. true

c) The probability is similar to a sampling with replacement. We choose on value a, the
probability that the second value b is equal to a is 1

100 = 1%. Therefore if we increase
the range this probability becomes 1

1000 = 0.1%

10 Test Doubles

Classify the following objects into one of the five kinds of test doubles.

a) An external API server that returns pre-defined responses and verifies that specific
requests were made during testing. Mock

b) A database connection wrapper that records every query made to a particular table.
Spy

c) A database connection that returns pre-defined data for specific queries. Stub

13

d) A logger that does not perform any logging and is only used to fulfill a method
requirement. Dummy Object

e) A file system that emulates the behavior of a real file system without actually writing
to disk. Fake Object

f) An HTTP server that returns pre-defined responses to specific requests. Stub

g) An email service that captures and stores outgoing emails and triggers pre-defined
incoming email events. Fake Object

h) A database connection that ignores all operations and is not used during testing.
Dummy Object

i) A logger that records information about logged messages during testing and checks
for the existence of certain string patterns. Mock

j) A data prediction unit that, in contrast to its production implementation, uses a simpli-
fied algorithm to decrease the runtime of the tests. Fake Object

14

	5e0368f2b313ab14c68d1359cdf79c20fb204fe4efe909e9cbe9b7b925fae4e0.pdf
	c2cb9a5a1234e8ea3b5543dcaa3f54be92a8390d5b7699d5cee0058f67c20141.pdf
	5e0368f2b313ab14c68d1359cdf79c20fb204fe4efe909e9cbe9b7b925fae4e0.pdf

