
Computer Aided Verification

Lattices and

Fixed Points

Georg Weissenbacher



Exploring State Space

How can we explore the states of a transition system?

1. Unwinding symbolic transition function T : ℘(S)→ ℘(S)

t -I T∧ t -T∧ t . . .∧ t -T∧ t



Exploring States: When Are We Done?

Q0

I Done when we encounter no more new states!



Exploring States: When Are We Done?

Q0

Q0 ∨ Q1

I Done when we encounter no more new states!



Exploring States: When Are We Done?

Q0 ∨ Q1 ∨ Q2

Q0

Q0 ∨ Q1

I Done when we encounter no more new states!



Exploring States: When Are We Done?

Q0 ∨ Q1 ∨ Q2

Q0

Q0 ∨ Q1

I Done when we encounter no more new states!



Overview

I Central question of this lecture:

What does “no more new states” mean?

Theoretical Foundation:
I Orders on ℘(S), lattices
I Fixed points on lattices

The following slides are based on material created by Vijay D’Silva



Overview

I Central question of this lecture:

What does “no more new states” mean?

Theoretical Foundation:
I Orders on ℘(S), lattices

I Fixed points on lattices

The following slides are based on material created by Vijay D’Silva



Overview

I Central question of this lecture:

What does “no more new states” mean?

Theoretical Foundation:
I Orders on ℘(S), lattices
I Fixed points on lattices

The following slides are based on material created by Vijay D’Silva



Comparing Sets of States

I Sets of states:

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, y 7→ 1〉, . . .}

I Power-set: The set of all sets of states: ℘(S)
I Ordering sets

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, x 7→ 1〉 }

{ 〈x 7→ 0, x 7→ 0〉 }
�
��

{ 〈x 7→ 0, y 7→ 1〉 }
@

@@

{ }
H
HH

H
H

�
��

�
�

I “Hasse Diagram”



Comparing Sets of States

I Sets of states:

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, y 7→ 1〉, . . .}

I Power-set: The set of all sets of states: ℘(S)
I Ordering sets

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, x 7→ 1〉 }

{ 〈x 7→ 0, x 7→ 0〉 }

�
��

{ 〈x 7→ 0, y 7→ 1〉 }
@

@@

{ }
H
HH

H
H

�
��

�
�

I “Hasse Diagram”



Comparing Sets of States

I Sets of states:

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, y 7→ 1〉, . . .}

I Power-set: The set of all sets of states: ℘(S)
I Ordering sets

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, x 7→ 1〉 }

{ 〈x 7→ 0, x 7→ 0〉 }
�
��

{ 〈x 7→ 0, y 7→ 1〉 }
@

@@

{ }
H
HH

H
H

�
��

�
�

I “Hasse Diagram”



Comparing Sets of States

I Sets of states:

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, y 7→ 1〉, . . .}

I Power-set: The set of all sets of states: ℘(S)
I Ordering sets

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, x 7→ 1〉 }

{ 〈x 7→ 0, x 7→ 0〉 }
�
��

{ 〈x 7→ 0, y 7→ 1〉 }

@
@@

{ }
H
HH

H
H

�
��

�
�

I “Hasse Diagram”



Comparing Sets of States

I Sets of states:

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, y 7→ 1〉, . . .}

I Power-set: The set of all sets of states: ℘(S)
I Ordering sets

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, x 7→ 1〉 }

{ 〈x 7→ 0, x 7→ 0〉 }
�
��

{ 〈x 7→ 0, y 7→ 1〉 }
@

@@

{ }
H
HH

H
H

�
��

�
�

I “Hasse Diagram”



Comparing Sets of States

I Sets of states:

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, y 7→ 1〉, . . .}

I Power-set: The set of all sets of states: ℘(S)
I Ordering sets

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, x 7→ 1〉 }

{ 〈x 7→ 0, x 7→ 0〉 }
�
��

{ 〈x 7→ 0, y 7→ 1〉 }
@

@@

?←→

{ }
H
HH

H
H

�
��

�
�

I “Hasse Diagram”



Comparing Sets of States

I Sets of states:

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, y 7→ 1〉, . . .}

I Power-set: The set of all sets of states: ℘(S)
I Ordering sets

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, x 7→ 1〉 }

{ 〈x 7→ 0, x 7→ 0〉 }
�
��

{ 〈x 7→ 0, y 7→ 1〉 }
@

@@

{ }

H
HH

H
H

�
��

�
�

I “Hasse Diagram”



Comparing Sets of States

I Sets of states:

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, y 7→ 1〉, . . .}

I Power-set: The set of all sets of states: ℘(S)
I Ordering sets

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, x 7→ 1〉 }

{ 〈x 7→ 0, x 7→ 0〉 }
�
��

{ 〈x 7→ 0, y 7→ 1〉 }
@

@@

{ }
H
HH

H
H

�
��
�
�

I “Hasse Diagram”



Comparing Sets of States

I Sets of states:

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, y 7→ 1〉, . . .}

I Power-set: The set of all sets of states: ℘(S)
I Ordering sets

{ 〈x 7→ 0, y 7→ 0〉, 〈x 7→ 0, x 7→ 1〉 }

{ 〈x 7→ 0, x 7→ 0〉 }
�
��

{ 〈x 7→ 0, y 7→ 1〉 }
@

@@

{ }
H
HH

H
H

�
��
�
�

I “Hasse Diagram”



Common Properties of Relations

I Reflexivity: 〈s, s〉 ∈ R for all s ∈ S

I Symmetry: If 〈s0, s1〉 ∈ R then 〈s1, s0〉 ∈ R
I Asymmetry: If 〈s0, s1〉 ∈ R then 〈s1, s0〉 6∈ R
I Anti-symmetry: 〈s0, s1〉 ∈ R and 〈s1, s0〉 ∈ R implies s0 = s1

I Transitivity: 〈s0, s1〉 ∈ R and 〈s1, s2〉 ∈ R implies 〈s0, s2〉 ∈ R



Common Properties of Relations

I Reflexivity: 〈s, s〉 ∈ R for all s ∈ S
I Symmetry: If 〈s0, s1〉 ∈ R then 〈s1, s0〉 ∈ R

I Asymmetry: If 〈s0, s1〉 ∈ R then 〈s1, s0〉 6∈ R
I Anti-symmetry: 〈s0, s1〉 ∈ R and 〈s1, s0〉 ∈ R implies s0 = s1

I Transitivity: 〈s0, s1〉 ∈ R and 〈s1, s2〉 ∈ R implies 〈s0, s2〉 ∈ R



Common Properties of Relations

I Reflexivity: 〈s, s〉 ∈ R for all s ∈ S
I Symmetry: If 〈s0, s1〉 ∈ R then 〈s1, s0〉 ∈ R
I Asymmetry: If 〈s0, s1〉 ∈ R then 〈s1, s0〉 6∈ R

I Anti-symmetry: 〈s0, s1〉 ∈ R and 〈s1, s0〉 ∈ R implies s0 = s1

I Transitivity: 〈s0, s1〉 ∈ R and 〈s1, s2〉 ∈ R implies 〈s0, s2〉 ∈ R



Common Properties of Relations

I Reflexivity: 〈s, s〉 ∈ R for all s ∈ S
I Symmetry: If 〈s0, s1〉 ∈ R then 〈s1, s0〉 ∈ R
I Asymmetry: If 〈s0, s1〉 ∈ R then 〈s1, s0〉 6∈ R
I Anti-symmetry: 〈s0, s1〉 ∈ R and 〈s1, s0〉 ∈ R implies s0 = s1

I Transitivity: 〈s0, s1〉 ∈ R and 〈s1, s2〉 ∈ R implies 〈s0, s2〉 ∈ R



Common Properties of Relations

I Reflexivity: 〈s, s〉 ∈ R for all s ∈ S
I Symmetry: If 〈s0, s1〉 ∈ R then 〈s1, s0〉 ∈ R
I Asymmetry: If 〈s0, s1〉 ∈ R then 〈s1, s0〉 6∈ R
I Anti-symmetry: 〈s0, s1〉 ∈ R and 〈s1, s0〉 ∈ R implies s0 = s1

I Transitivity: 〈s0, s1〉 ∈ R and 〈s1, s2〉 ∈ R implies 〈s0, s2〉 ∈ R



Orders

Definition (Orders)

A relation R ⊆ S × S is a

pre-order reflexive and transitive

partial order pre-order and anti-symmetric

strict order transitive, asymmetric, and irreflexive

total order partial order and
∀s0, s1 ∈ S . (〈s0, s1〉 ∈ R) ∨ (〈s1, s0〉 ∈ R)

Some Examples:
I ≤ over N . . .

total order

I ⊆ over ℘(N) . . .

partial order



Orders

Definition (Orders)

A relation R ⊆ S × S is a

pre-order reflexive and transitive

partial order pre-order and anti-symmetric

strict order transitive, asymmetric, and irreflexive

total order partial order and
∀s0, s1 ∈ S . (〈s0, s1〉 ∈ R) ∨ (〈s1, s0〉 ∈ R)

Some Examples:
I ≤ over N . . .

total order

I ⊆ over ℘(N) . . .

partial order



Orders

Definition (Orders)

A relation R ⊆ S × S is a

pre-order reflexive and transitive

partial order pre-order and anti-symmetric

strict order transitive, asymmetric, and irreflexive

total order partial order and
∀s0, s1 ∈ S . (〈s0, s1〉 ∈ R) ∨ (〈s1, s0〉 ∈ R)

Some Examples:
I ≤ over N . . . total order
I ⊆ over ℘(N) . . .

partial order



Orders

Definition (Orders)

A relation R ⊆ S × S is a

pre-order reflexive and transitive

partial order pre-order and anti-symmetric

strict order transitive, asymmetric, and irreflexive

total order partial order and
∀s0, s1 ∈ S . (〈s0, s1〉 ∈ R) ∨ (〈s1, s0〉 ∈ R)

Some Examples:
I ≤ over N . . . total order
I ⊆ over ℘(N) . . . partial order



Ordered Sets

I Commonly used symbols for orders:
≤,⊆,v,�, strict versions: <,⊂,<,≺

Definition (Ordered Set)

An ordered set 〈S,v〉 comprises a
I set S and
I an order v.

〈S,v〉 is a poset if v is a partial order.



Examples of Orders and Ordered Sets

I Logical implication over logical formulas is a pre-order
I Not a partial order:
¬(x∨y)⇔ (¬x∧¬y) (logically equivalent but not equivalent)

I What about logical implication over Ordered BDDs?
I For lists, let L1 � L2 if elems(L1) ⊆ elems(L2)

I Pre-order, but not a partial order

I 〈℘(S),⊆〉 is a poset (remember Hasse diagram!)
I N is totally ordered by ≤
I The order < is strict on N



Chains

Let 〈S,v〉 be a poset and let X ⊆ S.

I X is a
I chain if ∀s0, s1 ∈ X . (s0 v s1) ∨ (s1 v s0)
I anti-chain if ∀s0, s1 ∈ X . (s0 6v s1) ∧ (s1 6v s0) (incomparable)

I Ascending chain: s0 v s1 v . . .
I Ascending Chain Condition (ACC) for 〈S,v〉:

Every infinite sequence s0 v s1 . . . eventually terminates:
∃n ≥ 0 .∀m > n . sn = sm (i.e., sn = sn+1 = sn+2 = . . .)

I Similarly: Descending Chain Condition:
Every non-empty subset has a minimal element
(aka “well-founded”)



Chains

Let 〈S,v〉 be a poset and let X ⊆ S.
I X is a

I chain if ∀s0, s1 ∈ X . (s0 v s1) ∨ (s1 v s0)
I anti-chain if ∀s0, s1 ∈ X . (s0 6v s1) ∧ (s1 6v s0) (incomparable)

I Ascending chain: s0 v s1 v . . .
I Ascending Chain Condition (ACC) for 〈S,v〉:

Every infinite sequence s0 v s1 . . . eventually terminates:
∃n ≥ 0 .∀m > n . sn = sm (i.e., sn = sn+1 = sn+2 = . . .)

I Similarly: Descending Chain Condition:
Every non-empty subset has a minimal element
(aka “well-founded”)



Chains

Let 〈S,v〉 be a poset and let X ⊆ S.
I X is a

I chain if ∀s0, s1 ∈ X . (s0 v s1) ∨ (s1 v s0)
I anti-chain if ∀s0, s1 ∈ X . (s0 6v s1) ∧ (s1 6v s0) (incomparable)

I Ascending chain: s0 v s1 v . . .

I Ascending Chain Condition (ACC) for 〈S,v〉:
Every infinite sequence s0 v s1 . . . eventually terminates:
∃n ≥ 0 .∀m > n . sn = sm (i.e., sn = sn+1 = sn+2 = . . .)

I Similarly: Descending Chain Condition:
Every non-empty subset has a minimal element
(aka “well-founded”)



Chains

Let 〈S,v〉 be a poset and let X ⊆ S.
I X is a

I chain if ∀s0, s1 ∈ X . (s0 v s1) ∨ (s1 v s0)
I anti-chain if ∀s0, s1 ∈ X . (s0 6v s1) ∧ (s1 6v s0) (incomparable)

I Ascending chain: s0 v s1 v . . .
I Ascending Chain Condition (ACC) for 〈S,v〉:

Every infinite sequence s0 v s1 . . . eventually terminates:
∃n ≥ 0 .∀m > n . sn = sm (i.e., sn = sn+1 = sn+2 = . . .)

I Similarly: Descending Chain Condition:
Every non-empty subset has a minimal element
(aka “well-founded”)



Chains

Let 〈S,v〉 be a poset and let X ⊆ S.
I X is a

I chain if ∀s0, s1 ∈ X . (s0 v s1) ∨ (s1 v s0)
I anti-chain if ∀s0, s1 ∈ X . (s0 6v s1) ∧ (s1 6v s0) (incomparable)

I Ascending chain: s0 v s1 v . . .
I Ascending Chain Condition (ACC) for 〈S,v〉:

Every infinite sequence s0 v s1 . . . eventually terminates:
∃n ≥ 0 .∀m > n . sn = sm (i.e., sn = sn+1 = sn+2 = . . .)

I Similarly: Descending Chain Condition:
Every non-empty subset has a minimal element
(aka “well-founded”)



Examples of Chains

I Every X ⊆ N is a chain with respect to ≤.
I 〈N,≤〉 does not satisfy the ascending chain condition.
I 〈N,≥〉 does satisfy the descending chain condition.



Tops and Bottoms

I Let 〈S,v〉 be a poset.
I Top element of a poset (>, supremum, maximum) satisfies

∀s ∈ S . s ⊆ >

I Bottom element of a poset (⊥, infimum, minimum) satisfies

∀s ∈ S .⊥ ⊆ s

I A bounded poset has > as well as ⊥.



Joins and Meets

I Let 〈S,v〉 be a poset, X ⊆ S
I u ∈ S is an upper bound of X if

∀x ∈ X . x v u

(Note that u is not necessarily in X )

I A join tX is the least upper bound of X
I A meet uX is the greatest lower bound of X



Joins and Meets: Examples

I Let 〈N ∪ {∞},≤〉 be a poset
I The greatest lower bound of N is . . .

1

I The least upper bound of {6, 9, 17} is . . .

17

I The least upper bound of N is . . .

∞
I Let 〈℘(S),⊆〉 be a poset

I The least upper bound of ℘(S) is . . .

S

I The greatest lower bound of ℘(S) is . . .

∅



Joins and Meets: Examples

I Let 〈N ∪ {∞},≤〉 be a poset
I The greatest lower bound of N is . . . 1
I The least upper bound of {6, 9, 17} is . . .

17

I The least upper bound of N is . . .

∞
I Let 〈℘(S),⊆〉 be a poset

I The least upper bound of ℘(S) is . . .

S

I The greatest lower bound of ℘(S) is . . .

∅



Joins and Meets: Examples

I Let 〈N ∪ {∞},≤〉 be a poset
I The greatest lower bound of N is . . . 1
I The least upper bound of {6, 9, 17} is . . . 17
I The least upper bound of N is . . .

∞
I Let 〈℘(S),⊆〉 be a poset

I The least upper bound of ℘(S) is . . .

S

I The greatest lower bound of ℘(S) is . . .

∅



Joins and Meets: Examples

I Let 〈N ∪ {∞},≤〉 be a poset
I The greatest lower bound of N is . . . 1
I The least upper bound of {6, 9, 17} is . . . 17
I The least upper bound of N is . . .∞

I Let 〈℘(S),⊆〉 be a poset
I The least upper bound of ℘(S) is . . .

S

I The greatest lower bound of ℘(S) is . . .

∅



Joins and Meets: Examples

I Let 〈N ∪ {∞},≤〉 be a poset
I The greatest lower bound of N is . . . 1
I The least upper bound of {6, 9, 17} is . . . 17
I The least upper bound of N is . . .∞

I Let 〈℘(S),⊆〉 be a poset
I The least upper bound of ℘(S) is . . .

S

I The greatest lower bound of ℘(S) is . . .

∅



Joins and Meets: Examples

I Let 〈N ∪ {∞},≤〉 be a poset
I The greatest lower bound of N is . . . 1
I The least upper bound of {6, 9, 17} is . . . 17
I The least upper bound of N is . . .∞

I Let 〈℘(S),⊆〉 be a poset
I The least upper bound of ℘(S) is . . . S
I The greatest lower bound of ℘(S) is . . .

∅



Joins and Meets: Examples

I Let 〈N ∪ {∞},≤〉 be a poset
I The greatest lower bound of N is . . . 1
I The least upper bound of {6, 9, 17} is . . . 17
I The least upper bound of N is . . .∞

I Let 〈℘(S),⊆〉 be a poset
I The least upper bound of ℘(S) is . . . S
I The greatest lower bound of ℘(S) is . . . ∅



Lattices

A

B
C

D



Lattices

A

B
C

D



Lattices

Definition (Lattice)

I A join semi-lattice 〈S,v,t〉 is a poset with a binary join t.
I A meet semi-lattice 〈S,v,u〉 is a poset with a binary meet u.
I A lattice 〈S,v,t,u〉 is a poset with a join and a meet.

Examples:
I 〈N,≤,max,min〉 is a lattice.
I 〈℘(S),⊆,∪,∩〉 is a the power-set lattice over S.



Lattices

Definition (Lattice)

I A join semi-lattice 〈S,v,t〉 is a poset with a binary join t.
I A meet semi-lattice 〈S,v,u〉 is a poset with a binary meet u.
I A lattice 〈S,v,t,u〉 is a poset with a join and a meet.

Examples:
I 〈N,≤,max,min〉 is a lattice.
I 〈℘(S),⊆,∪,∩〉 is a the power-set lattice over S.



Complete Lattices

Definition (Complete Lattice)

I A complete lattice 〈S,v,t,u〉 is a lattice in which for every
X ⊆ S

I tX and
I uX

are defined and belong to S.

I Note: ⊥ def
= u∅ and > def

= tS.

Examples:
I The power-set lattice 〈℘(S),⊆,∪,∩〉 is a complete lattice.
I 〈N,≤,max,min〉 is not complete.



Complete Lattices

Definition (Complete Lattice)

I A complete lattice 〈S,v,t,u〉 is a lattice in which for every
X ⊆ S

I tX and
I uX

are defined and belong to S.

I Note: ⊥ def
= u∅ and > def

= tS.

Examples:
I The power-set lattice 〈℘(S),⊆,∪,∩〉 is a complete lattice.
I 〈N,≤,max,min〉 is not complete.



Finite Lattices

Theorem

Every finite lattice is complete.



Fixed Points

You’ve reached a fixed point if
I every morning 6am

you get woken up by
I Sonny & Cher’s

“I Got You Babe”

And if you’re a monotone function
there’s really nothing you can do
about it.



Fixed Points

You’ve reached a fixed point if
I every morning 6am

you get woken up by
I Sonny & Cher’s

“I Got You Babe”

And if you’re a monotone function
there’s really nothing you can do
about it.



Fixed Points

Definition (Fixed Points, Fixpoints)

Let F : S → S be a function on a poset 〈S,v〉.
Then s ∈ S is

I a fixpoint if s = F (s).
I a pre-fixpoint if s v F (s)
I a post-fixpoint if F (s) v s

F (s) v s

F (s) = s

s v F (s)



Examples of Fixed Points

I f (x) = x2 has two fixed points in 〈N0,≤〉, 0 and 1.
I 2, 3, 4, . . . are pre-fixpoints

I f (x) = x + 1 has no fixed point in N, but∞ in N ∪∞

I true and false are a fixed points of f (P) = wp(x := x+ 1,P)



Examples of Fixed Points

I f (x) = x2 has two fixed points in 〈N0,≤〉, 0 and 1.
I 2, 3, 4, . . . are pre-fixpoints

I f (x) = x + 1 has no fixed point in N, but∞ in N ∪∞

I true and false are a fixed points of f (P) = wp(x := x+ 1,P)



Extremal Fixed Points

Definition (Least and Greatest Fixpoint)

Let F : S → S be a function on a poset 〈S,v〉.
I The least fixpoint of F (lfp(F ) or µF ) is a fixpoint such that for

any fixpoint s of F it holds that µF v s.
I The greatest fixpoint of F (gfp(F ) or νF ) is a fixpoint such that

for any fixpoint s of F it holds that s v νF .



How To Find Fixed Points?

Maybe we can just iterate the function?

Definition (Iterates of a Function)

The iterates of F : S ⇒ S starting from s0 ∈ S (where 〈S,v,t,u〉
is a lattice) are defined as

I F 0(s0)
def
= s0

I F n+1(s0)
def
= F (F n(s0)) for n ∈ N

I F ∗(s0)
def
= t{F n(s0) | n ∈ N} if this lfp exists



Behaviour of Iterates

I Infinite, non-repeating

a F (a) F 2(a) F 3(a) . . .

I Oscillating

a F (a) F 2(a) . . . F n(u)

I Eventual stabilisation (reaches a fixed point)

a F (a) F 2(a) . . . F n(a)

I How can we make sure that the last case happens?



Behaviour of Iterates

I Infinite, non-repeating

a F (a) F 2(a) F 3(a) . . .

I Oscillating

a F (a) F 2(a) . . . F n(u)

I Eventual stabilisation (reaches a fixed point)

a F (a) F 2(a) . . . F n(a)

I How can we make sure that the last case happens?



Monotonicity

Definition (Monotone Function)

A function F : S → S for a complete lattice 〈S,v〉 is monotone if

∀s1, s2 ⊆ S . (s1 v s2)⇒ F (s1) v F (s2)

I Monotone functions are also called isotone or order
preserving. If (s1 v s2)⇒ F (s2) v F (s1) then F is anti-tone.

Theorem

Let F : S → S by a function on a complete lattice 〈S,v,t,u〉.

F is monotone
⇔

∀X ⊆ S . t F (X ) v F (tX )



Monotonicity

Definition (Monotone Function)

A function F : S → S for a complete lattice 〈S,v〉 is monotone if

∀s1, s2 ⊆ S . (s1 v s2)⇒ F (s1) v F (s2)

I Monotone functions are also called isotone or order
preserving. If (s1 v s2)⇒ F (s2) v F (s1) then F is anti-tone.

Theorem

Let F : S → S by a function on a complete lattice 〈S,v,t,u〉.

F is monotone
⇔

∀X ⊆ S . t F (X ) v F (tX )



Monotonicity

Definition (Monotone Function)

A function F : S → S for a complete lattice 〈S,v〉 is monotone if

∀s1, s2 ⊆ S . (s1 v s2)⇒ F (s1) v F (s2)

I Monotone functions are also called isotone or order
preserving. If (s1 v s2)⇒ F (s2) v F (s1) then F is anti-tone.

I Do you remember a monotone function from one of the
previous lectures?

Theorem

Let F : S → S by a function on a complete lattice 〈S,v,t,u〉.

F is monotone
⇔

∀X ⊆ S . t F (X ) v F (tX )



Monotonicity

Definition (Monotone Function)

A function F : S → S for a complete lattice 〈S,v〉 is monotone if

∀s1, s2 ⊆ S . (s1 v s2)⇒ F (s1) v F (s2)

I Monotone functions are also called isotone or order
preserving. If (s1 v s2)⇒ F (s2) v F (s1) then F is anti-tone.

Theorem

Let F : S → S by a function on a complete lattice 〈S,v,t,u〉.

F is monotone
⇔

∀X ⊆ S . t F (X ) v F (tX )



Continuous Functions

Definition (Continuous Function)

Let 〈S,v,t,u〉 be a lattice and F : S → S be a function.
I F is t-continuous, if for any ascending chain C ⊆ S that has a

least upper bound in S, F (tC) = tF (C).
I F is u-continuous, if for any ascending chain C ⊆ S that has a

greatest lower bound in S, F (uC) = uF (C).

Theorem

A continuous function on a lattice is monotone.



Continuous Functions

Definition (Continuous Function)

Let 〈S,v,t,u〉 be a lattice and F : S → S be a function.
I F is t-continuous, if for any ascending chain C ⊆ S that has a

least upper bound in S, F (tC) = tF (C).
I F is u-continuous, if for any ascending chain C ⊆ S that has a

greatest lower bound in S, F (uC) = uF (C).

Theorem

A continuous function on a lattice is monotone.



Knaster-Tarski & Kleene’s Fixpoint Theorem

Theorem (Knaster-Tarski Theorem)

Let F : S → S be monotone on the complete lattice 〈S,v,t,u〉.
1. F has a least fixpoint:

µF def
= u{s ∈ S |F (s) v s}

2. F has a greatest fixpoint:

νF def
= t{s ∈ S | s v F (s)}

Theorem (Kleene’s Fixpoint Theorem)

Let F : S → S be a continuous function on the complete lattice
〈S,v,t,u〉. Then

µ(F ) = F ∗(⊥) = t{F n(⊥) | n ∈ N}



Knaster-Tarski & Kleene’s Fixpoint Theorem

Theorem (Knaster-Tarski Theorem)

Let F : S → S be monotone on the complete lattice 〈S,v,t,u〉.
1. F has a least fixpoint:

µF def
= u{s ∈ S |F (s) v s}

2. F has a greatest fixpoint:

νF def
= t{s ∈ S | s v F (s)}

Theorem (Kleene’s Fixpoint Theorem)

Let F : S → S be a continuous function on the complete lattice
〈S,v,t,u〉. Then

µ(F ) = F ∗(⊥) = t{F n(⊥) | n ∈ N}



Fixed Point Computation by Iteration

µ(F ) = F ∗(⊥) = t{F n(⊥) | n ∈ N}

I Assumption: F is continuous
I Initial value I ∈ S

X := I
Y := F (I)
while (X 6= Y ) do

X := X t Y
Y := F (X )

done



Fixed Point Induction Principle

Theorem (Fixed Point Induction Principle)

Let F : S → S be a monotone function on a complete lattice
〈S,v,t,u〉.

∀P ∈ S .

 µF v P
⇔

∃I ∈ S . I v P ∧ F (I) v I



Proof.

⇒ Assume ∃I ∈ S as above.
I Then I is a post-fixpoint of F .
I µF is lower bound on post-fixpoints (Knaster-Tarski), tf. µF v I
I Thus, µF v P

⇐ Suppose µF v P. Then choose I = µF .



Fixed Point Induction Principle

Theorem (Fixed Point Induction Principle)

Let F : S → S be a monotone function on a complete lattice
〈S,v,t,u〉.

∀P ∈ S .

 µF v P
⇔

∃I ∈ S . I v P ∧ F (I) v I



Proof.

⇒ Assume ∃I ∈ S as above.
I Then I is a post-fixpoint of F .
I µF is lower bound on post-fixpoints (Knaster-Tarski), tf. µF v I
I Thus, µF v P

⇐ Suppose µF v P. Then choose I = µF .



Fixed Point Induction

I The fixed point induction principle is at the heart of many
verification techniques (remember loop rule of Hoare logic)

I Intuitively, I corresponds to an invariant strong enough to
prove a property P

I The pivotal problem is finding such an invariant

F (I) v I I v P
µF v P

lfp-induction

I v F (I) P v I
P v νF

gfp-induction



Summary

I Orders, Lattices
I Fixed Points
I Knaster-Tarski and Kleene’s Fixed Point Theorem

I Next time: Model Checking
Applying the fixed point theorems to finite-state models


