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Daniel Kröning, Ofer Strichman

I Chapter 2.2:
SAT Solvers

I Chapter 2.3:
Binary Decision Diagrams

I Available in
“Hauptbibliothek”



Decision Procedures for Propositional Logic

Propositional Logic:

formula ::= formula ∧ formula | formula ∨ formula |
¬formula | (formula) | atom

atom ::= propositional identifier | constant
constant ::= true | false

I Goal:
I Find satisfying assignment or
I show unsatisfiability

I Soundness: Decision Procedure gives correct answer
I Completeness: Decision Procedure always finds an answer



Conjunctive Normal Form

I CNF formula: A conjunction of clauses (product of sums)∧
i

∨
j

`i,j , `i,j ∈ {a,¬a | a ∈ Variables}

e.g.,
¬a1 ∧ (a1 ∨ ¬a2) ∧ (¬a1 ∨ a2) ∧ a1

I Remember:
I
∨

`∈∅ ` ≡ false (we use 2 to denote the empty clause)

I Alternative (more compact) notation:

(a1) (a1 a2) (a1 a2) (a1)

I Obtained through Tseitin transformation (see previous lecture)



Conjunctive Normal Form

I Is there a satisfying assignment?
I Naı̈ve algorithm for n variables: O(2n)

I Let’s look at a single variable y first:

(x ∨ y) ∧ (z ∨ ¬y)
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Resolution Principle

I Let C, D be clauses (disjunctions of literals)

(C ∨ a) (D ∨ a)
C ∨ D

[Res]

I For instance:
(a1) (a1 a2) (a1 a2) (a1)

a1

a1a2 a1a2 a1

a2

a1

�



Unit Resolution

I In particular:
(C ∨ a) (a)

C
[Res]

I “Unit Clause Rule”
I Example revisited:

(a1) (a1 a2) (a1 a2) (a1)

a1a1a2

a2

a1

a1a2

a1

�

I Unit clause propagation: Efficient
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Decision Making

I What if there are no unit clauses?
I Progress by making decisions about variables:

(a1 a2)
{a1 7→ 1, . . .}

I Partial assignment: Not all variables assigned

{x1 7→ 1, x2 7→ 0, x4 7→ 1}

I (x1 ∨ x3 ∨ ¬x4) is satisfied
One or more literal satisfied:

I (¬x1 ∨ x2) is conflicting:
All literals assigned but not satisfied

I (¬x1 ∨ ¬x4 ∨ x3) is unit:
All but one literal assigned, but not satisfied

I (¬x1 ∨ x3 ∨ x5) is unresolved
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Decision Levels

I Decision may result in unit clauses

{x1 7→ 1, x4 7→ 1}
(¬x1 ∨ ¬x4 ∨ x3)

I Results in unit clause:
I {x1 7→ 1, x4 7→ 1} AND (¬x1 ∨ ¬x4 ∨ x3) implies x3
I Antecedent of x3 is (¬x1 ∨ ¬x4 ∨ x3)
I Leads to unit propagation!

I Each decision is associated with a decision level

{x1 7→ 1︸ ︷︷ ︸
1

, x4 7→ 1︸ ︷︷ ︸
2

, . . .}

I Implications of a decision associated with same decision level:

I x4 and x3 above have decision level 2,
denoted by ¬x4@2 and x3@2



Decision Levels (continued)

dl Assignment Clauses
0 – (x1 x4 x3)(x3x2)

1 {x1 7→ 1} (x1 x4 x3)(x3x2) x1@1
2 {x1 7→ 1, x4 7→ 1} (x1 x4 x3)(x3x2) x4@2
{x1 7→ 1, x4 7→ 1, x3 7→ 1} (x3)(x3x2) x3@2
{x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} (x2) ¬x2@2

I {x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} satisfies (x1 x4 x3)(x3x2)
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Boolean Constraint Propagation, Implication Graph

c1 ≡ (x1 x4 x3) , c2 ≡ (x3x2)

x1@1 x4@2 x3@2 ¬x2@2c1 c2

I Nodes labelled with decisions
I Edges labelled with antecedents



Backtracking

What if a decision is wrong?

x1@1

¬x4@1

¬x2@1

x3@1

c2

c3

c1

c4

�

c1 (x2 x3)
c2 (x1x4)
c3 (x2x4)
c4 (x1x2x3)



Backtracking

What if a decision is wrong?

x1@1 ¬x1@1

¬x4@1

¬x2@1

x3@1

c2

c3

c1

c4

�

¬x2@2

x3@2

c1

x1 7→ 0, x2 7→ 0, x3 7→ 1

c1 (x2 x3)
c2 (x1x4)
c3 (x2x4)
c4 (x1x2x3)



Davis-Putnam-Loveland-Logeman (DPLL)

I Decide
Choose a variable and make a decision

I Propagate
Propagate implications

I Backtrack
“Undo” decisions which lead to conflict



Conflict-Driven Backtracking

I How can we do systematic backtracking?

Definition (Partial Implication Graph)

Sub-graph of an implication graph illustrating binary constraint
propagation (BCP) at a specific implication level

Definition (Conflict Graph)

An implication graph in which BCP has reached a conflict

c1 ≡ (x2 x3), c2 ≡ (x1x4), c3 ≡ (x2x4), c4 ≡ (x1x2x3)

x1@1 ¬x4@1 ¬x2@1 x3@1c2 c3 c1 c4
�



Conflict-Driven Backtracking, Learning

c1 ≡ (x2 x3), c2 ≡ (x1x4), c3 ≡ (x2x4), c4 ≡ (x1x2x3)

x1@1 ¬x4@1 ¬x2@1 x3@1c2 c3 c1 c4
�

I Analyse conflict
I Add learnt conflict clause ((x1) in our example)
I Backtrack

I to highest decision level in conflict clause that’s not the current
decision level

I to 0, if we learnt a unit clause



Example: Learning Conflict Clauses

c1 = (x1x2)
c2 = (x1x3x5)
c3 = (x2x4)
c4 = (x3x4)

x1@6

x3@6

¬x5@3

x2@6

x4@6

c4

c4
�

c2

c2

c1 c3

I Conflict clause: (x1 x5)
I Backtracking level: 3

I Erase all decisions from decision level 4 onwards
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Asserting Clauses

c1 = (x1x2)
c2 = (x1x3x5)
c3 = (x2x4)
c4 = (x3x4)

c5 = (x1 x5)

I We backtracked to decision level of x5

I Since x5 7→ 0, (x1 x5) forces an immediate implication
I Such a clause is called asserting clause



Choosing Conflict Clauses

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

1.) (x10 x1 x9 x11) 2.) (x10 x4 x11) 3.) (x10 x2 x3 x11)
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Conflict Clauses: Unique Implication Point

Definition (Unique Implication Point)

Any node (other than the conflict node) in the partial conflict graph
which is on all paths

I from the decision node
I to the conflict node

Note: The decision node is a UIP by definition.



Conflict Clauses: Unique Implication Point (ctd.)

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

UIP UIP



Conflict Clauses: Unique Implication Point (ctd.)

Definition (First Unique Implication Point)

The UIP that’s closest to the conflict node

I Choose conflict clause that contains First UIP as only literal at
the current decision level

I Advantages:
I Clause is an assertion clause
I Backtracks to lowest decision level

Why? Clause with First UIP “subsumes” other UIPs



Conflict Clauses: Unique Implication Point (ctd.)

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

UIP
UIP

1.) (x10 x1 x9 x11) 2.) (x10 x4 x11)



Conflict Clauses and Resolution

c1 = (x4 x2 x5)
c2 = (x4 x10 x6)
c3 = (x5 x6 x7)
c4 = (x6 x7)

c5 = (x2 x4 x10)

Order: x4, x5, x6, x7

t1 = Res(c4, c3, x7) = (x5 x6)

t2 = Res(t1, c2, x6) = (x4 x5 x10)

t3 = Res(t2, c1, x5) = (x2 x4 x10)

x4@5

x5@5

x6@5

¬x10@3

¬x2@3

¬x7@5

�c4

c4

c1

c2

c1

c2

c3

c3

UIP



Conflict Clauses and Resolution
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�c4

c4

c1

c2

c1

c2

c3

c3

UIP



Conflict Clauses and Resolution

I Start with currently conflicting clause (c4 in example)
I Choose last assigned literal (x7 in example)
I x7 follows from c3

I Phase of x7 in c4 differs from c3

I t1 = Res(c4, c3, x7)

I Iterate until we reach UIP
(i.e., ti contains UIP as single literal at current decision level)

In our example:

t1 = Res(c4, c3, x7) = (x5 x6)

t2 = Res(t1, c2, x6) = (x4 x5 x10)

t3 = Res(t2, c1, x5) = (x2 x4 x10)



Conflict Clauses

I Each conflict clause consequence
I of F and
I previously derived conflict clauses

I Derived using resolution
I Therefore, conflict clause is implied by original CNF formula F
I Therefore, SAT-solver can be used to find resolution proofs!



Proof-Logging: MINISAT 1.14

struct ProofTraverser {
virtual void root (const vec<Lit>& c);

virtual void chain (const vec<ClauseId>& cs,

const vec<Var>& xs);

. . .
}

cs[3]

cs[2] cs[1] cs[0]

t0 = Res(cs[0], cs[1], xs[0])

t1 = Res(t0, cs[2], xs[1])

t2 = Res(t1, cs[3], xs[2])



Proof-Logging: MINISAT 1.14

I Clauses are assigned numbers, starting with 0
I root as well as chain add a new clause



DPLL Completed

À If conflict at decision level 0→ UNSAT

Á Repeat:
Ê if all variables assigned return SAT

Ë Make decision
Ì Propagate constraints
Í No conflict? Go to Ê
Î If decision level = 0 return UNSAT

Ï Analyse conflict
Ð Add conflict clause
Ñ Backtrack and go to Ì

Termination argument:
I Solver never enters same decision level with same partial

assignment
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MINISAT Programming Interface

class lbool { ... }; // l True, l False, l Undef

class Lit {
explicit Lit(Var var, bool sign);

}

class Solver {
void newVar ();

void nVars ();

void addClause (const vec<Lit>& c);

bool solve (const vec<Lit>& assumps);

bool okay ();

. . .
vec<lbool> model;

}



DIMACS Format

c A sample .cnf file

p cnf 3 2

1 -3 0

2 3 -1 0

DIMACS = Discrete Mathematics and Theoretical Computer Science,

a collaboration Rutgers & Princeton, to determine practical algorithm

performance on computationally hard problems



Unsatisfiable Core

I If instance unsatisfiable, SAT-solver derives 2
I Follow resolution edges starting from 2

I we obtain a resolution refutation proof
I does not necessarily contain all clauses visited during SAT-run
I represents unsatisfiable core

Definition (Unsatisfiable Core)

Any unsatisfiable subset of the original set of clauses



Variable Order

I Does the order in which we assign variables matter?
I How about the values we choose?

a1

a1a2 a1a2 a1

a2

a1

�

Probably the most important element in SAT solving!
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Decision Heuristics: DLIS

Dynamic Largest Individual Sum –
choose assignment s.t. number of satisfied clauses is maximised

I px . . . # of unresolved clauses containing x

I nx . . . # of unresolved clauses containing x

I Let x be variable for which px is maximal
I Let y be variable for which ny is maximal
I If px > ny choose x 7→ 1
I Otherwise, choose y 7→ 0

Disadvantage: High overhead



Decision Heuristics: Jeroslaw-Wang

Jeroslaw-Wang –
Assign high weight to variables occurring in short clauses

I For each literal ` in F :

J(`) =
∑

c∈F s.t. `∈c

2−|c|

I Exponentially higher weight to literals in short clauses
I Choose (unassigned) literal ` that maximises J(`) and ` 7→ 0
I Weight updated dynamically (whenever conflict clause added)



Decision Heuristics: VSDIS

Variable State Independent Decaying Sum –
favour literals in recently added conflict clauses

I Each literal has counter initialised to 0
I When clause is added, literals in clause are boosted
I Periodically, all counters divided by constant
I Choose unassigned literal with highest counter

I Implemented in CHAFF
I Maintain list of unassigned literals sorted by counter
I Update list when adding conflict clauses
I Decision in O(1)

I Improved performance by order of magnitude



Decision Heuristics: Berkmin

Berkmin –
concentrate only on unresolved conflicts

I Maintain stack of conflict clauses
I Choose first unresolved clause in stack

I If stack empty, use VSDIS

I Choose variable + value according to some scoring strategy
(e.g., VSDIS)



Performance of SAT Solvers

I Scales to hundreds of thousands of variables
I for “benign” problems
I challenges:

I pigeon hole problems (size of resolution proof exponential)
I chains of ⊕Enabling Technology: SAT

1960 1970 1980 1990 2000 2010

1,000,000

100,000

10,000

1,000

100

10

BMC is enabled by the
progress propositional SAT solvers have made

in the last 10 years.

V. D’Silva & D. Kroening: Software Verification 14



Binary Decision Diagrams (Bryant 86)

I Store formulas as directed acyclic graphs
I Nodes represent variables
I Edges represent assignments

I Assignments can be derived in O(#variables)
I Representation is canonical

I if order of variables fixed for all paths in graph



Binary Decision Tree

I Encode decisions and outcome in tree
I Satisfying assignment can be found efficiently

I Wasteful, lot of redundancy
I Not much better than truth table

x1

x2 x2

x3 x3 x3 x3

0 1 0 1 0 0 1 1

0 1

((x1 ∧ x2) ∨ (¬x1 ∧ x3))



Binary Decision Tree: Reductions

I Merge leaf nodes
I Merge isomorphic subtrees
I Remove redundant nodes (introduce don’t cares)

x1

x2 x2

x3 x3 x3 x3

0 1 0 1 0 0 1 1

0 1

I Repeat reductions as long as possible
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Constructing Binary Decision Diagrams

I Construction follows structure of formula
I B1 and B2 represent F1 and F2

then B1 ? B2 represents F1 ? F2 (where ? ∈ {∧,∨, . . .})
I Complexity of B1 ? B2 bounded by |B1| · |B2|



Constructing Binary Decision Diagrams: Restrict

F |x=0 ≡ F [x/0]

x1

x2

x3

0 1

0

1

((x1 ∧ x2) ∨ (¬x1 ∧ x3))

x2=0→

x1

x3

0 1

0

1

(¬x1 ∧ x3)



Constructing BDDs: Shannon Expansion

Definition (Shannon Expansion)

F ≡ (¬x ∧ F [x/0]) ∨ (x ∧ F [x/1])

x1 x1 x1

B1 B2

?

B1 ? B2

→

B1[x1/0]
?

B2[x1/0]

B1[x1/1]
?

B2[x1/1]



Constructing BDDs: Shannon Expansion

Definition (Shannon Expansion)

F ≡ (¬x ∧ F [x/0]) ∨ (x ∧ F [x/1])

x1 x1 x1

B1 B2

?

B1 ? B2

→

B1[x1/0]
?

B2[x1/0]

B1[x1/1]
?

B2[x1/1]



Constructing BDDs

Combining two BDDs B1 ? B2

I Requirement: Same variable order!
I Start from root nodes v1 and v2

I Case 1: var(v1) = var(v2) = x1

x1 x1 x1

B1 B2

?

B1 ? B2

→

B1[x1/0]
?

B2[x1/0]

B1[x1/1]
?

B2[x1/1]



Constructing BDDs

Combining two BDDs B1 ? B2

I Case 2: var(v1) 6= var(v2)
I var(v1) = x1, var(v2) = x2
I x1 precedes x2 in variable order
I Therefore, x1 does not occur in B2!

x1 x2 x1

B1 B2

?

B1 ? B2

→

B1[x1/0]
?
B2

B1[x1/1]
?
B2



Constructing BDDs

Combining two BDDs B1 ? B2

I Case 3: v1 and v2 are terminal nodes 1 or 0

B1 ? B2 ≡ val(v1) ? val(v1)

0 ? 1 → 0 ? 1



Constructing BDDs: Example

x1

x2x2

0 1

0 1

B1 : x1 ⇔ x2

∨

x2

0 1

1 0

B2 : ¬x2



Constructing BDDs: Example

x1

B1 ? B2

B1[x1/0]
∨
B2

B1[x1/1]
∨
B2



Constructing BDDs: Example

x1

x2x2

0 1

0 1

B1

→

x2

0 1

1 0

B1|x1=0



Constructing BDDs: Example

x2

0 1

1 0

B1|x1=0

∨

x2

0 1

1 0

B2

=

x2

0 ∨ 0 1 ∨ 1

1 0

B1|x1=0 ∨ B2



Constructing BDDs: Example

x1

x2x2

0 1

0 1

B1

→

x2

0 1

0 1

B1|x1=1



Constructing BDDs: Example

x2

0 1

0 1

B1|x1=1

∨

x2

0 1

1 0

B2

= 0 ∨ 1

B1|x1=1 ∨ B2



Constructing BDDs: Example

x1

x2

0 1

1

0

x1 ∨ (¬x1 ∨ ¬x2)



Constructing BDDs: Variable Order

(x1 ⇔ y1) ∧ . . . ∧ (xn ⇔ yn)

I x1, y1, . . . , xn, yn: size 3n + 2
I x1, x2, . . . , y1, y2, . . . : size 3 · 2n − 1

I There are functions s.t. number of nodes can’t be polynomial
I For instance: Multiplication of bit-vectors



Constructing BDDs: Complexity

I Quantification:

∀x .F ≡ F [x/0] ∧ F [x/1]

∃x .F ≡ F [x/0] ∨ F [x/1]

I Furthermore: If F ≡ true then BDD is 1
I Follows immediately, because representation is canonical

I What does that mean for complexity?

I Can solve TQBF, the prototypical PSPACE-complete problem
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∃x .F ≡ F [x/0] ∨ F [x/1]

I Furthermore: If F ≡ true then BDD is 1
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I What does that mean for complexity?
I Can solve TQBF, the prototypical PSPACE-complete problem



BDDs vs SAT

BDD SAT
Variables Hundreds hundreds of thousands

Complexity PSPACE-complete NP-complete

Assignments O(n) SAT-run

Canonical Yes No

Equality check O(1) (hashing) SAT-run (F ⊕ G)

Quantifier elimination Yes Co-Factoring



Break

Let’s take a short break.



Model Programs or Circuits with Boolean Variables?

I Program variables have more expressive types than B.
I Programs have bit-vector semantics and bit-vector operations.
I Semantics of bit-vectors differs from N:

a > b + 2 ∧ a ≤ b

{a 7→ 2, b 7→ 2}

I Unsatisfiable in the theory of linear arithmetic (R, Z, . . . )

I Satisfiable if a and b are 2-bit bit-vectors



Model Programs or Circuits with Boolean Variables?

I Program variables have more expressive types than B.
I Programs have bit-vector semantics and bit-vector operations.
I Semantics of bit-vectors differs from N:

a > b + 2 ∧ a ≤ b {a 7→ 2, b 7→ 2}

I Unsatisfiable in the theory of linear arithmetic (R, Z, . . . )
I Satisfiable if a and b are 2-bit bit-vectors



Syntax of Bit-Vector Arithmetic

formula ::= formula ∧ formula | formula ∨ formula |
¬formula | atom

atom ::= propositional identifier | term � term
term ::= ∼term | constant | identifier | term # term

(where � ∈ {=,≥, >, 6=} and # ∈ {+,−, ·, &, |,⊕,�,�})

I Augment language with quantifiers in standard way.
I Similar to first-order logic, but:

I Functions, predicates and operators with fixed interpretation



First-Order Logic: Syntactic Elements

I Logical symbols:
I Variables
I Relation symbols = and 6= for C
I ∀ and ∃ range over C unless applied to B
I Operators ∧, ∨, ¬, . . ., constants true, false

I Non-logical symbols:
I Predicates, functions, constants over C



Bit-Vectors: Interpretation

An interpretation assigns a meaning to all non-logical symbols.
Models are a common way of specifying an interpretation:

Definition (Model)

A modelM of a formula F comprises
I a domain C, and
I an interpretation function assigning meaning to non-logical

symbols in F .

I We use fM to refer to element in C assigned to assigned to
symbol f by meaning function

I E.g., n-ary function f has fM : Cn → C associated to it



Bit-Vectors: Interpretation

An interpretation assigns a meaning to all non-logical symbols.
Models are a common way of specifying an interpretation:

Definition (Model)

A modelM of a formula F comprises
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Interpretations and Models

I In First-Order Logic: interpretation of functions and predicates
is not “fixed”

I For instance:

plus(x, 1) = x

is satisfiable if we interpret plus s.t. ∀x, y . plus(x, y) = x

I Typically, we want to rule out “nonsensical” interpretations
I by adding axioms, or
I by carefully crafting our decision procedure

I We have to assign meaning to bit-vector operations first



Interpretations and Models

I In First-Order Logic: interpretation of functions and predicates
is not “fixed”

I For instance:

plus(x, 1) = x

is satisfiable if we interpret plus s.t. ∀x, y . plus(x, y) = x

I Typically, we want to rule out “nonsensical” interpretations
I by adding axioms, or
I by carefully crafting our decision procedure

I We have to assign meaning to bit-vector operations first



Bit-Vectors: Interpretation

I Finitary nature of the domain C of program variables enables
representation of values d ∈ C as bit-vectors dn−1 . . . d0

(di ∈ B, 0 ≤ i < n)
I n is width of bit-vector.
I Unsigned:

dn−1 dn−2 . . . d1 d0

least significantmost significant

I Signed:

dn−1 dn−2 . . . d1 d0

least significantmost significant

sign



Bit-Vectors: Interpretations

Interpretation function which maps dn−1 . . . d0 to finite sub-domain
of N0 and Z:

(dn−1 . . . d0)
M def

=

{ ∑n−1
i=0 di · 2i unsigned

−2n−1 · dn−1 +
∑n−2

i=0 di · 2i signed

I Accordingly, =, 6=, ≥, and > take standard meaning in Z.



Bit-Vectors Operations: Interpretation

I Unary operator ∼ denotes bit-wise negation

∼ (dn−1 . . . d0)
def
= (¬dn−1 . . .¬d0) ,

I Operators & and | denote bit-wise conjunction and disjunction
I Addition for bit-width 3:

(x+ y ≡ z) mod 8

where x denotes (x2 x1 x0)

I Let c be numerical constant. Operator� denotes left shift:

(dn−1 . . . d0)� c def
= (d(n−1)−c . . . d0 0 . . . 0) if cM < n .

Similarly,� is right shift.



Bit-Flattening

How do we decide bit-vector arithmetic?

I Reduce to logic for which we have efficient decision
procedures!

I Finite domain C
I Enables encoding in propositional logic
I Efficient decision procedures for propositional logic exist

(next lecture)



Propositional Logic

Propositional Logic:

formula ::= formula ∧ formula | formula ∨ formula |
¬formula | (formula) | atom

atom ::= propositional identifier | constant
constant ::= true | false



Bit-Flattening

I Propositional logic lacks bit-vector specific atoms term � term
I Atoms(F ) . . . atoms occurring in F

AtomsT (F ) . . . theory-specific atoms

(AtomsT (F ) ⊆ Atoms(F ))

Definition (Propositional Skeleton)

F is a formula in the bit-vector logic language. The propositional
skeleton of F (denoted by sk(F )) is obtained by replacing every
atom that is not a propositional identifier by a fresh propositional
identifier.



Propositional Skeleton

The propositional skeleton of the bit-vector formula

(¬(x = y)∨((x&2) = 2))∧ (y = z+z)∧(x = z� 1)∧((z&1) = 0)

is
(¬e1 ∨ e2) ∧ e3 ∧ e4 ∧ e5 .

The assignment which maps all propositional atoms in sk(F ) to
true (represented by

∧5
i=1 ei ) satisfies second formula, whereas

the first is unsatisfiable.

I Add constraints reflecting semantics of AtomsT (F ) to sk(F )
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true (represented by

∧5
i=1 ei ) satisfies second formula, whereas

the first is unsatisfiable.

I Add constraints reflecting semantics of AtomsT (F ) to sk(F )



Adding Theory Constraints

1. In each term t1 # t2,
replace t1 and t2 with fresh symbols z1 and z2 (recursively)

2. For example:

x = (y+ z) · (y� 1) → x = (z1 · z2)

3. Add constraint (z1 = t1) ∧ (z2 = t2)

x = (z1 · z2) ∧ z1 = (y+ z) ∧ z2 = (y� 1)



Encoding Theory Constraints

I Let n be bit-width of the program variables x, y, z
I Each variable x represented by xn−1, . . . , x0

I Encoding of z = (x# y) where (# ∈ {+,−, ·, &, |,⊕,�,�}):

zn−1 = f #
n−1(xn−1, . . . , x0, yn−1, . . . , y0)

. . .

z0 = f #
0 (xn−1, . . . , x0, yn−1, . . . , y0)



Encoding Bit-Vector Operations

Equality x = y is straight-forward:

n−1∧
i=0

(xi ⇔ yi)



Encoding Bit-Vector Operations

z = x & y . . .

n−1∧
i=0

(zi ⇔ (xi ∧ yi))

z = x | y . . .

n−1∧
i=0

(zi ⇔ (xi ∨ yi))

z = x⊕ y . . .

n−1∧
i=0

zi ⇔ ((xi ∨ yi) ∧ (¬xi ∨ ¬yi))



Encoding Bit-Vector Operations

Shift operations implemented by means of a cascade of parallel
multiplexers known as barrel shifter.

0 0

x3
x2
x1
x0

0 1 y1

0 1

0

z3
z2
z1
z0

y0

4-bit barrel shifter imple-
menting z = x� y

i th stage performs shift by
2i positions if yi is true.



Encoding Bit-Vector Operations

s = a ± b

FA

a3 b3

o s3

FA

a2 b2

s2

FA

a1 b1

s1

FA

a0 b0

s0

m

ciba

co s



Encoding Bit-Vector Operations

I x < y can be expressed using of subtraction
I If x < y, then x− y yields overflow

(can be detected by checking the signals co
I Unsigned operands, overflow if co = true.
I Signed operands, (co ⊕ co−1) indicates overflow



Encoding Bit-Vector Operations

I Multiplication uses shift-and-add circuit
I i.e., multiplication of 2-bit parameters x and y ([x1 x0] and

[y1 y0]) is

[z2 z1 z0] = ([0 x1 x0]&[y0 y0 y0]) + (([0 x1 x0]� 1)&[y1 y1 y1]) .



Encoding Bit-Vector Operations

I Integer division z = x
y

(for y 6= 0)

(z · y+ r = x) ∧ (r < y)

I where r denotes the remainder



Propositional Encoding of Formulas

I E(αi) is the propositional encoding of theory atom αi

I Given a propositional symbol e ∈ Atoms(sk(F )), decision
procedure constructs a constraint

(e⇒ E(α)) ∧ (¬e⇒ ¬E(α))

I Eager decision procedures encode in one go
I Lazy decision procedures strengthen on demand
→ rule out “spurious” witnesses
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I Given a propositional symbol e ∈ Atoms(sk(F )), decision
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I Eager decision procedures encode in one go
I Lazy decision procedures strengthen on demand
→ rule out “spurious” witnesses



Conjunctive Normal Form

I Many efficient decision procedures for propositional logic
expect input in

Conjunctive Normal Form (CNF):

formula ::= formula ∧ (clause) | (clause)
clause ::= clause ∨ literal | literal
literal ::= atom | ¬atom
atom ::= propositional identifier

I Problem: E(F ) doesn’t yield CNF
I Conversion of F into CNF may result in exponential blowup



Tseitin Encoding

I If we use propositional logic rewrite rules:

(x ∧ y) ∨ (z ∧ s) ≡ (x ∨ z) ∧ (x ∨ s) ∧ (y ∨ z) ∧ (y ∨ s)

Blowup if applied repeatedly!
I Idea: Construct satisfiability-equivalent formula
I Introduce a fresh symbol for each subterm:

(x∧y)∨(z∧s) −→ (o1∨o2)∧ (o1 ⇔ (x∧y))∧ (o2 ⇔ (z∧s))

I But this is still not CNF!



Tseitin Encoding

(o1 ∨ o2) ∧ (o1 ⇔ (x ∧ y)) ∧ (o1 ⇔ (z ∧ s))

I (o1 ⇔ (x ∧ y)) ≡

(o1 ⇒ x) ∧ (o1 ⇒ y) ∧ ((x ∧ y)⇒ o1) ≡

(x ∨ ¬o1) ∧ (y ∨ ¬o1) ∧ (o1 ∨ ¬x ∨ ¬y)
I Constant blowup
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Tseitin Encoding
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Tseitin Encoding

Negation:
x⇔ ¬y ≡ (x⇒ ¬y) ∧ (¬y⇒ x)

≡ (¬x ∨ ¬y) ∧ (y ∨ x)
Disjunction:
x⇔ (y ∨ z) ≡ (y⇒ x) ∧ (z⇒ x) ∧ (x⇒ (y ∨ z))

≡ (¬y ∨ x) ∧ (¬z ∨ x) ∧ (¬x ∨ y ∨ z)
Conjunction:
x⇔ (y ∧ z) ≡ (x⇒ y) ∧ (x⇒ z) ∧ ((y ∧ z)⇒ x)

≡ (¬x ∨ y) ∧ (¬x ∨ z) ∧ (¬(y ∧ z) ∨ x)
≡ (¬x ∨ y) ∧ (¬x ∨ z) ∧ (¬y ∨ ¬z ∨ x)



Tseitin Encoding

Equivalence:
x⇔ (y⇔ z)

≡ (x⇒ (y⇔ z)) ∧ ((y⇔ z)⇒ x)
≡ (x⇒ ((y⇒ z) ∧ (z⇒ y)) ∧ ((y⇔ z)⇒ x)
≡ (x⇒ (y⇒ z)) ∧ (x⇒ (z⇒ y)) ∧ ((y⇔ z)⇒ x)
≡ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬z ∨ y) ∧ ((y⇔ z)⇒ x)
≡ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬z ∨ y) ∧ (((y ∧ z) ∨ (¬y ∧ ¬z))⇒ x)
≡ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬z ∨ y) ∧ ((y ∧ z)⇒ x) ∧ ((¬y ∧ ¬z)⇒ x)
≡ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬z ∨ y) ∧ (¬y ∨ ¬z ∨ x) ∧ (y ∨ z ∨ x)

I Blowup by constant factor of 4
I Resulting formula satisfiable iff initial formula is



Tseitin Encoding
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Example

I E(e1 ⇔ (x = y)) = e1 ⇔
∧n−1

i=0 (xi ⇔ yi)

I Bi-implication can be rewritten as

n−1∧
i=0

(¬e1∨(xi ⇔ yi)) ∧

(
e1 ∨

n−1∨
i=0

((xi ∧ ¬yi) ∨ (¬xi ∧ yi))

)

I Left side of this formula can be rewritten in CNF

n−1∧
i=0

((¬e1 ∨ ¬xi ∨ yi) ∧ (¬e1 ∨ xi ∨ ¬yi)) .
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Example (continued)

n−1∧
i=0

(¬e1 ∨ (xi ⇔ yi)) ∧ (e1 ∨
n−1∨
i=0

((xi ∧ ¬yi) ∨ (¬xi ∧ yi))︸ ︷︷ ︸
DNF

)

I Introduce fresh symbol oi for each conjuncts (xi ∧ ¬yi) and
(¬xi ∧ yi):

(ei∨o0∨. . .∨o2·n−1)∧
n−1∧
i=0

((oi ⇔ (xi ∧ ¬yi)) ∧ (oi+n ⇔ (¬xi ∧ yi)))︸ ︷︷ ︸
almost CNF

I Replace conjuncts (oi ⇔ (xi ∧ ¬yi)) and (oi+n ⇔ (¬xi ∧ yi))
by CNF formulae (Tseitin)



Example: CNF Encoding of Constraints

(¬(x = y)∨((x&2) = 2))∧ (y = z+z)∧(x = z� 1)∧((z&1) = 0)

↓
(¬e1 ∨ e2) ∧ e3 ∧ e4 ∧ e5

↓
Encoding Propositional constraint CNF clauses

e1 ⇔ (x = y) e1 ⇒ (x0 ⇔ y0) ∧ e1 ⇒ . . .∧ (¬e1 ∨ ¬x0 ∨ y0)∧
(¬e1 ∨ x0 ∨ ¬y0) ∧ . . .(∧n−1

i=0 xi ⇔ yi

)
⇒ e1 (ei ∨ o0 ∨ . . . ∨ o2·n−1)

∧ . . .
e2 ⇔ ((x&2) = 2) e2 ⇒ x1 (¬e2 ∨ x1)

e3 ⇔ (y = z+ z) e3 ⇒ ¬y0 ∧ . . . (¬e3 ∨ ¬y0) ∧ . . .

e4 ⇔ (x = z� 1) (e4 ⇒ (x1 ⇔ z0)) ∧ (e4 ⇒ ¬x0) (¬e4 ∨ ¬x1 ∨ z0)∧
∧ . . . (¬e4 ∨ x1 ∨ ¬z0)∧

(¬e4 ∨ ¬x0) ∧ . . .

e5 ⇔ ((z&1) = 0) e5 ⇒ ¬z0 (¬e5 ∨ ¬z0)



Satisfiability Equivalence Revisited

I Given an assignment for the Tseitin encoding,
how can we get an assignment for the original formula?

x = y E

Tseitin

solve
{x0 7→ 0,

y1 7→ 1,

. . .}

∧n−1
i=0 xi = yi

∧n−1
i=0 oi ∧

∧n−1
i=0 ((¬oi ∨ ¬xi ∨ yi ) ∧ . . .)

(xn−1xn−2 . . . x0)
M



Uninterpreted Functions

I Know how eliminate interpreted bit-vector operations now
I But formula may also contain uninterpreted functions
I Derive from

I Encoding of arrays
I Abstractions
I . . .

Example:
z = x# y

→ z = f (x, y)

I Assume we don’t know how # is implemented
(may be platform dependent)

I Guarantees only functional consistency:
(x = y)⇒ f (x) = f (y)

I May still be sufficient to prove correctness!
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I . . .

Example:
z = x# y → z = f (x, y)

I Assume we don’t know how # is implemented
(may be platform dependent)

I Guarantees only functional consistency:
(x = y)⇒ f (x) = f (y)

I May still be sufficient to prove correctness!



Uninterpreted Functions: Ackermann’s Reduction

I For each function

1.
Number function instances
(from the inside out)

−→ f (

1︷︸︸︷
f (x))︸ ︷︷ ︸

2

= 0

2. Replace each function in-
stance with fresh variable

−→ v2 = 0

3.
Add consistency constraint
for every pair of instances of
a function.

−→ ((x = v1)⇒ (v2 = v1)
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Uninterpreted Functions: Ackermann’s Reduction

I For each function

1.
Number function instances
(from the inside out)

−→ f (

1︷︸︸︷
f (x))︸ ︷︷ ︸
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2. Replace each function in-
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−→ v2 = 0
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for every pair of instances of
a function.

−→ ((x = v1)⇒ (v2 = v1)



Ackermann’s Reduction: Example

(x 6= y) ∨ f (x) = f (y) ∨ f (x) 6= f (z)

I Number function instances:

(x 6= y) ∨ f1(x) = f2(y) ∨ f1(x) 6= f3(z)

I Replace each function with fresh variable:

(x 6= y) ∨ v1 = v2 ∨ v1 6= v3

I Add consistency constraints ((x = y)⇒ (v1 = v2)) ∧
((x = z)⇒ (v1 = v3)) ∧
((y = z)⇒ (v2 = v3)) ∧

∧ (x 6= y)∨ v1 = v2 ∨ v1 6= v3

I Resulting formula is satisfiability equivalent
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Ackermann’s Reduction: Example

(x 6= y) ∨ f (x) = f (y) ∨ f (x) 6= f (z)

I Number function instances:

(x 6= y) ∨ f1(x) = f2(y) ∨ f1(x) 6= f3(z)

I Replace each function with fresh variable:

(x 6= y) ∨ v1 = v2 ∨ v1 6= v3
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((x = z)⇒ (v1 = v3)) ∧
((y = z)⇒ (v2 = v3)) ∧

∧ (x 6= y)∨ v1 = v2 ∨ v1 6= v3

I Resulting formula is satisfiability equivalent



Uninterpreted Functions: Bryant’s Reduction

I For each function

1.
Number function instances
(from the inside out)

−→ f (

1︷︸︸︷
f (x))︸ ︷︷ ︸

2

= 0

2.
Replace each function in-
stance fi with expression ei

−→ e2 = 0

ei =


case x1 = xi : v1

x2 = xi : v2
...
xi−1 = xi : vi−1

true : vi


(where x1 is parameter of f1, x2 of f2 . . . )
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Bryant’s Reduction: Example

(x = y)⇒ f (g(x)) = f (g(y))

I Number function instances:

(x = y)⇒ f1(g1(x)) = f2(g2(y))

I Replace function application with expression:

(x = y)⇒ ef1 = ef2

where
ef1 = v1

ef2 =

(
case eg1 = eg2 : v1

true : v2

)
eg1 = v3

eg2 =

(
case x = y : v3

true : v4

)



Encoding Case Statements

w =


case x1 = xi : v1

x2 = xi : v2
...
xi−1 = xi : vi−1

true : vi


↓

(x1 = xi) ⇒ (w = v1) ∧
((x1 6= xi) ∧ (x2 = xi)) ⇒ (w = v2) ∧
...
((x1 6= xi) ∧ (x2 6= xi)) . . . ∧ (xi−1 = xi) ⇒ (w = vi−1) ∧
((x1 6= xi) ∧ (x2 6= xi)) . . . ∧ (xi−1 6= xi) ⇒ (w = vi)



Summary

I efficient SAT solvers for unquantified propositional formulas
I (canonical) BDDs for quantified Boolean formulas (QBF)
I bit-vectors reduced to SAT


