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Ariane 5 – Flight 501

Caused by an inadequate data conversion of a floating point
number to a 16-bit signed integer (ADA code)
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Northeast Blackout of 2003

Race condition in General Electric Energy’s Unix-based XA/21
energy management system

4



Northeast Blackout of 2003

Race condition in General Electric Energy’s Unix-based XA/21
energy management system

4



Therac-25 Incident

Race condition caused massive overdose of radiation
(3 patients dead)
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But all that’s ancient history, right?
Software and systems now are safe!?
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What happened in the last few years. . .

Toyota Prius
(New York Times, Feb. 12, 2014)

Toyota Motor is recalling all of
the 1.9 million newest-generation
Prius vehicles it has sold world-
wide because of a programming
error . . .

Heathrow Airport
(The Guardian, December 2014)

An unprecedented systems fail-
ure was responsible for the air
traffic control chaos [. . . ] “In this
instance a transition between the
two states caused a failure in the
system which has not been seen
before,” . . .
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Lufthansa Airbus A321
(Spiegel, March 20, 2015)

Beinahe wäre ein Airbus A321
der Lufthansa mit 109 Pas-
sagieren auf dem Flug von Bil-
bao nach München abgestürzt
– irregeleitete Bordcomputer hat-
ten die Kontrolle übernommen.

Boeing 787 Dreamliner
(The Guardian, May 2015)

The US air safety authority has
issued a warning and mainte-
nance order over a software bug
that causes a complete electric
shutdown of Boeing’s 787 . . .
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Heartbleed Bug
(CNN, April 9, 2014)

A major online security vulnera-
bility dubbed “Heartbleed” could
put your personal information at
risk, including passwords, credit
card information and e-mails.

Rowhammer Bug
(InfoWorld, March 9, 2015)

. . . with certain varieties of DRAM
an attacker can create privilege
escalations by simply repeatedly
accessing a given row of mem-
ory.
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Software and integrated circuits are everywhere

106 lines of code 70 micro-processors
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Huge Effort Spent on V&V

Software verification Hardware validation
50% of development time 35% of development time

[Myers 1979–2012] [Abramovici 2006]
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Establishing correctness

Finding bugs


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Finding bugs



Computer Aided Verification
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Model Checking 101
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Turing Award 2007 (Clarke, Emerson, Sifakis)
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︸ ︷︷ ︸
Logic
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︸ ︷︷ ︸
T

(transitions)
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T

s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T
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Model Checking and Counterexamples

“Bad states” are determined by specification

Violations are witnessed by a counterexample

I

“starting states”

¬P

“bad states”

T T

T

T

Example above is a safety violation
Counterexample is a path of finite length
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Model Checking and Liveness

There are also counterexamples of infinite length

I

“starting states”

¬P

“bad states”

T T

Example above is a liveness violation
Visits bad state repeatedly
What kind of specification could such a path violate?
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Model Checking and Temporal Logic

“Every request is eventually acknowledged”
Counterexample is infinite loop (lasso-shaped)

Specification in Temporal Logic
Introduced by Amir Pnueli
Goal of Model Checking is to check Temporal Logic Specs
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State Space Explosion
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Why explore states one by one?

S′ = T (S) def
= {s′ |T (s, s′) ∧ s ∈ S}
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I R1 R2 Rk

T T T

¬P
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How do we efficiently represent sets of states?

Logical Formulas!

F (

V

)

︸︷︷︸
program variables,
registers, latches,

signals, . . .
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How do we efficiently represent sets of states?

Logical Formulas!

(x > 0) represents {s | s(x) > 0}
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And what about transitions?

Binary Relations!

T (V , V ′ )︸︷︷︸
target states
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And what about transitions?

Binary Relations!

(x ′ = x + 1) represents {〈s, s′〉 | s′(x) = s(x) + 1}
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And what about transitions?

Binary Relations!

(x ′ = x + 1)︸ ︷︷ ︸
x++

represents {〈s, s′〉 | s′(x) = s(x) + 1}
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R

R′

T

R′

T−1

R′(V ′) def
= ∃V .

R

(V ) ∧ T (V ,V ′)
R(V )

def
= ∃V ′ . T (V ,V ′) ∧ R′(V ′)
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R R′

T

R′

T−1

R′(V ′) def
= ∃V . R(V ) ∧ T (V ,V ′)

R(V )
def
= ∃V ′ . T (V ,V ′) ∧ R′(V ′)
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︸ ︷︷ ︸
T

(transition relation)
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1: if (x>0) {
2: x = x - 1;

3: } else {
4: x = x + 1;

5: }︸ ︷︷ ︸
T

(transition relation)
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1: if (x>0) {
2: x = x - 1;
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5: }

D Q

R

zy

x

︸ ︷︷ ︸
T

(transition relation)
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1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉)

def
=

∧

(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V )
def
= (pc = 5)⇒ (x ≥ 0)

I(V )
def
= (pc = 1)
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D Q

R

zy

x

︸ ︷︷ ︸
d ⇔ (x ∧ q)
z ⇔ (y ∨ q)
q′ ⇔ d

28
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I R1 R2 Rk

T T T

¬P

I(V0) ∧

(
k∧

i=1

T (Vi−1,Vi)

)
∧ ¬P(Vk)

“Can property P be violated in k steps?”
(here, property = assertion over variables)
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T 〈〉

31



T 〈〉

31



T 〈4〉

31



T 〈n〉
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∃n ∈ N .

i′ = i + 1

T 〈n〉 is accelerated version of T :

I ¬P

∃n.T 〈n〉

computable if T 〈n〉 is Presburger-definable (for instance)
but not computable in general
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∃n . I(V ) ∧ T 〈n〉(V ,V ′) ∧ ¬P(V ′)

Approach is known as acceleration

Fails if transitive closure can’t be computed symbolically
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∃n .T 〈n〉(V ,V ′)︸ ︷︷ ︸
reflexive transitive closure (T ∗)

Approach is known as acceleration

Fails if transitive closure can’t be computed symbolically

33



∃n .T 〈n〉(V ,V ′)︸ ︷︷ ︸
reflexive transitive closure (T ∗)

Approach is known as acceleration

Fails if transitive closure can’t be computed symbolically

33



I R1 R2 Rk

T T T

R≤k =
k⋃

i=0

Ri (with R0
def
= I)

“Fixed point” if T cannot escape R≤k
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R≤∞

T

R≤∞, the set of reachable states, is an inductive invariant

In fact, it is the smallest inductive invariant (least fixpoint)
Anything implied by an inductive invariant is an invariant

Invariant may also include states which allow “escape”
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Inductive Invariants vs. Invariants

1: x = 5;

2: while (x<10) {
3: assert (x 6= 2);

4: x = x + 1;

5: }

An inductive invariant

needs to be satisfied by initial states (base case)

needs to hold in (n + 1)st step if it holds in nth step
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Inductive Invariants vs. Invariants
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5: }
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R≤k

I
¬P

T

System is safe if:

R≤k contains I

T cannot leave R≤k

R≤k does not overlap with ¬P
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Interpolation-based Model Checking

I R1 R2 Rk

T T T

¬Pk

Exact reachability retards convergence

Over-approximate Ri instead?
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Craig’s Interpolation Theorem

A B

C “simpler” than A

if (A(V ,V ′) ∧ B(V ′,V ′′) |= ⊥)
⇓

∃C(V ′)

s.t.

A(V ,V ′) |= C(V ′)

B(V ′,V ′′) |= ¬C(V ′)

39
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s.t.

A(V ,V ′) |= C(V ′)

B(V ′,V ′′) |= ¬C(V ′)
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Interpolation-based Model Checking

I R
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↓
C(V ′)

40



Interpolation-based Model Checking

I R

T

¬P

︸ ︷︷ ︸
I(V )∧T (V ,V ′) ¬P(V ′)

I(V ) ∧ T (V ,V ′)︸ ︷︷ ︸
A(V ,V ′)

¬P(V ′)︸ ︷︷ ︸
B(V ′)

↓
C(V ′)

40



Interpolation-based Model Checking

I R

T

¬P

︸ ︷︷ ︸
I(V )∧T (V ,V ′) ¬P(V ′)

I(V ) ∧ T (V ,V ′)︸ ︷︷ ︸
A(V ,V ′)

¬P(V ′)︸ ︷︷ ︸
B(V ′)

↓
C(V ′)

40



Interpolation-based Model Checking

I R

T

¬P

︸ ︷︷ ︸
I(V )∧T (V ,V ′) ¬P(V ′)

I(V ) ∧ T (V ,V ′)︸ ︷︷ ︸
A(V ,V ′)

¬P(V ′)︸ ︷︷ ︸
B(V ′)

↓
C(V ′)

40



Interpolation-based Model Checking

I R

T

¬P

︸ ︷︷ ︸
I(V )∧T (V ,V ′) ¬P(V ′)

I(V ) ∧ T (V ,V ′)︸ ︷︷ ︸
A(V ,V ′)

¬P(V ′)︸ ︷︷ ︸
B(V ′)

↓
C(V ′)

40



Interpolation

Interpolants from Propositional/First-Order Refutation Proofs
A
x0
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x0 x2
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x1 x2

x1

B
x1 x2
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A
x0 x2

x2
A
x2

�

B
x2

B
x2

�

�
x1 1 0

Over-approximates reachable states

B

Can accelerate convergence of fixpoints

But may introduce spurious transitions!
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Refinement with Interpolation

I

C1 Ck−1 Ck

R1 Rk−1 Rk

T TT

¬Pk

¬Pk+1

s

Interpolation-based approximation might be too coarse
Interpolation-based MC has to consider longer prefix

Results in unwinding of T
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Alternative: Other Model Checking Algorithms (e.g., IC3)

R<k Rk

T

¬Pk

IC3 refines approximations by eliminating unreachable states
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Refinement with IC3

I

C1 Ck−1 Ck

R1 Rk−1 Rk

T TT

¬Pk

s

The IC3 algorithm considers only single steps of T
Can eliminate unreachable states s on-the-fly

Yet fixpoint challenging to find for concrete industrial-size systems

44



Refinement with IC3

I

C1 Ck−1 Ck

R1 Rk−1 Rk

T TT

¬Pk

s

The IC3 algorithm considers only single steps of T

Can eliminate unreachable states s on-the-fly

Yet fixpoint challenging to find for concrete industrial-size systems

44



Refinement with IC3

I

C1 Ck−1 Ck

R1 Rk−1 Rk

T TT

¬Pk

s

The IC3 algorithm considers only single steps of T
Can eliminate unreachable states s on-the-fly

Yet fixpoint challenging to find for concrete industrial-size systems

44



Refinement with IC3

I

C1 Ck−1 Ck

R1 Rk−1 Rk

T TT

¬Pk

s

The IC3 algorithm considers only single steps of T
Can eliminate unreachable states s on-the-fly

Yet fixpoint challenging to find for concrete industrial-size systems

44



Abstraction
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concrete
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abstract
less abstract
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refine

refine
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refine
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Counterexample-guided
Abstraction Refinement

(CEGAR)
Check Abstraction

Check FeasibilityRefine

failure trace

infeasible

abstract

safe

counter-
example
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Model Checking in Practice
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︸ ︷︷ ︸
T
↓

Satisfiability Solver
(like linear programming, but for first-order/propositional logic)
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Satisfiability Solvers

PicoSAT Boolector Lingeling

Satisfiability of First-Order/Propositional Logic

Solve large instances with hundreds of thousands of variables

Cornerstone of modern-day formal verification
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Automated Verification in Industry

Software Hardware

SAGE
Sixth Sense
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What we want to verify:

What we can verify:

Ongoing research: Push the Boundary
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Survey on SAT-based Model Checking

http://dx.doi.org/10.1109/JPROC.2015.2455034
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