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Outline
• introduction

– what is different about distributed systems
– the role of abstraction
– the concept of a verification model

• modeling concurrency, expressing correctness claims

• theoretical foundation
– automata and logic chapter 6
– verification algorithms chapter 8
– search optimization chapter 9

• model checking in practice
– tools and tool design
– model building and model extraction
– challenges
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automata theory
• we’ll now formally introduce the notion of

– finite automata, automata runs, words and languages
– ω-automata, ω-runs, and ω-regular languages
– Büchi acceptance
– the stuttering rule
– automata products
– linear temporal logic (LTL) and the link to ω-automata

• leading to our goal...
– the automata theoretic verification procedure
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finite state automata

• a finite state automaton is a tuple {S, s0, L, F, T}
– S                  finite set of states
– s0 ∈∈∈∈ S          a distinguished initial state in S
– L                  finite set of labels (symbols)
– F ⊆⊆⊆⊆ S           set of final states in S
– T ⊆⊆⊆⊆ SxLxS transition relation, connecting states in S

• dot notation: given an automaton A
– A.S is its set of states
– A.s0 is its initial state
– ... etc.
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an example finite state automaton

s0 s1

s2 s4

s3

αααα0000

αααα2222

αααα4444
αααα5555

αααα1111

αααα3333

A.S: { s0, s1, s2, s3, s4 }

A.L = { αααα0000, α, α, α, α1111, α, α, α, α2222, α, α, α, α3333, α, α, α, α4444, α, α, α, α5555 }

A.F = { s4 }
A.T = {(s0,αααα0,s1), (s1, αααα1,s2), ...}

A: {S, s0, L, F, T}
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an interpretation of this automaton
a process scheduler

idle
start

execute

pre-empt

ready

run

waiting

blockunblock

end
stop

s0 s1

s2 s4

s3

αααα0000

αααα2222

αααα4444
αααα5555

αααα1111

αααα3333
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the automaton written as a never claim

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

never {
idle: (start) ->
ready: (run) ->
execute: if

:: (pre-empt) -> goto ready
:: (block) -> goto waiting
:: stop -> goto end
fi;

waiting: (unblock) -> goto execute;
end: skip
}
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determinism and non-determism

• a finite state automaton A={S, s0, L, F, T} is 
deterministic iff

∀∀∀∀s∀∀∀∀l,  ((s,l,s’)∈A.T ∩ (s,l,s’’)∈A.T → s’≡s’’

– i.e., the destination state of a transition is uniquely 
determined by the source state and the transition label

– an automaton is called non-deterministic if it does not have 
this property

set F is empty here

s0 s1
request

deny

approve

a very useful non-deterministic
finite state automatonmodeling a coarse abstraction

of the behavior of a request server

s2

s3

true

true

Logic Model Checking  [10 of 18] 14

the definition of a run
a run of finite state automaton {S, s0, L, T, F} is an ordered,
and possibly infinite, set of transitions from T:

σ = {(s0,l0,s1), (s1,l1,s2), (s2,l2,s3), …}
such that

∀∀∀∀i, i ≥ 0 : (si,li,si+1) ∈ T

each run corresponds to a state sequence in S and a word in L

(infinite) state sequence from a run:
{ idle, ready, { execute, waiting } * }

the corresponding word in L:
{start, run, { block, unblock }* }

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

note: for a non-deterministic
automaton a single state sequence
may correspond to more than one
possible word and vice versa
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an accepting run of finite state automaton A
is a finite run σ for which the final transition
(sn-1,ln-1,sn) satisfies sn ∈∈∈∈ A.F

i.e., the run ends in a final state

the standard definition of acceptance

state sequence of an accepting run:
{ idle, ready, execute, waiting, execute, end }

the corresponding word in L:
{start, run, block, unblock, stop }

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

Logic Model Checking  [10 of 18] 16

the language accepted by an automaton

the language of automaton A is  the set of
words in A.L that correspond to the set of all the
accepting runs of automaton A

(there can be infinitely many words in the language
of even a small finite state automaton)

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

{
start,
run,
{ { pre-empt, run } +

{ block, unblock } }*,
stop

}

a characterization of the
complete language of
automaton A (an infinite set of words):

the shortest word in the language:
{ start, run, stop }

a regular
expression
+: choose
*: repeat zero

or more times
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sample property:

“if first p becomes true
and then later q becomes true,
then r can no longer become true”

reasoning about runs
formal properties of automata

interpretation:

p

q

!r

r

!p

!q

error

correctness claim:
it is an error if in a run we
see first p then q and then r

this property is easily expressed with
the standard definition of acceptance

reaching this state
constitutes a complete
match of the pattern
that specifies the
correctness violation

Logic Model Checking  [10 of 18] 18

but... sometimes we have to reason
about potentially infinite delay...

a classic liveness property:

“if p then eventually q”

this property can only be violated by an infinite run…
the standard notion of acceptance applies only to finite runs...

Problem: we cannot express this with the standard
definition of acceptance: we cannot express
that a run may not remain in the error state
infinitely long...

p
!q

!p

error

attempted interpretation:

q
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how we would say this
in a never claim

p
!q

!p

error q

never {
s0:

do
:: !p
:: p -> goto error
od;

error:
accept:

do
:: !q
od

}

s0

better would be to use:
true

instead of !p
(to state that every occurrence
of p is eventually followed by q)

q takes us out of the
error pattern, so need
not be specified in the
automaton

acceptance states, though,
are defined differently in
classic automata theory...
hence the switch to
omega-automata theory....

Logic Model Checking  [10 of 18] 20

notation
• for every infinite run σσσσ of a finite automaton we can divide the 

transitions that appear in σσσσ into two sets:
• a set σσσσ++++ of transitions that are only taken finitely many times
• a set σσσσωωωω of transitions that are repeated infinitely often

σ+

σω

σ
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Büchi acceptance
a type of ω−−−−acceptance

an accepting ω-run for this automaton: 
{ idle, ready, {execute, ready}* }

the corresponding ω-word:
{start, run, { pre-empt, run}* }

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

the ω-language of an automaton is
the set of all ω-words accepted

an accepting ω-run of finite state automaton A
is an infinite run σ such that

∃i≥0,(si-1,li-1,si)∈∈∈∈σσσσ :  si ∈∈∈∈ A.F ∧ si ∈∈∈∈ σω

i.e., at least one state in A.F is visited infinitely often

Logic Model Checking  [10 of 18] 22

accept-state labels

• Spin’s accept-state label capture the semantics of ω-
acceptance we just defined
– Spin can report for any state marked with an accept-state label if 

the following two conditions can be met:
• the state is reachable from the initial system state, and
• the state is reachable from itself

– these are the necessary and sufficient conditions for an acceptance 
cycle to exist

Q:
but if we replace classic acceptance of finite runs

with ω-acceptance on infinite runs, how do we retain
the capability to reason about finite runs within
this new theoretical framework?
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never claims

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

never {
idle: (start) ->
ready: (run) ->
accept:
execute: if

:: (pre-empt) -> goto ready
:: (block) -> goto waiting
:: stop -> goto end
fi;

waiting: (unblock) -> goto execute;
end: (false)
}

but what should we do with
finite runs.....

precisely matches the
definition of accept state
labels in Promela

Logic Model Checking  [10 of 18] 24

the stutter extension rule
interpreting finite runs as special cases of infinite runs

• the label set of the automaton is extended to L ∪ ε
• ε is a predefined nil symbol (a no-op or pause)

• to determine ω-acceptance, a finite run is (thought to be) 
extended into an equivalent infinite run by stuttering the final 
state (a state otherwise without outgoing transitions) on ε

run:  { idle, ready, execute,
waiting, execute, [end,]* }

word: {start, run, block,
unblock, stop, εεεε* }

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

εεεε

we can now use one single

acceptance rule to reason about

the liveness properties of

both finite and infinite runs
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never claims allow us to reason about
both infinite and finite runs

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

never {
idle: (start) ->
ready: (run) ->
accept:
execute: if

:: (pre-empt) -> goto ready
:: (block) -> goto waiting
:: stop -> goto end
fi;

waiting: (unblock) -> goto execute;
end: true
}

true

accept2:
do
:: true
od

the default meaning of
falling off the end
of a never claim...

which is an
application of
the stutter
extension rule

note:

the stu
tter ex

tension
 rule i

n Spin 
is

only ap
plied f

or prop
erties 

express
ed

in neve
r claim

s...
εεεε
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there are also other types of
ω-acceptance

• generalized Büchi acceptance
– instead of one acceptance set F⊆ S, we define a family of 

sets F = { F1, ... , Fn }
– we now require:

• ∀j, 1≤j≤n, ∃i≥0, (si-1,li-1,si)∈σ∈σ∈σ∈σ,  si ∈∈∈∈ Fj ∧ si ∈∈∈∈ σσσσω

• i.e., some state in each acceptance set is visited infinitely often
• an automaton with generalized Büchi acceptance conditions is 

called a generalized Büchi automaton

has the same expressive power

as a standard Büchi automaton



13

Logic Model Checking  [10 of 18] 25

never claims allow us to reason about
both infinite and finite runs

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

never {
idle: (start) ->
ready: (run) ->
accept:
execute: if

:: (pre-empt) -> goto ready
:: (block) -> goto waiting
:: stop -> goto end
fi;

waiting: (unblock) -> goto execute;
end: true
}

true

accept2:
do
:: true
od

the default meaning of
falling off the end
of a never claim...

which is an
application of
the stutter
extension rule

note:

the stu
tter ex

tension
 rule i

n Spin 
is

only ap
plied f

or prop
erties 

express
ed

in neve
r claim

s...
εεεε

Logic Model Checking  [10 of 18] 26

there are also other types of
ω-acceptance

• generalized Büchi acceptance
– instead of one acceptance set F⊆ S, we define a family of 

sets F = { F1, ... , Fn }
– we now require:

• ∀j, 1≤j≤n, ∃i≥0, (si-1,li-1,si)∈σ∈σ∈σ∈σ,  si ∈∈∈∈ Fj ∧ si ∈∈∈∈ σσσσω

• i.e., some state in each acceptance set is visited infinitely often
• an automaton with generalized Büchi acceptance conditions is 

called a generalized Büchi automaton

has the same expressive power

as a standard Büchi automaton



14

Logic Model Checking  [10 of 18] 27

other types of ω-acceptance
Muller automata

• Muller acceptance
– let F ⊆ 2S (F is a set if subsets of S)
– require:

• ∃f, f∈F → ∀s, s∈f ↔ s∈σω

• (at least one of the elements of F contains all states that are visited 
infinitely often in σ)

• an automaton with Muller acceptance conditions is called a 
Muller automaton

has the same expressive power

as a Büchi automaton

Logic Model Checking  [10 of 18] 28

other types of ω-acceptance
Rabin automata

• Rabin acceptance
– choose n pairs of sets (Li,Ui) with Li ⊆ S and Ui ⊆ S
– require:

• ∃i, (1 ≤ i ≤ n), ∀s, (s∈Li → s∉σω) ∧ ∃t, (t∈Ui ∧t ∈σω)
• (for at least one pair i, none of the states in Li and at least one state in 

Ui appear infinitely often)

• an automaton with Rabin acceptance conditions is called a 
Rabin automaton

has the same expressive power

as a Büchi automaton
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other types of ω-acceptance
Streett automata

• Streett acceptance
– choose n pairs of sets (Li,Ui) with Li ⊆ S and Ui ⊆ S
– require

• ∀i , (1 ≤ i ≤ n), ∃s (s∈Li ∧ s∈σω) ∨ ∀t, (t∈Ui → t∉σω)
• for at least one pair i, none of the states in Ui or at least one state in Li

appears infinitely often
• i.e., if you hit an L-state, you must also repeatedly hit a matching U 

state

• an automaton with Streett acceptance conditions is called a 
Streett automaton

all these variants have the

same expressive power

Logic Model Checking  [10 of 18] 30

· Büchi automata, and ωωωω-automata in general, are closed under 
all Boolean operations, e.g. for any two automata A and B:
– complement:

• ∃∃∃∃ C : L(C) = Lωωωω \ L(A)
• there exists an automaton C that accepts precisely those runs 

that are not accepted by any given automaton A
– intersection:

• ∃∃∃∃ C : L(C) = L(A) ∩∩∩∩ L(B)
• there exists an automaton C that accepts all runs that are 

accepted by both A and by B
– union:

• ∃∃∃∃ C : L(C) = L(A) ∪∪∪∪ L(B)
• there exists an automaton C that accepts all runs that are 

accepted by either A or by B

useful properties of ω-automata
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all Boolean operations, e.g. for any two automata A and B:
– complement:

• ∃∃∃∃ C : L(C) = Lωωωω \ L(A)
• there exists an automaton C that accepts precisely those runs 

that are not accepted by any given automaton A
– intersection:

• ∃∃∃∃ C : L(C) = L(A) ∩∩∩∩ L(B)
• there exists an automaton C that accepts all runs that are 

accepted by both A and by B
– union:

• ∃∃∃∃ C : L(C) = L(A) ∪∪∪∪ L(B)
• there exists an automaton C that accepts all runs that are 

accepted by either A or by B

useful properties of ω-automata
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decidability issues
• two properties of Büchi automata in particular are of interest in 

applications of logic model checking:
– language emptiness

• are there any accepting runs?
– language intersection

• are there any runs that are accepted by 2 or more automata?

• both are formally decidable
• Spin’s model checking algorithm is based on these two checks

– Spin determines if the intersection of the languages of a property 
automaton and a system automaton is empty

• properties that can be stated in linear temporal logic (LTL), can be 
converted mechanically into Büchi property automata (i.e., never 
claims)



1

Logic Model Checking

Lecture Notes 11:18
Caltech 118

January-March 2006

Course Text:
The Spin Model Checker: Primer and Reference Manual

Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs.

Logic Model Checking  [11 of 18] 2

safety and liveness
• safety

– any safety property can be verified by evaluating individual 
properties of states

– when a safety property (e.g., an invariant) is violated, it is always 
possible to identify a specific reachable system state where the 
violation can be uniquely established

– to check safety properties, we only need to be able to 
systematically generate all reachable states of a system, and check 
them one by one

– we don’t really need the theory of Büchi acceptance, or the stutter 
extension rule, to reason about safety property (but LTL can
sometimes be useful to formulate safety properties)

• liveness
– to verify a liveness property, we always have to consider 

sequences of states (finite and infinite runs in the underlying 
automata model)

– we need different algorithms to check liveness properties than we 
use for safety properties (and they have higher complexity...)

– this is where we need Büchi acceptance and the stutter extension 
rule (and where the use of LTL is most helpful)
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a safety property
once p becomes true at least once
q can no longer become true

possible violation:
first p becomes true and
then q becomes true anyway

never {
do
:: !p
:: p -> break
od;
do
:: assert(!q)
od

}

if a violation is possible,
this observer automaton will be
able to report it immediately
once a specific  system state
has been reached
no reasoning about infinite
runs is needed here

assert(!q)

p

!p
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sample system behavior

assert(!q)

p

!p

bool p, q; /* initially false */

active proctype A()
{

(!p && !q) -> p = true
}

active proctype B()
{

(p) -> q = true
}

B

p

q=true

stop

s0

s1

s2

A

!p && !q

p=true

stop

s0

s1

s2

q=true

!p && !q

s0s0

p=true

s1s0

s2s0 -s0

s2s1

p

stop

s2s2

q=true

-s1
stop

-s2
stop

s2-

stop

--stop

stop

p

AxB

x

x

asynchronous

synchronous
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checking the safety property

assert(!q)

p

!p

!p && !q

s0s0

p=true

s1s0

s2s0 -s0

s2s1

p

stop

s2s2

q=true

-s1
stop

-s2
stop

s2-

stop

--stop

stop

p

AxB

p0

p1

q=true

!p && !q

s0s0

p=true

s1s0

s2s0 -s0

s2s1

p

stop

q=true

-s1
stop

p

(AxB)x(P)

p0

p0

p1

q=true

p1

p1

p1

assertion !q
violated

s2s1 -s1p1 p1

reasoning about safety
properties can always
be done by a plain
reachability analysis
of either the system
(AxB) or the synchronous
product of a system and
a claim (AxB)x(P)

x
synchronous
product

stop
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liveness properties are different...
once p becomes true, within a
finite number of steps q will also be true

possible violation:
first p becomes true but then q
can remain false forever

never {
do
:: !p
:: p -> break
od;

accept:
do
:: !q
od

}

if a violation is possible,
this observer automaton will be
able to report it only when a
matching, potentially infinite,
sequence of states has been seen

!q

p

!p
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sample system behavior

!q

p

!p

bool p, q; /* initially false */

active proctype A()
{

(!p && !q) -> p = true
}

active proctype B()
{

(p) -> q = false
}

q=false

!p && !q

s0s0

p=true

s1s0

s2s0 -s0

s2s1

p

stop

s2s2

q=false

-s1
stop

-s2
stop

s2-

stop

--stop

stop

p

AxB

B

p

q=false

stop

s0

s1

s2

A

!p && !q

p=true

stop

s0

s1

s2

x

x

note:
the liveness
property is
applied here
to a non-cyclic
model....
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checking the liveness property

!q

p

!p

q=false

!p && !q

s0s0

p=true

s1s0

s2s0 -s0

s2s1

p

stop

s2s2

q=false

-s1
stop

-s2
stop

s2-

stop

--stop

stop

p

AxB P

q=false

!p && !q

s0s0

p=true

s1s0

s2s0 -s0

s2s1

p

stop

s2s2

q=false

-s1
stop

-s2
stop

s2-

stop

--stop

stop

p

AxBxP

p0

p0

p1

p1

p1

p1

p1 p1

p1 p1

p0

p1

εεεε

reasoning about
infinite sequences of
states is required to
check liveness properties

property violation:
acceptance cycle on
stutter extension of
finite sequence

x
synchronous
product

non-cyclic!

final
state
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reasoning about executions
• the three views of a run:

– a sequence of states
– a sequence of transitions
– a sequence of propositions on states (state properties)

bit  x, y;

byte mutex;

active proctype A() {

x = 1; 
(y == 0) ->
mutex++;

printf(“%d\n”, _pid);
mutex--;

x = 0

}

bit  x, y;

byte mutex;

active proctype A() {

x = 1; 
(y == 0) ->
mutex++;

printf(“%d\n”, _pid);
mutex--;

x = 0

}

p: (x == mutex)
q: (x != y)

x=1 (y==0) mutex++ print mutex-- x=0

x==0
y==0

mutex==0

x==1
y==0

mutex==0

x==1
y==0

mutex==1

x==1
y==0

mutex==1

x==1
y==0

mutex==1

x==1
y==0

mutex==0

x==0
y==0

mutex==0

p !p!p p p p p
!q qq q q q !q

correctness:
Q: is it always true that p implies !q ?
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Kripke structures
• consider the complete reachability graph of a model
• label all nodes in the graph with the truth value of all basic 

propositions
• omit all other information from the edges and the nodes
• this is often referred to as a Kripke structure; it captures the 

evolution of propositional values over all possible runs
• the information that is contained in a Kripke structure suffices to 

check a broad range of logical system properties
p, !q

!p, q

p, q

!p, !q

p, q

!p, q

!p, q

p,q

a model checker actually need not build 
fully detailed Kripke structures to 
verify system properties – only minimal
state information is required to complete
the model checking procedure
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expressing properties in LTL
“p implies q”

• [](p -> X(<>q))
– puts one or more steps in between the truth of p and q, but 

this uses the maligned X operator... (but stutter invariance is 
maintained in this case)

– formula is still satisfied if p never becomes true, probably not 
what is meant

• [](p -> X(<>q)) && (<>p)
– this may actually capture what we intended
– compare to our first guess of just: (p -> q)

beware of LTL

always double-check your formulae

be especially on guard when a model checker

fails to find a matching run...

always use Spin to generate the never claim for

each LTL formula, and study it to see if it matches

your intuition of what you thought it should be...

Logic Model Checking  [12 of 18] 20

from logic to automata
(cf. book p. 141)

• for any LTL formula f there exists a Büchi automaton that 
accepts precisely those runs for which the formula f is satisfied

• example:  the formula <>[]p corresponds to the non-
deterministic Büchi automaton:

p s1 ptrue s0
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from logic to automata

• it is easy to turn an LTL correctness requirement into a Promela
never claim: negate the LTL formula, and generate the claim 
from the negated form:

!<>[]p  ≡≡≡≡ []![]p  ≡≡≡≡ []<>!p

!p
s1true s0

true

!p !p !p

the automaton only accepts a run if p keeps

returning to false infinitely often

i.e., securing that in the run considered p

does not remain true invariantly, ever

Logic Model Checking  [12 of 18] 22

!<>[]p

<>[]P

using Spin to do
the negations and the conversions
$ spin -f ‘<>[]p’
never {    /* <>[]p */
T0_init:

if
:: ((p)) -> goto accept_S4
:: (true)-> goto T0_init
fi;

accept_S4:
if
:: ((p)) -> goto accept_S4
fi;

}

pp
S4true T0_init

$ spin -f ‘!<>[]p’
never {    /* !<>[]p */
T0_init:

if
:: (! ((p))) -> goto accept_S9
:: (true) -> goto T0_init
fi;

accept_S9:
if
:: (true) -> goto T0_init
fi;

}

!p
s9true T0_init

true
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syntax rules
$ spin -f ‘([] p -> <> (a+b <= c))’
tl_spin: expected ‘)’, saw ‘+’
tl_spin: ([] p -> <> (a+b <= c))
------------------------^
$

$ spin -f ‘[] (p -> <> q)’
never {    /* [](p -> <> q) */
T0_init:

if
:: (((! ((p))) || ((q)))) -> goto accept_S20
:: (1) -> goto T0_S27
fi;

accept_S20:
if
:: (((! ((p))) || ((q)))) -> goto T0_init
:: (1) -> goto T0_S27
fi;

accept_S27:
if
:: ((q)) -> goto T0_init
:: (1) -> goto T0_S27
fi;

T0_S27:
if
:: ((q)) -> goto accept_S20
:: (1) -> goto T0_S27
:: ((q)) -> goto accept_S27
fi;

}

$

#define q (a+b <= c)

define lower-case
propositional symbols
for all arithmetic and
boolean subformulae

beware of operator
precedence rules..

$ ltl2ba -f '[] (p -> <> q)'
never { /* [] (p -> <> q) */
accept_init:

if
:: (!p) || (q) -> goto accept_init
:: (1) -> goto T0_S2
fi;

T0_S2:
if
:: (1) -> goto T0_S2
:: (q) -> goto accept_init
fi;

}

there is no minimization algorithm
for non-deterministic Büchi automata.
sometimes alternative converters can
produce smaller automata:

Logic Model Checking  [12 of 18] 24

gaining intuition for ltl formula

• p -> q

• [] p -> q

• [] (p -> q)

true!p || q

true!p || q

true

true

!p

!p || q
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gaining intuition for ltl formula

• [] (p -> <> q)

• [] (p -> X <> q)

true
true

q

!p || q

truetrue

!p&&q

q

true

!p

!p&&q

q

!p
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the last few steps...

• [] (p -> X <> q) && (<> p)

but, what we really want for 
verification is the violation of this 
property: the negated formula...

• !([] (p -> X <> q) && (<> p))

larger 
propert

y autom
ata are

general
ly hard

er to u
ndersta

nd

and the
y incur

 more c
omplexi

ty

during 
the ver

ificati
on proc

ess

p
!p&&q

true

true

true true

true

true

p&&q
q !p

!p
!p&&q

p

spin -f

true

!p

!p

p

true

p

!q

spin -f
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B

automata products

• consider a system of n processes, modeled as finite 
state automata A1, A2, ... An

• add property automaton B (e.g. derived from an LTL formula)

• a model checker can compute the reachable state 
space as
– S = B ⊗ Π Ai

n

i=1

a synchronous
product of 2 automata

an asynchronous
product of n automata

Π Aii=1

n

S: another finite state automaton:
an ω-automaton representing the
relevant portion of the global statespace
i.e., as defined by B
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the asynchronous product
• the asynchronous product Π of a finite set of finite automata A1, 

A2, ... An is a new finite state automaton
A = { S, s0, L, T, F) where

A.S is the Cartesian product A1.S x A2.S x ... x An.S
A.s0 is the n-tuple ( A1.s0, A2.s0, ... , An.s0)
A.L is the union set A1.L ∪∪∪∪ A2.L ∪∪∪∪ ...∪∪∪∪ An.L
A.T is the set of tuples ((x1,...,xn),l,(y1,...yn)) such that

∃i, 1≤i≤n, (x,l,y)∈Ai.T and ∀j, 1≤j≤n, j≠i →(xj≡yj)
A.F contains those states from A.S that satisfy

∀( A1.s, A2.s, ... , An.s)∈A.F → ∃i, 1≤i≤n, Ai.s∈Ai.F

not all states in A.S or A.F
are necessarily reachable from A.s0

atomic and rv handshakes can again be
defined through executability rules:
pre-condition and effect clauses

Logic Model Checking  [15 of 18] 4

small example

s0

s1

(x%2)

x=3x+1

A1

s0

s1

!(x%2)

x=x/2

A2

s0

s1

true

x<4

x<4

B

s0,s0

s1,s0

s0,s1

s1,s1

(x%2)

x=3x+1

(x%2)

x=3x+1

x=x/2

x=x/2

!(x%2)

!(x%2)

ΠΠΠΠ

an unreachable state
under Promela interpretation
of statement (label) semantics

int x

note that variable x
also holds state information
to determine which states are
reachable under the semantics
rules (i.e. interpretation),
we have to consider Promela
semantics

⊗

since all data ranges are bounded,
we can also “expand” an automaton
into a pure automaton, without variables
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A2, ... An is a new finite state automaton
A = { S, s0, L, T, F) where

A.S is the Cartesian product A1.S x A2.S x ... x An.S
A.s0 is the n-tuple ( A1.s0, A2.s0, ... , An.s0)
A.L is the union set A1.L ∪∪∪∪ A2.L ∪∪∪∪ ...∪∪∪∪ An.L
A.T is the set of tuples ((x1,...,xn),l,(y1,...yn)) such that

∃i, 1≤i≤n, (x,l,y)∈Ai.T and ∀j, 1≤j≤n, j≠i →(xj≡yj)
A.F contains those states from A.S that satisfy

∀( A1.s, A2.s, ... , An.s)∈A.F → ∃i, 1≤i≤n, Ai.s∈Ai.F

not all states in A.S or A.F
are necessarily reachable from A.s0

atomic and rv handshakes can again be
defined through executability rules:
pre-condition and effect clauses

Logic Model Checking  [15 of 18] 4

small example
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!(x%2)

ΠΠΠΠ

an unreachable state
under Promela interpretation
of statement (label) semantics

int x

note that variable x
also holds state information
to determine which states are
reachable under the semantics
rules (i.e. interpretation),
we have to consider Promela
semantics

⊗

since all data ranges are bounded,
we can also “expand” an automaton
into a pure automaton, without variables
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!(x%2)

x=x/2

!(x%2)

x=x/2

(x%2)

x=3x+1

“pure” finite state asynchronous
product automaton
for initial value x = 4
(the value of x is now part of
the state of the automaton)
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the synchronous product
(the never claim observer)

• the synchronous product of a finite set of finite automata P and 
B is the finite state automaton

A = { S, s0, L, T, F) where

A.S is the Cartesian product P’.S x B.S where P’ is the 
stutter closure of P (a nil self-loop is attached to every 
state in P without outgoing transitions in P.T)

A.s0 is the pair (P.s0,B.s0)
A.L is the set of pairs (l1,l2)  such that l1 ∈ P’.L and l2 ∈ B.L
A.T is the set of pairs (t1,t2)  such that t1 ∈ P’.T and t2 ∈ B.T
A.F is the set of pairs (s1,s2) such that s1∈P’.F or s2 ∈ B.F

not all states in A.S or A.F
are necessarily reachable from A.s0
under the chosen interpretation of labels

this is the basic automaton structure.
we can next interpret the labels under
Promela semantics to eliminate all
transitions from A.T where either l1 or
l2 is not executable
(l2 is usually a boolean condition)
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the example: B ⊗ Π Ai

s0

s1

true

x<4

x<4

B

all paths with
accept states
dead-end here;
no stutter possible

are there any
accepting cycles?

if not, then the
property <>[](x<4)
cannot be satisfied
and its negation holds

!<>[](x<4)
[]![](x<4)
[]<>!(x<4)
[]<>(x>=4)

⊗⊗⊗⊗

s0,s0,
4,s0

s0,s1
4,s0

s0,s0
2,s0

s0,s1
2,s0

s1,s0
1,s0
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x=x/2

!(x%2)

x=x/2

(x%2)

x=3x+1
x=x/2
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s0,s0
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s0,s1
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s1,s0
1

s0,s0
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!(x%2)

x=x/2

!(x%2)

x=x/2

(x%2)

x=3x+1

i=1

2
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search algorithms
• checking safety properties

– basic depth-first search
– variant1: stateless search
– variant2: depth-limited search
– breadth-first search

• checking liveness properties
– non-progress cycles
– acceptance cycles
– Spin’s nested depth-first search algorithm

• fairness constraints
– Choueka’s flag construction method

• optimization 
– partial order reduction, state compression, 

alternate state representation methods

today
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the search problem
• given a product automaton (B ⊗ Π Ai )

– find all runs that violate a safety property
• ‘bad’ reachable states

• given a product automaton (B ⊗ Π Ai)
– find all runs that violate a liveness property

• accepting ω-runs

• some observations:
– these are basic graph search problems

• but the graphs to be searched can be very large
– we want to avoid having to construct the graph first

• and if we need to store anything about the graph, it has to be 
as little information as possible (so that we can handle larger 
problem sizes)

Logic Model Checking  [15 of 18] 10

basic depth-first search
Automaton A = { S, s0, L, T, F }
Stack D = {}
Statespace V = {}

Start()
{

Add_Statespace(V, A.s0 )
Push_Stack(D, A.s0 )
Search()

}

Search()
{

s = Top_Stack(D)
for each (s,l,s')∈∈∈∈ A.T

if In_Statespace(V, s')== false
{    Add_Statespace(V, s')

Push_Stack(D, s')
Search()

}
Pop_Stack(D)

}

the DFS is most easily written
as a recursive procedure -- but the
actual Spin implementation is iterative
(originally to increase efficiency)

Fig. 8.1 p. 168

Add_Statespace(V,s)
adds s to set V

In_Statespace(V,s)
true iff s is in V

Push_Stack(D,s)
adds s to ordered set D

In_Stack(D,s)
true iff s is in D

Top_Stack(D,s)
returns top element in D
if any

Pop_Stack(D)
removes top element from D
if any

objective:
-store as little data about the graph as possible

- stores states in V, but not transitions
- Statespace V is there to prevent doing redundant work

- for correctness, V does not need to be complete
- in fact, V does not need to be there at all....
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depth-first search order
depth-first search numbers

s0 s1

s2 s4

s3

αααα0000

αααα2222

αααα4444
αααα5555

αααα1111

αααα3333

s0 1

s1 2

s2
3

s3

4

s4

5
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checking safety properties
(properties of states)

Automaton A = { S, s0, L, T, F }
Stack D = {}
Statespace V = {}

Start()
{

Add_Statespace(V, A.s0 )
Push_Stack(D, A.s0 )
Search()

}

Search()
{

s = Top_Stack(D)

if (!Safety(s))
Print_Stack(D)

for each (s,l,s')∈∈∈∈ A.T
if In_Statespace(V, s')== false
{    Add_Statespace(V, s')

Push_Stack(D, s')
Search()

}
Pop_Stack(D)

}

Fig. 8.2, p. 170

prints out the elements of
stack D, from bottom to top,
giving the complete
counter-example / error scenario
for the safety violation

assertion violations
invalid endstates
termination of a never claim
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Automaton A = { S, s0, L, T, F }
Stack D = {}
/* Statespace V = {} */

Start()
{

Push_Stack(D, A.s0 )
Search()

}

Search()
{

s = Top_Stack(D)
for each (s,l,s')∈∈∈∈ A.T

if In_Stack(D, s')== false
{    Push_Stack(D, s')

Search()
}

Pop_Stack(D)
}

a stateless search
(memory efficient, but excessively time consuming...)

Fig. 8.5 p. 176

replaced In_Statespace(V,s’)
with In_Stack(D,s’)

no Statespace V

Statespace V is used to prevent doing redundant work
- for correctness, it does not need to be complete
- in fact, it does not need to be there at all....

the algorithm is still guaranteed
to terminate in a finite number of steps

Logic Model Checking  [15 of 18] 14

depth-first search order
extra work when not using the statespace construct

s0 s1

s2 s4

s3

αααα0000

αααα2222

αααα4444
αααα5555

αααα1111

αααα3333

s0
1

if s3 has a sub-tree of 100,000 states
a stateless search would visit that
entire subtree at least 3 times...

s4

s3

2

s2
3

s1

4 5

s1 6

s2
7

s3

8

s4 9

s3

10this version of the search
visits 10 instead of 5 states...
(doing redundant work)
s3 is visited 3 times here

-> maintaining the statespace cache is
an optimization technique – the precise
method in which the cache is maintained
gives us lots of choices
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checking safety properties
with a stateless search

Automaton A = { S, s0, L, T, F }
Stack D = {}
/* StateSpace V = {} */

Start()
{

Push_Stack(D, A.s0 )
Search()

}

Search()
{

s = Top_Stack(D)

if (!Safety(s))
Print_Stack(D)

for each (s,l,s')∈∈∈∈ A.T
if In_Stack(D, s')== false
{    Push_Stack(D, s')

Search()
}

Pop_Stack(D)
}

this algorithm trades memory for time
but by minimizing memory use we’ve
created excessive time overhead

Logic Model Checking  [15 of 18] 16

a depth-bounded search
first try

Automaton A = { S, s0, L, T, F }
Stack D = {}
Statespace V = {}
int Depth = 0

Start()
{   Add_Statespace(V, A.s0,0)

Push_Stack(D, A.s0 )
Search()

}

Search()
{   if (Depth > BOUND)

return
Depth++
s = Top_Stack(D)
if (!Safety(s))

Print_Stack(D)

for each (s,l,s')∈∈∈∈ A.T
if In_Statespace(V, s‘)== false
{    Add_Statespace(V, s‘)

Push_Stack(D, s')
Search()

}
Pop_Stack(D)
Depth--

}

adding just this
constraint is not
enough

Depth Bound:

error

Depth: 0

Depth: 1

Depth: 2

3

Depth: 1

2s

fails to report error
even though it is
reachable via a path
shorter than BOUND

truncates search
here, because state
s is already in the
statespace
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depth-limited search
(defined when compiling pan.c with -DREACH)

Automaton A = { S, s0, L, T, F }
Stack D = {}
Statespace V = {}
int Depth = 0

Start()
{   Add_Statespace(V, A.s0,0)

Push_Stack(D, A.s0 )
Search()

}

Search()
{   if (Depth > BOUND)

return
Depth++
s = Top_Stack(D)
if (!Safety(s))

Print_Stack(D)

for each (s,l,s')∈∈∈∈ A.T
if In_Statespace(V, s‘, Depth)== false
{    Add_Statespace(V, s‘, Depth)

Push_Stack(D, s')
Search()

}
Pop_Stack(D)
Depth--

}

In_Statespace(V,s,d)

returns false if there is no
state (s’,d’) in V with s=s’

returns true if there is a
previously stored state (s’,d’) in V
with s=s’ and d >= d’

returns false if there is a
previously stored state (s’,d’) in V
with s=s’ and d < d’
and simultaneously replaces (s’,d’)
with (s’,d)

the complexity increases:
in the worst case: if R is the nr of states,
we may explore each state up to R times
(quadratic time complexity in R)
memory use increase only linearly
(to store the depth field)

store the min-depth with each state

Logic Model Checking  [15 of 18] 18

the revised algorithm

error

Depth: 0

Depth: 1

Depth: 2

3

Depth: 1

s:3
Depth Bound:

error

Depth: 4 Depth Bound: 3

s:2 Depth: 2

s:1 s’:1
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breadth-first search

Automaton A = { S, s0, L, T, F }
Queue D = {}
Statespace V = {}

Start()
{

Add_Statespace(V, A.s0)
Add_Queue(D, A.s0)
Search()

}

Search()
{

while (!Empty_Queue(D))
{   s = Del_Queue(D)

for each (s,l,s') ∈∈∈∈ A.T
if In_Statespace(V, s') == false
{   Add_Statespace(V, s’)

Add_Queue(D, s')
} }

}

Figure 8.6

how do we report
safety violations?

(we have no Stack to reproduce
the counter-example here...)

Add_Queue(D,s)
adds s to ordered set D

Del_Queue(D)
removes and returns bottom
element from D

Empty_Queue(D)
returns true if D contains
at least one element, and
otherwise returns false

the Stack becomes a FIFO Queue

NB: Fig
. 8.6 i

n book 
has an

incorre
ct vers

ion of 
this al

gorithm
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Spin’s breadth-first search option
(defined by compiling pan.c with –DBFS)
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adds (pointer to) predecessor state s
to allow constructing a path from
the initial system state to error

PrintPath(s)
{  State s’ = In_Statespace(V,s);

if (s’ != nil && s’ != s)
PrintPath(s’)

PrintState(s)
}

Add_Statespace(V,s,s’)
adds state s to set V, together with
(a pointer to) a predecessor state s’

In_Statespace(V,s)
returns s if s is not yet in V
else returns predecessor state s’ if
any, or nil if s has no predecessor
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dfs and bfs search orders

the queue holds one layer
of successor states at a time

the statespace holds previously
visited states plus (pointers to)
predecessor states

the statespace set is now required, to assure
termination of the search 

1:nil

2:1 3:1

5:2 6:34:2

7

1

2 6

5 73

4

the stack holds a
path from the root state
towards a leaf state

the statespace of previously
visited states acts as a
search optimization strategy

Logic Model Checking  [15 of 18] 22

comparing dfs and bfs

• pro:
– with the breadth-first search, safety violations are detected 

at the shortest possible distance from the root

• con:
– in breadth-first search, we can no longer use the contents 

of the stack to produce a complete counter-example when 
a safety violation is found

• we must now store with each state a pointer to at least one 
predecessor state to be able to reconstruct the path from root 
to error state, which increases memory use

– the statespace cannot be lossy
– no efficient strategy is known for extending a breadth-first 

search to do cycle detection (to check liveness properties)
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liveness properties

• a relatively simple case first:
– detecting the presence of non-progress cycles

method:
add a 2-state asynchronous demon process
that can switch from its initial state s0
to its final state s1 at any moment; it cannot
exit from its final state

progress:

1

2

3

4

5

s0

s1

s2

s3

s4

s0 s1true false

perform the normal depth-first search, with
this demon process added, with one change:
block all transitions that exit a global
progress states whenever the demon is in state s1

any cycle in the resulting graph with the demon
process in state s1 is a non-progress cycle
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np detection algorithm
(in early versions of Spin)

progress:

1

2

3

4

5

s0

s1

s2

s3

s4

s0 s1true false

progress:

1

2

3

4

5

progress:

6

7

8
9

cost:
at most 2x the complexity of a regular depth-first search
the cost is in time, not in memory, because we can encode
the state of the demon in 2 bits and add it to
the state-vector; the bits encode for each state whether it
was visited with the demon in state s0 and/or in state s1

simple to prove:
if at least one non-progress cycle exists,
this algorithm will always find at least one

10

10

10

2 bit tags:

10

11

11

11

01

depth-first
search order

a kind of “nested”
depth-first search

the complete execution can be reproduced from the stack
contents during the search, as before
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checking omega acceptance
(and general liveness properties)

• to prove liveness properties, it is sufficient if we can detect the 
existence of cyclic paths in the product automaton (i.e., the 
reachability graph) that contain at least one accepting state

• note that a straight dfs alone does not suffice to detect the 
acceptance cycle in this graph
– when revisiting state 4 from 5, we cannot tell that there exists a path 

from 4 back to 5 (no transitions are stored in the dfs statespace)

1

2

3

4

5

Logic Model Checking  [15 of 18] 26

different ways of solving this problem
• the default graph search algorithm would be

– Robert Tarjan’s classic DFS algorithm to compute the strongly 
connected components of a graph

• a strongly connected component (SCC) is a subset of the states such 
that each of the states within this subset is reachable from all others in 
the subset

• Tarjan’s algorithm uses two 32-bit integers per state: the depth-first 
number and a lowlink number

– we can check each SCC for the presence of accepting states
• if found, compute a path to the accepting state
• and a cyclic path within the SCC

this graph has
one SCC, which
contains all states
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5

Spin’s
nested depth-first search algorithm

• to solve the problem in our case, it suffices to know if:
– there exists at least one accepting state that is: both reachable from 

the initial state AND reachable from itself

– two simpler sub-problems that can each be solved with a depth-first search, 
without the need for computing strong components (SCCs)

– by combining the two stacks, we again immediately have a complete 
execution trace for a counter-example

start of 2nd dfs with
state 5 as root
(the seed state 5’)

3’

1

2

3

4

5

start of 1st dfs

4’
2

1’
3

2’4

6

5’

1

cycle found!
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efficient storage

seed state 
for 2nd dfs

3’

1

2

3

4

5

initial state
for 1st dfs

4’

1’

2’

5’

seed state revisited:
cycle found

10

10

10 10

10

11

11

11

11

in postorder:
check for every reachable accepting state
if the state is reachable from itself

visited in the 1st statespace
visited in the 2nd statespace

possible values:
10
01
11

what makes it efficient:
the 2nd statespace contains at most 1 “copy”
of each state in the 1st statespace
(but we store the 2nd copy by tagging states in the
1st statespace with just two extra bits per state)

Logic Model Checking  [17 of 18] 6

computational complexity
• every state is visited maximally twice by this algorithm

– this means the runtime can at worst double
– complexity remains linear in number of reachable states

• memory cost is largely unaffected
– each state is stored only once
– using a 2-bit tag per state

• this algorithm also solves non-progress cycle detection 
– acceptance cycle detection for LTL formula: <>[] _np

• until 1996 there was a separate algorithm in Spin for handling 
non-progress cycle detection
– omitted in version 2.9.0 without loss of generality
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the nested depth-first search algorithm

Automaton A = { S, s0, L, T, F }
Stack D = {}
Statespace V = {}
State seed = nil
Boolean toggle = false

Start()
{   Add_Statespace(V, A.s0, toggle)

Push_Stack(D, A.s0, toggle)
Search()

}

Search()
{   (s,toggle) = Top_Stack(D)

for each (s,l,s') ∈∈∈∈ A.T
{ /* if seed is reachable from itself */

if s' == seed ∨∨∨∨ On_Stack(D,s',false)
{   PrintStack(D)

PopStack(D)
return

}
if In_Statespace(V, s', toggle) == false
{    Add_Statespace(V, s', toggle)

Push_Stack(D, s', toggle)
Search()

} }

if s ∈∈∈∈ A.F ∧∧∧∧ toggle == false
{ seed = s /* reachable accepting state */

toggle = true
Push_Stack(D, s, toggle)
Search() /* start 2nd search */
Pop_Stack(D)
seed = nil
toggle = false

}
Pop_Stack(D)

}

Logic Model Checking  [17 of 18] 10

the nested depth-first search algorithm

Automaton A = { S, s0, L, T, F }
Stack D = {}
Statespace V = {}
State seed = nil
Boolean toggle = false

Start()
{   Add_Statespace(V, A.s0, toggle)

Push_Stack(D, A.s0, toggle)
Search()

}

Search()
{   (s,toggle) = Top_Stack(D)

for each (s,l,s') ∈∈∈∈ A.T
{ /* if seed is reachable from itself */

if s' == seed ∨∨∨∨ On_Stack(D,s',false)
{   PrintStack(D)

PopStack(D)
return

}
if In_Statespace(V, s', toggle) == false
{    Add_Statespace(V, s', toggle)

Push_Stack(D, s', toggle)
Search()

} }

if s ∈∈∈∈ A.F ∧∧∧∧ toggle == false
{ seed = s /* reachable accepting state */

toggle = true
Push_Stack(D, s, toggle)
Search() /* start 2nd search */
Pop_Stack(D)
seed = nil
toggle = false

}
Pop_Stack(D)

}

important detail:
the 2nd search is started in
post-order: after searching
all successors of an accepting
state in the 1st search
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correctness

za the first accepting state that is reachable from itself
for which the 2nd dfs is performed

ze a successor of an earlier accepting state zn (not reachable from itself)
we can only fail to close the cycle on za if the cycle passes
through such a state ze

zn an earlier accepting state (not reachable from itself) with ze as
a successor
Q: can state ze exist?
A: no, because if ze is reachable from zn, then za is reachable from zn

and za would have been explored in the 2nd dfs before zn

the critical property: the algorithm will detect at least one acceptance cycle, if
at least one such cycle exists

zaze

zn

for a more formal
argument, see book p. 179
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weak and strong fairness

• strong fairness
– an ω-run σ satisfies the strong fairness requirement if it 

contains infinitely many transitions from every process 
(component automaton in the asynchronous product) that is 
enabled (has an executable action) infinitely often in σ

• weak fairness
– an ω-run σ satisfies the weak fairness requirement if it 

contains infinitely many transitions from every process 
(component automaton in the asynchronous product) that is 
enabled (has an executable action) infinitely  long in σ


