Computer Aided Verification

Interpolation-based Model Checking

Georg Weissenbacher m n for syte

Brief Recap

1. Unwinding symbolic transition function T : p(S) — ©(S)
T

INT AN T A A

o——0 - 0

2. Efficient decision procedures to check
satisfiability of unquantified formulas

» SAT solvers: Propositional logic, bit-vector logic
» SMT solvers: Equality, uninterpreted functions, arrays, ...

3. Does not use fixed point detection:

uS.(IUSUT(S))

Exploring States: When Are We Done?

Exploring States: When Are We Done?

Exploring States: When Are We Done?

// N
P ~

7 QV LV Q AN

/

Exploring States: When Are We Done?

// N
P ~

7 QV LV Q AN

/

» Done when we encounter no more new states!

Overview

» Need to understand for fixpoint detection:

What does “no more new states” mean?

Overview

» Need to understand for fixpoint detection:

What does “no more new states” mean?

Theoretical Foundation:
» Orders on transition relation, lattices

Overview

» Need to understand for fixpoint detection:

What does “no more new states” mean?

Theoretical Foundation:
» Orders on transition relation, lattices
» Fixed points on lattices

Orders and Ordered Sets

» Commonly used symbols for orders:
<,C,LC, =, strict versions: <, C,C, <
» A partial order R is

» reflexive ((s,s) € Rforall s € S)
» transitive ((Sp, 51) € R and (s1, s2) € R implies (sg, S2) € R)
» anti-symmetric ((So, S1) € R and (s1, So) € R implies sy = s1)

Definition (Ordered Set)

An ordered set (S, C) comprises a
» set Sand
» an order LC.
(S,C) is a poset if C is a partial order.

Fixed Points

Definition (Fixed Points, Fixpoints)
Let F : S — S be a function on a poset (S, C).
Thens e Sis

> a if .

» a pre-fixpoint if s C F(s)

» a post-fixpoint if F(s) C s

Fixed Point Induction

» Fixed point induction

F(hC I ICP , _
LFCP Ifp-induction

F ... transition system
P ... safety property (“good states”)
I ... “safe”invariant

Fixed Point Induction

» Fixed point induction

F(hC I ICP , _
LFCP Ifp-induction

F ... transition system
P ... safety property (“good states”)
I ... “safe”invariant

» But how can we find /?

Approximation of Fixed Points

» [is post-fixpoint, therefore uF C | (by Knaster-Tarski)
» [must be tight enough, i.e., IC P

> Alternative formulation: IMP=_1
» P ..."bad states”

Approximation of Fixed Points

» [is post-fixpoint, therefore uF C | (by Knaster-Tarski)
» [must be tight enough, i.e., IC P

> Alternative formulation: IMP=_1
» P ..."bad states”

» Want to show that uF M P = L

Approximation of Fixed Points

v

I is post-fixpoint, therefore uF C | (by Knaster-Tarski)
I must be tight enough, i.e., I C P

> Alternative formulation: IMP=_1
» P ..."bad states”

v

v

Want to show that uF M P = L
Therefore, it must hold that

1. uFC

2. PC I

v

Approximation of Fixed Points: Interpolants

» Resembles Craig’s interpolation theorem:

Definition (Craig-Robinson Interpolation Theorem)

Let A and B be two first-order logic formulas such that

AN B = false. Then there is a formula / (called) s.t.
» A= |
» B= —l(i.e.,, BA | = false)

» All non-logical symbols and free variables in / occur in A as
well asin B

What is a Craig interpolant?

“Traditional” definition [William Craig, 57]:
» A= I1=20C
» all non-logical symbols in / occur in A as well asin C

What is a Craig interpolant?

Common definition for automated verification:
» A= and [|A Binconsistent
» all non-logical symbols in / occurin A as well asin B

Craig interpolation & Approximation of Fixed Points

v

Additional condition: Want / to be quantifier-free

v

Interpolating decision procedures exists for various logics

» Algorithm discussed later
» It's possible to compute interpolants for
quantifier-free propositional logic

» However, we do not have uF

v

Therefore can’t compute interpolant / for F and P

Interpolant-based Model Checking

» We use interpolation to the post-image
post(Q) £ {s| T(Q,Q)Ase Q'}

(symbolic representation: (3S.S= QA T(S, S))[S/S'])

> Let
Q ... initial states (program pre-condition)
P ... safety property
stmt ... monolithic transition function

» Check whether program is safe after first iteration:
(post(Q) N —P) = false
» Over-approximate safely reachable states after one iteration:

post(Q) =1 IA(—P) = false

Interpolant-based Model Checking

» Remember: symbolic transition relation T(s;, sj11) from sp
» BMC: Unwinding T

QAT AN T A AT
e——e¢——0 - oe——0o
P V =P V -P VvV -P
» Now split the unwound formula:

> A(So, 31) o Q(So) A T(307 51)

> B(sy,...,50) =2

T(S1,Sg) VAR T(sk,1,sk) /\“(P(S1) VANRAN P(Sk))

Interpolant-based Model Checking

v

Remember: symbolic transition relation T(s;, si11) from sp
BMC: Unwinding T

v

QAT AN T A AT
e——e¢——0 - oe——0o
P V =P V -P VvV -P
Now split the unwound formula:

> A(so,51) £ Q(s0) A T(0,51)

v

> B(sy,...,50) =2

T(S1,Sg) VAR T(sk,1,sk) A —|(P(S1) VANRAN P(Sk))
B represents “unsafe” states sy, ..., s

v

Interpolant-based Model Checking

v

Remember: symbolic transition relation T(s;, si11) from sp
BMC: Unwinding T

v

QAT AN T A AT
e——e¢——0 - oe——0o
P V =P V -P VvV -P
Now split the unwound formula:

> A(so,51) £ Q(s0) A T(0,51)

v

def

> B(s1,....8) =
T(S1,Sg) VANPAN T(sk,1,sk) A\ —|(P(S1) VAN P(Sk))
» B represents “unsafe” states sy, ..., sk

v

Remember: 3sy . A(Sp, 1) represents post(Q)

Interpolant-based Model Checking

A(so, s1) o Q(so) A T(s0, S1)

B(S1, ceey Sk) = T(S1,82) VANPAN T(sk_1,sk)/\
—(P(s1) A\ ... A P(sk))

» Interpolant /(sy) for A(so, s1) and B(si, ..., Sk):

» over-approximates post(Q), i.e., post(Q) = |

» =P can not be reached from / within k — 1 steps

Bounded Model Checking

Bad states

Interpolant-based Model Checking

Bad states

Property-preserving Approximation

Bad states

Interpolant-based Model Checking: Iteration

A(So,S1) o Q(So) A\ T(So,S1)

B(S1, ey Sk) = T(S1,82) VANPAN T(Sk_1,Sk)/\
=(P(s1) A ...\ P(sk))

» [(s1) is safe with respect to B(sq, ..., Sk)

Interpolant-based Model Checking: Iteration

A(So,S1) o Q(So) A\ T(So,S1)

B(S1, ey Sk) = T(S1,82) VANPAN T(Sk_1,Sk)/\
=(P(s1) A ...\ P(sk))

» [(s1) is safe with respect to B(sq, ..., Sk)
» Now restart BMC with initial state Q'(so) = /(sp) V Q(So)

Interpolant-based Model Checking: Iteration

A(So,S1) = A T(So,S1)

B(S1, ey Sk) = T(S1,82) VANPAN T(Sk_1,Sk)/\
=(P(s1) A ...\ P(sk))

» [(s1) is safe with respect to B(sq, ..., Sk)
» Now restart BMC with initial state Q'(so) = /(sp) V Q(So)

Interpolant-based Model Checking: Iteration

A(So,S1) = A T(So,S1)

B(S1, ey Sk) = T(S1,82) VANPAN T(Sk_1,Sk)/\
=(P(s1) A ...\ P(sk))

» [(s1) is safe with respect to B(sq, ..., Sk)
» Now restart BMC with initial state Q'(so) = /(sp) V Q(So)
» Restart BMC until (/(sp) V Q'(s0)) = Q/(s0)

Interpolant-based Model Checking: Iteration

Bad states

Example: Counting State Machine

> Xo = O
> T(X,‘, X,'+1) = (X,'+1 = X; + 2)
» Property: x #7

A(so,81) = (s0.x =0) A (S1.X = 59.X +2)
B(S1) dZEf X1 =17

Sp U post | post
Xo=0 S1.x=2

Example: Counting State Machine

> Xo = O
> T(X,‘, X,'+1) = (X,'+1 = X; + 2)
» Property: x #7

A(So, S1) (So.X S {0,2}) AN (31.X = Sp.X + 2)
B(S1) d:ﬂ X1 =7

Sp U post | post
Xo=0 S1.x=2
{0,2} s1.x € {2,4}

Example: Counting State Machine

> Xo = O
> T(X,‘, X,'+1) = (X,'+1 = X; + 2)
» Property: x #7

A(so, 1) = (so.x €{0,2,4}) A (51.x = sp.X + 2)
B(S1) X1 =7

&

So U post | post
Xo=0 S1.x=2
{0,2} s1.x € {2,4}
{0,2,4} s1.x € {2,4,6}

Example: Counting State Machine

> Xo = O
> T(X,‘, X,'+1) = (X,'+1 = X; + 2)
» Property: x #7

A(so,s1) = (so.x €{0,2,4,6}) A (s1.Xx = sp.Xx + 2)
def
B(S1) = x1=7

So U post | post
Xo=0 S1.x=2
{0,2} s1.x € {2,4}
{0,2,4} s1.x € {2,4,6}
{0,2,4,...} | s;.x€{2,4/6,...}

Example: Counting State Machine

> Xo = O
> T(X,‘, X,'+1) = (X,'+1 = X; + 2)
» Property: x #7

A(so,81) = (s0.x =0) A (S1.X = S9.Xx +2)
B(S1) e S1.x=7

Sp.x=0U /(So) /
{0} s1.xmod2 =0

Example: Counting State Machine

> Xo = O
> T(X,‘, X,'+1) = (X,'+1 = X; + 2)
» Property: x #7

A(so, 51) (So.xmod2 = 0) A (51.X = Sp.X + 2)
B(S1) e S1.x=7

Sp.x=0U /(So) /
{0} s1.xmod2 =0
s;.xmod2=0 | s;.xmod2=0

Example: Counting State Machine

> Xo = O
> T(X,‘, X,'+1) = (X,'+1 = X; + 2)
» Property: x #7

A(so, 51) (So.xmod2 = 0) A (51.X = Sp.X + 2)
B(S1) e S1.x=7

Sp.x=0U /(So) /
{0} s1.xmod2 =0
s;.xmod2=0 | s;.xmod2=0

» Excellent choice for I. We'’re done.

Example: Counting State Machine

> Xo = 0
> T(X,‘7X,'+1) = (Xi+1 =X+ 2)
» Property: x #7

A(so,s1) £ (s0.x =0) A (S1.X = So.X + 2)
8(51) = §1.x=7

aQ
@

So.x =0UI(sp) | /
{0} S1.X 75 7

Example: Counting State Machine

> XO = 0
> T(Xi, Xit1) = (Xip1 == X + 2)
» Property: x £ 7

A(so,s1) = (so.x=0Vsg.x #£7)A(S1.X = Sp.X + 2)
def
B(s1) Z s1x=7

So.x =0UI(sp) | /

{0} S1.X7é7
S1.X#7 ?

Example: Counting State Machine

> XO = 0
> T(Xi, Xit1) = (Xip1 == X + 2)
» Property: x £ 7

A(so,s1) = (so.x=0Vsg.x #£7)A(S1.X = Sp.X + 2)
def
B(s1) Z s1x=7

So.x =0UI(sp) | /

{0} S1.X7é7
S1.X#7 ?

» But the property can’t be violated?!

Spurious Counterexamples

What happened?

v

Our over-approximation was too coarse

v

We get a spurious counterexample:

Sg.Xx=5 — S1.x=7

v

Why? s1.x # 7 is safe, doesn’t violated x = 7

v

But a “bad state” is reachable from s1.x # 7 within 1 step

Spurious Counterexamples

What happened?

v

Our over-approximation was too coarse

v

We get a spurious counterexample:

Sg.Xx=5 — S1.x=7

v

Why? s1.x # 7 is safe, doesn’t violated x = 7

v

But a “bad state” is reachable from s1.x # 7 within 1 step

Example Revisited: Counting State Machine

>X0:0

> T(Xi, Xit1) = (Xip1 == X + 2)
» Property: x #7

A(so,81) £ (s9.x =0) A (51.X = Sp.x +2)
B(si,s:) = A(s1x=7V

So.x = 0 U I(sp) /

{0} S1XFTNS1.X#5

Example Revisited: Counting State Machine

>X0:0

> T(Xi, Xit1) = (Xip1 == X + 2)
» Property: x #7

A(so,s1) = (s9.Xx # 7 ASp.X #5)A(S1.X = So.X + 2)
B(si,s:) = A(s1x=7V)

So.x = 0 U I(sp) /

{0} S1XFTNS1.X#5
So.X#TANSy.Xx#5 |7

Example Revisited: Counting State Machine

>X0:0

> T(Xi, Xit1) = (Xip1 == X + 2)
» Property: x #7

A(so,s1) = (s9.Xx # 7 ASp.X #5)A(S1.X = So.X + 2)
B(si,s:) = A(s1x=7V)

So.x = 0 U I(sp) /

{0} S1XFTNS1.X#5
So.X#TANSy.Xx#5 |7

» Violated for so.x = 3!

» Again? Our approximation is still too coarse!

Improving Approximations

» |s there still hope?

Improving Approximations

» |s there still hope?
» Yes! Remember

Improving Approximations

» |s there still hope?
» Yes! Remember !
» As we keep expanding B(st, .. ., Sk) by increasing k,

we’re is approaching the greatest fixpoint vF~1(-P)

Improving Approximations

v

Is there still hope?
Yes! Remember !
As we keep expanding B(si, . .., Sk) by increasing k,

v

v

we’re is approaching the greatest fixpoint vF~1(-P)

v

Eventually, B(sy, . ..) represents all “bad states” sy
» the states sy from which =P can be reached

Improving Approximations

v

Is there still hope?
Yes! Remember |

v

v

As we keep expanding B(si, . .., Sk) by increasing k,

we’re is approaching the greatest fixpoint vF~1(-P)

v

Eventually, B(sy, . ..) represents all “bad states” sy
» the states sy from which =P can be reached

v

Since B(sy,...) = -, I represents all “good states”

Interpolation-based Model Checking

» Complete (eventually converges to fixed point)
» Approximate post-image via interpolation
» How do we compute these interpolants?

Recap: What is a Craig interpolant?

“Traditional” definition [William Craig, 57]:
» A= I1=20C
» all non-logical symbols in / occur in A as well asin C

Recap: What is a Craig interpolant?

Common definition for automated verification:
» A= and [|A Binconsistent
» all non-logical symbols in / occurin A as well asin B

Construction of Craig Interpolants

Various techniques exist:
» Quantifier elimination
» Construction based on model theory/enumeration
» Extraction from (refutation) proofs

Construction of Craig Interpolants (continued)

» We will look at unquantified propositional logic first:

formula

atom
constant

formula A\ formula | formula v formula |
—~formula | (formula) | atom
propositional identifier | constant

true | false

Craig Interpolation for Propositional Logic

» Let Var(A) denote the free propositional variables in A

Definition (Craig-Robinson Interpolation Theorem)

Let A and B be two unquantified propositional logic formulas such
that A A B = false. Then there is a propositional logic formula /
(called) s.t.

> A=
» B= -l (i.e., BA I = false)
» Var(/) C (Var(A) N Var(B))

Craig Interpolation for Propositional Logic

» Trivial if we allow quantifiers:
» Existentially quantify “A-local” variables:

Ix € (Var(A) \ Var(B)). A
» Universally quantify “B-local” variables:

Yy € (Var(B) \ Var(A)).-B

Strongest and Weakest Craig Interpolants

Theorem (Strongest and Weakest Interpolant)

Let A and B be two unquantified propositional logic formulas such
that AN B = false.

Then
Jx € (Var(A) \ Var(B)). A

is the strongest interpolant with respect to (A, B).

Conversely,
Vy € (Var(B) \ Var(A)).—-B

is the weakest interpolant with respect to (A, B).

Eliminating Quantifiers in Craig Interpolants

» We require quantifier-free interpolants for efficient fixed point
detection

» Can we eliminate quantifiers in

Jx € (Var(A) \ Var(B)).A 7

Eliminating Quantifiers in Craig Interpolants

» We require quantifier-free interpolants for efficient fixed point
detection

» Can we eliminate quantifiers in

Jx € (Var(A) \ Var(B)).A 7

» Co-factoring:

Ix.F(x) = F(true) V F(false)

Eliminating Quantifiers in Craig Interpolants

» We require quantifier-free interpolants for efficient fixed point
detection

v

Can we eliminate quantifiers in

Jx € (Var(A) \ Var(B)).A 7

v

Co-factoring:

Ix.F(x) = F(true) V F(false)

v

Potentially results in exponential blow-up

Interpolants from Refutation Proofs

» Given a refutation proof, we can extract an interpolant in
polynomial time!
Theorem (Feasible Interpolation Theorem)

Let P be a resolution refutation proof for AN B. Given P,
an interpolant | for (A, B) can be computed in O(n?).

Interpolants from Refutation Proofs

» Given a refutation proof, we can extract an interpolant in
polynomial time!

Theorem (Feasible Interpolation Theorem)

Let P be a resolution refutation proof for AN B. Given P,
an interpolant | for (A, B) can be computed in O(n?).

» This result stems from complexity theory:
» Bound for proof complexity
» Motivated by P Z NP question

Resolution Refutations

» CNF formula: A conjunction of clauses

/\ \/fi,j, ¢ij € {a,a|ae Variables}
i

e.g.,
a N (31 \/52) A (51 V az) N a4

» Resolution proofs
aiax aiaz a1

e
_ 2
(CVa) (DV a) [Res] B

'

O

Resolution Refutations

» CNF formula: A conjunction of clauses

/\ \/fi,j, ¢ij € {a,a|ae Variables}
i

e.g.,
a N (31 \/52) A (51 V az) N a4

» Resolution proofs
aiax aiaz a1

e
Dva a2
(CVa) (DV a) (Res] B
C\/D 51 a
e
]

» Provided by modern SAT solvers

Colouring Formulas

Colouring Resolution Proofs

- 4
d
. 2
\\\;@ -~
ER aj

McMillan’s Interpolation System

Annotate each clause C in the proof with a partial interpolant /|

» Base case (initial clause C):
> \9 I = “keep all literals ¢ € C s.t. var(¢) € Var(B)”
> \9 | = true

» Induction step (internal clauses Cy, C»):

CiVva [/1] CVva [/2]
Ci1V GCo [/3]

itag Var(B), hE2hvE BRI >k

itacVar(B), h¥hak BT -k

Interpolants from Proofs: Example Revisited

aiax TT
aijax aiay ai
~a a4 a1

an
V'

ai ai
'

g

» lis (a1 N &)

Interpolants from Proofs: Another Example

A= (aiVaz)A(aiVvVag)Naz and B=(azVag)A(agVas)Aas.

aia» [52] aias [53] anas [T] aray [T] as [T]

N7 N
a»a3 [52 \VJ 53] ar [82] e [T]
~ /

as [53 A 32] as [T]

\/

O [53 AN 82]

Projection in McMillan’s Interpolation System

Given clause C = {ay, ..., an},
» C|, ="allliterals ¢ € C s.t. var(¢) € Var(A)”
» C|g ="allliterals ¢ € C s.t. var(¢) € Var(B)”

Invariant for partial interpolant /:
» ANS(Cly) =1
» BA-(Clg) = -l
» Var(/) C Var(A) N Var(B')

What is a Partial Interpolant?

» Subproofs, intermediate conclusions:

C|A/

A B

\ C /
\1‘K /

N ¥
false Cle
» Assumption: C = (Ca V Cg), where Var(Cy) C Var(A')
» Annotated inference steps:

A" 4] B" [lg]
C 10 !

What is a Partial Interpolant? (continued)

A B
\ \ ’ /
e S » AN=(Cla) =1
\\ C [I] // > B//_\(C|B/) = =/
\ /

A

w

~
v

Var(/) C Var(A) N Var(B')

false
A B
—N—
\ /
N)/ » A=
N\ / » B= -l
\ /

v

s /) Var(/) C Var(A) N Var(B)
N
false [l]

McMillan’s Interpolation System

» Provides quantifier-free interpolants
» Note: Interpolant is not necessarily in CNF

McMillan’s Interpolation System

» Provides quantifier-free interpolants
» Note: Interpolant is not necessarily in CNF

» However, McMillan’s system was not the first of its kind:
Huang, Kraji¢ek, Pudlak (all around 1995-1997)

Recap: Interpolants from Refutation Proofs

A B

Recap: Interpolants from Refutation Proofs

A B

Recap: Interpolants from Refutation Proofs

A B

\ . \3 B
»Ap NG []“ 1

) 9A1) ng [I2]

Recap: Interpolants from Refutation Proofs

A B

B;

»Ao .\\vC1 [h]‘a ---- -

) 9A1) ng [I2] -

7

LIh VRl

Propositional Resolution Refutations

(71 \/Yg) A Xg A\ (Xo \/X2) A Xo A (X1 \/Xg)

\ \ \ \
CVx DvVvXx \ 4 v w >
()Cv [g) [Res] Xo XoX2 X2 o X1X2
» LN Y LN S
X1 X2 W Xo A 1
\\ /

v

X1
\
Il

Interpolants as Separators

(71 \/Yg) A Xg N\ (Xo V X2) AN Xo A (X1 vV X2)
———
A B

Interpolants as Separators

(71 \/YQ)/\YQ/\(X()\/XQ) A 72/\(X1 \/Xg)
— ——
B

Interpolants as Separators

(71 \/YQ)/\YQ/\(X()\/XQ) A 72/\(X1 \/Xg)
— ——
B

A = X1 B = xq x1 € Var(A) N Var(B)

Interpolants as Separators

(71 \/YQ)/\YQ/\(X()\/XQ) A 72/\(X1 \/Xg)
— ——
B

A = X1 B = xq x1 € Var(A) N Var(B)

lis false (x1—0) — A[Xxy— 0] unsatisfiable
lis true (xy —1) — B[xy — 1] unsatisfiable

Interpolants separate Resolution Proofs

\ \ \ \
\ X0 Xp X2 X2 X1 X2

N N

X1 X2 WP X ¥ X1
N
SN

X1
\
]

Interpolants separate Resolution Proofs

\ \ \ \
\ X0 Xg X2 X2 1x

o AN AN

?2 \ 4 X2 \ g 1

N

\ 4 D\\ /// X1 —=0
Tsa ¥

]

Interpolants separate Resolution Proofs

Interpolants separate Resolution Proofs

Interpolants separate Resolution Proofs

\ N\ \

\ X0 Xp X2 X2 X2

N U A
X2 ¥ X \ NN
N :

» Annotate each clause C in proof with partial interpolant I
» AA=lc = C\{fe C|lis »}

» BA Ig=C\{¢tecC|lis »}
» Var(lc) C Var(A) N Var(B)

Pudlak’s Interpolation System

» Base case (initial vertices):
def

» If C € A: | = false
» 1fCc B: 1 ¥ true

» Induction step (internal vertices):

CiVx [/1] C VX [/2]
CiV GCo [/3]

itxis 'y BEKVh B>k
) L h
itxis 'y hE(xVE)A(LVE) al Y

ifxis 'y BEhAL {15

Interpolants from Proofs: Second Example Revisited

A= (a1 \/52)/\(51 \/53)/\&2 and B= (52\/&3)/\(&2\/&4)/\54 .

aiar [J_] aiaz [J_] anas [T] anay [T] as [T]

N N
3az [L] ax [1] ar [T]
NS /
az [1] a3 [T]

\ /

O [a3]

Interpolants from Proofs: Second Example Revisited

A= (a1 \/52)/\(51 \/53)/\&2 and B= (52\/&3)/\(&2\/&4)/\54 .

aiar [J_] aiaz [J_] anas [T] anay [T] as [T]

N N
a3z [L] ax [L] a [T]
NS o
as [J_] as [T]

~ .
O [a5]

» aj differs from az A ap (obtained using McMillan’s technique)

» Contains fewer variables
» Is weaker

Interpolant-based Model Checking Revisited

A(So,S1) o Q(So) A\ T(So,S1)

B(S1, ey Sk) = T(S1,82) VANPAN T(Sk_1,Sk)/\
=(P(s1) A ...\ P(sk))

» [(s1) is safe with respect to B(sq, ..., Sk)

Interpolant-based Model Checking Revisited

A(So,S1) o Q(So) A\ T(So,S1)

B(S1, ey Sk) = T(S1,82) VANPAN T(Sk_1,Sk)/\
=(P(s1) A ...\ P(sk))

» [(s1) is safe with respect to B(sq, ..., Sk)
» Now restart BMC with initial state Q'(so) = /(sp) V Q(So)

Interpolant-based Model Checking Revisited

A(So,S1) = A T(So,S1)

B(S1, ey Sk) = T(S1,82) VANPAN T(Sk_1,Sk)/\
=(P(s1) A ...\ P(sk))

» [(s1) is safe with respect to B(sq, ..., Sk)
» Now restart BMC with initial state Q'(so) = /(sp) V Q(So)

Interpolant-based Model Checking Revisited

A(So,S1) = A T(So,S1)

B(S1, ey Sk) = T(S1,82) VANPAN T(Sk_1,Sk)/\
=(P(s1) A ...\ P(sk))

» [(s1) is safe with respect to B(sq, ..., Sk)
» Now restart BMC with initial state Q'(so) = /(sp) V Q(So)
» Restart BMC until (/(sp) V Q'(s0)) = Q/(s0)

Interpolant-based Model Checking: Example

)
~—~
)
N—r

g
Ql

(

(
(

> A a8y /\50)

\'
—~
o1

g
N

1€

N

o Aay = a, Ad) A
o Aar = aAa) A
/)/\

A

Ql

(32 /\51 :>52 /\51
(acNar = a, A d))
(@ Na Va,Ndy Vv, d,) = g,

Q
=

e

F(@)=-P@)= =a A (aVap)

® © 0 0

Interpolant-based Model Checking: Example

» Let A; be Q(a) A T(&,d) and By be F(&).
» Resolution proof R;:

a2318’1 [a1] 51 [22 [L] aad, [d)]
\ /
3231 [31] a1a, [ap)
/
% 3] 433 3 v 3 v 3]
a [a aal [ab Na, v a, A3l
Q(é’) —3H AT 1[1] 10[2 1 2 O]

T(5,3) (ana1Va1)/\ — /
(32 V a1 VE) A 3, [3 A &) A 3] a [T]

(ah v 3} vap) \

F@) =a WEEAVNENEN

Interpolant-based Model Checking: Example

h(8)=3a,Nd N3,
is equivalent to the exact image

33. Q(3) A T(3, 7).

Interpolant-based Model Checking: Example

h(8)=3a,Nd N3,
is equivalent to the exact image

33. Q(3) A T(3, 7).

Note that Pudlak’s system provides an alternative interpolant:

I1 (év) = ﬁ36

Interpolant-based Model Checking: Example

» Continue with Q(&) V /(&) yields
» Needs to be “Tseitinised”:

(ooVoi) AN (00VQ(A)A (00 V—Q(a)) A
(01 v 1(8)) A (01 V —I(&))

» (continue recursively)

Interpolant-based Model Checking: Example

v

Continue with Q(&) V /(a) yields
Needs to be “Tseitinised”:

v

(ooVoi) AN (00VQ(A)A (00 V—Q(a)) A
(01 vV I(a)) A (01 vV —I(E)

v

(continue recursively)

Construct (A, B)-refutation Ry of
A = (Q(8) V I(A)) A T(& &) and B, = F(&).

v

Interpolant-based Model Checking: Example

32515/1 [5’1] Opar [L] Oopaz [L] 3251312 [8/2]
50323’1 [5’1] 60315/2 [2/2]
,f/, =/ 5 [/ =/
003, [a5] aa13g (3, V &) V 3]
ooal [@] 00ayay [a5 A &y v ah A Fg)
0036 [a5 A3 A) ay [T]
\ / symmetric
I'3) =
Q(é)(: V(azo) A o100 [L] Solay A AT T
1 // B _-
(51V§2)/\(51V51)A \ / ‘//‘,”
(%0 V@) A (oo Vv ar) o1 [ah N3y NTy] O1[a5 A& AFp)

O[ah A3 ALV 35 A &) ATl

Interpolant-based Model Checking: Example

ltp(R2) = (&b AN, NGy V @5 A &y A Ep)

» Note that the Tseitin variables are always local and do not
occur in interpolant

» Again, Itp(R) is the exactimage 3a.(Q(a) V 1(a8)) A T(&, &)
» We need to iterate again!

Interpolant-based Model Checking: Example

ltp(R2) = (&b AN, NGy V @5 A &y A Ep)

» Note that the Tseitin variables are always local and do not
occur in interpolant

» Again, Itp(Rz) is the exact image 3&.(Q(&) Vv 1(8)) A T(&, &)

» We need to iterate again!

» However, Pudlak provides an alternative interpolant:

def

lb(d') = ltppxp(R2) = —ay

» In this example, Pudlak’s interpolants lead to
faster convergence

Interpolant-based Model Checking Revisited

» Resolution proof in second iteration contingent on
/(So) vV Q(So)

» Interpolation is a “lucky guess”

» Remark: We can show that McMillan’s interpolant always
implies Pudlék’s interpolant

Overview Model Checking Techniques

Explicit State Model Checking
» Explicit enumeration of reachable states
» Fixpoint detection
Symbolic Model Checking
» States represented symbolically (BDDs)
» Fixpoint detection
Bounded Model Checking
» Unwinding of Transition Relation
» No fixpoint detection
Interpolation-based Model Checking
» Unwinding of Transition Relation
» Fixpoint detection using approximation

