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Brief Recap

1. Unwinding symbolic transition function T : ℘(S)→ ℘(S)

t -I T∧ t -T∧ t . . .∧ t -T∧ t
2. Efficient decision procedures to check

satisfiability of unquantified formulas
I SAT solvers: Propositional logic, bit-vector logic
I SMT solvers: Equality, uninterpreted functions, arrays, . . .

3. Does not use fixed point detection:

µS . (I ∪ S ∪ T (S))
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Theoretical Foundation:
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Orders and Ordered Sets

I Commonly used symbols for orders:
≤,⊆,v,�, strict versions: <,⊂,@,≺

I A partial order R is
I reflexive (〈s, s〉 ∈ R for all s ∈ S)
I transitive (〈s0, s1〉 ∈ R and 〈s1, s2〉 ∈ R implies 〈s0, s2〉 ∈ R)
I anti-symmetric (〈s0, s1〉 ∈ R and 〈s1, s0〉 ∈ R implies s0 = s1)

Definition (Ordered Set)

An ordered set 〈S,v〉 comprises a
I set S and
I an order v.

〈S,v〉 is a poset if v is a partial order.



Fixed Points

Definition (Fixed Points, Fixpoints)

Let F : S → S be a function on a poset 〈S,v〉.
Then s ∈ S is

I a fixpoint if s = F (s).
I a pre-fixpoint if s v F (s)
I a post-fixpoint if F (s) v s

F (s) v s

F (s) = s

s v F (s)



Fixed Point Induction

I Fixed point induction

F (I) v I I v P
µF v P

lfp-induction

F . . . transition system
P . . . safety property (“good states”)
I . . . “safe” invariant

I But how can we find I?
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Approximation of Fixed Points

I I is post-fixpoint, therefore µF v I (by Knaster-Tarski)
I I must be tight enough, i.e., I v P

I Alternative formulation: I u P = ⊥
I P . . . “bad states”

I Want to show that µF u P = ⊥
I Therefore, it must hold that
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Approximation of Fixed Points: Interpolants

I Resembles Craig’s interpolation theorem:

Definition (Craig-Robinson Interpolation Theorem)

Let A and B be two first-order logic formulas such that
A ∧ B ⇒ false. Then there is a formula I (called interpolant) s.t.

I A⇒ I
I B ⇒ ¬I (i.e., B ∧ I ⇒ false)
I All non-logical symbols and free variables in I occur in A as

well as in B



What is a Craig interpolant?

“Traditional” definition [William Craig, 57]:
I A⇒ I ⇒ C
I all non-logical symbols in I occur in A as well as in C

A

C

I



What is a Craig interpolant?

Common definition for automated verification:
I A⇒ I and I ∧ B inconsistent
I all non-logical symbols in I occur in A as well as in B

C

I

B=¬C

“bad 
 states”

“reachable”
A



Craig interpolation & Approximation of Fixed Points

I Additional condition: Want I to be quantifier-free

I Interpolating decision procedures exists for various logics
I Algorithm discussed later
I It’s possible to compute interpolants for

quantifier-free propositional logic

I However, we do not have µF
I Therefore can’t compute interpolant I for µF and P



Interpolant-based Model Checking

I We use interpolation to over-approximate the post-image

post(Q)
def
= {s |T (Q,Q′) ∧ s ∈ Q′}

(symbolic representation: (∃S .S = Q ∧ T (S,S′))[S/S′])
I Let

Q . . . initial states (program pre-condition)
P . . . safety property
stmt . . . monolithic transition function

I Check whether program is safe after first iteration:

(post(Q) ∧ ¬P)⇒ false

I Over-approximate safely reachable states after one iteration:

post(Q)⇒ I I ∧ (¬P)⇒ false



Interpolant-based Model Checking

I Remember: symbolic transition relation T (si , si+1) from sp
I BMC: Unwinding T

t -Q T∧ t -
¬P ∨

T∧ t . . .
¬P ∨
∧ t -

¬P ∨
T∧ t
¬P

I Now split the unwound formula:
I A(s0, s1)

def
= Q(s0) ∧ T (s0, s1)

I B(s1, . . . , sk)
def
=

T (s1, s2) ∧ . . . ∧ T (sk−1, sk) ∧ ¬(P(s1) ∧ . . . ∧ P(sk))

I B represents “unsafe” states s1, . . . , sk

I Remember: ∃s0 .A(s0, s1) represents post(Q)
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Interpolant-based Model Checking

A(s0, s1)
def
= Q(s0) ∧ T (s0, s1)

B(s1, . . . , sk)
def
= T (s1, s2) ∧ . . . ∧ T (sk−1, sk)∧

¬(P(s1) ∧ . . . ∧ P(sk))

I Interpolant I(s1) for A(s0, s1) and B(s1, . . . , sk):

I over-approximates post(Q), i.e., post(Q)⇒ I

I ¬P can not be reached from I within k − 1 steps



Bounded Model Checking

s0

T(s0,s1) T(s1,s2)

s1
s2

Bad states



Interpolant-based Model Checking

T(s0,s1) T(s1,s2)

Bad states



Property-preserving Approximation

Bad states



Interpolant-based Model Checking: Iteration

A(s0, s1)
def
= Q(s0) ∧ T (s0, s1)

B(s1, . . . , sk)
def
= T (s1, s2) ∧ . . . ∧ T (sk−1, sk)∧

¬(P(s1) ∧ . . . ∧ P(sk))

I I(s1) is safe with respect to B(s1, . . . , sk)

I Now restart BMC with initial state Q′(s0) ≡ I(s0) ∨ Q(s0)

I Restart BMC until (I(s0) ∨ Qi(s0))⇒ Qi(s0)
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Interpolant-based Model Checking: Iteration

T(s1,s2)

s1
s2

T(s0,s1)

s0

I

Bad states



Example: Counting State Machine

I x0 = 0
I T (xi , xi+1) ≡ (xi+1 := xi + 2)
I Property: x 6= 7

A(s0, s1)
def
= (s0.x = 0) ∧ (s1.x = s0.x + 2)

B(s1)
def
= x1 = 7

s0 ∪ post post
x0 = 0 s1.x = 2

{0, 2} s1.x ∈ {2, 4}
{0, 2, 4} s1.x ∈ {2, 4, 6}
{0, 2, 4, . . .} s1.x ∈ {2, 4, 6, . . .}
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Spurious Counterexamples

What happened?

I Our over-approximation was too coarse
I We get a spurious counterexample:

s0.x = 5 → s1.x = 7

I Why? s1.x 6= 7 is safe, doesn’t violated x = 7
I But a “bad state” is reachable from s1.x 6= 7 within 1 step

I Can we improve I?
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Example Revisited: Counting State Machine

I x0 = 0
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Improving Approximations

I Is there still hope?

I Yes! Remember greatest fixpoint!
I As we keep expanding B(s1, . . . , sk) by increasing k ,

we’re is approaching the greatest fixpoint νF−1(¬P)

I Eventually, B(s1, . . .) represents all “bad states” s1
I the states s1 from which ¬P can be reached

I Since B(s1, . . .)⇒ ¬I, I represents all “good states”
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Interpolation-based Model Checking

I Complete (eventually converges to fixed point)
I Approximate post-image via interpolation

I How do we compute these interpolants?



Recap: What is a Craig interpolant?

“Traditional” definition [William Craig, 57]:
I A⇒ I ⇒ C
I all non-logical symbols in I occur in A as well as in C
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Recap: What is a Craig interpolant?

Common definition for automated verification:
I A⇒ I and I ∧ B inconsistent
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Construction of Craig Interpolants

Various techniques exist:
I Quantifier elimination
I Construction based on model theory/enumeration
I Extraction from (refutation) proofs



Construction of Craig Interpolants (continued)

I We will look at unquantified propositional logic first:

formula ::= formula ∧ formula | formula ∨ formula |
¬formula | (formula) | atom

atom ::= propositional identifier | constant
constant ::= true | false



Craig Interpolation for Propositional Logic

I Let Var(A) denote the free propositional variables in A

Definition (Craig-Robinson Interpolation Theorem)

Let A and B be two unquantified propositional logic formulas such
that A ∧ B ⇒ false. Then there is a propositional logic formula I
(called interpolant) s.t.

I A⇒ I
I B ⇒ ¬I (i.e., B ∧ I ⇒ false)
I Var(I) ⊆ (Var(A) ∩Var(B))



Craig Interpolation for Propositional Logic

I Trivial if we allow quantifiers:
I Existentially quantify “A-local” variables:

∃x ∈ (Var(A) \Var(B)) .A

I Universally quantify “B-local” variables:

∀y ∈ (Var(B) \Var(A)) .¬B



Strongest and Weakest Craig Interpolants

Theorem (Strongest and Weakest Interpolant)

Let A and B be two unquantified propositional logic formulas such
that A ∧ B ⇒ false.

Then
∃x ∈ (Var(A) \Var(B)) .A

is the strongest interpolant with respect to 〈A,B〉.

Conversely,
∀y ∈ (Var(B) \Var(A)) .¬B

is the weakest interpolant with respect to 〈A,B〉.



Eliminating Quantifiers in Craig Interpolants

I We require quantifier-free interpolants for efficient fixed point
detection

I Can we eliminate quantifiers in

∃x ∈ (Var(A) \Var(B)) .A ?

I Co-factoring:

∃x.F (x) ≡ F (true) ∨ F (false)

I Potentially results in exponential blow-up
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Interpolants from Refutation Proofs

I Given a refutation proof, we can extract an interpolant in
polynomial time!

Theorem (Feasible Interpolation Theorem)

Let P be a resolution refutation proof of size n for A ∧ B. Given P,
an interpolant I for 〈A,B〉 can be computed in O(n2).

I This result stems from complexity theory:
I Bound for proof complexity
I Motivated by P ?

= NP question
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Resolution Refutations

I CNF formula: A conjunction of clauses∧
i

∨
j

`i,j , `i,j ∈ {a, a | a ∈ Variables}

e.g.,
a1 ∧ (a1 ∨ a2) ∧ (a1 ∨ a2) ∧ a1

I Resolution proofs

(C ∨ a) (D ∨ a)
C ∨ D

[Res]
a1

a1a2 a1a2 a1

a2

a1

�

I Provided by modern SAT solvers



Resolution Refutations
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�
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Colouring Formulas

A ≡ a1 ∧ (a1 ∨ a2) B ≡ (a1 ∨ a2) ∧ a1



Colouring Resolution Proofs



McMillan’s Interpolation System

Annotate each clause C in the proof with a partial interpolant I

I Base case (initial clause C):

I I = “keep all literals ` ∈ C s.t. var(`) ∈ Var(B)”

I I = true

I Induction step (internal clauses C1, C2):

C1 ∨ a [I1] C2 ∨ a [I2]
C1 ∨ C2 [I3]

if a /∈ Var(B), I3
def
= I1 ∨ I2 I1

I2
I3

if a ∈ Var(B), I3
def
= I1 ∧ I2 I1

I2
I3



Interpolants from Proofs: Example Revisited

a1

a1a2 a1a2 a1

a2

a1

�

a1a2 TT

a1

I I is (a1 ∧ a2)



Interpolants from Proofs: Another Example

A ≡ (a1∨a2)∧ (a1∨a3)∧a2 and B ≡ (a2∨a3)∧ (a2∨a4)∧a4 .

a1a2 [a2] a1a3 [a3]

a2 [a2]a2a3 [a2 ∨ a3]

a3 [a3 ∧ a2]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

� [a3 ∧ a2]



Projection in McMillan’s Interpolation System

Given clause C = {a1, . . . , an},
I C|A =”all literals ` ∈ C s.t. var(`) ∈ Var(A)”
I C|B =”all literals ` ∈ C s.t. var(`) ∈ Var(B)”

Invariant for partial interpolant I:

I A′ ∧ ¬(C|A′)⇒ I
I B′ ∧ ¬(C|B′)⇒ ¬I
I Var(I) ⊆ Var(A′) ∩Var(B′)



What is a Partial Interpolant?

I Subproofs, intermediate conclusions:

false

C

A′︷︸︸︷ B′︷︸︸︷ C |A′

C |B′

A′ B ′C

I Assumption: C = (CA′ ∨ CB′), where Var(CA′) ⊆ Var(A′)
I Annotated inference steps:

A′ [IA] B′ [IB]
C [I]

,



What is a Partial Interpolant? (continued)

false

C [I ]

A′︷︸︸︷ B′︷︸︸︷
I A′ ∧ ¬(C|A′)⇒ I
I B′ ∧ ¬(C|B′)⇒ ¬I
I Var(I) ⊆ Var(A′) ∩Var(B′)

false [I]

A︷ ︸︸ ︷ B︷ ︸︸ ︷
I A⇒ I
I B ⇒ ¬I
I Var(I) ⊆ Var(A) ∩Var(B)



McMillan’s Interpolation System

I Provides quantifier-free interpolants
I Note: Interpolant is not necessarily in CNF

I However, McMillan’s system was not the first of its kind:

Huang, Krajı́ček, Pudlák (all around 1995-1997)
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Recap: Interpolants from Refutation Proofs

A B

⊥

A0

A1 C2

B1
C1

[I2]

[I1]

[I1 ∨ I2]
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Recap: Interpolants from Refutation Proofs

A B

⊥

A0

A1 C2

B1
C1

[I2]

[I1]

[I1 ∨ I2]



Propositional Resolution Refutations

(x1 ∨ x2) ∧ x0 ∧ (x0 ∨ x2) ∧ x2 ∧ (x1 ∨ x2)

(C ∨ x) (D ∨ x)
C ∨ D

[Res] x0 x0 x2

x2x1 x2

x1

x1 x2x2

x1

�



Interpolants as Separators [Pudlák JSL’97]

(x1 ∨ x2) ∧ x0 ∧ (x0 ∨ x2)︸ ︷︷ ︸
A

∧ x2 ∧ (x1 ∨ x2)︸ ︷︷ ︸
B

A⇒ x1 B ⇒ x1 x1 ∈ Var(A) ∩Var(B)

I is false (x1 7→ 0) −→ A[x1 7→ 0] unsatisfiable
I is true (x1 7→ 1) −→ B[x1 7→ 1] unsatisfiable
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Interpolants separate Resolution Proofs [Pudlák JSL’97]

x0 x0 x2

x2x1 x2

x1

x1 x2x2

x1

�

I Annotate each clause C in proof with partial interpolant IC
I A ∧ ¬IC ⇒ C \ {` ∈ C | ` is }
I B ∧ IC ⇒ C \ {` ∈ C | ` is }
I Var(IC) ⊆ Var(A) ∩Var(B)
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�
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�
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Interpolants separate Resolution Proofs [Pudlák JSL’97]

x0 x0 x2

x2x2

�

x2x2

�

�
x1 1 0

I Annotate each clause C in proof with partial interpolant IC
I A ∧ ¬IC ⇒ C \ {` ∈ C | ` is }
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Pudlák’s Interpolation System [Pudlák JSL’97]

I Base case (initial vertices):
I If C ∈ A: I def

= false
I If C ∈ B: I def

= true

I Induction step (internal vertices):

C1 ∨ x [I1] C2 ∨ x [I2]
C1 ∨ C2 [I3]

if x is I3
def
= I1 ∨ I2 I1

I2
I3

if x is I3
def
= (x ∨ I1) ∧ (I2 ∨ x) 0 1

I1 I2

a

if x is I3
def
= I1 ∧ I2 I1

I2
I3



Interpolants from Proofs: Second Example Revisited

A ≡ (a1∨a2)∧ (a1∨a3)∧a2 and B ≡ (a2∨a3)∧ (a2∨a4)∧a4 .

a1a2 [⊥] a1a3 [⊥]

a2 [⊥]a2a3 [⊥]

a3 [⊥]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

� [a3]

I a3 differs from a3 ∧ a2 (obtained using McMillan’s technique)
I Contains fewer variables
I Is weaker
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I Contains fewer variables
I Is weaker



Interpolant-based Model Checking Revisited

A(s0, s1)
def
= Q(s0) ∧ T (s0, s1)

B(s1, . . . , sk)
def
= T (s1, s2) ∧ . . . ∧ T (sk−1, sk)∧

¬(P(s1) ∧ . . . ∧ P(sk))

I I(s1) is safe with respect to B(s1, . . . , sk)

I Now restart BMC with initial state Q′(s0) ≡ I(s0) ∨ Q(s0)

I Restart BMC until (I(s0) ∨ Qi(s0))⇒ Qi(s0)
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Interpolant-based Model Checking: Example

a2a1a0

a2a1a0

a2a1a0

À

Á

Â

Q(~a) def
= (a2 ∧ a1 ∧ a0)

T (~a,~a′) def
= (a2 ∧ a1 ⇒ a′2 ∧ a′1) ∧ À

(a2 ∧ a1 ⇒ a′2 ∧ a′1) ∧ Á

(a2 ∧ a1 ⇒ a′2 ∧ a′1) ∧ Â

(a2 ∧ a1 ⇒ a′2 ∧ a′1) ∧ Ã

(a′2 ∧ a′1 ∨ a′2 ∧ a′1 ∨ a′2 ∧ a′1)⇒ a′0

F (~a) = ¬P(~a) = def
= a0 ∧ (a1 ∨ a2)



Interpolant-based Model Checking: Example

I Let A1 be Q(~a) ∧ T (~a,~a′) and B1 be F (~a′).
I Resolution proof R1:

a2a1a
′
1 [a

′
1] a1 [⊥] a2 [⊥] a2a1a

′
2 [a

′
2]

a′2a
′
1a

′
0 [a

′
2 ∨ a′1 ∨ a′0]

a′0 [>]

a2a
′
1 [a

′
1] a1a

′
2 [a

′
2]

a′1 [a
′
1]

a′2 [a
′
2]

a′1a
′
0 [a

′
2 ∧ a′1 ∨ a′2 ∧ a′0]

a′0 [a
′
2 ∧ a′1 ∧ a′0]

� [a′2 ∧ a′1 ∧ a′0]

Q(~a) = a2 ∧ a1

T (~a, ~a′) = (a2 ∨ a1 ∨ a′1)∧
(a2 ∨ a1 ∨ a′2)∧
(a′2 ∨ a′1 ∨ a′0)

F (~a′) = a′0



Interpolant-based Model Checking: Example

I1(~a′) = a′2 ∧ a′1 ∧ a′0

is equivalent to the exact image

∃~a .Q(~a) ∧ T (~a,~a′).

Note that Pudlák’s system provides an alternative interpolant:

I1(~a′) = ¬a′0
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Interpolant-based Model Checking: Example

I Continue with Q(~a) ∨ I1(~a) yields
I Needs to be “Tseitinised”:

(o0 ∨ o1) ∧ (o0 ∨ Q(~a)) ∧ (o0 ∨ ¬Q(~a)) ∧
(o1 ∨ I(~a)) ∧ (o1 ∨ ¬I(~a))

I (continue recursively)

I Construct (A,B)-refutation R2 of
A2 = (Q(~a) ∨ I(~a)) ∧ T (~a,~a′) and B2 = F (~a′).



Interpolant-based Model Checking: Example

I Continue with Q(~a) ∨ I1(~a) yields
I Needs to be “Tseitinised”:

(o0 ∨ o1) ∧ (o0 ∨ Q(~a)) ∧ (o0 ∨ ¬Q(~a)) ∧
(o1 ∨ I(~a)) ∧ (o1 ∨ ¬I(~a))

I (continue recursively)

I Construct (A,B)-refutation R2 of
A2 = (Q(~a) ∨ I(~a)) ∧ T (~a,~a′) and B2 = F (~a′).



Interpolant-based Model Checking: Example

a2a1a
′
1 [a

′
1] o0a1 [⊥] o0a2 [⊥] a2a1a

′
2 [a

′
2]

a′2a
′
1a

′
0 [a

′
2 ∨ a′1 ∨ a′0]

a′0 [>]

o0a2a
′
1 [a

′
1] o0a1a

′
2 [a

′
2]

o0a
′
1 [a

′
1]

o0a
′
2 [a

′
2]

o0a
′
1a

′
0 [a

′
2 ∧ a′1 ∨ a′2 ∧ a′0]

o0a
′
0 [a

′
2 ∧ a′1 ∧ a′0]

o0 [a
′
2 ∧ a′1 ∧ a′0]o1o0 [⊥]

o1 [a
′
2 ∧ a′1 ∧ a′0] o1 [a

′
2 ∧ a′1 ∧ a′0]

� [a′2 ∧ a′1 ∧ a′0 ∨ a′2 ∧ a′1 ∧ a′0]

Q(~a) ∨ I ′(~a) =

(o1 ∨ o0) ∧
(o1 ∨ a2) ∧ (o1 ∨ a1) ∧
(o0 ∨ a2) ∧ (o0 ∨ a1)

symmetric



Interpolant-based Model Checking: Example

Itp(R2) = (a′2 ∧ a′1 ∧ a′0 ∨ a′2 ∧ a′1 ∧ a′0)

I Note that the Tseitin variables are always local and do not
occur in interpolant

I Again, Itp(R2) is the exact image ∃~a.(Q(~a) ∨ I(~a)) ∧ T (~a,~a′)
I We need to iterate again!

I However, Pudlák provides an alternative interpolant:

I2(~a′)
def
= ItpHKP(R2) = ¬a′0

I In this example, Pudlák’s interpolants lead to
faster convergence
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Interpolant-based Model Checking Revisited

I Resolution proof in second iteration contingent on

I(s0) ∨ Q(s0)

I Interpolation is a “lucky guess”
I Remark: We can show that McMillan’s interpolant always

implies Pudlák’s interpolant



Overview Model Checking Techniques

Explicit State Model Checking
I Explicit enumeration of reachable states
I Fixpoint detection

Symbolic Model Checking
I States represented symbolically (BDDs)
I Fixpoint detection

Bounded Model Checking
I Unwinding of Transition Relation
I No fixpoint detection

Interpolation-based Model Checking
I Unwinding of Transition Relation
I Fixpoint detection using approximation


