
Computer Aided Verification
Bounded Model Checking

Georg Weissenbacher

Flashback: Symbolic Transition Relations

I Encode states and transition relations as formulas
I Deploy off-the-shelf decision procedures/BDDs for verification

︸ ︷︷ ︸
T

(transition relation)

1: if (x>0) {
2: x = x - 1;

3: } else {
4: x = x + 1;

5: }︸ ︷︷ ︸
T

(transition relation)

1: if (x>0) {
2: x = x - 1;

3: } else {
4: x = x + 1;

5: }

D Q

R

zy

x

︸ ︷︷ ︸
T

(transition relation)

1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉)

def
=

∧

(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V)
def
= (pc = 5)⇒ (x ≥ 0)

I(V)
def
= (pc = 1)

1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉) def

=

∧
(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)

(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V)
def
= (pc = 5)⇒ (x ≥ 0)

I(V)
def
= (pc = 1)

1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉) def

=

∧
(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)

(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V)
def
= (pc = 5)⇒ (x ≥ 0)

I(V)
def
= (pc = 1)

1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉) def

=

∧
(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)

(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V)
def
= (pc = 5)⇒ (x ≥ 0)

I(V)
def
= (pc = 1)

1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉) def

=

∧
(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V)
def
= (pc = 5)⇒ (x ≥ 0)

I(V)
def
= (pc = 1)

1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥ 0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉) def

=

∧
(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)


P(V)

def
= (pc = 5)⇒ (x ≥ 0)

I(V)
def
= (pc = 1)

D Q

R

zy

x

︸ ︷︷ ︸
d ⇔ (x ∧ q)
z ⇔ (y ∨ q)
q′ ⇔ d

Bounded Model Checking

I Unwinding of a transition relation T

T (x , y , x ′, y ′)

I For example:
(x′ = x+ 1) ∧ (y′ = y)

Unwinding Symbolic Transition Functions

Let T : ℘(S)→ ℘(S) be a symbolic transition function

t -
I T∧ t

-
T∧ t . . .

∧ t -
T∧ t

∃s0, s1

, s2, . . . , sk−1, sk

.

I(s0) ∧ T (s0, s1)

∧ T (s1, s2) ∧ . . . ∧ T (sk−1, sk) ∧
k∨

i=0

¬P(si)

Checking safety properties P (assertions):

t -I

¬P ∨
T∧ t -
¬P ∨

T∧ t . . .
¬P ∨
∧ t -

¬P ∨
T∧ t
¬P

Unwinding Symbolic Transition Functions

Let T : ℘(S)→ ℘(S) be a symbolic transition function

t -
I T∧ t -

T∧ t

. . .
∧ t -

T∧ t

∃s0, s1, s2

, . . . , sk−1, sk

.

I(s0) ∧ T (s0, s1) ∧ T (s1, s2)

∧ . . . ∧ T (sk−1, sk) ∧
k∨

i=0

¬P(si)

Checking safety properties P (assertions):

t -I

¬P ∨
T∧ t -
¬P ∨

T∧ t . . .
¬P ∨
∧ t -

¬P ∨
T∧ t
¬P

Unwinding Symbolic Transition Functions

Let T : ℘(S)→ ℘(S) be a symbolic transition function

t -
I T∧ t -

T∧ t . . .
∧

t -
T∧ t

∃s0, s1, s2, . . .

, sk−1, sk

.

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ . . . ∧

T (sk−1, sk) ∧
k∨

i=0

¬P(si)

Checking safety properties P (assertions):

t -I

¬P ∨
T∧ t -
¬P ∨

T∧ t . . .
¬P ∨
∧ t -

¬P ∨
T∧ t
¬P

Unwinding Symbolic Transition Functions

Let T : ℘(S)→ ℘(S) be a symbolic transition function

t -
I T∧ t -

T∧ t . . .
∧ t -

T∧ t
∃s0, s1, s2, . . . , sk−1, sk .

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ . . . ∧ T (sk−1, sk)

∧
k∨

i=0

¬P(si)

Checking safety properties P (assertions):

t -I

¬P ∨
T∧ t -
¬P ∨

T∧ t . . .
¬P ∨
∧ t -

¬P ∨
T∧ t
¬P

Unwinding Symbolic Transition Functions

Let T : ℘(S)→ ℘(S) be a symbolic transition function

t -
I T∧ t -

T∧ t . . .
∧ t -

T∧ t
∃s0, s1, s2, . . . , sk−1, sk .

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ . . . ∧ T (sk−1, sk) ∧
k∨

i=0

¬P(si)

Checking safety properties P (assertions):

t -I

¬P ∨
T∧ t -
¬P ∨

T∧ t . . .
¬P ∨
∧ t -

¬P ∨
T∧ t
¬P

Bounded Model Checking (BMC)

Unwinding as described before:
I Enables checking of safety properties (AG P)
I Incomplete: only correct up to bound k
I No fixpoint computation required

I deploy efficient satisfiability checkers!

BMC: Exploiting Locality

For Software or Hardware Description Languages (HDL)
I monolithic transition relation
I partitioned according to locations

T (s, s′) def
=

∨
`∈Locations

(s.pc = `) ∧ T`(s, s′)

Unwinding Transition Relations

Assume we unwind the entire transition relation:
I at each step, many locations ` are unreachable!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

Unwinding Transition Relations

Assume we unwind the entire transition relation:
I at each step, many locations ` are unreachable!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

Unwinding Transition Relations

Assume we unwind the entire transition relation:
I at each step, many locations ` are unreachable!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

L2 L4

Unwinding Transition Relations

Assume we unwind the entire transition relation:
I at each step, many locations ` are unreachable!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

L2 L4

L3
L5

Unwinding Transition Relations

Assume we unwind the entire transition relation:
I at each step, many locations ` are unreachable!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

L2 L4

L3
L5

L2 L4

Unwinding Transition Relations

Assume we unwind the entire transition relation:
I at each step, many locations ` are unreachable!

L1

L2

L3

L4

L5

L1 L2
L3

L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2
L3

L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2
L3

L4 L5
#2

L1 L2 L3 L4 L5
#1

L1
L2

L3 L4 L5
#0

L1

L2 L4

L3
L5

L2 L4

L3
L5

L2 L4

L3
L5

Unwinding Transition Relations

I Avoid construction of formulas for unreachable nodes
I Nodes unreachable in step #i in CFG grey in previous slide

I Is path-wise unwinding a good strategy?
I Previous unwinding contains 3 copies of L4 and L5!
I Path enumeration→ exponential blowup!

Unwinding Software

Another problem:

L1L1

L2L2

L3L3

L4L4

L5L5 L1 L2 L3 L4 L5
#6

L1 L2 L3 L4 L5
#5

L1 L2 L3 L4 L5
#4

L1 L2 L3 L4 L5
#3

L1 L2 L3 L4 L5
#2

L1 L2 L3 L4 L5
#1

L1 L2 L3 L4 L5
#0

L1

L2

L3

L4

L5

L2

L3

L4

L5

L2

L3

L4

L5

L2

L3

L4

L2

L3L2

CFG unrolling

V. D’Silva & D. Kroening: Software Verification 26

Unwinding Loops

I Idea: Process exactly one location in each timeframe
I Unwind loop bodies individually and merge on exit

L1

L2

L3

L4

L5

#6

#5

#4

#3

#2

#1

#0 L1

L2

L3

L2

L3

L4

L5

Unwinding Loops

while B do BODY done

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
assume (¬B) {
}
}
}
}

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
assert (¬B) {
}
}
}
}

Unwinding Loops

while B do BODY done

if (B) {
BODY

if (B) {
BODY

if (B) {
BODY
assume (¬B) {
}
}
}
}

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
assert (¬B) {
}
}
}
}

Unwinding Loops

while B do BODY done

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY

assume (¬B) {
}
}
}
}

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
assert (¬B) {
}
}
}
}

Unwinding Loops

while B do BODY done

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
assume (¬B) {
}
}
}
}

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
assert (¬B) {
}
}
}
}

Unwinding Loops

while B do BODY done

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
assume (¬B) {
}
}
}
}

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
assert (¬B) {
}
}
}
}

Size of resulting formula linear in depth and size of program!

Unwinding Loops

while B do BODY done

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
assume (¬B) {
}
}
}
}

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
assert (¬B) {
}
}
}
}

What happens if we replace assume with assert?

Unwinding-Assertions

while B do BODY done

if (B) {
BODY

if (B) {
BODY
if (B) {

BODY
assert (¬B) {
}
}
}
}

I The assertion fails if the
loop can be unwound
further!

I There are paths
exceeding the bound k !

I Applicable for run-time
bounds!

Literature

More details:

A Survey of Automated Techniques for Formal Software
Verification

I http://dx.doi.org/10.1109/TCAD.2008.923410, Sec. IV

http://dx.doi.org/10.1109/TCAD.2008.923410

Paths with Cycles

I Cases in which the unwinding assertion never fails?

I If there are paths with cycles!

〈À,⊥〉 〈Á, 0〉 〈Â, 0〉 〈Á, 1〉 〈Â, 0〉T T T T

T

I But BMC can’t detect those, right?
(so far, we’ve only looked at safety/reachability properties)

Paths with Cycles

I Cases in which the unwinding assertion never fails?
I If there are paths with cycles!

〈À,⊥〉 〈Á, 0〉 〈Â, 0〉 〈Á, 1〉 〈Â, 0〉T T T T

T

I But BMC can’t detect those, right?
(so far, we’ve only looked at safety/reachability properties)

Paths with Cycles

I Cases in which the unwinding assertion never fails?
I If there are paths with cycles!

〈À,⊥〉 〈Á, 0〉 〈Â, 0〉 〈Á, 1〉 〈Â, 0〉T T T T

T

I But BMC can’t detect those, right?
(so far, we’ve only looked at safety/reachability properties)

Paths with Cycles

À x= 1;
Á while(x < 10) {
Â x= x+ nondet(); // add ? to x

Ã assume(x 6= 0);
Ä }
Å x = 0;

I Are there execution traces for which s.pc is never Å?

〈À,⊥〉 〈Â, 1〉 〈Ã, 1〉〈Á, 1〉 〈Á, 1〉T T T T

T

Paths with Cycles

À x= 1;
Á while(x < 10) {
Â x= x+ nondet(); // add ? to x

Ã assume(x 6= 0);
Ä }
Å x = 0;

I Are there execution traces for which s.pc is never Å?

〈À,⊥〉 〈Â, 1〉 〈Ã, 1〉〈Á, 1〉 〈Á, 1〉T T T T

T

Paths with Cycles

À x= 1;
Á while(x < 10) {
Â x= x+ nondet(); // add ? to x

Ã assume(x 6= 0);
Ä }
Å x = 0;

I(s0)∧T1(s0, s1)∧T2(s1, s2)∧T3(s2, s3)∧T4(s3, s4) ∧ (s4 = s1)

〈À,⊥〉 〈Â, 1〉 〈Ã, 1〉〈Á, 1〉 〈Á, 1〉T T T T

T

Paths with Cycles

I(s0)∧T1(s0, s1)∧T2(s1, s2)∧T3(s2, s3)∧T4(s3, s4) ∧ (s4 = s1)

I Satisfying assignment represents execution trace with cycle
I Technique enables us to find counterexample to

I We always eventually reach location Å
(this is called a liveness property)

I i.e., the resulting execution trace is a witness for
I There is a path on which pc is never Å

Paths with Cycles

In general:

I(s0) ∧

(
k∧

i=0

T (si , si+1)

)
∧

∨
i∈{1..k}, j∈{0..(i−1)}

(si = sj)

I
∨

i∈{1..k}, j∈{0..(i−1)}(si = sj)

checks for every state si whether there’s a back-edge

Completeness Threshold

I Bounded Model Checking good for finding shallow bugs
I Requires user to specify bound k
I Incomplete if k is not sufficiently large
I What is a sufficiently large k?

I Assume SR is set of reachable program states
I Then k = |SR | is sufficient!
I k = |SR | . . . “reachability diameter”
I “Completeness threshold”

But if we could compute SR efficiently, why would we need BMC?

Completeness Threshold

I Bounded Model Checking good for finding shallow bugs
I Requires user to specify bound k
I Incomplete if k is not sufficiently large
I What is a sufficiently large k?

I Assume SR is set of reachable program states
I Then k = |SR | is sufficient!
I k = |SR | . . . “reachability diameter”
I “Completeness threshold”

But if we could compute SR efficiently, why would we need BMC?

Completeness Threshold

I Bounded Model Checking good for finding shallow bugs
I Requires user to specify bound k
I Incomplete if k is not sufficiently large
I What is a sufficiently large k?

I Assume SR is set of reachable program states
I Then k = |SR | is sufficient!
I k = |SR | . . . “reachability diameter”
I “Completeness threshold”

But if we could compute SR efficiently, why would we need BMC?

Completeness Threshold

I Approximate completeness threshold!
I We can use SAT to find find cycles:

I(s0) ∧

(
k∧

i=0

T (si , si+1)

)
∧

∨
i∈{1..k}, j∈{0..(i−1)}

(si = sj)

I We’re done if there no more cycle free paths:

I(s0) ∧

(
k∧

i=0

T (si , si+1)

)
∧

∧
i∈{1..k}, j∈{0..(i−1)}

(si 6= sj)

I Recurrence diameter:
smallest k for which formula above becomes unsatisfiable!

Completeness Threshold

I Approximate completeness threshold!
I We can use SAT to find find cycles:

I(s0) ∧

(
k∧

i=0

T (si , si+1)

)
∧

∨
i∈{1..k}, j∈{0..(i−1)}

(si = sj)

I We’re done if there no more cycle free paths:

I(s0) ∧

(
k∧

i=0

T (si , si+1)

)
∧

∧
i∈{1..k}, j∈{0..(i−1)}

(si 6= sj)

I Recurrence diameter:
smallest k for which formula above becomes unsatisfiable!

Completeness Threshold

I Approximate completeness threshold!
I We can use SAT to find find cycles:

I(s0) ∧

(
k∧

i=0

T (si , si+1)

)
∧

∨
i∈{1..k}, j∈{0..(i−1)}

(si = sj)

I We’re done if there no more cycle free paths:

I(s0) ∧

(
k∧

i=0

T (si , si+1)

)
∧

∧
i∈{1..k}, j∈{0..(i−1)}

(si 6= sj)

I Recurrence diameter:
smallest k for which formula above becomes unsatisfiable!

Completeness Threshold

I Typically, the recurrence diameter is large or∞
I In particular in the presence of non-determinism
I Applied for hardware models (finite state space)
I Not for software

BMC Overview

Unroll
transition function

k times

Check for
counterexample

Compare k to
completeness

threshold

Increase
k by one

[error found]
report

[reached]

OK

program

Recap from Lecture on Satisfiability

How can we compute satisfying assignments?

I Bit-vector arithmetic
I Bit-flattening
I Satisfiability checkers

Tool Support for BMC

CBMC (http://www.cprover.org/cmbc)
I Unwinds ANSI-C programs up to user-specified bound
I Bit-blasts the resulting formula
I Uses SAT solver to check satisfiability
I Also supports unwinding assertions

http://www.cprover.org/cmbc

CBMC example program

Example.C:

unsigned nondet();

unsigned a[100];

int main(int argc, char** argv) {
unsigned i;

for (i=0; i<100; i++) {
a[i]=nondet();

CPROVER assume(a[i] <= i);

}
i=nondet();

CPROVER assume(i<100);

CPROVER assert(a[i]<100, "Not too large");

return 0;

}

CBMC command line parameters

I cbmc --show-claims Example.C

Claim main.1:

file Example.C line 14 function main

Not too large

a[i] < 100

I cbmc --claim main.1 --unwind 10 Example.C

Violated property:

file Example.C line 8 function main

unwinding assertion loop 0

I cbmc --claim main.1 Example.C

VERIFICATION SUCCESSFUL

CBMC example program

Wegner.C:

unsigned nondet();

unsigned count(unsigned x) {
unsigned y, c=0;

y=x;

while (y!=0) {
y=y&(y-1);

c++;

CPROVER assert(x!=y, "Not equal");

}
}

int main(int argc, char** argv) {
unsigned i=nondet();

return count(i);

}

CBMC command line parameters

I cbmc Wegner.C

Unwinding loop 0 iteration 1 file wegner.c line 7

function count

. . .
Unwinding loop 0 iteration 3227 file wegner.c line 7

function count

. . .

I cbmc --32 --unwind 32 Wegner.C

VERIFICATION SUCCESSFUL

Beyond Safety?

I So far, only support for assertions/safety properties
I What about temporal logic?

Recap: Semantics of LTL on Infinite Paths

I Next
M, π |= Xϕ ⇔ M, π1 |= ϕ

I Eventually

M, π |= Fϕ ⇔ ∃k ≥ 0 .M, πk |= ϕ

I Globally

M, π |= Gϕ ⇔ ∀i ≥ 0 .M, πi |= ϕ

I Until

M, π |= ϕ1Uϕ2 ⇔
∃k ≥ 0 .M, πk |= ϕ2 ∧

∀j ∈ {0..k − 1} .M, πj |= ϕ1

Semantics of LTL on Finite Paths

Semantics doesn’t carry over to finite-length paths in BMC
I Need to adjust semantics!

I Let π def
= s0, . . . , sk be a path with bound k

M, π |=k X p ⇔ p holds in s1

s0 s1 s2 . . . sk
T T T T

p

Semantics of LTL on Finite Paths

More generally, “p holds at i”:

M, π |=i
k p ⇔ p holds in si with i ≤ k

s0 . . . si . . . sk
T T T T

p

Then π |=i
k X p simply becomes (i < k) ∧ π |=i+1

k p

Semantics of LTL on Finite Paths

More generally, “p holds at i”:

M, π |=i
k p ⇔ p holds in si with i ≤ k

s0 . . . si . . . sk
T T T T

p

Then π |=i
k X p simply becomes (i < k) ∧ π |=i+1

k p

Semantics of LTL on Finite Paths

Let ϕ be an LTL formula. Then:

M, π |=i
k Fϕ ⇔ ∃j, i ≤ j ≤ k . π |=i

k ϕ

si . . . sj . . . sk
T T T T

ϕ

Semantics of LTL on Finite Paths

What about the globally operator?

I Remember that BMC is incomplete!

M, π |=i
k Gϕ ⇔ false

si . . . sj . . . sk
T T T T

ϕ ϕ ϕ ϕ ϕ

I ϕ might not hold on sk+1!

Semantics of LTL on Finite Paths

What about the globally operator?
I Remember that BMC is incomplete!

M, π |=i
k Gϕ ⇔ false

si . . . sj . . . sk
T T T T

ϕ ϕ ϕ ϕ ϕ

I ϕ might not hold on sk+1!

Semantics of LTL on Finite Paths

What about the globally operator?
I Remember that BMC is incomplete!

M, π |=i
k Gϕ ⇔ false

si . . . sj . . . sk
T T T T

ϕ ϕ ϕ ϕ ϕ

I ϕ might not hold on sk+1!

Semantics of LTL on Finite Paths

Until:

M, π |=i
k ϕ1 Uϕ2

⇔

∃j, i ≤ j ≤ k .
(
π |=j

k ϕ2 ∧ ∀n, i ≤ n < j . π |=n
k ϕ1

)

si . . . sj . . . sk
T T T T

ϕ1 ϕ1 ϕ2

Semantics of LTL on Finite Paths

I ϕ is valid along π with bound k (π |=k ϕ) iff π |=0
k ϕ

I Note that duality (¬Fϕ ≡ G¬ϕ) doesn’t hold anymore!

Semantics of LTL on Finite Paths

I ϕ is valid along π with bound k (π |=k ϕ) iff π |=0
k ϕ

I Note that duality (¬Fϕ ≡ G¬ϕ) doesn’t hold anymore!

Encoding LTL for Finite Paths

We start with a simple unwinding:

I(s0) ∧

(
k∧

i=1

T (si−1, si)

)

I Represents all paths up to bound k
I Does not reflect the LTL property φ yet

Encoding LTL for Finite Paths

I(s0) ∧

(
k∧

i=1

T (si−1, si)

)
∧ JϕKk

JϕKk is propositional encoding of ϕ for bound k

Encoding LTL for Finite Paths

Simple propositions p:

JpKi
k = p(si) J¬pKi

k = ¬p(si)

Boolean combinations:

Jϕ1 ∧ ϕ2Ki
k = Jϕ1Ki

k ∧ Jϕ2Ki
k Jϕ1 ∨ ϕ2Ki

k = Jϕ1Ki
k ∨ Jϕ2Ki

k

Encoding LTL for Finite Paths

Next operator:

JXϕKi
k =

if (i < k) then JϕKi+1
k else false

Encoding LTL for Finite Paths

Globally:
JGϕKi

k = false

Eventually:

JFϕKi
k =

k∨
j=i

JϕKj
k

Until:

Jϕ1 Uϕ2Ki
k =

k∨
j=i

(
Jϕ2K

j
k ∧

j−1∧
n=i

Jϕ1Kn
k

)

Encoding LTL for Finite Paths

Globally:
JGϕKi

k = false

Eventually:

JFϕKi
k =

k∨
j=i

JϕKj
k

Until:

Jϕ1 Uϕ2Ki
k =

k∨
j=i

(
Jϕ2K

j
k ∧

j−1∧
n=i

Jϕ1Kn
k

)

Encoding LTL for Finite Paths

Globally:
JGϕKi

k = false

Eventually:

JFϕKi
k =

k∨
j=i

JϕKj
k

Until:

Jϕ1 Uϕ2Ki
k =

k∨
j=i

(
Jϕ2K

j
k ∧

j−1∧
n=i

Jϕ1Kn
k

)

Encoding LTL for Finite Paths

I(s0) ∧

(
k∧

i=1

T (si−1, si)

)
∧ JϕKk

with JϕKk = JϕK0
k

This formula is satisfiable ifM |=k Eϕ

Encoding LTL for Finite Paths

I(s0) ∧

(
k∧

i=1

T (si−1, si)

)
∧ JϕKk

with JϕKk = JϕK0
k

This formula is satisfiable ifM |=k Eϕ

What About Infinite Paths?

I Requires reasoning about “lassos”

s1 . . . sl . . . sk
T T T T

T

I prefix reaching state sl
I suffix starting at sl and revisiting sl

I we call such a path π a (k , l)-loop

What About Infinite Paths?

I Requires reasoning about “lassos”

s1 . . . sl . . . sk
T T T T

T

I prefix reaching state sl
I suffix starting at sl and revisiting sl

I we call such a path π a (k , l)-loop

What About Infinite Paths?

I Requires reasoning about “lassos”

s1 . . . sl . . . sk
T T T T

T

I prefix reaching state sl
I suffix starting at sl and revisiting sl
I we call such a path π a (k , l)-loop

Finding (k , l)-Loops

I(s0) ∧

(
k∧

i=1

T (si−1, si)

)
∧

∨
l∈{0..k}

T (sk , sl)

I Unsatisfiable if no loop
I Otherwise, satisfying assignment provides values for (k , l)

I We obtain states s0, . . . s(l−1), sl , . . . , sk such that

I prefix u def
= s0, . . . , s(l−1)

I loop v def
= sl , . . . sk

I T (sk , sl) holds

I Infinite lasso-shaped path π def
= u · vω

Finding (k , l)-Loops

I(s0) ∧

(
k∧

i=1

T (si−1, si)

)
∧

∨
l∈{0..k}

T (sk , sl)

I Unsatisfiable if no loop
I Otherwise, satisfying assignment provides values for (k , l)
I We obtain states s0, . . . s(l−1), sl , . . . , sk such that

I prefix u def
= s0, . . . , s(l−1)

I loop v def
= sl , . . . sk

I T (sk , sl) holds

I Infinite lasso-shaped path π def
= u · vω

Bounded Model Checking with (k , l)-Loops

Let Lk
def
=
∨k

l=0 T (sk , sl). Then case-split:

I(s0)∧

(
k∧

i=1

T (si−1, si)

)
∧

(¬Lk ∧ JϕK0
k)︸ ︷︷ ︸

no loop

∨

k∨
l=0

(T (sk , sl) ∧ ?)︸ ︷︷ ︸
(k ,l)-loop


I We already know how to deal with loop-free paths: JϕK0

k

I For (k , l)-loops, we need new encoding lJϕK0
k

Bounded Model Checking with (k , l)-Loops

Let Lk
def
=
∨k

l=0 T (sk , sl). Then case-split:

I(s0)∧

(
k∧

i=1

T (si−1, si)

)
∧

(¬Lk ∧ JϕK0
k)︸ ︷︷ ︸

no loop

∨
k∨

l=0

(T (sk , sl) ∧ ?)︸ ︷︷ ︸
(k ,l)-loop


I We already know how to deal with loop-free paths: JϕK0

k

I For (k , l)-loops, we need new encoding lJϕK0
k

Encoding for (k , l)-Loops

Some things stay the same:

Simple propositions p:

lJpKi
k = p(si) lJ¬pKi

k = ¬p(si)

Boolean combinations:

lJϕ1 ∧ ϕ2Ki
k =l Jϕ1Ki

k ∧l Jϕ2Ki
k lJϕ1 ∨ ϕ2Ki

k =l Jϕ1Ki
k ∨l Jϕ2Ki

k

Encoding for (k , l)-Loops

Other things don’t change all that much:

lJFϕKi
k =

k∨
j=min(i,l)

lJϕKj
k

min(i, l) is essential, however:

sl−1 sl si . . . sk
T T T T

ϕ

T

I without min(i, l), we miss if φ holds in later iteration

Encoding for (k , l)-Loops

Other things don’t change all that much:

lJFϕKi
k =

k∨
j=min(i,l)

lJϕKj
k

min(i, l) is essential, however:

sl−1 sl si . . . sk
T T T T

ϕ

T

I without min(i, l), we miss if φ holds in later iteration

Encoding for (k , l)-Loops

Other things don’t change all that much:

lJFϕKi
k =

k∨
j=min(i,l)

lJϕKj
k

min(i, l) is essential, however:

sl−1 sl si . . . sk
T T T T

ϕ

T

I without min(i, l), we miss if φ holds in later iteration

Encoding for (k , l)-Loops

Globally operator is not trivial anymore:

lJGϕKi
k =

k∧
j=min(i,l)

lJϕKj
k

I Argument for min(i, l) similar as before!

Encoding for (k , l)-Loops

Until operator ϕ1 Uϕ2 is left as an exercise.

LTL Bounded Model Checking: The Whole Picture

all paths up to bound k︷ ︸︸ ︷
I(s0) ∧

(
k∧

i=1

T (si−1, si)

)
∧(¬Lk ∧ JϕK0

k)︸ ︷︷ ︸
no loop

∨
k∨

l=0

(
T (sk , sl) ∧l JϕK0

k
)︸ ︷︷ ︸

(k ,l)-loop


︸ ︷︷ ︸

k−bounded encoding of ϕ

Solving the Existential Model Checking Problem

M |= Eϕ

Can be reduced to BMC!

1. (π |=k ϕ)⇒ (π |= ϕ)

2. If (M |= ϕ), iff ∃k ∈ N . (M |=k ϕ)

Reduction of universal validity to existential invalidity:
I M |= Aϕ iffM 6|= E¬ϕ

Corollary: M |= A¬ϕ iff JM, ϕKk is unsatisfiable for all k ∈ N

Solving the Existential Model Checking Problem

M |= Eϕ

Can be reduced to BMC!

1. (π |=k ϕ)⇒ (π |= ϕ)

2. If (M |= ϕ), iff ∃k ∈ N . (M |=k ϕ)

Reduction of universal validity to existential invalidity:
I M |= Aϕ iffM 6|= E¬ϕ

Corollary: M |= A¬ϕ iff JM, ϕKk is unsatisfiable for all k ∈ N

Solving the Existential Model Checking Problem

M |= Eϕ

Can be reduced to BMC!

1. (π |=k ϕ)⇒ (π |= ϕ)

2. If (M |= ϕ), iff ∃k ∈ N . (M |=k ϕ)

Reduction of universal validity to existential invalidity:
I M |= Aϕ iffM 6|= E¬ϕ

Corollary: M |= A¬ϕ iff JM, ϕKk is unsatisfiable for all k ∈ N

Solving the Existential Model Checking Problem

M |= Eϕ

Can be reduced to BMC!

1. (π |=k ϕ)⇒ (π |= ϕ)

2. If (M |= ϕ), iff ∃k ∈ N . (M |=k ϕ)

Reduction of universal validity to existential invalidity:
I M |= Aϕ iffM 6|= E¬ϕ

Corollary: M |= A¬ϕ iff JM, ϕKk is unsatisfiable for all k ∈ N

Completeness and Complexity

IfM¬ |= Eϕ, bound has to be incremented indefinitely??

I That means BMC is incomplete
I But recall reachability diameter!

LTL model checking is PSPACE complete. Since SAT is
NP-complete, there is probably no polynomial bound k .

I If we only allow F and G, LTL model checking is NP-complete.
In this case, there is a bound linear in the number of states
and the size of the formula.

Completeness and Complexity

IfM¬ |= Eϕ, bound has to be incremented indefinitely??
I That means BMC is incomplete
I But recall reachability diameter!

LTL model checking is PSPACE complete. Since SAT is
NP-complete, there is probably no polynomial bound k .

I If we only allow F and G, LTL model checking is NP-complete.
In this case, there is a bound linear in the number of states
and the size of the formula.

Completeness and Complexity

IfM¬ |= Eϕ, bound has to be incremented indefinitely??
I That means BMC is incomplete
I But recall reachability diameter!

LTL model checking is PSPACE complete. Since SAT is
NP-complete, there is probably no polynomial bound k .

I If we only allow F and G, LTL model checking is NP-complete.
In this case, there is a bound linear in the number of states
and the size of the formula.

Completeness and Complexity

IfM¬ |= Eϕ, bound has to be incremented indefinitely??
I That means BMC is incomplete
I But recall reachability diameter!

LTL model checking is PSPACE complete. Since SAT is
NP-complete, there is probably no polynomial bound k .

I If we only allow F and G, LTL model checking is NP-complete.
In this case, there is a bound linear in the number of states
and the size of the formula.

Special Cases and Efficiency

LetM be a Kripke structure in which every path π is
lasso-shaped:

I π
def
= πu (πv)

ω

Assume that for every lasso-shaped path πu (πv)
ω, we have

I |πu| ≤ u and |πv | ≤ v

We call (u, v) the loop-diameter ofM.

ThenM |= Eϕ if ∃k ≤ u + v withM |=k Eϕ.

Special Cases and Efficiency

LetM be a Kripke structure in which every path π is
lasso-shaped:

I π
def
= πu (πv)

ω

Assume that for every lasso-shaped path πu (πv)
ω, we have

I |πu| ≤ u and |πv | ≤ v

We call (u, v) the loop-diameter ofM.

ThenM |= Eϕ if ∃k ≤ u + v withM |=k Eϕ.

Special Cases and Efficiency

LetM be a Kripke structure in which every path π is
lasso-shaped:

I π
def
= πu (πv)

ω

Assume that for every lasso-shaped path πu (πv)
ω, we have

I |πu| ≤ u and |πv | ≤ v

We call (u, v) the loop-diameter ofM.

ThenM |= Eϕ if ∃k ≤ u + v withM |=k Eϕ.

Implementation

I BMC is implemented in NUSMV (http://nusmv.fbk.eu/)
I You need this tool for one of the exercises

http://nusmv.fbk.eu/

Summary

I Bounded Model Checking reduces Model Checking to SAT
I Inherently incomplete, but good (efficient) for bug finding

