This lecture is based on
the lecture course CS118

"Logic Model Checking”
by Gerard Holzmann

automata theory

« we'll now formally introduce the notion of
— finite automata, automata runs, words and languages
— -automata, w-runs, and w-regular languages
— Buchi acceptance
— the stuttering rule
— automata products
— linear temporal logic (LTL) and the link to wm-automata

Logic Model Checking [10 of 18]

finite set of states

a distinguished initial state in S
finite set of labels (symbols)
set of final states in S
T < SxLxS transition relation, connecting states in S

« dot notation: given an automaton A
— A.S s its set of states

— A.s, is its initial state
— ... etc.

an example finite state automaton

A:{S,sO, L F,T)

A.S:{sq, Sy, Sy, S3, S, }

A.L = { o, 0, O, Ols, Oy, Ols }

Logic Model Checking [10 of 18] 10

an Interpretation of this automaton
a process scheduler

@ 0L unblock block

waiting

Logic Model Checking [10 of 18] 11

the automaton written as a never claim

never {

idle: (start) ->

ready: (run) ->

execute: 1if
:: (pre-empt) -> goto ready
:: (block) -> goto waiting
:: stop -> goto end

fi;
waiting: (unblock) -> goto execute;
skip unblock block
waiting

Logic Model Checking [10 of 18] 12

determinism and non-determism

» a finite state automaton A={S, s,, L, F, T} is

deterministic iff

VsVI, ((s,1,s)eA.T N (s,I,s")eA. T — s'=s”

2 Very
X Usef;
s0 Ite s N-de i

Jac
true Of the Oarseg
approve <E§:> behawbrofaibsnacﬁon
e

set F is empty here Quest Server

Logic Model Checking [10 of 18]

13

the definition of a run

a run of finite state automaton {S, s,, L, T, F} is an ordered,
and possibly infinite, set of transitions from T:

G = {(Su))0,S1), (81,11,82), (S212,85), ...

such that
Vi,i=0:(s;,l,Si.1) e T

each run corresponds to a state sequence in S and a word in L

pre-empt

execute

unblock

the standard definition of acceptance

an accepting run of finite state automaton A
IS a finite run o for which the final transition
(S,.1,l,.1,S,) satisfies s_e A.F

I.e., the run ends in a final state

pre-empt

execute

unblock

the language accepted by an automaton

the language of automaton A is the set of
words in A.L that correspond to the set of all the
accepting runs of automaton A

(there can be infinitely many words in the language
of even a small finite state automaton)

a characterization of the
complete language of
automaton A (an infinite set of words):

pre-empt

execute a regular

expression
+: choose
*: repeat zero

waiting or more times

the shortest word in the language:
{ start, run, stop }

reasoning about runs
formal properties of automata

interpretation:

sample property:

“if first p becomes frue
and then later g becomes ftrue,
then r can no longer become true”

reaching this state
constitutes a complete
match of the pattern
that specifies the
correctness violation

correctness claim:
it is an error if in a run we

this property is easily expressed with .
see first p then q and then r

the standard definition of acceptance

Logic Model Checking [10 of 18] 17

but... sometimes we have to reason
about potentially infinite delay...

attempted interpretation:

a classic liveness property:

“if p then eventually q”

Problem: we cannot express this with the standard
definition of acceptance: we cannot express

that a run may not remain in the error state
infinitely long...

this property can only be violated by an infinite run...
the standard notion of acceptance applies only to finite runs...

Logic Model Checking [10 of 18] 18

how we would say this
IN a never claim

better would be to use:
true
instead of !p
(to state that every occurrence
of p is eventually followed by q)

1
p -> goto error
H
error:
accept:

s\\\\\\\\ g takes us out of the

acceptance states, though, error pattern, so need
are defined differently in not be specified in the
classic automata theory... automaton

hence the switch to
omega-automata theory....

Logic Model Checking [10 of 18] 19

notation

« for every infinite run o of a finite automaton we can divide the
transitions that appear in ¢ into two sets:

« a set ot of transitions that are only taken finitely many times
« a set og®of transitions that are repeated infinitely often

Logic Model Checking [10 of 18] 20

Buchi acceptance

an accepting w-run of finite state automaton A
IS an infinite run ¢ such that

di>0,(s.4,l. 1,S)ec: s;,e AFAS € o®

l.e., at least one state in A.F is visited infinitely often

w-language
w-words

accept-state labels

« Spin’s accept-state label capture the semantics of -
acceptance we just defined
— Spin can report for any state marked with an accept-state label if
the following two conditions can be met:
 the state is reachable from the initial system state, and
» the state is reachable from itself

— these are the necessary and sufficient conditions for an acceptance
cycle to exist

Q:

but if we replace classic acceptance of finite runs

with (W-acceptance on infinite runs, how do we retain
the capability to reason about finite runs within
this new theoretical framework?

Logic Model Checking [10 of 18] 22

never claims

precisely matches the
definition of accept state
labels in Promela

never {
idle:
ready:
accept:
execute: 1if

(pre-empt) -> goto ready
(block) -> goto waiting
stop -> goto end

£i; unblock| |block
waiting: (unblock) -> goto execute;
end: (false) waiting

d AN

N\

but what should we do with
finite runs.....

Logic Model Checking [10 of 18] 23

the stutter extension rule
iInterpreting finite runs as special cases of infinite runs

 the label set of the automaton is extended to L U ¢
* ¢is a predefined nil symbol (a no-op or pause)

« to determine w-acceptance, a finite run is (thought to be)
extended into an equivalent infinite run by stuttering the final
state (a state otherwise without outgoing transitions) on ¢

Logic Model Checking [10 of 18]

never claims allow us to reason about
both infinite and finite runs

start

(start) -> |d|e e P .

(run) ->

execute: if

(pre-empt) -> goto ready
(block) -> goto waiting
stop -> goto end

fi;

waiting: (unblock) -> goto execute;

end: true
T
/
/
/
/

} TT—

accept2: . /
do the default meaning of L7
.: true falling off the end @ --____- -~ which is an
od of a never claim... application of

the stutter
extension rule

Logic Model Checking [10 of 18] 25

there are also other types of
w-acceptance

* generalized Buchi acceptance

— instead of one acceptance set Fc S, we define a family of
setsF={F, .., F }
— We now require:
* V], 15j<n, Ji20, (s;.4,l.1,5)€0, s,€ F;Ans,€ 0
* i.e., some state in each acceptance set is visited infinitely often

Logic Model Checking [10 of 18]

26

other types of m-acceptance
Muller automata

* Muller acceptance

— let F < 25 (F is a set if subsets of S)
— require:
« Jf, feF — Vs, sef <> seg®

» (at least one of the elements of F contains all states that are visited
infinitely often in ©

Logic Model Checking [10 of 18] 27

other types of m-acceptance
Rabin automata

« Rabin acceptance

— choose n pairs of sets (L,U)withL, cSand U, c S
— require:
« di, (1<i<n), Vs, (seL;, > s¢c®) Adt, (te U, At ec?)

» (for at least one pair i, none of the states in Li and at least one state in
U. appear infinitel

Logic Model Checking [10 of 18]

28

other types of m-acceptance
Streett automata

« Streett acceptance
— choose n pairs of sets (L,U)withL, cSand U, c S
— require
* Vi, (1<i<n), 3ds(sel;Asec®) v Vt, (teU. — tzc®)

- for at least one pair i, none of the states in U, or at least one state in L,

Logic Model Checking [10 of 18] 29

useful properties of mw-automata

Buchi automata, and @-automata in general, are closed under
all Boolean operations, e.g. for any two automata A and B:

— complement:
- 3C:L(C)=L"\L(A)

 there exists an automaton C that accepts precisely those runs
that are not accepted by any given automaton A

— intersection:

Logic Model Checking [10 of 18]

30

safety and liveness

« safety

— any safety property can be verified by evaluating individual
properties of states

when a safety property (e.g., an invariant) is violated, it is always
possible to identify a specific reachable system state where the
violation can be uniquely established

to check safety properties, we only need to be able to
systematically generate all reachable states of a system, and check
them one by one

we don’t really need the theory of Buchi acceptance, or the stutter
extension rule, to reason about safety property (but LTL can

Logic Model Checking [11 of 18] 2

a safety property

once p becomes true at least once
g can no longer become true

possible violation:
first p becomes true and

then ¢ becomes true anyway

assert (!q)

if a violation is possible,
this observer automaton will be
able to report it immediately
once a specific system state
has been reached

no reasoning about infinite
runs is needed here

Logic Model Checking [11 of 18]

sample system behavior

bool p, q; /* initially false */

active proctype A()
{

(!p && !g) -> p = true
}

active proctype B()
{

(p) -> g = true
}

()

O

Logic Model Checking [11 of 18]

checking the safety property

(AxB) (P)
~ Y

@) S
Ip && !
l P q D l l!p && !q

AxB

)

@ @ assert (!q)

=true
p=tru l p=true

% stop
edid AN

stop
—

reasoning about safety
G%E; =Sz properties can always

be done by a plain

reachability analysis

of either the system
(AxB) or the synchronous assertion

product of a system and violated
a claim (AxB)x(P)

Logic Model Checking [11 of 18]

liveness properties are different...

once p becomes true, within a
finite number of steps q will also be true

possible violation:
first p becomes true but then g
can remain false forever

!'p
-> break

if a violation is possible,

this observer automaton will be
able to report it only when a
matching, potentially infinite,
sequence of states has been seen

Logic Model Checking [11 of 18]

sample system behavior

bool p, q; /* initially false */
active proctype A()

&& !q) -> p = true
active proctype B()

{
(p) -> g = false

note:
the liveness

property 1is
<::> applied here

to a non-cyclic

model.... G%E; -S,

Logic Model Checking [11 of 18]

checking the liveness property

AxXB AxXBxXP

N Ny

l!p && !g

p=true

=9
——>

l!p && !g

S @)=

p=true <

% stop
=

~
S
~

reasoning about

infinite seguences of
states is required to
check liveness properties

property violation:

acceptance cycle on

stutter extension of
finite sequence

) O

Logic Model Checking [11 of 18]

reasoning about executions

» the three views of a run:
— a sequence of states
— a sequence of transitions

— a sequence of propositions on states (state properties)

bit =x, v:

e 0 0 0 0 0 °
active proctype A() {

x = 1;

(y == 0) ->

mutex++;

printf (“%d\n”, _pid);
mutex--;

x =0

p: (X == mutex)
qg: (x !=y)

correctness:

Q: is it always true that p implies !q ?

from logic to automata
(cf. book p. 141)

for any LTL formula f there exists a Buchi automaton that
accepts precisely those runs for which the formula f is satisfied

example: the formula <> [1p corresponds to the non-
deterministic Buchi automaton:

Logic Model Checking [12 of 18] 20

from logic to automata

* itis easy to turn an LTL correctness requirement into a Promela
never claim: negate the LTL formula, and generate the claim
from the negated form:

I<>[1p = [1![1p = [1<>lp

cepts a run if p keeps

ely often
run considered p

riantly, ever

the automaton on!y ac
returning to false |pf|n|t
i.e., securing that in the

does not remain true inva

Logic Model Checking [12 of 18] 21

$ spin -f£

never {
TO init:
if

using Spin to do
the negations and the conversions

‘<>[1p’

/* <>[1p */

: ((p)) -> goto accept_s4

:: (true)-> goto TO init
£fi;

accept_s4:
if

true

t: ((p)) -> goto accept_S4

£fi;

$ spin -f£

never {

TO _init:
if

t: (! ((P)))
:: (true) ->
fi;

accept_S9:
if

fi;

: (true) ->

Vie>[]p!

/* 1<>[1p

-> goto accept_S9 true

goto TO0_init

goto TO0_init

syntax rules

$ spin -f “([] p -> <> (a+b <= ¢))’

define lower-case
propositional symbols
for all arithmetic and

boolean subformulae

#define g (a+b <= ¢) | v

$ spin -f ‘[]1 (P -> <> q)'<

beware of operator
precedence rules..

never { /* [1(p -> <> q) */
TO0 init:
if
(! ((®)) || ((@)))) -> goto accept_S20
(1) -> goto TO_S27
£fi;
accept_S20:
if
(! ((®)) || ((@))) -> goto TO_init
(1) -> goto TO_S27
£i; $ 1tl2ba -f '[] (p -> <> qQ)'°
accept_S27: never { /* []1 (p -> <> q) */
if accept_init:

((g)) -> goto TO_init if
: (1) => goto 70827 :: (!p) || (@) -> goto accept_init
TO S27: £ t: (1) -> goto TO_S2
Y £i;
((q)) -> goto accept_S20 TO0_S2:
(1) -> goto TO_sS27 if
((q)) -> goto accept_s27 :: (1) -> goto TO_S2
£i; :: (g) -> goto accept_init
} fi;
$ }
Logic Model Checking [12 of 18] 23

gaining intuition for Itl formula

° p -> q — ‘!p I q. true

Logic Model Checking [12 of 18] 24

gaining intuition for Itl formula

true

* [1{p-><>0q) e O

Logic Model Checking [12 of 18] 25

the last few steps...

* [(p->X<>q)8&&(<>p) =——n

but, what we really want for

spin -f

true

true

Ip&&q

@
P&&q

true

true
q

'p

!p
Ip&&qg
@ -0-—0

true

-__arger pr

a

operty automa®
r to u

y harde compl

Logic Model Checking [12 of 18]

26

automata products

« consider a system of n processes, modeled as finite
state automata A, A,, ... A,

» add property automaton B (e.g. derived from an LTL formula)

 a model checker can compute the reachable state
space as

- ES = EB (:) I?i/a“ {ll}

>

an asynchronous
product of n automata

a synchronous
product of 2 automata

S: another finite state automaton:

an w-automaton representing the

relevant portion of the global statespace
i.e., as defined by B

Logic Model Checking [15 of 18]

the asynchronous product

« the asynchronous product IT of a finite set of finite automata A,
A,, ... A, is a new finite state automaton

A={S,s, L, T, F)where

is the Cartesian product A;.S x A,.S X ... XA,.S

is the n-tuple (A,.sy, A,.Sg, ..., A,.Sp)

is the union set A,.L UA,.LU..UA L

is the set of tuples ((x;,...,X,),l,(Y4,...Y,)) such that
i, 1<isn, (x,L,y)e A.T and Vj, 15j<n, j# —(x=Y)
contains those states from A.S that satisfy
V(A A,s, ..., A.s)eAF — di, 1<isn, A.seA.F

not all states in A.S or A.F atomic and rv handshakes can again be

are necessarily reachable from A.s, defined through executability rules:
pre-condition and effect clauses

Logic Model Checking [15 of 18] 3

small example

true

x<4

o |

(x%2)

]
w
]
+
[y
%
K;;/’—§\\7iEl'

]
Il
"
~
N

note that variable x

also holds state information
to determine which states are
reachable under the semantics
rules (i.e. interpretation),
we have to consider Promela
semantics

an unreachable state
under Promela interpretation
of statement (label) semantics

since all data ranges are bounded,
we can also “expand” an automaton
into a pure automaton, without wvariables

Logic Model Checking [15 of 18] 4

small example
book p. 558-559

“pure” finite state asynchronous
product automaton

for initial value x = 4

(the value of x is now part of
the state of the automaton)

Logic Model Checking [15 of 18]

the synchronous product
(the never claim observer)

« the synchronous product of a finite set of finite automata P and
B is the finite state automaton

A={S, s, L, T, F)where

is the Cartesian product P’.S x B.S where P’ is the

stutter closure of P (a nil self-loop is attached to every
state in P without outgoing transitions in P.T)

is the pair (P.s,,B.s;)

is the set of pairs (I;,l,) suchthatl, e P.Land |, e B.L
is the set of pairs (t,,t,) suchthatt,e P'.Tandt,e B.T
is the set of pairs (s,,s,) such that s,eP".F or s, e B.F

not all states in A.S or A.F
are necessarily reachable from A.s,
under the chosen interpretation of labels

Logic Model Checking [15 of 18]

all paths with

the example: Bo 1A, FEkee

Sll SO

are there any
accepting cycles?

if not, then the
property <>[] (x<4)
cannot be satisfied
and its negation holds

dead-end here;

no stutter possible

1<>[1 (x<4)
[1!0[](x<4)
[1<>1!(x<4)
[1<>(x>=4)

Logic Model Checking [15 of 18]

search algorithms

* checking safety properties
— basic depth-first search

— variant1: stateless search
— variant2: depth-limited search
— breadth-first search

» checking liveness properties

Logic Model Checking [15 of 18] 8

the search problem

« given a product automaton (B®I1A)
— find all runs that violate a safety property
« ‘bad’ reachable states
« given a product automaton (B®11A)

— find all runs that violate a liveness property
e accepting w-runs

Logic Model Checking [15 of 18]

basic depth-first search

Automaton A = { S, s,, L, T, F }
Sstack D= {} ——r0—
Statespace V = {}\\~

Push_Stack (D, s)
— adds s to ordered set D
In_Stack(D,s)
true iff s is in D
Top_Stack(D, s)

Start () o returns top element in D

{ \\\ if any
Add_statespace(V, A.s,) ~ o Pop_Stack (D)
Push Stack(D, A.s,) \\\ removes top element from D
Search() Iy if any

Add_Statespace(V, s)
adds s to set V

In Statespace(V, s)

true iff s is in Vv

Search()
{
s = Top_Stack(D)
for each (s,1,s')e A.T
if In Statespace(V, s')== false

{ Add_Statespace(V, s')
Push Stack(D, s') the DFS is most easily written
Search() t————————— T b : :

}

Pop_Stack(D)

} objective:

-store as little data about the graph as possible
- stores states in V, but not transitions

- Statespace V is there to prevent doing redundant work
- for correctness, V does not need to be complete
- in fact, V does not need to be there at all....

Fig. 8.1 p. 168

Logic Model Checking [15 of 18] 10

depth-first search order

depth-first search numbers

Logic Model Checking [15 of 18] 11

checking safety properties

(properties of states)

Automaton A
Stack D = {}
Statespace V

{ S, s L, T,

Start ()
{

Add_Statespace(V, A.s,)
Push_Stack(D, A.s,)
Search()

Search ()

Top_Stack (D)

if (!Safety(s))

Print_Stack(D)¢—————

for each (s,1l,s')e A.T

if In Statespace(V,

{ Add_Statespace(V,
Push_ Stack(D, s')
Search()

}
Pop_Stack(D)
}

F }

s')==

false
s')

Fig. 8.2, p. 170

assertion violations
invalid endstates
termination of a never claim

prints out the elements of
stack D, from bottom to top,
giving the complete
counter-example / error scenario
for the safety violation

Logic Model Checking [15 of 18]

12

a stateless search

Automaton A = { S, s,, L,

Stat v Stack D = {}
no Statespace /* Statespace V

Start ()
{

= {} */

Push_sStack(D, A.s;) replaced In Statespace(V,s’)
Search ()

with In_Stack(D,s’)
}

Search()
{
= Top_Stack(D)
for each (s,1,s')e A.T .~

if In Stack(D, s')== false
{ Push Stack(D, s')
Search()

}
Pop_Stack(D)

the algorithm is still guaranteed
to terminate in a finite number of steps
Statespace V is used to prevent doing redundant work

- for correctness, it does not need to be complete
- in fact, it does not need to be there at all....

depth-first search order

extra work when not using the statespace construct

if s, has a sub-tree of 100,000 states @
a stateless search would wvisit that

entire subtree at least 3 times...

Logic Model Checking [15 of 18] 14

checking safety properties

Automaton A = { S, s,, L, T, F }
Stack D = {}

/* StateSpace V = {} */

Start ()

{
Push_ Stack(D, A.s,)
Search()

Search() this algorithm trades memory for time
{

but by minimizing memory use we’ve
s = Top_ Stack(D)

created excessive time overhead

if (!Safety(s))
Print Stack(D)

for each (s,1,s')e A.T
if In_Stack(D, s')== false
{ Push_ Stack(D, s')
Search()
}
Pop_Stack (D)

a depth-bounded search

Automaton A = { S, s,, L, T, F }
Stack D = {}

Statespace V
int Depth =

Depth: 0
Start ()

{ Add_Statespace(V, A.s,,0)
Push_Stack(D, A.s;)

Search Depth: 1
) adding just this

constraint is not
enough

Search ()
{ if (Depth > BOUND) Depth: 2
return
Depth++
s = Top_Stack(D)
if (!Safety(s)) Depth Bound:
Print_ Stack (D)

truncates search

here, because state
3 s is already in the

statespace

for each (s,1,s')e A.T
if In_Statespace(V, s‘)== false
{ Add_Statespace(V, s‘')
Push_Stack(D, s')
Search()

fails to report error
even though it is
reachable via a path
shorter than BOUND

}
Pop_Stack (D)
Depth--

depth-limited search

(defined when compiling pan.c with -DREACH)

Automaton A = { S, s,, L, T, F }
Stack D = {} store the min-depth with each state

Statespace V {}
int Depth = 0 In Statespace(V,s,d)
/
Start () /returns false if there is no
{ Add_Statespace(V, A.s,,0) state (s’,d’) in V with s=s’
Push_Stack(D, A.s,)
Search () returns true if there is a
} / previously stored state (s’,d’) in V
/ with s=s’ and 4 >= 4’
Search() //
{ if (Depth > BOUND) / returns false if there is a
return // previously stored state (s’,d’) in V
Depth++ / with s=s’ and 4 < 4’
s = Top_ Stack(D) // and simultaneously replaces (s’,d’)
if (!safety(s)) / with (s’,d)
Print_Stack(D) //
/
for each (s,1,s')e A.T 4
if In Statespace(V, s‘, Depth)== false
{ Add_sStatespace(V, s‘, Depth) the complexity increases:
Push_Stack(D, s') in the worst case: if R is the nr of states,
Search() we may explore each state up to R times
} (quadratic time complexity in R)
Pop_Stack (D) memory use increase only linearly
Depth-- (to store the depth field)
}
Logic Model Checking [15 of 18] 17

the revised algorithm

Logic Model Checking [15 of 18] 18

breadth-first search

the Stack becomes a FIFO Queue

Add_Queue (D, s)
adds s to ordered set D

Automaton A
Queue D = {} ————— e ——— — —
Statespace V

——>

Del_Queue (D)
removes and returns bottom
element from D

Start ()
{

Empty Queue (D)
returns true if D contains
at least one element, and
otherwise returns false

Add_sStatespace(V, A.s,)
Add_Queue(D, A.s,)
Search()

Search()
{
while (!Empty Queue (D))
{ s = Del_Queue (D)
for each (s,1,s') e A.T
if In Statespace(V, s') =
{ Add_Statespace(V, s’)
Add_Queue (D, s')

how do we report
safety violations?

(we have no Stack to reproduce

Figure 8.6 the counter-example here...)

Logic Model Checking [15 of 18] 19

Spin’s breadth-first search option

Automaton A
Queue D = {}
Statespace V

{ S, s L, T, F}

Start ()

{
Add_sStatespace(V, A.s,, nil)
Add_Queue (D, A.s,)
Search()

Search ()

{
while (!Empty Queue (D))
{ s = Del Queue (D)

if (!Safety(s))
PrintPath(s)

for each (s,1,s') € A.T
if In Statespace(V, s') == s’
{ Add_Statespace(V, s/,
Add_Queue (D, s')

s)
w

Add_Statespace(V,s,s’)
adds state s to set V, together with
(a pointer to) a predecessor state s’

In Statespace(V, s)
returns s if s is not yet in V
else returns predecessor state s’ if
any, or nil if s has no predecessor

PrintPath(s)
{ State s’ = In_Statespace(V,s);
»

if (s’ != nil && s’
PrintPath(s’)

I= g)

PrintState(s)

adds (pointer to) predecessor state s
to allow constructing a path from
the initial system state to error

dfs and bfs search orders

Logic Model Checking [15 of 18] 21

comparing dfs and bfs

* pro:
— with the breadth-first search, safety violations are detected
at the shortest possible distance from the root

* Con.

— in breadth-first search, we can no longer use the contents
of the stack to produce a complete counter-example when

Logic Model Checking [15 of 18]

22

liveness properties

 a relatively simple case first:
— detecting the presence of non-progress cycles

1
(= K (..
true false

method:

add a 2-state asynchronous demon process

that can switch from its initial state s,

to its final state s, at any moment; it cannot
exit from its final state

perform the normal depth-first search, with

this demon process added, with one change:

block all transitions that exit a global
progress states whenever the demon is in state s,

any cycle in the resulting graph with the demon
process in state s, is a non-progress cycle

Logic Model Checking [15 of 18]

checking omega acceptance
(and general liveness properties)

« to prove liveness properties, it is sufficient if we can detect the
existence of cyclic paths in the product automaton (i.e., the
reachability graph) that contain at least one accepting state

Logic Model Checking [15 of 18] 25

different ways of solving this problem

 the default graph search algorithm would be

— Robert Tarjan’s classic DFS algorithm to compute the strongly
connected components of a graph

» a strongly connected component (SCC) is a subset of the states such
that each of the states within this subset is reachable from all others in
the subset

« Tarjan’s algorithm uses two 32-bit integers per state: the depth-first
number and a lowlink number

this graph has —

one SCC, which
contains all states O

Logic Model Checking [15 of 18] 26

Spin’s
nested depth-first search algorithm

» to solve the problem in our case, it suffices to know if:
— there exists af least one accepting state that is: both reachable from

the initial state AND reachable from itself

start of 1lst dfs

start of 2nd dfs with
state 5 as root
(the seed state 57)

Logic Model Checking [17 of 18] 4

efficient storage pryyyrmpm—

visited in the 2" statespace

V4| possible values:
/7

initial state
for 15t dfs

seed state revisited:
cycle found

seed state
for 27 dfs

Logic Model Checking [17 of 18] 5

computational complexity

» every state is visited maximally twice by this algorithm
— this means the runtime can at worst double
— complexity remains linear in number of reachable states

 memory cost is largely unaffected
— each state is stored only once
— using a 2-bit tag per state

Logic Model Checking [17 of 18] 6

the nested depth-first search algorithm

Automaton A = { S, s,, L, T, F } Search()
Stack D = {} { (s,toggle) = Top_ Stack(D)
Statespace V = {} for each (s,1,s') € A.T
State seed = nil { /* if seed is reachable from itself */
Boolean toggle = false if s' == seed v On_Stack(D,s', false)
{ PrintStack (D)

Start () PopStack (D)
{ Add_Statespace(V, A.s,, toggle) return

Push_Stack(D, A.s,, toggle) }

Search () if In Statespace(V, s', toggle) == false
{ Add_Statespace(V, s', toggle)
Push Stack(D, s', toggle)
Search()
} }

if s € A.F A toggle == false

{ seed = s /* reachable accepting state */
toggle = true
Push_Stack(D, s, toggle)
Search() /* start 2nd search */
Pop_Stack(D)
seed = nil
toggle = false

}

Pop_Stack(D)

the nested depth-first search algorithm

Automaton A = { S, s,, L, T, F }
Stack D = {}

Statespace V = {}

State seed = nil

Boolean toggle = false

Start ()

{ Add_statespace(V, A.s,, toggle)
Push_Stack(D, A.s,, toggle)
Search()

important detail:

the 2nd search is started in
post-order: after searching
all successors of an accepting
state in the 1lst search

Search ()
{ (s,toggle) = Top_ Stack(D)

for each (s,1,s') € A.T _______________________
{ /* if seed is reachable from itself */
if s' == seed v On_Stack(D,s', false)
{ PrintStack (D)
PopStack (D)
return
" if In_Statespace(V, s', toggle) == false
{ Add_Statespace(V, s', toggle)
Push_Stack(D, s', toggle)
Search()

''if s € A.F A toggle == false :
! { seed = s /* reachable accepting state */ |
: toggle = true :
! Push_Stack(D, s, toggle) |
| Search() /* start 2nd search */ |
| :
1 1
1 1
1 1
1 1
I I
1 1

Pop_Stack(D)
seed = nil
toggle = false

Pop_Stack (D)

Logic Model Checking [17 of 18]

10

correctness

the critical property: the algorithm will detect at least one acceptance cycle, if
at least one such cycle exists

Q: can state z_, exist?
no

Logic Model Checking [17 of 18] 11

