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Recap

Kripke Structures

Linear Temporal Logic (LTL)
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Kripke structures

A Kripke structure M = (S,S0,R,AP,L):

set of states S

set of initial states S0 ⊆ S

transition relation R ⊆ S × S

set of atomic propositions AP

state-labeling function L : S → 2AP

s4 : {g}

s1 : {y} s2 : {y}
s3 : {r , y ,g}

s0 : {r}
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Linear Temporal Logic

LTL formulas:

an atomic proposition p ∈ AP

nexttime: Xϕ

eventually: Fϕ

globally: Gϕ

until: ψUϕ

Boolean combinations:
ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ

(for LTL formulas ϕ,ψ)

s0 s1 s2 s3 s4

ψ ψ ϕ
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In this lecture

We quickly introduce PROMELA

introduce encoding of fault-tolerant distributed algorithms

verify their safety and liveness (fixed parameters)

find counterexamples for parameters known from the literature

Further details in:

Towards modeling and model checking fault-tolerant distributed algorithms [SPIN’13]
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A quick intro to Promela
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Promela

PROMELA ≡ PROcess MEta LAnguage

SPIN ≡ Simple Promela INterpreter
(not that simple any more)

Detailed documentation, tutorials, and books at:
http://spinroot.com

Gerard Holzmann
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Top-level: global variables and processes

/∗ g l o b a l d e c l a r a t i o n s v i s i b l e t o a l l p r o c e s s e s ∗ /
int x; /∗ a g l o b a l i n t e g e r ( a s in C ) ∗ /

mtype = { X, Y }; /∗ c o n s t a n t message t y p e s ∗ /
/∗ a FIFO c h a n n e l wi th a t most 2 m e s s a g e s o f t y p e mtype ∗ /
chan c = [2] of { mtype };

active[2] proctype ProcA() { Two processes are created
at the initial state...

}

proctype ProcB() { Processes can be created
later using: run ProcB()...

}

init { A special process, use to
create other processesrun ProcB(); run ProcB();

}
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One process: Basics

int x, y;

active proctype ProcA() {

int z; Declare a local variable

z = x; Assignment

x > y; Block until the expression is evaluated to true

true; one step to execute, no effect

z++;

skip; same as true
}
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One process: Control flow

int x, y;

active proctype P() {
main:
if A guarded command

:: x == 0 -> x = 1;
:: y == 0 -> y = 1;

non-deterministically selects an option
whose first expression is not blocked:: x == 1 && y == 1

-> x = 0; y = 0;
fi; continues executing the rest of the option

step-by-stepgoto main;
}
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One process: Control flow (cont.)

int x = 0, y = 0;

active
proctype P() {
main:
if
:: x == 0 -> x = 1;
:: y == 0 -> y = 1;

:: x == 1 && y == 1
-> x = 0; y = 0;

fi;
goto main;
}

Run 1 Run 2 Run 3

x=0,y=0 x=0,y=0 x=0,y=0

x=1,y=0 x=0,y=1 x=1,y=0

x=1,y=1 x=1,y=1 x=1,y=1

x=0,y=0 x=0,y=0 x=0,y=0

x=0,y=1 x=1,y=0 x=1,y=1

x=1,y=1 x=1,y=1 x=1,y=1

x=0,y=0 x=0,y=0 x=0,y=0
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One process: Loops

int x;

active proctype P() {
do a do..od loop

:: x == 10 -> x = 0;
:: x == 10 -> break;
:: x < 10 -> x++;

od;

A:
if

basically the same. goto A
introduces one more step

:: x == 10 -> x = 0;
:: x == 10 -> goto B;
:: x < 10 -> x++;

fi;
goto A;

B:
}
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Many Processes: Interleavings

pure interleaving semantics

a statement is executed atomically

int x = 0, y = 1;

active[2] proctype A() {
x = 1 - x;
y = 1 - y;

}

A[1]A[0]

the red path is an execution with the alternating steps of two processes
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Many Processes: Atomics

atomic {...} makes execution
of a sequence indivisible

non-deterministic choice with
if..fi is still allowed!

int x = 0, y = 1;

active[2] proctype A() {
atomic {

x = 1 - x;
y = 1 - y;

}
}

A[1]A[0]

larger atomic steps cut possible paths and states
you may miss a bug by introducing crude atomicity
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Example: Semaphore

#define N 0
#define T 1
#define C 2
int x = 1; shared variables
int ncrit = 0;

active[2] proctype P() {
int sv = N;
do

:: sv == N -> sv = N;
:: sv == N -> sv = T;
:: sv == C -> ncrit--; sv = N; x++;
::

atomic {

(sv == T && x > 0)
-> x--; sv = C; ncrit++; assert(ncrit <= 1);

}

od;
}
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(Asynchronous) message passing

mtype = { A, B };
chan chan1 = [1] of { mtype }; queue of size 1
chan chan2 = [1] of { mtype };

active proctype Ping() {
chan1!A; insert A to “chan1”
do

:: chan2?B -> chan1!A;
od;

when B is on the top of “chan2”,
remove it and insert A to “chan1”

}

active proctype Pong() {
do

:: chan1?A -> chan2!B;
od;

}
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Blocking receive

mtype = { A, B };
chan chan1 = [1] of { mtype };
chan chan2 = [1] of { mtype };

active proctype Ping() {
chan1!A;
do :: chan2?B -> ←− deadlock!

chan1!A; Ping sends A, Pong receives A,
chan1?A is blockedod;

}

active proctype Pong() {
do :: chan1?A ->

chan1?A; ←− deadlock!
chan2!B;

od;
}
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Blocking send

mtype = { A, B };
chan chan1 = [1] of { mtype };
chan chan2 = [1] of { mtype };
active proctype Ping() {

chan1!A;
do :: chan2?B -> When chan1=[A] and chan2=[B], the system deadlocks

chan1!A;
chan1!A;
chan1!A; ←− deadlock!
chan1!A; The shortest counter-example has 10 steps

od;
} Use Spin to find it

active proctype Pong() {
do :: chan1?A ->

chan2!B; ←− deadlock!
od;

}
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Promela vs. C

PROMELA looks like C

but it is not!

non-determinism in if/do (internal non-determinism)

non-deterministic scheduler (external non-determinism)

atomic statements

message passing

PROMELA is a modeling language

PROMELA transitions can be mixed with pure C
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A very quick intro to fault-tolerant algorithms
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Fault-tolerant distributed algorithms

n

? ? ?
t f

n processes communicate by messages
all processes know that at most t of them might be faulty
f are actually faulty
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Challenge #1: fault models

clean crashes: least severe
faulty processes prematurely halt after/before “send to all”

crash faults:
faulty processes prematurely halt (also) in the middle of “send to all”

omission faults:
faulty processes follow the algorithm, but some messages sent by them
might be lost

symmetric faults:
faulty processes send arbitrarily to all or nobody

Byzantine faults: most severe
faulty processes can do anything
encompass all behaviors of above models
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Why fault-tolerant distributed algorithms

faults out of system designer’s control

bit-flips in memory

power outage

disconnection from the network

intruders take control over some computers

distributed algorithms should make
systems tolerant to faults

replicate processes

exchange messages

do coordinated computation

goal: keep replicated processes in “good
state”

n

? ? ?
t f
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Challenges #2 & #3: Pseudo-code and
Communication

Translate pseudo-code to a formal description
that allows us to verify the algorithm
and does not oversimplify the original algorithm.

Assumptions about the communication medium
are usually written in plain English,
spread across research papers,
constitute folklore knowledge.
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Asynchronous reliable broadcast (Srikanth & Toueg’87)

The core of the classic broadcast algorithm from the DA literature.
It solves an agreement problem depending on the inputs vi .

Variables of process i
vi : {0 , 1} i n i t i a l l y 0 or 1
accepti : {0 , 1} i n i t i a l l y 0

An atomic step:
i f vi = 1
then send ( echo ) to all ;
i f received (echo) from

at l e a s t t + 1 distinct processes
and not sent ( echo ) before

then send ( echo ) to all ;
i f received ( echo ) from at l e a s t

n - t distinct processes
then accepti := 1 ;

asynchronous
t Byzantine faults
correct if n > 3t
the code is
parameterized in n
and t
⇒ process template

P(n, t , f )
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Typical Structure of a Computation Step

receive messages

compute using
messages and local variables

(description in English
with basic control flow

if-then-else)

send messages

at
om

ic

im
pli

cit

ps
eu

do
-co

de
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Summary

we model:
faults,
communication medium captured in English,
algorithms written in pseudo-code.

and check:
safety and liveness
of parameterized systems
with unbounded integers,
non-standard fairness constraints.
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Recall: Typical Structure of a Computation Step

receive messages

compute using
messages and local variables

(description in English
with basic control flow

if-then-else)

send messages

at
om

ic

im
pli

cit

ps
eu

do
-co

de
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Example: Properties of ST87 in LTL

Unforgeability. If vi = 0 for all correct processes i , then for all correct
processes j , acceptj remains 0 forever.

G
(( n−f∧

i=1
vi = 0

)
→ G

( n−f∧
j=1

acceptj = 0
))

Safety

Completeness. If vi = 1 for all correct processes i , then there is a correct
process j that eventually sets acceptj to 1.

G
(( n−f∧

i=1
vi = 1

)
→ F

( n−f∨
j=1

acceptj = 1
))

Liveness

Relay. If a correct process i sets accepti to 1, then eventually all
correct processes j set acceptj to 1.

G
(( n−f∨

i=1
accepti = 1

)
→ F

( n−f∧
j=1

acceptj = 1
))

Liveness
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Model Checking Problems

Finite-state MC
Input:

a process template P,
an LTL formula ϕ (including fairness),
values of parameters n, t , and f

Problem: M(n, t, f) |= ϕ?

Parameterized MC
Input:

a process template P,
an LTL formula φ (including fairness)
with atomic propositions of the form [∃i .xi < y ] and [∀i .xi < y ]

Problem: ∀n, t, f : n > 3t ∧ t ≥ f ∧ f ≥ 0. M(n, t, f) |= φ?
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Model checking with SPIN
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Modeling threshold-based algorithms in Promela. . .

efficient encoding of threshold-based
fault-tolerant algorithms in PROMELA (with parametrization!)

verify safety and liveness of fault-tolerant algorithms (fixed parameters)

find counterexamples for parameters known from the literature

exploit specifics of fault-tolerant algorithms:
1 central feature of the algorithms

(message counting)

2 specific message passing
(we know only how many processes sent messages)

3 the way faults affect messages
(again, counting messages)
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Case Studies

a number of threshold-based algorithms

Our running example ST87 for

1 Byzantine faults (BYZ)
2 omission faults (OMIT)
3 symmetric faults (SYMM)
4 clean crashes (CLEAN)

5 forklore reliable broadcast for clean crashes
[Chandra & Toueg 96, CT96]

(to be continued)
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Characteristics of the FTDA by Srikanth & Toueg’87

Variables of process i
vi : {0 , 1} i n i t i a l l y 0 or 1
accepti : {0 , 1} i n i t i a l l y 0

An atomic step:
i f vi = 1
then send ( echo ) to all ;
i f received (echo) from

at l e a s t t + 1 distinct processes
and not sent ( echo ) before

then send ( echo ) to all ;
i f received ( echo ) from at l e a s t

n - t distinct processes
then accepti := 1 ;

the algorithm consists
of threshold-guarded
commands, only
thresholds t + 1 and
n − t
communication is by
“send to all”
how processes
distinguish distinct
senders is not part of
the algorithm
(a high-level abstraction)
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Case Studies (cont.): Larger Algorithms

more involved algorithms in the purely asynchronous setting:

6 Asynchronous Byzantine Agreement (Bracha & Toueg 85, BT85)
Byzantine faults
two phases and two message types
five status values
properties: unforgeability, correctness (liveness), agreement
(liveness)

7 Condition-based Consensus (Mostéfaoui et al. 01, MRRR01)
crash faults
two phases and four message types
nine status variables
properties: validity, agreement, termination (liveness)

8 Fast Byzantine Consensus: common case (Martin, Alvisi 06,
MA06)

Byzantine faults
the core part of the algorithm
no cryptography
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Experimental Results at Glance

Algorithm Fault Parameters Resilience Properties Time

1. ST87 BYZ n = 7, t = 2, f = 2 n > 3t U, C, R 6 sec.
1. ST87 BYZ n = 7, t = 3, f = 2 n > 3t U, C, R 5 sec.
1. ST87 BYZ n = 7, t = 1, f = 2 n > 3t U, C, R 1 sec.
2. ST87 OMIT n = 5, t = 2, f = 2 n > 2t U, C, R 4 sec.
2. ST87 OMIT n = 5, t = 2, f = 3 n > 2t U, C, R 5 sec.
3. ST87 SYMM n = 5, t = 1, fp = 1, fs = 0 n > 2t U, C, R 1 sec.
3. ST87 SYMM n = 5, t = 2, fp = 3, fs = 1 n > 2t U, C, R 1 sec.
4. ST87 CLEAN n = 3, t = 2, fc = 2, fnc = 0 n > t U, C, R 1 sec.
5. CT96 CRASH n = 2 — U, C, R 1 sec.
6. BT85 BYZ n = 5, t = 1, f = 1 n > 3t R 131 sec.

6. BT85 BYZ n = 5, t = 1, f = 2 n > 3t R 1 sec.
6. BT85 BYZ n = 5, t = 2, f = 2 n > 3t R 1 sec.
7. MRRR01 CRASH n = 3, t = 1, f = 1 n > 2t V0, V1, A, T 1 sec.
7. MRRR01 CRASH n = 3, t = 1, f = 2 n > 2t V0, V1, A, T 1 sec.

8. MA06 BYZ
p = 4,a = 6,l = 4,
t = 1,f = 1

p > 3t , a > 5t , l > 3t CS1, CS3, CL1, CL2 3 hrs.

8. MA06 BYZ
p = 4,a = 5,l = 4,
t = 1, f = 1

p > 3t , a > 5t , l > 3t CS1, CS3, CL1, CL2 14 min.

8. MA06 BYZ
p = 4,a = 6,l = 4,
t = 1, f = 2

p > 3t , a > 5t , l > 3t CS1, CS3, CL1, CL2 2 sec.

Igor Konnov (TU Wien) Checking Fault-Tolerant Distributed Algos CAV Lecture 36 / 54



Experimental Results at Glance

Algorithm Fault Parameters Resilience Properties Time

1. ST87 BYZ n = 7, t = 2, f = 2 n > 3t U, C, R 6 sec.
1. ST87 BYZ n = 7, t = 3, f = 2 n > 3t U, C, R 5 sec.
1. ST87 BYZ n = 7, t = 1, f = 2 n > 3t U, C, R 1 sec.
2. ST87 OMIT n = 5, t = 2, f = 2 n > 2t U, C, R 4 sec.
2. ST87 OMIT n = 5, t = 2, f = 3 n > 2t U, C, R 5 sec.
3. ST87 SYMM n = 5, t = 1, fp = 1, fs = 0 n > 2t U, C, R 1 sec.
3. ST87 SYMM n = 5, t = 2, fp = 3, fs = 1 n > 2t U, C, R 1 sec.
4. ST87 CLEAN n = 3, t = 2, fc = 2, fnc = 0 n > t U, C, R 1 sec.
5. CT96 CRASH n = 2 — U, C, R 1 sec.
6. BT85 BYZ n = 5, t = 1, f = 1 n > 3t R 131 sec.

6. BT85 BYZ n = 5, t = 1, f = 2 n > 3t R 1 sec.
6. BT85 BYZ n = 5, t = 2, f = 2 n > 3t R 1 sec.
7. MRRR01 CRASH n = 3, t = 1, f = 1 n > 2t V0, V1, A, T 1 sec.
7. MRRR01 CRASH n = 3, t = 1, f = 2 n > 2t V0, V1, A, T 1 sec.

8. MA06 BYZ
p = 4,a = 6,l = 4,
t = 1,f = 1

p > 3t , a > 5t , l > 3t CS1, CS3, CL1, CL2 3 hrs.

8. MA06 BYZ
p = 4,a = 5,l = 4,
t = 1, f = 1

p > 3t , a > 5t , l > 3t CS1, CS3, CL1, CL2 14 min.

8. MA06 BYZ
p = 4,a = 6,l = 4,
t = 1, f = 2

p > 3t , a > 5t , l > 3t CS1, CS3, CL1, CL2 2 sec.

Igor Konnov (TU Wien) Checking Fault-Tolerant Distributed Algos CAV Lecture 36 / 54



Experimental Results at Glance
Algorithm Fault Parameters Resilience Properties Time

1. ST87 BYZ n = 7, t = 2, f = 2 n > 3t U, C, R 6 sec.
1. ST87 BYZ n = 7, t = 3, f = 2 n > 3t U, C, R 5 sec.
1. ST87 BYZ n = 7, t = 1, f = 2 n > 3t U, C, R 1 sec.
2. ST87 OMIT n = 5, t = 2, f = 2 n > 2t U, C, R 4 sec.
2. ST87 OMIT n = 5, t = 2, f = 3 n > 2t U, C, R 5 sec.
3. ST87 SYMM n = 5, t = 1, fp = 1, fs = 0 n > 2t U, C, R 1 sec.
3. ST87 SYMM n = 5, t = 2, fp = 3, fs = 1 n > 2t U, C, R 1 sec.
4. ST87 CLEAN n = 3, t = 2, fc = 2, fnc = 0 n > t U, C, R 1 sec.
5. CT96 CRASH n = 2 — U, C, R 1 sec.

6. BT85 BYZ n = 5, t = 1, f = 1 n > 3t R 131 sec.
6. BT85 BYZ n = 5, t = 1, f = 2 n > 3t R 1 sec.
6. BT85 BYZ n = 5, t = 2, f = 2 n > 3t R 1 sec.
7. MRRR01 CRASH n = 3, t = 1, f = 1 n > 2t V0, V1, A, T 1 sec.
7. MRRR01 CRASH n = 3, t = 1, f = 2 n > 2t V0, V1, A, T 1 sec.

8. MA06 BYZ
p = 4,a = 6,l = 4,
t = 1,f = 1
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t = 1, f = 1

p > 3t , a > 5t , l > 3t CS1, CS3, CL1, CL2 14 min.

8. MA06 BYZ
p = 4,a = 6,l = 4,
t = 1, f = 2

p > 3t , a > 5t , l > 3t CS1, CS3, CL1, CL2 2 sec.
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Experimental Results: on ST87, the Byzantine Case

Time (sec, logscale)

no faults: f = 0

two faults: f = 2

Memory (MB, logscale)

no faults: f = 2

The more faults we have, the easier the problem is:
Two faults: we can check the systems of up to nine processes

No faults: we can check the systems of up to seven processes

Precision of modeling: bugs found in the corner cases n = 3t and f > t

(June 2013: somebody wrote on Wikipedia that n = 3t should work :-)
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Discussion of the specifications

Unforgeability. If vi = 0 for all correct processes i , then for all correct
processes j , acceptj remains 0 forever

G
(( n−f∧

i=1

vi = 0
)
→ G

( n−f∧
j=1

acceptj = 0
))

The specifications of Byzantine FTDAs have the following features:

only the states of correct processes are evaluated
faulty processes may be Byzantine

specifications do not talk about individual processes
only global safety and progress are important

indexed temporal logic is not required!
quantification over processes is on the level of atomic propositions
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Threshold-Guarded Distributed Algorithms

Standard construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)
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Counting Argument in Threshold-Guarded Algorithms

n

t f

t + 1

at least one non-faulty sent the message

Correct processes count incoming messages from distinct processes
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Modeling threshold-based algorithms in Promela

As the distributed algorithms are given in pseudo-code,

we have to decide on how to encode in PROMELA:

send to all and receive

counting expressions “received <m> from n − t distinct processes”

faults

we compare side-by-side two solutions:

a straightforward encoding using PROMELA channels and
explicit representation of faulty processes [Solution 1]

a better encoding using shared variables and fault injection [Solution 2]

to decouple encoding of reliable message passing and of faults:

we first consider message passing without faults

and then show how to encode faults
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Template in Promela

We implement the following loop
on the right.

receive messages

compute using
messages and local variables

(description in English
with basic control flow

if-then-else)

send messages

at
om

ic
/∗ s h a r e d s t a t e :

a v a r i a b l e o r a c h a n n e l ∗ /
active proctype[N(n,t,f)] P(){

/∗ l o c a l v a r i a b l e t o count
m e s s ag e s from d i s t i n c t
p r o c e s s e s ∗ /

int nrcvd;
/∗ i n i t i a l i z a t i o n ∗ /

loop: atomic {
/∗
1 . r e c e i v e and count m e s s a ge s
2 . compute us ing nrcvd
3 . send m e s s ag e s ∗ /
}
goto loop;
}
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Modeling Message Passing

Our case studies are designed with the assumption of
classic reliable asynchronous message passing as in [FLP85]:

non-blocking communication
operations “receive” and “send” are executed immediately

if a message can be received now, it may be also received later
a process does not have to receive a message as soon as it is able to

every sent message is eventually received
but there are no bounds on the delays
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Solution 1: Message Passing using Promela channels

a straightforward encoding using message channels:

/∗ message t y p e ∗ /
mtype = { ECHO };
/∗ p o i n t−to−p o i n t c h a n n e l s ∗ /
chan p2p[N][N] = [1] of { mtype };
/∗ t a g r e c e i v e d m e s s a g e s ∗ /
bit rx[N][N];

sending a message to all processes:

for (i : 1 .. N) { p2p[_pid][i]!ECHO; }

note: pid denotes the process identifier in PROMELA

(we use it solely to encode message passing)
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Solution 1: Message Passing (cont.)

Receiving and counting messages from distinct processes

(no faults yet):

/∗ l o c a l ∗ / int nrcvd = 0; /∗ i n i t i a l l y , no m e s s a ge s ∗ /
...
i = 0;
do /∗ i s t h e r e a message from p r o c e s s i ? ∗ /

:: (i < N) && nempty(p2p[i][_pid]) ->
p2p[i][_pid]?ECHO; /∗ remove i t ∗ /
if

:: !rx[i][_pid] -> /∗ 1 . t h e f i r s t t ime : ∗ /
rx[i][_pid] = 1; /∗ a . mark as r e c e i v e d ∗ /
nrcvd++; break; /∗ b . i n c r e a s e l o c a l c o u n t e r ∗ /
:: rx[i][_pid]; /∗ 2 . i g n o r e a d u p l i c a t e ∗ /

fi; i++; /∗ nex t p r o c e s s ∗ /
:: (i < N) -> i++; /∗ r e c e i v e n o t h i n g from i ∗ /
:: i == N -> break;

od
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Solution 2: Simulating message passing with variables

Keeping the number of send-to-all’s by (correct) processes:
int nsnt; /∗ s h a r e d v a r i a b l e ∗ /

/∗ number o f send−to−a l l ’ s s e n t by c o r r e c t p r o c e s s e s ∗ /

Sending a message to all:
nsnt++;

Receiving and counting messages from distinct processes (no faults):
if /∗ p i c k a l a r g e r v a l u e ≤ nsnt ∗ /

:: ((nrcvd + 1) < nsnt) ->
nrcvd++; /∗ one more message ∗ /

:: skip; /∗ or n o t h i n g ∗ /
fi;

Reliable communication as a fairness property:

F G [∀i .nrcvdi ≥ nsnt ]
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Solution 2: Some questions you might ask

Q1: instead of

if
:: ((nrcvd + 1) < nsnt) ->

nrcvd++; /∗ one more message ∗ /
:: skip; /∗ or n o t h i n g ∗ /

fi;

why cannot we just write:

nrcvd = nsnt;

A1: You can, but that will be another model, not [FLP85]!

[FLP85] only guarantees that every message is eventually received.
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Solution 2: Some questions you might ask (cont.)

Reliable communication:
every sent message is eventually received.

Q2: Why do we write

F G [∀i .nrcvdi ≥ nsnt ] (1)

instead of:

∀i . G F [nrcvdi ≥ nsnt ] (2)

A2: We like to write (2), but it will require us to use another logic called
indexed LTL, which will cause problems in the parameterized case.

For threshold-based algorithms, the value of nsnt is changes
at most n times.

Under this assumption, (2) is equivalent (1).
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Solution 1 (cont.): Explicit Modeling of Faults

(?) introduce Byzantine processes that can virtually do anything.

In our case, Byzantine behavior boils down to sending ECHO to some
of the correct processes and not sending ECHO to the others:

active[F] proctype Byz() {
step:

atomic {
i = 0;
do /∗ send ECHO t o p r o c e s s i ∗ /

:: i < N -> p2p[_pid][i]!ECHO; i++;
/∗ or not ∗ /

:: i < N -> i++;
:: i == N -> break;

od
};
goto step;

}
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Solution 2 (cont.):
Injecting Faults into Message Counters

We instantiate n − f correct processes and no faulty processes.

Instead, we say that the correct processes may receive up to f
additional messages due to faults:

if :: ((nrcvd + 1) < nsnt + f) ->
nrcvd++; /∗ r e c e i v e one more message ∗ /

:: skip; /∗ or n o t h i n g ∗ /
fi;

The fairness still forces the processes to receive all the messages sent
by the correct processes:

F G [∀i .nrcvdi ≥ nsnt ]

Note: each correct process sends at most one ECHO message.
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Solution 2 (cont.): Modeling different kinds of faults

Byzantine faults (previous slide):
create only correct processes, i.e., n − f processes
only they have to satisfy spec
extra messages from Byzantine: ((nrcvd + 1) < nsnt + f)

fairness (reliable communication): F G [∀i .nrcvdi ≥ nsnt ]

Omission faults (processes fail to send messages):
create all processes, i.e., n processes
all of them are mentioned in the specification
no additional messages: ((nrcvd + 1) < nsnt)

fairness (with possible message loss due to faults)
F G [∀i .nrcvdi ≥ nsnt − f ]

Crash faults: similar to omissions with crash control state added
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Experiments: Solution 1 vs. Solution 2
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Solution 1: Channels + explicit Byzantine processes (blue)
Solution 2: shared variables + fault injection (red)

in the presence of one Byzantine faulty process (f = 1)
(case f = 2 runs out of memory too fast)
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Summary

We show how to model threshold-based fault-tolerant algorithms
starting with an imprecise description

We create PROMELA models using expert advice.

The tool demonstrates that the model behaves as predicted by theory
(for concrete values of parameters)

This reference implementation allows us to optimize the encoding

... and to make the model amenable to parameterized verification
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Questions?
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Folklore Reliable Broadcast (e.g., Chandra & Toueg,
96)

Correct processes agree on value vi in the presence of crash faults.

Variables of process i

vi : {0 , 1} i n i t i a l l y 0 or 1
accepti : {0 , 1} i n i t i a l l y 0

An atomic step:

i f ( vi = 1 or received <echo> from some process )
and accepti = 0

then begin
send <echo> to all ;

/* when crashing it sends to a subset of processes */

accepti := 1 ;

/* it can also crash here */

end
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Experiments: Channels vs. Shared Variables

enumerating reachable states in SPIN with POR and state
compression
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