
Computer Aided Verification
Introduction

Georg Weissenbacher







Ariane 5 – Flight 501

Caused by an inadequate data conversion of a floating point
number to a 16-bit signed integer (ADA code)

3



Ariane 5 – Flight 501

Caused by an inadequate data conversion of a floating point
number to a 16-bit signed integer (ADA code)

3



Northeast Blackout of 2003

Race condition in General Electric Energy’s Unix-based XA/21
energy management system

4



Northeast Blackout of 2003

Race condition in General Electric Energy’s Unix-based XA/21
energy management system

4



Therac-25 Incident

Race condition caused massive overdose of radiation
(3 patients dead)

5



Therac-25 Incident

Race condition caused massive overdose of radiation
(3 patients dead)

5



But all that’s ancient history, right?
Software and systems now are safe!?

6



What happened in the last few years. . .

Toyota Prius
(New York Times, Feb. 12, 2014)

Toyota Motor is recalling all of
the 1.9 million newest-generation
Prius vehicles it has sold world-
wide because of a programming
error . . .

Heathrow Airport
(The Guardian, December 2014)

An unprecedented systems fail-
ure was responsible for the air
traffic control chaos [. . . ] “In this
instance a transition between the
two states caused a failure in the
system which has not been seen
before,” . . .

7



What happened in the last few years. . .

Toyota Prius
(New York Times, Feb. 12, 2014)

Toyota Motor is recalling all of
the 1.9 million newest-generation
Prius vehicles it has sold world-
wide because of a programming
error . . .

Heathrow Airport
(The Guardian, December 2014)

An unprecedented systems fail-
ure was responsible for the air
traffic control chaos [. . . ] “In this
instance a transition between the
two states caused a failure in the
system which has not been seen
before,” . . .

7



Lufthansa Airbus A321
(Spiegel, March 20, 2015)

Beinahe wäre ein Airbus A321
der Lufthansa mit 109 Pas-
sagieren auf dem Flug von Bil-
bao nach München abgestürzt
– irregeleitete Bordcomputer hat-
ten die Kontrolle übernommen.

Boeing 787 Dreamliner
(The Guardian, May 2015)

The US air safety authority has
issued a warning and mainte-
nance order over a software bug
that causes a complete electric
shutdown of Boeing’s 787 . . .

8



Lufthansa Airbus A321
(Spiegel, March 20, 2015)

Beinahe wäre ein Airbus A321
der Lufthansa mit 109 Pas-
sagieren auf dem Flug von Bil-
bao nach München abgestürzt
– irregeleitete Bordcomputer hat-
ten die Kontrolle übernommen.

Boeing 787 Dreamliner
(The Guardian, May 2015)

The US air safety authority has
issued a warning and mainte-
nance order over a software bug
that causes a complete electric
shutdown of Boeing’s 787 . . .

8



Heartbleed Bug
(CNN, April 9, 2014)

A major online security vulnera-
bility dubbed “Heartbleed” could
put your personal information at
risk, including passwords, credit
card information and e-mails.

Rowhammer Bug
(InfoWorld, March 9, 2015)

. . . with certain varieties of DRAM
an attacker can create privilege
escalations by simply repeatedly
accessing a given row of mem-
ory.

9



Heartbleed Bug
(CNN, April 9, 2014)

A major online security vulnera-
bility dubbed “Heartbleed” could
put your personal information at
risk, including passwords, credit
card information and e-mails.

Rowhammer Bug
(InfoWorld, March 9, 2015)

. . . with certain varieties of DRAM
an attacker can create privilege
escalations by simply repeatedly
accessing a given row of mem-
ory.

9



Software and integrated circuits are everywhere

106 lines of code 70 micro-processors

10



Software and integrated circuits are everywhere

106 lines of code 70 micro-processors

10



Huge Effort Spent on V&V

Software verification Hardware validation
50% of development time 35% of development time

[Myers 1979–2012] [Abramovici 2006]

11



Establishing correctness

Finding bugs



12



Establishing correctness

Finding bugs



12



Establishing correctness

Finding bugs



12



Establishing correctness

Finding bugs



Computer Aided Verification

12



Model Checking 101

13



Turing Award 2007 (Clarke, Emerson, Sifakis)

14



Turing Award 2007 (Clarke, Emerson, Sifakis)

14



︸ ︷︷ ︸
Logic

15



︸ ︷︷ ︸
T

(transitions)

15



T

s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

16



T
s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

16



T
s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

16



T
s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

16



T
s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

16



T
s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T

T

T

T

16



T
s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T

T

T

T

16



T
s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

16



T
s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

16



T
s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

16



Model Checking and Counterexamples

“Bad states” are determined by specification

Violations are witnessed by a counterexample

I

“starting states”

¬P

“bad states”

T T

T

T

Example above is a safety violation
Counterexample is a path of finite length

17



Model Checking and Counterexamples

“Bad states” are determined by specification

Violations are witnessed by a counterexample

I

“starting states”

¬P

“bad states”

T T

T

T

Example above is a safety violation
Counterexample is a path of finite length

17



Model Checking and Liveness

There are also counterexamples of infinite length

I

“starting states”

¬P

“bad states”

T T

Example above is a liveness violation
Visits bad state repeatedly
What kind of specification could such a path violate?

18



Model Checking and Liveness

There are also counterexamples of infinite length

I

“starting states”

¬P

“bad states”

T T

Example above is a liveness violation
Visits bad state repeatedly
What kind of specification could such a path violate?

18



Model Checking and Temporal Logic

“Every request is eventually acknowledged”
Counterexample is infinite loop (lasso-shaped)

Specification in Temporal Logic
Introduced by Amir Pnueli
Goal of Model Checking is to check Temporal Logic Specs

19



Model Checking and Temporal Logic

“Every request is eventually acknowledged”
Counterexample is infinite loop (lasso-shaped)

Specification in Temporal Logic
Introduced by Amir Pnueli
Goal of Model Checking is to check Temporal Logic Specs

19



State Space Explosion

20



Why explore states one by one?

S′ = T (S) def
= {s′ |T (s, s′) ∧ s ∈ S}

21



Why explore states one by one?

S

set of states

S′

post-image

T

S′ = T (S) def
= {s′ |T (s, s′) ∧ s ∈ S}

21



Why explore states one by one?

S

set of states

S′

post-image

T

S′ = T (S) def
= {s′ |T (s, s′) ∧ s ∈ S}

21



I R1 R2 Rk

T T T

¬P

22



How do we efficiently represent sets of states?

Logical Formulas!

F (

V

)

︸︷︷︸
program variables,
registers, latches,

signals, . . .

23



How do we efficiently represent sets of states?

Logical Formulas!

F (V )︸︷︷︸
program variables,
registers, latches,

signals, . . .

23



How do we efficiently represent sets of states?

Logical Formulas!

(x > 0) represents {s | s(x) > 0}

23



And what about transitions?

Binary Relations!

T (V , V ′ )︸︷︷︸
target states

24



And what about transitions?

Binary Relations!

(x ′ = x + 1) represents {〈s, s′〉 | s′(x) = s(x) + 1}

24



And what about transitions?

Binary Relations!

(x ′ = x + 1)︸ ︷︷ ︸
x++

represents {〈s, s′〉 | s′(x) = s(x) + 1}

24



R

R′

T

R′

T−1

R′(V ′) def
= ∃V .

R

(V ) ∧ T (V ,V ′)
R(V )

def
= ∃V ′ . T (V ,V ′) ∧ R′(V ′)

25



R R′

T

R′

T−1

R′(V ′) def
= ∃V . R(V ) ∧ T (V ,V ′)

R(V )
def
= ∃V ′ . T (V ,V ′) ∧ R′(V ′)

25



R R′

T

R′

T−1

R′(V ′) def
= ∃V . R(V ) ∧ T (V ,V ′)

R(V )
def
= ∃V ′ . T (V ,V ′) ∧ R′(V ′)

25



︸ ︷︷ ︸
T

(transition relation)

26



1: if (x>0) {
2: x = x - 1;

3: } else {
4: x = x + 1;

5: }︸ ︷︷ ︸
T

(transition relation)

26



1: if (x>0) {
2: x = x - 1;

3: } else {
4: x = x + 1;

5: }

D Q

R

zy

x

︸ ︷︷ ︸
T

(transition relation)

26



1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉)

def
=

∧

(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V )
def
= (pc = 5)⇒ (x ≥ 0)

I(V )
def
= (pc = 1)

27



1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉) def

=

∧
(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)

(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V )
def
= (pc = 5)⇒ (x ≥ 0)

I(V )
def
= (pc = 1)

27



1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉) def

=

∧
(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)

(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V )
def
= (pc = 5)⇒ (x ≥ 0)

I(V )
def
= (pc = 1)

27



1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉) def

=

∧
(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)

(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V )
def
= (pc = 5)⇒ (x ≥ 0)

I(V )
def
= (pc = 1)

27



1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉) def

=

∧
(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V )
def
= (pc = 5)⇒ (x ≥ 0)

I(V )
def
= (pc = 1)

27



1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥ 0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉) def

=

∧
(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)


P(V )

def
= (pc = 5)⇒ (x ≥ 0)

I(V )
def
= (pc = 1)

27



D Q

R

zy

x

︸ ︷︷ ︸
d ⇔ (x ∧ q)
z ⇔ (y ∨ q)
q′ ⇔ d

28



29



29



I R1 R2 Rk

T T T

¬P

I(V0) ∧

(
k∧

i=1

T (Vi−1,Vi)

)
∧ ¬P(Vk)

“Can property P be violated in k steps?”
(here, property = assertion over variables)

30



T 〈〉

31



T 〈〉

31



T 〈4〉

31



T 〈n〉

31



∃n ∈ N .

i′ = i + 1

T 〈n〉 is accelerated version of T :

I ¬P

∃n.T 〈n〉

computable if T 〈n〉 is Presburger-definable (for instance)
but not computable in general

32



∃n ∈ N .

i′ = i + n

T 〈n〉 is accelerated version of T :

I ¬P

∃n.T 〈n〉

computable if T 〈n〉 is Presburger-definable (for instance)
but not computable in general

32



∃n ∈ N . i′ = i + n

T 〈n〉 is accelerated version of T :

I ¬P

∃n.T 〈n〉

computable if T 〈n〉 is Presburger-definable (for instance)
but not computable in general

32



∃n ∈ N . i′ = i + n

T 〈n〉 is accelerated version of T :

I ¬P

∃n.T 〈n〉

computable if T 〈n〉 is Presburger-definable (for instance)
but not computable in general

32



∃n ∈ N . i′ = i + n

T 〈n〉 is accelerated version of T :

I ¬P

∃n.T 〈n〉

computable if T 〈n〉 is Presburger-definable (for instance)
but not computable in general

32



∃n . I(V ) ∧ T 〈n〉(V ,V ′) ∧ ¬P(V ′)

Approach is known as acceleration

Fails if transitive closure can’t be computed symbolically

33



∃n .

I(V ) ∧

T 〈n〉(V ,V ′)

∧ ¬P(V ′)

Approach is known as acceleration

Fails if transitive closure can’t be computed symbolically

33



∃n .T 〈n〉(V ,V ′)︸ ︷︷ ︸
reflexive transitive closure (T ∗)

Approach is known as acceleration

Fails if transitive closure can’t be computed symbolically

33



∃n .T 〈n〉(V ,V ′)︸ ︷︷ ︸
reflexive transitive closure (T ∗)

Approach is known as acceleration

Fails if transitive closure can’t be computed symbolically

33



I R1 R2 Rk

T T T

R≤k =
k⋃

i=0

Ri (with R0
def
= I)

“Fixed point” if T cannot escape R≤k

34



I R1 R2 Rk

T T T

R≤k =
k⋃

i=0

Ri (with R0
def
= I)

“Fixed point” if T cannot escape R≤k

34



R≤k

T

R≤k =
k⋃

i=0

Ri (with R0
def
= I)

“Fixed point” if T cannot escape R≤k

34



R≤k

T

R≤k =
k⋃

i=0

Ri (with R0
def
= I)

“Fixed point” if T cannot escape R≤k

34



R≤∞

T

R≤∞, the set of reachable states, is an inductive invariant

In fact, it is the smallest inductive invariant (least fixpoint)
Anything implied by an inductive invariant is an invariant

Invariant may also include states which allow “escape”

35



T

R≤∞

T

R≤∞, the set of reachable states, is an inductive invariant

In fact, it is the smallest inductive invariant (least fixpoint)

Anything implied by an inductive invariant is an invariant
Invariant may also include states which allow “escape”

35



T

R≤∞

T

R≤∞, the set of reachable states, is an inductive invariant

In fact, it is the smallest inductive invariant (least fixpoint)
Anything implied by an inductive invariant is an invariant

Invariant may also include states which allow “escape”

35



T

R≤∞

T

T

R≤∞, the set of reachable states, is an inductive invariant
In fact, it is the smallest inductive invariant (least fixpoint)
Anything implied by an inductive invariant is an invariant

Invariant may also include states which allow “escape”

35



Inductive Invariants vs. Invariants

1: x = 5;

2: while (x<10) {
3: assert (x 6= 2);

4: x = x + 1;

5: }

An inductive invariant

needs to be satisfied by initial states (base case)

needs to hold in (n + 1)st step if it holds in nth step

36



Inductive Invariants vs. Invariants

1: x = 5;

2: while (x<10) {
3: assert (x 6= 2);

4: x = x + 1;

5: }

x 6= 2

x = x + 1

An inductive invariant

needs to be satisfied by initial states (base case)

needs to hold in (n + 1)st step if it holds in nth step

36



Inductive Invariants vs. Invariants

1: x = 5;

2: while (x<10) {
3: assert (x ≥ 2);

4: x = x + 1;

5: }

x ≥ 2

x = x + 1

An inductive invariant

needs to be satisfied by initial states (base case)

needs to hold in (n + 1)st step if it holds in nth step

36



Inductive Invariants vs. Invariants

1: x = 5;

2: while (x<10) {
3: assert ();

4: x = x + 1;

5: }

x ≥ 2

x = x + 1

An inductive invariant

needs to be satisfied by initial states (base case)

needs to hold in (n + 1)st step if it holds in nth step

36



R≤k

I
¬P

T

System is safe if:

R≤k contains I

T cannot leave R≤k

R≤k does not overlap with ¬P

37



R≤k

I

¬P

T

System is safe if:

R≤k contains I

T cannot leave R≤k

R≤k does not overlap with ¬P

37



R≤k

I

¬P

T

System is safe if:

R≤k contains I

T cannot leave R≤k

R≤k does not overlap with ¬P

37



R≤k

I
¬P

T

System is safe if:

R≤k contains I

T cannot leave R≤k

R≤k does not overlap with ¬P

37



Interpolation-based Model Checking

I R1 R2 Rk

T T T

¬Pk

Exact reachability retards convergence

Over-approximate Ri instead?

38



Interpolation-based Model Checking

I R1 R2 Rk

T T T

¬Pk

Exact reachability retards convergence

Over-approximate Ri instead?

38



Craig’s Interpolation Theorem

A B

C “simpler” than A

if (A(V ,V ′) ∧ B(V ′,V ′′) |= ⊥)
⇓

∃C(V ′)

s.t.

A(V ,V ′) |= C(V ′)

B(V ′,V ′′) |= ¬C(V ′)

39



Craig’s Interpolation Theorem

CA B

C “simpler” than A

if (A(V ,V ′) ∧ B(V ′,V ′′) |= ⊥)
⇓

∃C(V ′)

s.t.

A(V ,V ′) |= C(V ′)

B(V ′,V ′′) |= ¬C(V ′)

39



Craig’s Interpolation Theorem

CA B

C “simpler” than A

if (A(V ,V ′) ∧ B(V ′,V ′′) |= ⊥)
⇓

∃C(V ′)

s.t.

A(V ,V ′) |= C(V ′)

B(V ′,V ′′) |= ¬C(V ′)

39



Interpolation-based Model Checking

I R

T

¬P

︸ ︷︷ ︸
I(V )∧T (V ,V ′) ¬P(V ′)

I(V ) ∧ T (V ,V ′)︸ ︷︷ ︸
A(V ,V ′)

¬P(V ′)︸ ︷︷ ︸
B(V ′)

↓
C(V ′)

40



Interpolation-based Model Checking

I R

T

¬P

︸ ︷︷ ︸
I(V )∧T (V ,V ′) ¬P(V ′)

I(V ) ∧ T (V ,V ′)︸ ︷︷ ︸
A(V ,V ′)

¬P(V ′)︸ ︷︷ ︸
B(V ′)

↓
C(V ′)

40



Interpolation-based Model Checking

I R

T

¬P

︸ ︷︷ ︸
I(V )∧T (V ,V ′) ¬P(V ′)

I(V ) ∧ T (V ,V ′)︸ ︷︷ ︸
A(V ,V ′)

¬P(V ′)︸ ︷︷ ︸
B(V ′)

↓
C(V ′)

40



Interpolation-based Model Checking

I R

T

¬P

︸ ︷︷ ︸
I(V )∧T (V ,V ′) ¬P(V ′)

I(V ) ∧ T (V ,V ′)︸ ︷︷ ︸
A(V ,V ′)

¬P(V ′)︸ ︷︷ ︸
B(V ′)

↓
C(V ′)

40



Interpolation-based Model Checking

I R

T

¬P

︸ ︷︷ ︸
I(V )∧T (V ,V ′) ¬P(V ′)

I(V ) ∧ T (V ,V ′)︸ ︷︷ ︸
A(V ,V ′)

¬P(V ′)︸ ︷︷ ︸
B(V ′)

↓
C(V ′)

40



Interpolation

Interpolants from Propositional/First-Order Refutation Proofs
A
x0

A
x0 x2

x2
A

x1 x2

x1

B
x1 x2

B
x2

x1

�

A
x0

A
x0 x2

x2
A
x2

�

B
x2

B
x2

�

�
x1 1 0

Over-approximates reachable states

B

Can accelerate convergence of fixpoints

But may introduce spurious transitions!

41



Interpolation

Interpolants from Propositional/First-Order Refutation Proofs
A
x0

A
x0 x2

x2
A

x1 x2

x1

B
x1 x2

B
x2

x1

�

A
x0

A
x0 x2

x2
A
x2

�

B
x2

B
x2

�

�
x1 1 0

Over-approximates reachable states

A B

Can accelerate convergence of fixpoints

But may introduce spurious transitions!

41



Interpolation

Interpolants from Propositional/First-Order Refutation Proofs
A
x0

A
x0 x2

x2
A

x1 x2

x1

B
x1 x2

B
x2

x1

�

A
x0

A
x0 x2

x2
A
x2

�

B
x2

B
x2

�

�
x1 1 0

Over-approximates reachable states

CA B

Can accelerate convergence of fixpoints

But may introduce spurious transitions!

41



Interpolation

Interpolants from Propositional/First-Order Refutation Proofs
A
x0

A
x0 x2

x2
A

x1 x2

x1

B
x1 x2

B
x2

x1

�

A
x0

A
x0 x2

x2
A
x2

�

B
x2

B
x2

�

�
x1 1 0

Over-approximates reachable states

CA B

Can accelerate convergence of fixpoints

But may introduce spurious transitions!

41



Interpolation

Interpolants from Propositional/First-Order Refutation Proofs
A
x0

A
x0 x2

x2
A

x1 x2

x1

B
x1 x2

B
x2

x1

�

A
x0

A
x0 x2

x2
A
x2

�

B
x2

B
x2

�

�
x1 1 0

Over-approximates reachable states

CA B

Can accelerate convergence of fixpoints

But may introduce spurious transitions!

41



Interpolation

Interpolants from Propositional/First-Order Refutation Proofs
A
x0

A
x0 x2

x2
A

x1 x2

x1

B
x1 x2

B
x2

x1

�

A
x0

A
x0 x2

x2
A
x2

�

B
x2

B
x2

�

�
x1 1 0

Over-approximates reachable states

CA B

Can accelerate convergence of fixpoints

But may introduce spurious transitions!

41



Interpolation

Interpolants from Propositional/First-Order Refutation Proofs
A
x0

A
x0 x2

x2
A

x1 x2

x1

B
x1 x2

B
x2

x1

�

A
x0

A
x0 x2

x2
A
x2

�

B
x2

B
x2

�

�
x1 1 0

Over-approximates reachable states

CA B

Can accelerate convergence of fixpoints

But may introduce spurious transitions!

41



Refinement with Interpolation

I

C1 Ck−1 Ck

R1 Rk−1 Rk

T TT

¬Pk

¬Pk+1

s

Interpolation-based approximation might be too coarse
Interpolation-based MC has to consider longer prefix

Results in unwinding of T

42



Refinement with Interpolation

I

C1 Ck−1 Ck

R1 Rk−1 Rk

T TT

¬Pk

¬Pk+1

s

Interpolation-based approximation might be too coarse

Interpolation-based MC has to consider longer prefix

Results in unwinding of T

42



Refinement with Interpolation

I

CkC1 Ck−1 Ck

R1 Rk−1 Rk Rk+1

TT TT

¬Pk+1

s

Interpolation-based approximation might be too coarse
Interpolation-based MC has to consider longer prefix

Results in unwinding of T

42



Refinement with Interpolation

I

CkC1 Ck−1 Ck

R1 Rk−1 Rk Rk+1

TT TT

¬Pk+1

s

Interpolation-based approximation might be too coarse
Interpolation-based MC has to consider longer prefix
Results in unwinding of T

42



Alternative: Other Model Checking Algorithms (e.g., IC3)

R<k Rk

T

¬Pk

IC3 refines approximations by eliminating unreachable states

43



Alternative: Other Model Checking Algorithms (e.g., IC3)

R<k Rk

T

¬Pk

IC3 refines approximations by eliminating unreachable states

43



Refinement with IC3

I

C1 Ck−1 Ck

R1 Rk−1 Rk

T TT

¬Pk

s

The IC3 algorithm considers only single steps of T
Can eliminate unreachable states s on-the-fly

Yet fixpoint challenging to find for concrete industrial-size systems

44



Refinement with IC3

I

C1 Ck−1 Ck

R1 Rk−1 Rk

T TT

¬Pk

s

The IC3 algorithm considers only single steps of T

Can eliminate unreachable states s on-the-fly

Yet fixpoint challenging to find for concrete industrial-size systems

44



Refinement with IC3

I

C1 Ck−1 Ck

R1 Rk−1 Rk

T TT

¬Pk

s

The IC3 algorithm considers only single steps of T
Can eliminate unreachable states s on-the-fly

Yet fixpoint challenging to find for concrete industrial-size systems

44



Refinement with IC3

I

C1 Ck−1 Ck

R1 Rk−1 Rk

T TT

¬Pk

s

The IC3 algorithm considers only single steps of T
Can eliminate unreachable states s on-the-fly

Yet fixpoint challenging to find for concrete industrial-size systems

44



Abstraction

45



46



46



46



abstract
concrete

47



abstract
concrete

47



abstract
concrete

47



abstract
less abstract

47



refine

refine

48



refine

refine

48



refine

refine

48



Counterexample-guided
Abstraction Refinement

(CEGAR)
Check Abstraction

Check FeasibilityRefine

failure trace

infeasible

abstract

safe

counter-
example

49



Model Checking in Practice

50



︸ ︷︷ ︸
T
↓

Satisfiability Solver
(like linear programming, but for first-order/propositional logic)

51



Satisfiability Solvers

PicoSAT Boolector Lingeling

Satisfiability of First-Order/Propositional Logic

Solve large instances with hundreds of thousands of variables

Cornerstone of modern-day formal verification

52



Automated Verification in Industry

Software Hardware

SAGE
Sixth Sense

53



What we want to verify:

What we can verify:

Ongoing research: Push the Boundary

54



What we want to verify:

What we can verify:

Ongoing research: Push the Boundary

54



What we want to verify:

What we can verify:

Ongoing research: Push the Boundary

54



Survey on SAT-based Model Checking

http://dx.doi.org/10.1109/JPROC.2015.2455034

55

http://dx.doi.org/10.1109/JPROC.2015.2455034

