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In this talk

I representation of transition relation
I examples for evaluating CTL expressions
I OBDD — an efficient data structure for the required operations
I next set of slides on SMV (resp. NuSMV)
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Transition relation as formula:

R(a, b, a′, b′) ≡ (a ∧ ¬b ∧ ¬a′ ∧ b′)

∨ (¬a ∧ b ∧ ¬a′ ∧ b′)

∨ (¬a ∧ b ∧ a′ ∧ ¬b′)
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Example: evaluating the next-time operator

E X f (a, b)

I e.g., f (a, b) ≡ a ∧ ¬b
I this defines a set of states {s : a ∈ L(s) ∧ b 6∈ L(s)}

pre(f ) ≡ ∃a′b′. R(a, b, a′, b′) ∧ f (a′, b′)

≡ (R(a, b, false, false) ∧ f (false, false)) ∨
(R(a, b, false, true) ∧ f (false, true)) ∨
(R(a, b, true, false) ∧ f (true, false)) ∨
(R(a, b, true, true) ∧ f (true, true))

for each assignment to a and b for which pre(f (a, b)) evaluates to
true, there is a state s:

M, s |= E X f (a, b)

s → pre(f ) if and only if M, s |= E X f (a, b)
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Example: evaluating the future operator

I the models of f (a, b) are states
I the models of R(a, b, a′, b′) are transitions
I the models of pre(f (a, b)) are states

hence we may combine:

I pre(pre(f (a, b))) states that reach a state that satisfies f (a, b)
in 2 steps

I pre(pre(pre(f (a, b)))) states that reach a state that satisfies
f (a, b) in 3 steps

I pre(pre(f (a, b))) ∨ pre(f (a, b)) ∨ f (a, b) states that reach a
state that satisfies f (a, b) in at most 2 steps

I we consider only finite Kripke structures
I ⇒ such an iteration reaches a fixed-point
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Example: evaluating the future operator (cont)

let rec fixed -point (f ) =

if pre(f ) ↔ f then

f
else

fixed -point (pre(f ) ∨ f )

s → fixed-point(f ) if and only if M, s |= E F f

. . . this should be thought of as backward reachability in a graph
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Efficiency matters

practically efficient implementations and representations of the
following statements are crucial:

I pre(f )
I pre(f )↔ f
I pre(f ) ∨ f
I s → pre(f )
I s → fixed-point(f )

underlying data structure OBDD
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Example BDD

I canonical representation
I if variables are ordered: OBDD
I for each Boolean function, the canonical OBDD is unique
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SMV implements these ideas



Thanks!


