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Specifying Correctness

Consider a software system
controlling traffic lights

Each traffic light in the system can be in one of three states:

Disclaimer: In some countries, there are more combinations!
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Specifying Correctness

So far, we have specified correctness in terms of assertions

Consider a crossing with two traffic lights
1

and
2

assert

(
¬

1
∨ ¬

2

)

Enables us to specify “safety” of a system
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Specifying Correctness

assertion expresses something bad not supposed to happen
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Specifying Correctness

What if we want to guarantee that something good happens?

Consider the crossing with two traffic lights
1

and
2

“not indefinitely
(

1
∧

2

)
”
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Specifying Correctness

A perfectly safe situation (at least until the drivers lose their temper)
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Specifying Correctness

It is impossible to specify this requirement with assertions

We have to extend our formalism

Let’s revisit the transition systems we’re considering

For the time being, we still stick to finite state systems
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Finite State Transition Systems, Kripke Structures

Definition (Finite State Transition System)

A Finite State Transition System 〈S,T , I〉 comprises

A finite set of states S

A set of initial states I ⊆ S

A total transition relation T ⊆ S × S
(i.e, ∀s ∈ S .∃s′ ∈ S .T (s, s′))

A labelling function L : S → 2AP

where AP is a set of atomic propositions
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Finite State Transition Systems, Kripke Structures

Definition (Kripke Structure)

A Kripke structure 〈S,T , I, L〉 comprises

A finite set of states S

A set of initial states I ⊆ S

A total transition relation T ⊆ S × S
(i.e, ∀s ∈ S .∃s′ ∈ S .T (s, s′))

A labelling function L : S → 2AP

where AP is a set of atomic propositions
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Atomic Propositions

Atomic propositions represent properties of states

Adds layer of abstraction
(Alternatively, we could directly refer to state variables)

9



Atomic Propositions

Atomic propositions represent properties of states
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Atomic Propositions

Assertion assert(F):
Check whether formula F over atomic propositions p ∈ AP
holds in a state s
Formally:

Let F be a Boolean combination of atomic propositions
We write s |= F if F holds in state s

s |= p ⇔ p ∈ L(s)
s |= ¬F ⇔ s 6|= F
s |= F1 ∨ F2 ⇔ s |= F1 or s |= F2

s |= F1 ∧ F2 ⇔ s |= F1 and s |= F2

Assertions as a specification mechanism are very limited
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Path Formulas

Can we extend this formalism for paths?
A path π is a

sequence of states s0, s1, . . .
such that T (si , si+1) (where 0 ≤ i)

s0 s1 s2 s3 s4
T T T T

We use πi to denote the suffix of π starting at si

In particular, π = π0
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Path Formulas

LetM be a Kripke structure
We writeM, π |= ϕ if a formula ϕ holds for π ∈M

We call ϕ a path formula

What does a Boolean combination F of atomic propositions
mean in this context? (We call such an F a “state formula”)

M, π |= F ⇔ ?

s0 s1 s2 s3 s4
T T T T

F
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Path Formulas

LetM be a Kripke structure
We writeM, π |= ϕ if a formula ϕ holds for π ∈M

We call ϕ a path formula

What does a Boolean combination F of atomic propositions
mean in this context? (We call such an F a “state formula”)

M, π |= F ⇔ F holds in first state s0 of π

s0 s1 s2 s3 s4
T T T T

F
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Path Formulas

From now on, we use
F to denote a state formula
ϕ to denote a path formula

We introduce a number of temporal operators
allow us to specify what’s supposed to happen along a path
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Temporal Operators: Next

M, π |= Xϕ ⇔ M, π1 |= ϕ

For instance: M, π |= Xp

Note: It doesn’t matter whether or not p holds in s0 or s2, s3, . . .

s0 s1 s2 s3 s4
T T T T

p

X can be nested: M, π |= XXp

s0 s1 s2 s3 s4
T T T T

p
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Temporal Operators: Eventually

M, π |= Fϕ ⇔ ∃k ≥ 0 .M, πk |= ϕ

Basic liveness property
For instance: M, π |= Fp

p holds after a finite number of steps

s0 s1 s2 s3 s4
T T T T

p
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Temporal Operators: Globally

M, π |= Gϕ ⇔ ∀i ≥ 0 .M, πi |= ϕ

Basic safety property

For instance: M, π |= Gp

p holds after any number of steps

s0 s1 s2 s3 s4
T T T T

p p p p p
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Temporal Operators: Globally

M, π |= Gϕ ⇔ ∀i ≥ 0 .M, πi |= ϕ
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Temporal Operators: Until

There are also binary operators. . .

M, π |= ϕ1Uϕ2 ⇔
∃k ≥ 0 .M, πk |= ϕ2 ∧

∀j ∈ {0..k − 1} .M, πj |= ϕ1

ϕ1 holds until ϕ2 holds

also: ϕ2 has to hold eventually!

For instance: M, π |= q U p

s0 s1 s2 s3 s4
T T T T

q,p q,p q,p q,p q,p

Note: q doesn’t have to hold anymore once discharged by p

17



Temporal Operators: Until

There are also binary operators. . .

M, π |= ϕ1Uϕ2 ⇔
∃k ≥ 0 .M, πk |= ϕ2 ∧

∀j ∈ {0..k − 1} .M, πj |= ϕ1

ϕ1 holds until ϕ2 holds

also: ϕ2 has to hold eventually!

For instance: M, π |= q U p

s0 s1 s2 s3 s4
T T T T

q,p q,p q,p q,p q,p

Note: q doesn’t have to hold anymore once discharged by p

17



Temporal Operators: Release

Until (U) has a dual called “Release” (R)

M, π |= ϕ1Rϕ2 ⇔
∀j ≥ 0 . (∀i < j .

(
M, πi 6|= ϕ1

))
⇒M, πj |= ϕ2

ϕ1 releases ϕ2

(if ϕ2 ever ceases to hold)

For instance: M, π |= p R q

s0 s1 s2 s3 s4
T T T T

q,p q,p q,p q,p q,p

q may also hold continuously
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Temporal Operators: More Examples

M, π |= p U (G q)

s0 s1 s2 s3 s4
T T T T

p,q p,q p,q p,q p,q

M, π |= F (G p)

s0 s1 s2 s3 s4
T T T T

p p p p p
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Temporal Operators: More Examples

“not indefinitely
( )

”

M, π |= F
(
¬

)
or M, π |= ¬G

( )

s0 s1 s2 s3 s4
T T T T

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
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Temporal Operators: Redundancies

Last example shows:
Some temporal operators can be expressed in terms of others

Gϕ ≡ ¬F (¬ϕ)
Fϕ ≡ true Uϕ
ϕ1 Rϕ2 ≡ ¬(¬ϕ1 U¬ϕ2)

¬, X, U are sufficient to express G, F, and R

(c.f. “basis” (¬,∨) in propositional logic)
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Temporal Operators: Path Quantifiers

So far, we can only talk about individual paths

To amend this, we introduce path quantifiers

M, s |= Eϕ ⇔ ∃π starting at s such thatM, π |= ϕ

M, s |= Aϕ ⇔ ∀π starting at s it holds thatM, π |= ϕ
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Unwinding Transition Relations

Remember:
Unwinding transition function results in infinite tree
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Computation Tree Logic CTL∗

Accordingly, our logic is appropriately called

Computation Tree Logic

More specifically: CTL∗
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Computation Tree Logic CTL∗: Examples

s0

s1

s2

s3

M, s0 |= AF
( )

X

M, s0 |= AX
(

EG
( ))

X

M, s0 |= EGX
( )

X

M, s0 |= AGX
( )

×
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Branching Time and Linear Time Logic

Commonly used subsets of CTL∗:

branching-time logic

quantifies over paths possible from a given state

linear-time logic

for events along a single computation path only
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Branching Time Logic: Computation Tree Logic

Computation Tree Logic CTL

CTL ⊆ CTL∗

Restriction:

X, F, G, U, and R must be immediately preceded by A or E

Examples:
EF (start ∧¬ready) there’s a path on which we start

at some point despite not being
ready

AG(req⇒ AF ack) each request eventually acknowl-
edged

AG EX progress no deadlocks
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Branching Time Logic: Computation Tree Logic

What are the restrictions?
Some properties can’t be expressed!

A(FG p) can’t be expressed in CTL!

And the advantages?
more efficient to check than full CTL∗

Checking CTL-formula ϕ for 〈S,T , I, L〉 is O(|ϕ| · (|S|+ |T |))
Checking CTL∗ lies in PSPACE

can be checked using fixed points!
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Branching Time Logic: Computation Tree Logic

How do we check the validity of CTL formulas?

Let’s start with a reduction. . .

CTL has 10 basic operators
X F G U R

A AX AF AG AU AR
E EX EF EG EU ER

which can be expressed in terms of EX, EG, and EU:

AXϕ ≡ ¬EX(¬ϕ) EFϕ ≡ E(true Uϕ)
AGϕ ≡ ¬EF(¬ϕ) AFϕ ≡ ¬EG(¬ϕ)

A(ϕ1 Uϕ2) ≡ ¬E(¬ϕ2 U (¬ϕ1 ∧ ¬ϕ2)) ∧ ¬EG¬ϕ2

A(ϕ1 Rϕ2) ≡ ¬E(¬ϕ1 U¬ϕ2) E(ϕ1 Rϕ2) ≡ ¬A(¬ϕ1 U¬ϕ2)
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Model Checking CTL

A finite Kripke structureM def
= 〈S,T , I, L〉 can be represented

using BDDs:
Sets of states are represented as BDDs
L is a represented as L−1 : AP → S, i.e.,

L−1(p)
def
= {s | p ∈ L(s)}

For each CTL formula ϕ, we will compute

{s |M, s |= ϕ}

(represented as a BDD)
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Model Checking CTL

Associate each ϕi with a set of states {s |M, s |= ϕi}
CTL can be expressed in terms of ¬, ∨, EX, EU, and EG

Will define these operators by induction:

All states satisfying p defined by L−1(p)

¬p def
=
(

L−1(p)
)

, (p ∨ q)
def
=
(
L−1(p) ∪ L−1(q)

)
EXϕ def

= {s0 | ∃s1 .T (s0, s1) ∧M, s1 |= ϕ}

Note: This is the pre-image of T with respect to ϕ
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Model Checking CTL

It remains to be shown that EGϕ and EUϕ can be computed
We claim:

EGϕ ≡ νZ . ϕ ∧ EX Z
i.e., EGϕ is greatest fixed point of τ(Z ) = ϕ ∧ EX Z
c.f. greatest fixed point of weakest precondition

E(ϕ1 Uϕ2);≡ µZ . ϕ2 ∨ (ϕ1 ∧ EX Z )

i.e., E(ϕ1 Uϕ2) is least fixed point of τ(Z ) = ϕ2 ∨ (ϕ1 ∧ EX Z )

In both cases we need to show that
τ is u-continuous (t-continuous, respectively)
the fixed point representation is correct
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Model Checking CTL

Theorem (Monotonicity and Continuity)

If S is finite and τ is monotonic, then τ is also t-chain-continuous
and u-continuous.

Proof.

Consider ascending chain P1 v P2 v . . . where Pi v S

Since |S| <∞, ∃k .∀j ≥ k .Pi = Pk

Thus,
⊔

Pi = Pk and therefore τ(
⊔

Pi) = τ(Pk )

Also, τ(P1) v τ(P2) v . . . (monotonicity of τ )

Therefore ∃k . ∀j ≥ k . τ(Pi) = τ(Pk )

Accordingly,
⊔
τ(Pi) = τ(Pk )

Proof for u: similar
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Model Checking CTL

E(ϕ1 Uϕ2);≡ µZ . ϕ2 ∨ (ϕ1 ∧ EX Z )

Remember: EX is “pre-image”

ϕ2

E(ϕ1 Uϕ2) holds in ϕ2

and in predecessor states of ϕ2

in which ϕ1 holds

Fixed point: Transitive closure
of all such predecessor states
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Model Checking CTL

EGϕ ≡ νZ . ϕ ∧ EX Z
Remember: EX is “pre-image”

ϕ
Start with all states in which ϕ
holds

shrink to states in ϕ such that ϕ
still holds after 1 step

Keep shrinking until fixed point
reached
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Model Checking CTL

E
(

U
)

s0

s1

s2

s3

µZ . ∨ ( ∧ EX Z )

1. ∨
(

∧ EX⊥
)

= {s2}

2. ∨
(

∧
)

=

3. ∨ () =

4. Fixed point!

M, s1 |= E
(

U
)

M, s2 |= E
(

U
)
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4. Fixed point!

M, s1 |= E
(

U
)

M, s2 |= E
(

U
)
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Model Checking CTL

More complex formulas?
Start with innermost sub-formulas!
Compute nested fixed point

Remember:
E
(

U
)

= {s1, s2}

So if we want to compute

EG
(

E
(

U
))

we compute greatest fixed point

νZ . {s1, s2} ∧ EX Z
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Model Checking CTL

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z

s0

s1

s2

s3

1. {s1, s2} ∧ EX>

= {s1, s2}
2. {s1, s2} ∧
3. {s1, s2} ∧
4. Fixed point!

M, s1 |= EG
(

E
(

U
))
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s0

s1

s2

s3
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(

E
(

U
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Model Checking CTL

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z
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s3

1. {s1, s2} ∧ > = {s1, s2}
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E
(

U
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Model Checking CTL

Worst case complexity of this algorithm?

Checking CTL-formula ϕ for 〈S,T , I, L〉 is O(|ϕ| · (|S|+ |T |))

Why?
Each fixed point is O(|S|+ |T |)
We have to compute O(|ϕ|) fixed points
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CTL and Fairness

Consider the path s0 s1 s1 s1 . . . which never leaves s1

This behaviour is not “fair” for s2, which never gets visited

Sometimes, we’re only interested in fair paths

40



CTL and Fairness

Fairness can’t be expressed in CTL
We can add fairness by modifying the semantics of CTL

Add set of states F
Consider only paths π which visit each state in F infinitely often
For instance: F = {s2}
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CTL and Fairness

Consider the formula EGϕ and a fairness constraint F .
We want to find largest set of states Z such that

1. All states in Z satisfy ϕ

2. For each s ∈ Z and each s′ ∈ F there is a path from s to s′

each state of which satisfies ϕ

Formally:

EGϕ = νZ . ϕ ∧
∧
s∈F

EX E (ϕU (ϕ ∩ {s}))
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CTL and Fairness

It can be shown that

EGϕ = νZ . ϕ ∧
∧
s∈F

EX E (ϕU (ϕ ∩ {s}))

cannot be expressed in CTL.
Combination of CTL and fixed points

We know how to compute it

CTL can be expressed in terms of fixed points

Formalism that uses only fixed points: µ-calculus

µ-calculus: Extension of modal logic with fixed point operators

CTL∗ can be encoded in µ-calculus
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Linear Temporal Logic

Linear Temporal Logic: Another subset of CTL∗

for events along a single computation path only

Formulas have the form Aϕ
state formulas can only be atomic propositions
in particular, ϕ doesn’t contain A, E, conjunctions or
disjunctions of path formulas

Intuitively, ϕ is always interpreted over all paths
Restrictions listed above make “splitting” impossible
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Linear Temporal Logic

Examples for LTL formulas:
A(FG p) “all paths eventually stabilise with property p”

This can’t be expressed in CTL

A(GF p) “p is visited infinitely often”

AG(try⇒ F succeed) ”every attempt eventually succeeds”

We can’t express:
AG(EF p)

This can be expressed in CTL
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Model Checking LTL

Model checking LTL

We’ll look at the problem from a new angle:

Model Checking using Automata Theory

Remember: A finite automaton accepts a finite input if a final
state is reached

p0 p1
b

a,b

(This automaton accepts (a|b)∗b – all words ending with b)
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Automata Theory

Definition (Finite Automaton)

A finite automaton A is a tuple 〈Σ,Q, δ,Q0,F 〉
Σ is the input alphabet

Q is a finite set of states

δ : Q × Σ× Q is the transition relation

Q0 ⊆ Q is the set of initial states

F ⊆ Q is the set of final states

p0 p1
b

a,b

Σ = {a, b}, Q = {p0, p1}, Q0 = {p0}, F = {p1}
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Automata Theory

Let A be a finite automaton over an input alphabet Σ

Then L(A) denotes the language

{w ∈ Σ∗ | A accepts w}

i.e., L(A) consists of all finite words accepted by A

p0 p1
b

a,b

(This automaton accepts (a|b)∗b – all words ending with b)
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ω-Automata

Maybe we can define an automaton accepting

“good” execution traces?

Problem: An execution trace is an infinite sequence of states
Solution: Define automata accepting infinite input words!

(These automata are called ω-automata or Büchi-automata)
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ω-Automata

Maybe we can define an automaton accepting

“good” execution traces?

Problem: An execution trace is an infinite sequence of states
Solution: Define automata accepting infinite input words!

(These automata are called ω-automata or Büchi-automata)
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ω-Automata

Definition (Büchi Automaton)

A Büchi automaton B is a tuple 〈Σ,Q, δ,Q0,F 〉
Σ is the input alphabet

Q is a finite set of states

δ : Q × Σ× Q is the transition relation

Q0 ⊆ Q is the set of initial states

F ⊆ Q is the set of accepting states

Wait. . . isn’t that exactly the same definition as before?

A Büchi automaton accepts an infinite word w ∈ Σω if the
corresponding run visits at least one state in F infinitely often
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corresponding run visits at least one state in F infinitely often
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ω-Automata

We use Σω to denote all words of infinite length

The following automaton accepts all words w ∈ Σω with
finitely many as

p0 p1
b

a,b b

Σ = {a, b}, Q = {p0, p1}, Q0 = {p0}, F = {p1}

51



ω-Automata

Definition (Generalised Büchi Automaton)

A Büchi automaton B is a tuple 〈Σ,Q, δ,Q0,F 〉
Σ is the input alphabet

Q is a finite set of states

δ : Q × Σ× Q is the transition relation

Q0 ⊆ Q is the set of initial states

F = {P1, . . . ,Pn}, Pi ⊆ Q is a set of sets of accepting states

Acceptance condition:

Let π = s0 s1 . . . be a run of B
Let inf (π) the set of states visited infinitely often by π

∀Pi ∈ F . inf (π) ∩ Pi 6= ∅

Büchi automata & generalised version are equally expressive
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ω-Automata

Definition (Generalised Büchi Automaton)

A Büchi automaton B is a tuple 〈Σ,Q, δ,Q0,F 〉
Σ is the input alphabet

Q is a finite set of states

δ : Q × Σ× Q is the transition relation

Q0 ⊆ Q is the set of initial states

F = {P1, . . . ,Pn}, Pi ⊆ Q is a set of sets of accepting states
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Let π = s0 s1 . . . be a run of B
Let inf (π) the set of states visited infinitely often by π
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Büchi automata & generalised version are equally expressive
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ω-Automata

Intuitively, an automaton B defines a set of infinite behaviours

We can use Büchi automata to represent Kripke structures!
Make all states accepting states
Label incoming edges of si with L(si )

s0 s1

s2

{p,q} {p}

{q}

ι

s0 s1

s2

{p,q}

{q}

{p,q}

{p,q}

{p}
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Model Checking with ω-Automata

We can encode any Kripke structureM as a Büchi
automaton BM

For a given run s0 s1 . . . ofM, BM accepts L(s0) L(s1) . . .

Now assume, we have a second automaton
Bϕ representing a “specification” ϕ

Let Bϕ be the automaton accepting “all behaviours that are
good” according to ϕ
Then Bϕ is the automaton accepting “all bad behaviours”
ThenM can’t behave badly if

L(BM) ∩ L(Bϕ) = ∅

L(BM) ∩ L(Bϕ)
is accepted by the “intersection of the automata”

BM and Bϕ
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Model Checking with ω-Automata

We can encode any Kripke structureM as a Büchi
automaton BM

For a given run s0 s1 . . . ofM, BM accepts L(s0) L(s1) . . .

Now assume, we have a second automaton
Bϕ representing a “specification” ϕ

Let Bϕ be the automaton accepting “all behaviours that are
good” according to ϕ
Then Bϕ is the automaton accepting “all bad behaviours”
ThenM can’t behave badly if

L(BM) ∩ L(Bϕ) = ∅
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is accepted by the “intersection of the automata”

BM and Bϕ
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Model Checking with ω-Automata

We postpone the discussion about “intersection of automata”

Problem:
Given an LTL specification ϕ, how do we get Bϕ?

Two steps:
1. Negate LTL formula ϕ: we get ϕ

Negating Büchi automata is hard – we want to avoid this step
2. Translate ϕ into a Büchi automaton
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Negating LTL Formulas

Given an LTL specification Aϕ, we construct A¬ϕ:
First, replace Fϕ by (true Uϕ) and Gϕ by (true Rϕ)
Then, push all negations inwards, using the following rules:

¬(ϕ1 ∧ ϕ2) ¬ϕ1 ∨ ¬ϕ2
...

¬(Xϕ) X¬ϕ
¬(ϕ1 Rϕ2) ¬ϕ1 U¬ϕ2

¬(ϕ1 Uϕ2) ¬ϕ1 R¬ϕ2

The result is an LTL formula in negation normal form
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Büchi Automata from LTL Formulas in Negation Normal Form

We have an LTL formula ϕ in negation normal form

Algorithm to construct a Büchi automaton Bϕ:
Each node is annotated with 3 sets:

new
old
next

We start with a single node p1 such that
p1.new= {ϕ}
p1.old= ∅
p1.next= ∅

Expand nodes until fixed point is reached
Expansion of pi depends on content of pi .new
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Büchi Automata from LTL Formulas in Negation Normal Form

The set next is used whenever we encounter a formula of the
form X ϕ in the set new

Consider the formula X a.

p′1p1

init init

old = ∅
new = {Xa}

next = ∅

old = {Xa}
new = {}

next = {a}

p1 is replaced by a new copy p′1 of the node

a is added to p′1.next

X a is added to p′1.old and removed from p′1.new
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Büchi Automata from LTL Formulas in Negation Normal Form

The set next is used whenever we encounter a formula of the
form X ϕ in the set new
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p′1p1
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p1 is replaced by a new copy p′1 of the node
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Büchi Automata from LTL Formulas in Negation Normal Form

We have to continue the expansion of p′1
p′1.new is empty, so add p′1 to a set called result
Generate a new successor node p2 for p′1 using the content of
p′1.next for p2.new .
Initially, we set p2.old = p2.next = ∅

p′1p′1

init init

p2 p′2

old = {Xa}
new = ∅

next = {a}

old = {Xa}
new = {}

next = {a}

old = ∅
new = {a}

next = ∅

old = {a}
new = ∅

next = ∅

59



Büchi Automata from LTL Formulas in Negation Normal Form

We have to continue the expansion of p2
p2.new is not empty: contains atomic proposition a
replace p2 by a new copy p′2 with

p′2.old = p2.old ∪ {a} and
p′2.new = p2.new − {a}

p′1p′1

init init

p2 p′2

old = {Xa}
new = ∅

next = {a}

old = {Xa}
new = {}

next = {a}

old = ∅
new = {a}

next = ∅

old = {a}
new = ∅

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

We still need to expand p′2
p′2.new is empty, so add p2 to the set result
Generate successor node p3 for p′2 using content of p′2.next

p′1p′1

init init

p′2 p′2

p3 p3

old = {Xa}
new = ∅

next = {a}

old = {Xa}
new = ∅
next = {a}

old = {a}
new = ∅

next = ∅

old = {a}
new = ∅

next = ∅

old = ∅

new = ∅

next = ∅

old = ∅

new = ∅

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

Finally, expand p3:
p3.new is empty, so add p3 to the set result
Generate successor node p4 for p3

However, such a node already exists p3, so add self-loop

p′1p′1

init init

p′2 p′2

p3 p3

old = {Xa}
new = ∅

next = {a}

old = {Xa}
new = ∅
next = {a}

old = {a}
new = ∅

next = ∅

old = {a}
new = ∅

next = ∅

old = ∅

new = ∅

next = ∅

old = ∅

new = ∅

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

How do we label the edges of the resulting automaton?
For p → q, conjunction of literals in q.old

p′1init p′2 p3
true a true

true
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Büchi Automata from LTL Formulas in Negation Normal Form

How do we determine the sets of accepting states?
One Pi for each subformula ϕUψ

Pi contains all p such that

ψ ∈ p.old or (ϕUψ) 6∈ p.old

Pi guarantees that if ϕUψ holds in some state in some
accepting run then ψ must hold later in that run

p′1init p′2 p3
true a true

true

This generalised Büchi automaton has no accepting states
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Büchi Automata from LTL Formulas in Negation Normal Form

p′1init p′2 p3
true a true

true

This generalised Büchi automaton has no accepting states

F = ∅
Therefore,

∀Pi ∈ F . inf (π) ∩ Pi 6= ∅

is vacuously true

Therefore, all runs of B are accepting!
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Büchi Automata from LTL Formulas in Negation Normal Form

Let’s look at the formula a ∨ b

Pick formula ϕ from p0.new (there’s only one)
Depending on operator of ϕ

replace p0 by a new version (as done before for X)
split p0 into p1, p2 (as done here for ∨)

p0

init

old = ∅
new = {a ∨ b}
next = ∅

p2p1

init

old = {a ∨ b}
new = {b}
next = ∅

old = {a ∨ b}
new = {a}

next = ∅

Now p1 and p2 need to be expanded
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Büchi Automata from LTL Formulas in Negation Normal Form

Let’s look at the formula a ∨ b

Pick formula ϕ from p0.new (there’s only one)
Depending on operator of ϕ

replace p0 by a new version (as done before for X)
split p0 into p1, p2 (as done here for ∨)

p0

init

old = ∅
new = {a ∨ b}
next = ∅

p2p1

init

old = {a ∨ b}
new = {b}
next = ∅

old = {a ∨ b}
new = {a}

next = ∅

Now p1 and p2 need to be expanded
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Büchi Automata from LTL Formulas in Negation Normal Form

We start by expanding p1

p′1 cannot be expanded anymore (p1.new = ∅), add p′1 to result

Expand p′1: results in p3 with p3.new = ∅
Successor of p3 already in result: self-loop
Continue with p2. Eventually leads to same result as
expanding p′1

p2p′1

init

old = {a ∨ b}
new = {b}
next = ∅

old = {a,a ∨ b}
new = ∅

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

We start by expanding p1
p′1 cannot be expanded anymore (p1.new = ∅), add p′1 to result
Expand p′1: results in p3 with p3.new = ∅

Successor of p3 already in result: self-loop
Continue with p2. Eventually leads to same result as
expanding p′1

p2p′1

init

p3

old = {a ∨ b}
new = {b}
next = ∅

old = {a,a ∨ b}
new = ∅

next = ∅

old = ∅
new = p′1.next

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

We start by expanding p1
p′1 cannot be expanded anymore (p1.new = ∅), add p′1 to result
Expand p′1: results in p3 with p3.new = ∅
Successor of p3 already in result: self-loop

Continue with p2. Eventually leads to same result as
expanding p′1

p2p′1

init

p3

old = {a ∨ b}
new = {b}
next = ∅

old = {a,a ∨ b}
new = ∅

next = ∅

old = ∅
new = p′1.next

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

We start by expanding p1
p′1 cannot be expanded anymore (p1.new = ∅), add p′1 to result
Expand p′1: results in p3 with p3.new = ∅
Successor of p3 already in result: self-loop
Continue with p2. Eventually leads to same result as
expanding p′1

p′2p′1

init

p3

old = {b ,a ∨ b}
new = ∅

next = ∅

old = {a,a ∨ b}
new = ∅

next = ∅

old = ∅

new = ∅

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

Need to determine labels of edges and F
Labels: literals a and b in p′1.old and p′2.old , respectively
F is again empty

p′2p′1

init

p3

old = {b,a ∨ b}old = {a,a ∨ b}

old = ∅

a b

true true

true
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Büchi Automata from LTL Formulas in Negation Normal Form

How do we handle conjunctions? (ϕ ∧ ψ)
Let q be node such that (ϕ ∧ ψ) ∈ q.new
Replace q by copy q′ and add ϕ,ψ to q′.new
Add ϕ ∧ ψ to q′.old

Note: Resulting q′.new has two elements!
Pick one formula first (e.g., ϕ)
Expand node accordingly
Keep other element (ψ) in resulting node’s new set
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Büchi Automata from LTL Formulas in Negation Normal Form

How do we handle conjunctions? (ϕ ∧ ψ)
Let q be node such that (ϕ ∧ ψ) ∈ q.new
Replace q by copy q′ and add ϕ,ψ to q′.new
Add ϕ ∧ ψ to q′.old

Note: Resulting q′.new has two elements!
Pick one formula first (e.g., ϕ)
Expand node accordingly
Keep other element (ψ) in resulting node’s new set

67



Büchi Automata from LTL Formulas in Negation Normal Form

Let’s translate XX a !

And here’s the result for XX a

p′1p1

init init

old = ∅
new = {XXa}

next = ∅

old = {XXa}
new = {}

next = {Xa}
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Büchi Automata from LTL Formulas in Negation Normal Form

Let’s translate XX a !

And here’s the result for XX a

p′1p′1

init init

p2 p′2

old = {XXa}
new = ∅

next = {Xa}

old = {XXa}
new = {}

next = {Xa}

old = ∅
new = {Xa}

next = ∅

old = {Xa}
new = ∅
next = {a}

68



Büchi Automata from LTL Formulas in Negation Normal Form

Let’s translate XX a !
And here’s the result for XX a

p′1p′1

init init

p2 p′2

p3 p3

old = {XXa}
new = ∅

next = {Xa}

old = {XXa}
new = ∅
next = {Xa}

old = {Xa}
new = ∅

next = {a}

old = {Xa}
new = ∅
next = {a}

old = ∅
new = {a}

next = ∅

old = {a}
new = ∅

next = ∅ 68



Büchi Automata from LTL Formulas in Negation Normal Form

Let’s translate XX a !

And here’s the result for XX a

p′1init p′2 p′3 p4
true true a true

true
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Büchi Automata from LTL Formulas in Negation Normal Form

To deal with ϕUψ, we use the equivalence

ϕ U ψ ≡ ψ ∨ (ϕ ∧ X (ϕ U ψ)) ,

i.e., q.new = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}

Intuitively, this corresponds to “unwinding” ϕ U ψ

This formula contains a disjunction, so we will have to split the
node!

q2q1

init

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ϕ ∧ X(ϕ U ψ)}

next = ∅

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ψ}

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

To deal with ϕUψ, we use the equivalence

ϕ U ψ ≡ ψ ∨ (ϕ ∧ X (ϕ U ψ)) ,

i.e., q.new = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
Intuitively, this corresponds to “unwinding” ϕ U ψ

This formula contains a disjunction, so we will have to split the
node!

q2q1

init

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ϕ ∧ X(ϕ U ψ)}

next = ∅

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ψ}

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

To deal with ϕUψ, we use the equivalence

ϕ U ψ ≡ ψ ∨ (ϕ ∧ X (ϕ U ψ)) ,

i.e., q.new = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
Intuitively, this corresponds to “unwinding” ϕ U ψ

This formula contains a disjunction, so we will have to split the
node!

q2q1

init

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ϕ ∧ X(ϕ U ψ)}

next = ∅

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ψ}

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

One of the resulting nodes, q2, contains a conjunction

We already know how to deal with conjunctions!

q2q1

init

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ϕ ∧ X(ϕ U ψ)}

next = ∅

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ψ}

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

One of the resulting nodes, q2, contains a conjunction

We already know how to deal with conjunctions!

q′2q1

init

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ϕ, X(ϕ U ψ)}

next = ∅

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ψ}

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

Let’s pick X(ϕUψ) from q′2.new

We already know how to deal with X

q′2q1

init

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ϕ, X(ϕ U ψ)}

next = ∅

old = {ψ ∨ (ϕ ∧ X (ϕ U ψ))}
new = {ψ}

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

Let’s pick X(ϕUψ) from q′2.new

We already know how to deal with X

q′′2q1

init

old = {ϕ U ψ}
new = {ϕ}
next = {ϕ U ψ}

old = {ϕ U ψ}
new = {ψ}

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

ϕUψ in one step: Node q was split into q1 and q′′2

q1.old = q.old ∪ {ϕ U ψ}
q1.new = q.new ∪ {ψ}
q1.next = q.next

q′′2 .old = q.old ∪ {ϕ U ψ}
q′′2 .new = q.new ∪ {ϕ}
q′′2 .next = q.next ∪ {ϕ U ψ}

Now we can use this rule in combination with other rules to
find fixed point!
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Büchi Automata from LTL Formulas in Negation Normal Form

Now we can use the new rule for ϕUψ to deal with F p:

Fp ≡ true U p

Note: technically, we could also use the equivalence

F p ≡ p ∨ XF p
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Büchi Automata from LTL Formulas in Negation Normal Form

Let’s do F p

q

init

old = ∅
new = {true U p}

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

Apply splitting rule for U

q2q1

init

old = {true U p}
new = {p}
next = ∅

old = {true U p}
new = {true}

next = {true U p}
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Büchi Automata from LTL Formulas in Negation Normal Form

Now expand q2

q′2q′1

init

old = {true U p,p}
new = ∅

next = ∅

old = {true U p}
new = ∅

next = {true U p}
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Büchi Automata from LTL Formulas in Negation Normal Form

Now generate q3 from q′2. Expanding q3 results in self-loop

q′2q′1

init

q3

old = {true U p,p}
new = ∅

next = ∅

old = {true U p}
new = ∅

next = {true U p}
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Büchi Automata from LTL Formulas in Negation Normal Form

Expanding q′1 yields an interesting result:
We end up with q4: exactly the same as starting node q

So we already know what will happen:
Splitting q4 will exactly result in same nodes as before

q′2q′1

init

q3

q4

old = {true U p,p}
new = ∅

next = ∅

old = {true U p}
new = ∅

next = {true U p}

old = ∅
new = {true U p}

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

Expanding q′1 yields an interesting result:
We end up with q4: exactly the same as starting node q

So we already know what will happen:
Splitting q4 will exactly result in same nodes as before

q′2q′1

init

q3

q4

old = {true U p,p}
new = ∅

next = ∅

old = {true U p}
new = ∅

next = {true U p}

old = ∅
new = {true U p}

next = ∅
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Büchi Automata from LTL Formulas in Negation Normal Form

The final result is shown on the right
Nodes containing p in old or don’t have true U p in old are
accepting states

q′2q′1

init

q3

q4

old = {true U p,p}
new = ∅

next = ∅

old = {true U p}
new = ∅

next = {true U p}

old = ∅
new = {true U p}

next = ∅

q′2q′1

init

q3

ptrue

true
p

true

true

Literature:

Clarke, Grumberg, Peled, Model Checking, MIT Press 1999
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Büchi Automata from LTL Formulas in Negation Normal Form

The final result is shown on the right
Nodes containing p in old or don’t have true U p in old are
accepting states

q′2q′1

init

q3

q4

old = {true U p,p}
new = ∅

next = ∅

old = {true U p}
new = ∅

next = {true U p}

old = ∅
new = {true U p}

next = ∅

q′2q′1

init

q3

ptrue

true
p

true

true

Literature:

Clarke, Grumberg, Peled, Model Checking, MIT Press 1999
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Language Intersection: Intersection of Automata

We have BM and Bϕ representingM and ϕ

How do we compute L(BM) ∩ L(Bϕ) ?

Intersection of Automata

An automaton that accepts only words that are
accepted by BM as well as Bϕ
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Language Intersection: Intersection of Büchi Automata

Definition (Intersection of Büchi Automata)

Let

B1 = 〈Σ,Q1, δ1,Q1
0 ,F1〉 and

B2 = 〈Σ,Q2, δ1,Q2
0 ,F2〉.

Then

B1∩B2 = 〈Σ,Q1×Q2×{0, 1, 2}, δ,Q1
0×Q2

0×{0},Q1×Q2×{2}〉

(〈ri , qj , x〉, a, 〈rm, qn, y〉) ∈ δ ⇔ (ri , a, rm) ∈ δ1 ∧ (qj , a, qn) ∈ δ1

(δ1 and δ2 both “agree” with the transition)

y =


1 if x = 0 and rm ∈ F1

2 if x = 1 and qn ∈ F2

0 if x = 2
x otherwise

78



Language Intersection: Intersection of Büchi Automata

Accepting states Q1 × Q2 × {2} determined by:

y =


1 if x = 0 and rm ∈ F1

2 if x = 1 and qn ∈ F2

0 if x = 2
x otherwise

Start in initial states Q1
0 × Q2

0 × {0}
i.e., counter is initially 0
increase counter to 1 when we visit F1

increase counter to 2 when we visit F2 after visiting F1

reset counter afterwards

Guarantees that automaton only accepts if F1 as well as F2

visited infinitely often
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Intersection of Büchi Automata: Example

ba

r2r1

b

a

ab

q2q1

a

b

Left automaton accepts infinite number of as

Right automaton accepts infinite number of bs
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Intersection of Büchi Automata: Example

ba

r2r1

b

a

ab

q2q1

a

b

Intersection automaton accepts infinite number of as and bs

〈r1,q1,0〉

〈r1,q2,1〉

a

〈r2,q1,0〉

〈r1,q2,0〉〈r2,q1,2〉

a b

a
b

b b

a

a

b
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Intersection of Büchi Automata: Example

ba

r2r1

b

a

ab

q2q1

a

b

Intersection automaton accepts infinite number of as and bs

a
〈r1,q1,0〉

〈r1,q2,1〉

a

〈r2,q1,0〉

〈r1,q2,0〉〈r2,q1,2〉

b

a
b

b b

a

a

b
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Intersection of Büchi Automata: Example

ba

r2r1

b

a

ab

q2q1

a

b

Intersection automaton accepts infinite number of as and bs

a
〈r1,q1,0〉

〈r1,q2,1〉

a

b

〈r2,q1,2〉

〈r2,q1,0〉

〈r1,q2,0〉

b

a
b

b

a

a

b
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Intersection of Büchi Automata: Example

ba

r2r1

b

a

ab

q2q1

a

b

Intersection automaton accepts infinite number of as and bs

〈r1,q1,0〉

〈r2,q1,0〉

〈r1,q2,0〉

〈r1,q2,1〉

〈r2,q1,2〉

a b

a
a b

b b

a

a

b
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Intersection of Büchi Automata: Example

Optimisation 1:

We know that all states of BM are accepting

Then set of accepting states is QM × Fϕ

Intersection:

BM ∩ Bϕ = 〈Σ,QM × Qϕ, δ, QM0 × Qϕ
0 , QM × Fϕ〉

We don’t need “counter” to track accepting states
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Intersection of Büchi Automata: Example

Optimisation 2: “On the fly” model checking

Only generate Bϕ
Avoid explicit construction of Kripke structureM
“Explore”M while constructing intersection with Bϕ

Advantage: Some states ofM might never get visited

〈r1,q1,0〉

〈r2,q1,0〉

〈r1,q2,0〉

〈r1,q2,1〉

〈r2,q1,2〉

a b

a
a b

b b

a

a

b

(Intersection doesn’t contain state 〈r2, q2〉)
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Automaton-based Model Checking of LTL

GivenM = 〈S,T , I, L〉 and Aϕ

À Construct BM
Á Put ¬ϕ into negation normal form

Â Construct Bϕ for ¬ϕ in NNF

Ã Construct B = BM ∩ Bϕ
Ä Check B for emptiness (L(B)

?
= ∅)

Note:

Generalised Büchi automata can be converted to “simple” Büchi automata
(required for Bϕ before we construct intersection)
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Automaton-based Model Checking of LTL

GivenM = 〈S,T , I, L〉 and Aϕ

À Construct BM
Á Put ¬ϕ into negation normal form

Â Construct Bϕ for ¬ϕ in NNF

Ã Construct B = BM ∩ Bϕ
Ä Check B for emptiness (L(B)

?
= ∅)

Note:

Generalised Büchi automata can be converted to “simple” Büchi automata
(required for Bϕ before we construct intersection)

83



Summary

Introduced temporal logic as a specification language
Branching time logic CTL
Linear time logic LTL

Model checking algorithms:
Nested fixed points for CTL
Automata-based for LTL
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