Computer Aided Verification

Decision Procedures

SAT, & BDDs, and Bit-Vectors

Georg Weissenbacher M “ for syte

Literature

“Decision Procedures”
An Algorithmic Point of View
Daniel Kroning, Ofer Strichman

» Chapter 2.2:
SAT Solvers

» Chapter 2.3:
Binary Decision Diagrams

Decision

Procedures » Available in
e “Hauptbibliothek”

Decision Procedures for Propositional Logic

Propositional Logic:

formula = formula A formula | formula v formula |
—~formula | (formula) | atom

atom = propositional identifier | constant
constant = true | false
» Goal:

» Find satisfying assignment or
» show unsatisfiability

» Soundness: Decision Procedure gives correct answer
» Completeness: Decision Procedure always finds an answer

Conjunctive Normal Form

v

CNF formula: A conjunction of clauses (product of sums)

/\ \/fi,j ; lij € {a,—ala € Variables}
i

eg.,
—aq N\ (31 V ﬁag) VAN (ﬁa1 V 32) N aq

v

Remember:
> Viepl = false (we use O to denote the empty clause)

Alternative (more compact) notation:

v

(a1) (a1 @2) (a1 a2) (a1)

v

Obtained through Tseitin transformation (see previous lecture)

Conjunctive Normal Form

» Is there a satisfying assignment?
» Naive algorithm for n variables: O(2")

» Let’s look at a single variable y first:

(xVy) A (zV-y)

Conjunctive Normal Form

» Is there a satisfying assignment?
» Naive algorithm for n variables: O(2")

» Let’s look at a single variable y first:

Jy.(xVy) A (zV-y)

Conjunctive Normal Form

» Is there a satisfying assignment?
» Naive algorithm for n variables: O(2")

» Let’s look at a single variable y first:

Jy.(xVy) A (zV-y)
=((xVvy) A (zV-y)ly/1V(xVy) A (zV-y)ly/0]

Conjunctive Normal Form

» Is there a satisfying assignment?
» Naive algorithm for n variables: O(2")

» Let’s look at a single variable y first:

Jdy.(xVy) A (zV-y)
=((xVvy) A (zV-y)ly/1IV(ExVy) A (zV-y))ly/0]
=((xV1) A (zVv-1)V((xV0) A (zV-0))

—— —— —— ——

1 z X 1

Conjunctive Normal Form

» Is there a satisfying assignment?
» Naive algorithm for n variables: O(2")

» Let’s look at a single variable y first:

Jdy.(xVy) A (zV-y)
=((xVvy) A zV-y)ly/11V(xVy) A (zV-y)ly/0]
=((xV1) A (zVv-1)V((xV0) A (zV-0))

=(xV z)

Resolution Principle

» Let C, D be clauses (disjunctions of literals)

(cva) (DVa)
CVD

[Res]

» For instance:
(a1) (a1 @) (a1 &) (a1)

aiap aiax a
'
a
~
ai a
'

O

Unit Resolution

» In particular:

» “Unit Clause Rule”
» Example revisited:

(a1) (a1 22) (a1 &) (a1)
aiay a

~a 4
a

Unit Resolution

» In particular:

» “Unit Clause Rule”
» Example revisited:

(a1) (a1 22) (a1 &) (a1)

aijax aiax ai
e
ap
Ve
ai

Unit Resolution

» In particular:

» “Unit Clause Rule”
» Example revisited:

(a1) (a1 22) (a1 &) (a1)

aiay aijar ai

h'e
a
-~
ai al
A &7

O

Unit Resolution

» In particular:
(CvVva) (a)
C

[Res]

» “Unit Clause Rule”
» Example revisited:

(a1) (a1 22) (a1 &) (a1)

aijax aiax ai
e
ap
V'
ai a
A &

O
» Unit clause propagation: Efficient

Decision Making

» What if there are no unit clauses?
» Progress by making decisions about variables:

(a1 32)
{a1 — 1, }

Decision Making

» What if there are no unit clauses?
» Progress by making decisions about variables:

(a1 32)
{a1 — 1, }

» Partial assignment: Not all variables assigned

{X1b—>1,X2b—>0, X4i—>1}

v

(%1 V%3V —xq)is
One or more literal satisfied:

v

(_‘X1 V Xg) is .
All literals assigned but not satisfied

v

(ﬁX1 V —x4 V X3) is
All but one literal assigned, but not satisfied

v

(—‘X-] V x3V X5) is

Decision Levels

» Decision may result in unit clauses

{X1 — 1, X4 1}
(—\X1 V —x4 V)
» Results in unit clause:

> {X-] — 1, x4 — 1} AND (—\X1 V x4 V X3) implies x3
» Antecedent of x3 is (—x1 V —x4 V x3)
» Leads to unit propagation!

» Each decision is associated with a decision level

{X1I—>1, x4 — 1, }
1 2

» Implications of a decision associated with same decision level:

» x4 and x3 above have decision level 2,
denoted by and

Decision Levels (continued)

dl Assignment Clauses
0o - (§1 X4 X3)(§3fg)

Decision Levels (continued)

dl Assignment Clauses
0o - (§1 X4 X3)(§3fg)
1 {X1 — 1} (§1 X4 X3)(§3§2) x101

Decision Levels (continued)

N = O

Assignment

{X1 +—)1}
{X1 0—>1,X4'—>1}
{X1 f—)1,X4+—)1,X3+—>1}

Clauses
(§1 X4 X3)(§3§2)
(§1 X4 X3)(§3§2) x101
(§1 X4 X3)(§3fg) x402
(X3)(§3§2) x302

Decision Levels (continued)

N = O

Assignment

{X1 — 1}

{X1 — 1,X4I—> 1}

{X1 *—)1,X4+—) 1,X3+—>1}

{X1 — 1, x4 —1,%x3 — 1,X2i—>0}

Clauses
(§1 X4 X3)(§3§2)
(§1 X4 X3)(§3§2)
(§1 X4 X3)(§3fg)
(x3)(%s%2)

(%2)

x101
X4@2
x302
—|X2@2

Decision Levels (continued)

dl Assignment Clauses

0o - (§1 X4 X3)(§3§2)

1 {X1 — 1} (§1 X4 X3)(§3§2) x101

2 {X1 — 1,x4 — 1} (§1 X4 X3)(§3fg) x402
{X1 —1,x4—1,x3— 1} (X3)(§3§2) x302
{X10—>1,X4i—>1,X3I—>1,X2i—>0} (ig) —x,02

» {x1— 1,x4 — 1,%3 — 1,x2 — 0} satisfies (X1 X4 x3)(X3X2)

Boolean Constraint Propagation, Implication Graph

(= (§1 X4 X3) , 0 = (§3§2)

x1@1 x402 o x302 & —x,02
O—Q—O0—0Q

» Nodes labelled with decisions
» Edges labelled with antecedents

Backtracking

What if a decision is wrong?

x101
(&)
~x401 ¢ (x2x3)
c3 c2 (%X1%4)
C3 (i2X4)
—x201 C4 (i1 Xzis)
a
x301
C4

Backtracking

What if a decision is wrong?

x101 —-x101

—-x401 —x,02 ci (x2%3)
a Co (i1 §4)
C3 (i2X4)

-x,01 x302 C4 (§1 X2i3)

x301 Xll—>0,X2i—>0,X3i—>1|

Davis-Putnam-Loveland-Logeman (DPLL)

» Decide
Choose a variable and make a decision

» Propagate
Propagate implications

» Backtrack
“Undo” decisions which lead to conflict

Conflict-Driven Backtracking

» How can we do systematic backtracking?

Definition (Partial Implication Graph)

Sub-graph of an implication graph illustrating binary constraint
propagation (BCP) at a specific implication level

Definition (Conflict Graph)

An implication graph in which BCP has reached a conflict

CclH = (X2 X3), C = (§1§4), C3 = (§2X4), C4 = (§1X2i3)

x101 & —x401 - —x,01 a X3©1

Q *Q *Q Q—

Conflict-Driven Backtracking, Learning

(= (X2 X3)7 Co = (f1§4), C3 = (fg)(4)7 Cqp = (§1X2§3)

Xl@l & —|X4@1 a3 —|X2©1 a X3©]_
Q QO QO O— [

» Analyse conflict

» Add conflict clause ((%X1) in our example)
» Backtrack

» to highest decision level in conflict clause that’s not the current
decision level
» to 0, if we learnt a unit clause

Example: Learning Conflict Clauses

o = (%ix2) x106
C = (§1 X3X5)

C3 = (i2X4)

Cs = (%3%4)

-x503

Example: Learning Conflict Clauses

x,06

c1 = (X1 X2)
C = (f1 X3X5)
C3 = (§2X4)
cs = (X3%4)

» Conflict clause: (X1 xs)

Example: Learning Conflict Clauses

x,06

c1 = (X1 X2)
C = (f1 X3X5)
3 = (Xox4)
cs = (X3%4)

» Conflict clause: (X1 xs)
» Backtracking level: 3
» Erase all decisions from decision level 4 onwards

Asserting Clauses

¢ = (X1x2)
2 = (Xy1x3xs)
3 = (%ox4)
C4 = (§3§4)
Cy = (§1 X5)

» We backtracked to decision level of x5
» Since x5 — 0, (X1 x5) forces an immediate implication
» Such a clause is called asserting clause

Choosing Conflict Clauses

-x1003

x106

—1x9@1

—|X11@3

Choosing Conflict Clauses

x106

—1x9@1

—|X11@3

1.) (%10 X1 X9 X11)

Choosing Conflict Clauses

x106

—1x9@1

—|X11@3

1.) (%10 X1 X9 X11) 2.) (x10%X4%11)

Choosing Conflict Clauses

—-x1103

1.) (%10 %1 %9 X11) 2.) (x10%X4%11) 3.) (x10X2X3x11)

Conflict Clauses: Unique Implication Point

Definition (Unique Implication Point)

Any node (other than the conflict node) in the partial conflict graph
which is on all paths

» from the decision node

» to the conflict node

Note: The decision node is a UIP by definition.

Conflict Clauses: Unique Implication Point (ctd.)

-x1003

x106 O

—|X9@1

—\X11@3

Conflict Clauses: Unique Implication Point (ctd.)

Definition (First Unique Implication Point)

The UIP that’s closest to the conflict node

» Choose conflict clause that contains First UIP as only literal at
the current decision level
» Advantages:

» Clause is an assertion clause
» Backtracks to lowest decision level
Why? Clause with First UIP “subsumes” other UIPs

Conflict Clauses: Unique Implication Point (ctd.)

—x1003

—|X11@3

1.) (%10 %1 9 X11) 2.) (x10 X4 X11)

Conflict Clauses and Resolution

Cq (X4 X2 X5)
C2c = (X4%10%s)
C3 = (X5 X6 X7)
Cs = (XG X7)

Cs (x2%4 %10)

—|X10@3

Conflict Clauses and Resolution

—x,03
c1 = (Xa4x2xs)
C2c = (X4%10%s)
3 = (X5%e%7)
Cys = (ie X7)
s = (x2Xaxq0)

Order: x4, x5, xg, X7

(&)
= ReS(C4, Cs, X7) = (is fs)

to = Res(t1, c2,x6) = (X4 X5%10)
ts = Res(f, ¢1,x5) =

Conflict Clauses and Resolution

» Start with currently conflicting clause (¢4 in example)
» Choose last assigned literal (x7 in example)

» x7 follows from c3

» Phase of x7 in ¢4 differs from c3

» ti = Res(cs, C3,%7)

» lterate until we reach UIP

(i.e., t contains UIP as single literal at current decision level)
In our example:

t = Res(cs, 03, %7) = (X5 %)
b= ReS(t1,Cg,X6) = (§4§5 X1o)
ts = Res(f, ¢1,%5) =

Conflict Clauses

v

Each conflict clause consequence

» of Fand
» previously derived conflict clauses

v

Derived using resolution
Therefore, conflict clause is implied by original CNF formula F
Therefore, SAT-solver can be used to find resolution proofs!

v

v

Proof-Logging: MINISAT 1.14

struct ProofTraverser {
virtual void root (const vec<Lit>& c);
virtual void chain (const vec<ClauseId>& cs,
const vec<Var>& xs);

cs[2] cs[1] cs [0]

NS

to = Res(cs[0], cs[1], xs[0])

/

cs[3] t1 = Res(to,cs[2],xs[1])

NS

to = Res(t1, cs[3],xs[2])

Proof-Logging: MINISAT 1.14

» Clauses are assigned numbers, starting with 0
» root as well as chain add a new clause

DPLL Completed

@ If conflict at decision level 0 — UNSAT
@ Repeat:

000000 e

if all variables assigned return SAT
Make decision

Propagate constraints

No conflict? Go to @

If decision level = 0 return UNSAT
Analyse conflict

Add conflict clause

Backtrack and go to ©

DPLL Completed

@ If conflict at decision level 0 — UNSAT
@ Repeat:

if all variables assigned return SAT
Make decision

Propagate constraints

No conflict? Go to @

If decision level = 0 return UNSAT
Analyse conflict

Add conflict clause

Backtrack and go to ©

000000 e

Termination argument:

» Solver never enters same decision level with same partial
assignment

MINISAT Programming Interface

class 1lbool { ... }; // 1.True, 1 False, 1 Undef

class Lit {
explicit Lit(Var var, bool sign);
}

class Solver {
void newVar ();
void nVars (Q);
void addClause (const vec<Lit>& c);
bool solve (const vec<Lit>& assumps);
bool okay ();

vec<lbool> model;

DIMACS Format

c A sample .cnf file
p cnf 3 2

1-30

23-10

DIMACS = Discrete Mathematics and Theoretical Computer Science,
a collaboration Rutgers & Princeton, to determine practical algorithm
performance on computationally hard problems

Unsatisfiable Core

» If instance unsatisfiable, SAT-solver derives O
» Follow resolution edges starting from O

» we obtain a resolution refutation proof
» does not necessarily contain all clauses visited during SAT-run
» represents unsatisfiable core

Definition (Unsatisfiable Core)

Any unsatisfiable subset of the original set of clauses

Variable Order

» Does the order in which we assign variables matter?
» How about the values we choose?

aiap aia» a
'
a
-~
ai a
A &

O

Variable Order

» Does the order in which we assign variables matter?
» How about the values we choose?

aiap aia» a
'
a
-~
ai a
A &

O

Probably the most important element in SAT solving!

Decision Heuristics: DLIS

Dynamic Largest Individual Sum —
choose assignment s.t. number of satisfied clauses is maximised

» py ... # of unresolved clauses containing x
» n, ...# of unresolved clauses containing x

v

Let x be variable for which py is maximal

v

Let y be variable for which ny is maximal

v

If px > ny choose x — 1

v

Otherwise, choose y — 0

Disadvantage: High overhead

Decision Heuristics: Jeroslaw-Wang

Jeroslaw-Wang —
Assign high weight to variables occurring in short clauses

» For each literal ¢ in F:
J(0) = Z o— el
CEF s.t. Lec

» Exponentially higher weight to literals in short clauses
» Choose (unassigned) literal ¢ that maximises J(¢) and ¢ — 0
» Weight updated dynamically (whenever conflict clause added)

Decision Heuristics: VSDIS

Variable State Independent Decaying Sum —
favour literals in recently added conflict clauses

» Each literal has counter initialised to 0

» When clause is added, literals in clause are boosted
Periodically, all counters divided by constant

v

v

Choose unassigned literal with highest counter

v

Implemented in CHAFF

» Maintain list of unassigned literals sorted by counter
» Update list when adding conflict clauses
» Decision in O(1)

Improved performance by order of magnitude

v

Decision Heuristics: Berkmin

Berkmin —
concentrate only on unresolved conflicts

» Maintain stack of conflict clauses
» Choose first unresolved clause in stack
» If stack empty, use VSDIS

» Choose variable + value according to some scoring strategy
(e.g., VSDIS)

Performance of SAT Solvers

» Scales to hundreds of thousands of variables

1,000,000

100,000

10,000

1,000

100

» for “benign” problems
» challenges:

» pigeon hole problems (size of resolution proof exponential)
» chains of &

1960 1970 1980 1990 2000 2010

Binary Decision Diagrams (Bryant 86)

» Store formulas as directed acyclic graphs

» Nodes represent variables

» Edges represent assignments
» Assignments can be derived in O(#variables)
» Representation is canonical

> if in graph

Binary Decision Tree

» Encode decisions and outcome in tree

» Satisfying assignment can be found efficiently
» Wasteful, lot of redundancy

» Not much better than truth table

((X1 AN X2) vV (—\X1 VAN Xg))

Binary Decision Tree: Reductions

Binary Decision Tree: Reductions

» Merge leaf nodes

Binary Decision Tree: Reductions

» Merge leaf nodes
» Merge isomorphic subtrees

Binary Decision Tree: Reductions

» Merge leaf nodes
» Merge isomorphic subtrees

Binary Decision Tree: Reductions

» Merge leaf nodes
» Merge isomorphic subtrees
» Remove redundant nodes (introduce don’t cares)

Binary Decision Tree: Reductions

» Merge leaf nodes
» Merge isomorphic subtrees
» Remove redundant nodes (introduce don’t cares)

Binary Decision Tree: Reductions

» Merge leaf nodes
» Merge isomorphic subtrees
» Remove redundant nodes (introduce don’t cares)

» Repeat reductions as long as possible

Constructing Binary Decision Diagrams

» Construction follows structure of formula
» B4 and Bo represent F; and F»

then By x B, represents Fy x F» (where x € {A, V...

» Complexity of By x B, bounded by |B1] - | B2

Constructing Binary Decision Diagrams: Restrict

Flx=o = F[x/0]

((X1 A Xz) Vv (—\X1 N X3))

Constructing BDDs: Shannon Expansion

Definition (Shannon Expansion)

F = (—\X/\F[X/O]) \ (X/\F[X/1])

Constructing BDDs: Shannon Expansion

Definition (Shannon Expansion)

F = (—\X/\F[X/O]) \ (X/\F[X/1])

Bl 82 Bl * 52

————_ -—=
[* ! ! *

S Bilx /0] B /1)

/ ' ! \
N Bo[x1 /0] 1 N Balx1 /1]

\
\

1
/
4

Constructing BDDs

Combining two BDDs 51 x B>

» Requirement: Same variable order!
» Start from root nodes v; and v»

» Case 1: var(vy) = var(v2) = x4

Bl 82 Bl * 82

\\\\ ////Bl [X]_/O]\\\\ ////Bl [X]_/].]\\\\
o * i * i
/,’ \\{52[)(1/0]/// \\\(52[}{1/1]///

Constructing BDDs

Combining two BDDs 5, x B35

» Case 2: var(vq) # var(vo)
» var(vy) = x4, var(va) = xo
» x; precedes x» in variable order
» Therefore, x4 does not occur in B!

By B> Bi1 x B>

/
/

-——= -—=

S Bilxa /0] B /1]

\
\

/

Constructing BDDs

Combining two BDDs 5 x B35
» Case 3: v4 and v, are terminal nodes or @

B1 * 82 = Val(V1) * val(Vq)

o1 = 0x1

Constructing BDDs: Example

Constructing BDDs: Example

S Bz /01N Bl /1]
1 \/ | 1 \/ |

\] \ !

\\ 82 // \\ 82 //

N - ~ -
S~ - S~ -

Constructing BDDs: Example

Constructing BDDs: Example

Constructing BDDs: Example

Constructing BDDs: Example

/ V \ = ovi

Bi |z =1 B Bi|x=1 V B2

Constructing BDDs: Example

X1V (—|X1 vV —|X2)

Constructing BDDs: Variable Order

(x1 < y1)A...A(xh < ¥n)

> X{,V1,...,%Xpn, ¥n: Size 3n+ 2
> X{,X2,...,¥1,¥2,...:.Size3-2" —1

» There are functions s.t. number of nodes can’t be polynomial
» For instance: Multiplication of bit-vectors

Constructing BDDs: Complexity

» Quantification:

Vx.F = F[x/0] A F[x/1]
Ix.F = F[x/0] vV F[x/1]

» Furthermore: If F = true then BDD is
» Follows immediately, because representation is canonical
» What does that mean for complexity?

Constructing BDDs: Complexity

» Quantification:

Vx.F = F[x/0] A F[x/1]
Ix.F = F[x/0] vV F[x/1]

» Furthermore: If F = true then BDD is
» Follows immediately, because representation is canonical
» What does that mean for complexity?
» Can solve TQBF, the prototypical PSPACE-complete problem

BDDs vs SAT

BDD SAT
Variables Hundreds hundreds of thousands
Complexity PSPACE-complete | NP-complete
Assignments O(n) SAT-run
Canonical Yes No
Equality check O(1) (hashing) SAT-run (F & G)
Quantifier elimination | Yes Co-Factoring

Break

Let’s take a short break.

Model Programs or Circuits with Boolean Variables?

v

Program variables have more expressive types than B.

v

Programs have bit-vector semantics and bit-vector operations.
Semantics of bit-vectors differs from IN:

v

a>b+2na<b

v

Unsatisfiable in the theory of linear arithmetic (R, Z, .. .)

Model Programs or Circuits with Boolean Variables?

v

Program variables have more expressive types than B.

v

Programs have bit-vector semantics and bit-vector operations.
Semantics of bit-vectors differs from IN:

v

a>b+2na<b {a—2b~—2}

v

Unsatisfiable in the theory of linear arithmetic (R, Z, .. .)
Satisfiable if a and b are 2-bit bit-vectors

v

Syntax of Bit-Vector Arithmetic

formula = formula A formula | formula v formula |
—~formula | atom
atom = propositional identifier | term > term
term = ~term | constant| identifier | term O term

(where > € {=,>,>,#}and O € {+, —, -, &, |, B, <, >})

» Augment language with quantifiers in standard way.
» Similar to first-order logic, but:
» Functions, predicates and operators with fixed interpretation

First-Order Logic: Syntactic Elements

» Logical symbols:

» Variables
Relation symbols = and # for C
V and 3 range over C unless applied to B
Operators A, V, —, ..., constants true, false
» Non-logical symbols:

» Predicates, functions, constants over C

v vVvYyy

Bit-Vectors: Interpretation

An interpretation assigns a meaning to all non-logical symbols.
Models are a common way of specifying an interpretation:

Definition (Model)
A model M of a formula F comprises
» adomain C, and

» an interpretation function assigning meaning to non-logical
symbols in F.

Bit-Vectors: Interpretation

An interpretation assigns a meaning to all non-logical symbols.
Models are a common way of specifying an interpretation:

Definition (Model)
A model M of a formula F comprises

» adomain C, and

» an interpretation function assigning meaning to non-logical
symbols in F.

» We use fM to refer to element in C assigned to assigned to
symbol f by meaning function

» E.g., n-ary function f has fM : C" — C associated to it

Interpretations and Models

» In First-Order Logic: interpretation of functions and predicates
is not “fixed”

» For instance:

plus(x,1) =x

is satisfiable if we interpret plus s.t. Vx,y. plus(x,y) = x

Interpretations and Models

» In First-Order Logic: interpretation of functions and predicates
is not “fixed”

» For instance:

plus(x,1) =x
is satisfiable if we interpret plus s.t. Vx,y. plus(x,y) = x
» Typically, we want to rule out “nonsensical” interpretations

» by adding axioms, or
» by carefully crafting our decision procedure

» We have to assign meaning to bit-vector operations first

Bit-Vectors: Interpretation

» Finitary nature of the domain C of program variables enables
representation of values d € C as bit-vectors d,—1 ... dy
(deB,0<i<n)

» nis width of bit-vector.

» Unsigned:
dn—1|dp—2| -+ | di | do
most significant least significant
» Signed:
sign
dp1|dpo2| --- | di | do

! [

most significant least significant

Bit-Vectors: Interpretations

Interpretation function which maps d,_1 . .. dp to finite sub-domain
of Ng and Z:

n—1 j .
e g di-2 unsigned
Onq...dp)ME 2.i=0 & ,
(dh-1.) { 2" dy y+ 37 2d;-2" signed

» Accordingly, =, #, >, and > take standard meaning in Z.

Bit-Vectors Operations: Interpretation

v

Unary operator ~ denotes bit-wise negation

def

~ (dn_1 R do) = (—\dn_1 R —|do) ,

v

Operators & and | denote bit-wise conjunction and disjunction
Addition for bit-width 3:

v

(x+y=2z) mod8

where x denotes (x2 x1 xg)

v

Let ¢ be numerical constant. Operator < denotes left shift:

def

(dn_1...d0) <<C:(d(n_1)_c...d00...0) ifCM <n.

Similarly, > is right shift.

Bit-Flattening

How do we decide bit-vector arithmetic?

» Reduce to logic for which we have efficient decision
procedures!

» Finite domain C
» Enables encoding in propositional logic

» Efficient decision procedures for propositional logic exist
(next lecture)

Propositional Logic

Propositional Logic:

formula = formula A formula | formula v formula |
—~formula | (formula) | atom
atom = propositional identifier | constant

constant true | false

Bit-Flattening

» Propositional logic lacks bit-vector specific atoms term > term
» Atoms(F) ... atoms occurring in F

Atoms” (F) ... theory-specific atoms

(Atoms” (F) C Atoms(F))

Definition (Propositional Skeleton)

F is a formula in the bit-vector logic language. The propositional
skeleton of F (denoted by sk(F)) is obtained by replacing every
atom that is not a propositional identifier by a fresh propositional
identifier.

Propositional Skeleton

The propositional skeleton of the bit-vector formula
(~(x = Y)V((x&2) = 2)) A (y = z+2)A(x = 2 < 1)A((2&1) = 0)
is

(—|e1\/e2)/\e3/\e4/\e5.

The assignment which maps all propositional atoms in sk(F) to
true (represented by /\f’:1 ej) satisfies second formula, whereas
the first is unsatisfiable.

Propositional Skeleton

The propositional skeleton of the bit-vector formula
(—(x =y)V((x&2) =2)) A (y = z+2)A(x = z < 1)A((z&1) = 0)
is
(—|e1 \/eg)/\eg/\e4/\e5.
The assignment which maps all propositional atoms in sk(F) to

true (represented by /\f’:1 ej) satisfies second formula, whereas
the first is unsatisfiable.

» Add constraints reflecting semantics of Atoms” (F) to sk(F)

Adding Theory Constraints

1. Ineachterm t; O b,
replace t; and t with fresh symbols z1 and z, (recursively)

2. For example:

x=(y+2)-(y<1) = x=(21-2)
3. Add constraint (z1 = t1) A (z2 = &)

x=(z1-2) Az = (y+2) Azp = (y < 1)

Encoding Theory Constraints

» Let nbe bit-width of the program variables x, y, z
» Each variable x represented by x,_1,...,%g
» Encoding of z = (x O y) where (O € {+,—,-,&, |, ®, <, >}):

_ fO
Zp— = fn_1(Xn—17---7X07 Yn—1a~-7Y0)

_ £O
Zo—fo (Xn—1,---7X07 Yn—17---7YO)

Encoding Bit-Vector Operations

Equality x = y is straight-forward:

n—1

A& e yi)

i=0

Encoding Bit-Vector Operations

n—1
Z:X&y /\(Zi<:>(xi/\yi))
i=0
n—1
z=x|y /\(Zi@(Xi\/Yi))
i=0
n—1
z=x®y ... Nze(®Vy)Alxv-y)

Encoding Bit-Vector Operations

Shift operations implemented by means of a cascade of parallel
multiplexers known as barrel shifter.

X0
X1

X
X3 2

|
\

1)

!
0 1 /Lw
|
1

0
|

Yo

2o
Z1

Z3

4-bit barrel shifter imple-
mentingz =x <Ky

i stage performs shift by
2/ positions if y; is true.

Encoding Bit-Vector Operations

az b3

ax by

ar b

ao bo

/

/

/

7

FA

FA

FA

I
s1

I
S0

Ci

\/

Co

Encoding Bit-Vector Operations

» x < y can be expressed using of subtraction
» If x <y, then x — y yields overflow
(can be detected by checking the signals c,

» Unsigned operands, overflow if c, = true.
» Signed operands, (c, @ co—1) indicates overflow

Encoding Bit-Vector Operations

» Multiplication uses shift-and-add circuit
» i.e., multiplication of 2-bit parameters x and y ([x1 x¢] and
[y1yo]) is

[22 21 2] = ([0 %1 %0]&[y0 yo yol) + (([0x1 x0] < 1)&[y1y1y4]) -

Encoding Bit-Vector Operations

» Integer division z = % (fory #£ 0)

(z-y+r=x)A(r<y)

» where r denotes the remainder

Propositional Encoding of Formulas

» &(«yj) is the propositional encoding of theory atom «;

» Given a propositional symbol e € Atoms(sk(F)), decision
procedure constructs a constraint

(e = &(a)) A (—e = =€&(a))

Propositional Encoding of Formulas

v

&(«;) is the propositional encoding of theory atom «;

v

Given a propositional symbol e € Atoms(sk(F)), decision
procedure constructs a constraint

(e = E(a)) A (me = —£())

v

Eager decision procedures encode in one go

Lazy decision procedures strengthen on demand
— rule out “spurious” witnesses

v

Conjunctive Normal Form

» Many efficient decision procedures for propositional logic
expect input in

Conjunctive Normal Form (CNF):

formula = formula A (clause) | (clause)
clause = clauseV literal | literal
literal = atom | —atom
atom = propositional identifier

» Problem: £(F) doesn't yield CNF
» Conversion of F into CNF may result in exponential blowup

Tseitin Encoding

v

If we use propositional logic rewrite rules:
(xAy)V(zAs) = (EVz)AEVs)A(yVz)A(yVs)

Blowup if applied repeatedly!
Idea: Construct satisfiability-equivalent formula

v

v

Introduce a fresh symbol for each subterm:
(xAy)V(zAs) — (01Voa) A (o1 < (xAy)) A (02 & (2As))

But this is still not CNF!

v

Tseitin Encoding

(01 Vo3) A (01 < (xAy)) A (01 < (zA8))

> (o1 & (xAy))

Tseitin Encoding

(01 Vo3) A (01 < (xAy)) A (01 < (zA8))

s (010 (xAy) =
(o1 =x)A(o1=y)A((xAy)=o01) =

Tseitin Encoding

(01 Vo3) A (01 < (xAy)) A (01 < (zA8))

s (010 (xAy) =
(o1 = x)A(o1=y)A((xAy) = o1) =
(xV=01)A(yV—o1)A(o1V—xV-y)

Tseitin Encoding

(01 Vo3) A (01 < (xAy)) A (01 < (zA8))

> (o1& (xAy) =
(o1 =x) A (o1 = y)A((xAy) = o1) =
(xV=01)A(yV—01)A(o1 V—xV-y)

» Constant blowup

Tseitin Encoding

Negation:
x&e -y = (x=y)A(0y =x)
= (xV-y)A(yVx)
Disjunction:
xe(yvz) = (y=x)A(z=3)A(x=(yVz)
= (-yVx)A(mzV)A(xVyVz)
Conjunction:
x< (yAz2) x=y)AE=2z)A((yNz)=x)

(mxVy)A(—xVz)A(=(yAz)Vx)
(xVy)A(—xVz)A(-yV-zVx)

Tseitin Encoding

Equivalence:

xe (yez)

(x> (y & 2) A ((y & 2) = %)
(k= (7= 2) A (e = 1) Ay & 2) =)
(x=F=2)AE=> (=) (F2)=x)
(mxV-yVaz —xV-ozVy)A
(—xV-zVy)A
(—xV-ozVy)A
(—xV-ozVy)A

(ye2z)=x%)

(yA2) V(v A=-z)) = x)
(yAz)=x)A((-y A —z) = %)
“yV-ozVx)A(yVzVx)

) A
—xV-oyVz)A
—xV-oyVz)A
—xV-oyVz)A

Aﬁ,_\ﬁ
Py

Tseitin Encoding

Equivalence:

xe (yez)

(x=(y = 2) A (& 2)=x)
x=((y=2)A(z=y)A(y*2z)=x)
(x=F=2)AE=> (=) (F2)=x)
(mxV-oyVz)A(-xV-ozVy)A
(mxVayVz)A(-xV-ozVy)A
(mxV-oyVz)A(-xV-ozVy)A
(mxV-oyVz)A(-xV-ozVy)A

(ye2z)=x%)

(yA2) V(v A=-z)) = x)
(yAz)=x)A((-y A —z) = %)
“yV-ozVx)A(yVzVx)

Py

» Blowup by constant factor of 4

» Resulting formula satisfiable iff initial formula is

Example

> Eer e (x=y) = ere Nxiey)
» Bi-implication can be rewritten as

n—1

n—1
/\(ﬂe1\/(x,' evyi) A <e1 Vv \/ ((xi A =yi) V (=i A Yi)))
i=0

i=0

Example

n—1

» ey e (x=y) = et N ey
» Bi-implication can be rewritten as

n—1 n—1
/\ (ﬂe1\/(x,- = y,-)) A <e1 V \/ ((X/‘ A ﬁy/’) v (ﬁX/ A yi)))

i=0 i=0

» Left side of this formula can be rewritten in CNF

n—1

N\ ((me1 V=% Vyi) A(mer ViV —y))
i=0

Example (continued)

n—1 n—1
NCervizey)) A (erv \/ ((xiA=y) V(=% Ayi)))
i=0 i=0

DNF

» Introduce fresh symbol o; for each conjuncts (x; A —y;) and
(—|X,' VAN y,')Z

n—1

(esVooV...Vozn 1)A N (01 & (xi A1) A (0i4n & (—xi A¥i)))
i=0

almost CNF

» Replace conjuncts (o; < (x; A —y;)) and (oj+n < (—xi A yi))
by CNF formulae (Tseitin)

Example: CNF Encoding of Constraints

(—(x=y)V((x&2) =2)) A (y = z+2)A(x = z < 1)A((z&1) = 0)

N
(—|e1 V eg) Nesg/ANegNes
d
’ Encoding ‘ Propositional constraint CNF clauses
e1 & (x=y) e1= (o &S yo)ANer = ... A (—e1 V —xo Vyo) A

(/\1':01 Xi & yf) = e

(—e1 VxoV-yo) A...
(es Voo V...V o0z.n_1)
AL

er < ((x&2) = 2)

er = X4

(ﬁeg V x4)

o (y—z+2)

e3 = —yo A ...

(—\63\/—\YQ) VAN

e (x=z<1)

(e4 = (X1 (= Zo)) A (e4 = —\Xo)
A...

(—\e4 V —x1 V Zo) A
(—\64 VxyV —‘Zo) A\
(ﬁe4 V ﬁXg) AL

s = ((z&1) = 0)

e5 = TZg

(—\es Vv —|Zo)

Satisfiability Equivalence Revisited

» Given an assignment for the Tseitin encoding,
how can we get an assignment for the original formula?

ey = - Aoxi=yi

M
(Xn—1Xn—2 ... X0) Tseitin

{XO H 07 A\

solve
ylb—>1,<—/\,0 0i AN (ﬁo, —x; Vyi)A

)

Uninterpreted Functions

» Know how eliminate interpreted bit-vector operations now

» But formula may also contain uninterpreted functions
» Derive from

» Encoding of arrays
» Abstractions
L

Uninterpreted Functions

» Know how eliminate interpreted bit-vector operations now

» But formula may also contain uninterpreted functions
» Derive from

» Encoding of arrays
» Abstractions
L

Example:
z=x0y

» Assume we don’t know how O is implemented
(may be platform dependent)

Uninterpreted Functions

» Know how eliminate interpreted bit-vector operations now
» But formula may also contain uninterpreted functions

» Derive from
» Encoding of arrays
» Abstractions
L
Example:
z=x0y — z=If(xy)

» Assume we don’t know how O is implemented
(may be platform dependent)

» Guarantees only functional consistency:
(x =y) = f(x) = f(y)
» May still be sufficient to prove correctness!

Uninterpreted Functions: Ackermann’s Reduction

» For each function

Number function instances N
—

(from the inside out) —_

Uninterpreted Functions: Ackermann’s Reduction

» For each function

1.

Number function instances
(from the inside out)

Replace each function in-
stance with fresh variable

Uninterpreted Functions: Ackermann’s Reduction

» For each function

] Number function instances . f(?(/\)) _0
" (from the inside out) R,X_/ N

Replace each function in-
stance with fresh variable

Add consistency constraint
3. forevery pairofinstancesof — ((x=w1) = (v =w)
a function.

Ackermann’s Reduction: Example

(x#y)Vi(x)=1(y) VI(x) # f(z)
» Number function instances:

(x #¥)Vh(x) =) V() £ hiz)

Ackermann’s Reduction: Example

(x#y)Vi(x)=1(y) VI(x) # f(z)
» Number function instances:

(x #¥)Vh(x) =) V() £ hiz)

» Replace each function with fresh variable:

(x#y)Vvi=wVv#w

Ackermann’s Reduction: Example

(x#y)Vi(x)=1(y) VI(x) # f(z)
» Number function instances:

(x #¥)Vh(x) =) V() £ hiz)

» Replace each function with fresh variable:

(x#y)Vvi=wVv#w

» Add consistency constraints
((x=y)=i=w)) A

((X:Z):>(V1 :Vg)) VAN) /\(X#y)\/w =WwVV#w
(y=2)= (2a=v3)) A

Ackermann’s Reduction: Example

(x#y)Vi(x)=1(y) VI(x) # f(z)
Number function instances:

(x #¥)Vh(x) =) V() £ hiz)

v

v

Replace each function with fresh variable:

(x#y)Vvi=wVv#w

v

Add consistency constraints
((x=y)=i=w)) A

((X:Z):>(V1 :Vg)) VAN) /\(X#y)\/w =WwVV#w
(y=2)= (2a=v3)) A

v

Resulting formula is satisfiability equivalent

Uninterpreted Functions: Bryant’s Reduction

» For each function

Number function instances
(from the inside out)

Uninterpreted Functions: Bryant’s Reduction

» For each function

Number function instances N

1. L f(f =
(from the inside out) L(ﬁl
2
Replace each function in-
2. . . € = 0
stance f; with expression g;
case x1 =1x; DV
Xo = Xj Vo

e =
Xji1=ZXi Vi
true LV

(where x4 is parameter of f1, xo of fo ...)

Bryant’s Reduction: Example

(x =y) = f(a(x)) = f(9(y))
» Number function instances:

(x =y) = fi(91(x)) = 2(92(y))
» Replace function application with expression:

(X = y) = €1 = €

where
€ = W
case €eg1 = €g2 V4
€r2 = J .
true)
€t = W3

case x=7y : Vv
true v

Encoding Case Statements

case X{ = Xj
X2 = Xj

Xj—1 = X3 .
true

A (Rim1 = x4)
AN (X,',1 #+ Xi)

Vi—1
= (w=w)
= (w=w)
= (W= V1)

Summary

» efficient SAT solvers for unquantified propositional formulas
» (canonical) BDDs for quantified Boolean formulas (QBF)
» bit-vectors reduced to SAT

