Computer Aided Verification

Lattices and

Fixed Points

Georg Weissenbacher M n for sy[e



Exploring State Space

How can we explore the states of a transition system?
1. Unwinding symbolic transition function T : p(S) — ©(S)
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» Done when we encounter no more new states!
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» Central question of this lecture:

What does “no more new states” mean?

Theoretical Foundation:
» Orders on p(S), lattices
» Fixed points on lattices

The following slides are based on material created by Vijay D’Silva



Comparing Sets of States

» Sets of states:
{{x—0,y—0),(x—0,y—1),...}

» Power-set: The set of all sets of states: p(S)
» Ordering sets
{{x—0,y—0),(x—0,x— 1)}



Comparing Sets of States

» Sets of states:
{{x—0,y—0),(x—0,y—1),...}

» Power-set: The set of all sets of states: p(S)
» Ordering sets
{{x—0,y—0),(x—0,x— 1)}

{(x—0,x—0)}



Comparing Sets of States

» Sets of states:
{{x—0,y—0),(x—0,y—1),...}

» Power-set: The set of all sets of states: p(S)
» Ordering sets
{{x—0,y—0),(x—0,x— 1)}

/

{(x—0,x—0)}



Comparing Sets of States

» Sets of states:
{{x—0,y—0),(x—0,y—1),...}

» Power-set: The set of all sets of states: p(S)
» Ordering sets
{{x—0,y—0),(x—0,x— 1)}

/

{(x—0,x—0)} {x—0,y—1)}



Comparing Sets of States

» Sets of states:
{{x—0,y—0),(x—0,y—1),...}

» Power-set: The set of all sets of states: p(S)
» Ordering sets
{{x—0,y—0),(x—0,x— 1)}

/ N\

{(x—0,x—0)} {x—0,y—1)}



Comparing Sets of States

» Sets of states:
{{x—0,y—0),(x—0,y—1),...}

» Power-set: The set of all sets of states: p(S)
» Ordering sets
{{x—0,y—0),(x—0,x— 1)}

SN

{(x—0,x—0)} — {x—0,y—1)}



Comparing Sets of States

» Sets of states:
{{x—0,y—0),(x—0,y—1),...}

» Power-set: The set of all sets of states: p(S)
» Ordering sets
{{x—0,y—0),(x—0,x— 1)}

/ N\

{(x—0,x—0)} {x—0,y—1)}



Comparing Sets of States

» Sets of states:
{{x—0,y—0),(x—0,y—1),...}

» Power-set: The set of all sets of states: p(S)
» Ordering sets
{{x—0,y—0),(x—0,x— 1)}

{(x—0,x—0)} {x—0,y—1)}

\{}/



Comparing Sets of States

» Sets of states:
{{x—0,y—0),(x—0,y—1),...}

» Power-set: The set of all sets of states: p(S)
» Ordering sets
{{x—0,y—0),(x—0,x— 1)}

{(x—0,x—0)} {x—0,y—1)}
{ 3

» “Hasse Diagram”
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v

:(s,s) € Rforallse S
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> : (S0, 81) € Rand (s1,sp) € R implies sp = s4



Common Properties of Relations

> :(s,s) € Rforallse S

> . If (so,s1) € Rthen (s1,s0) € R

> 2 If (so,81) € Rthen (s1,s0) ¢ R

> : (S0, 81) € Rand (s1,sp) € R implies sp = s4

> : (S0, 81) € Rand (s1,s2) € Rimplies (sp, s2) € R
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Orders

Definition (Orders)
Arelation RC Sx Sisa

pre-order reflexive and transitive
partial order pre-order and anti-symmetric
strict order  transitive, asymmetric, and irreflexive

total order partial order and
Vso,s1 € S.((s0,51) € R)V ({s1,50) € R)

Some Examples:
» <overIN ... totalorder
» Cover p(IN) ... partial order



Ordered Sets

» Commonly used symbols for orders:
<, G, %, strict versions: <, C,C, <

Definition (Ordered Set)

An ordered set (S, C) comprises a
» set Sand
» an order C.
(S,C) is a poset if C is a partial order.



Examples of Orders and Ordered Sets

v

Logical implication over logical formulas is a pre-order
» Not a partial order:
—(xVy) < (-xA-y) (logically equivalent but not equivalent)
» What about logical implication over Ordered BDDs?
For lists, let L1 < Ly if elems(Lq) C elems(Ly)
» Pre-order, but not a partial order

v

v

(p(8S), C) is a poset (remember Hasse diagram!)

v

IN is totally ordered by <
The order < is strict on IN

v
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Chains

Let (S,C) be a poset and let X C S.
» Xisa
» chainif Vsg,s1 € X.(So C s1) V (51 C sp)
» anti-chainif Vsy, s1 € X.(So £ s1) A (S1 [Z sp) (incomparable)
» Ascending chain: sp C 51 C ...
» Ascending Chain Condition (ACC) for (S, C):
Every infinite sequence sy C s; ... eventually terminates:
dn>0.Ym>n.s, = Sy (e, Sp=8Spt1 =Spt2="...)
» Similarly: Descending Chain Condition:

Every non-empty subset has a minimal element
(aka “well-founded’)



Examples of Chains

» Every X C N is a chain with respect to <.
» (IN, <) does not satisfy the ascending chain condition.
» (IN, >) does satisfy the descending chain condition.



Tops and Bottoms

v

Let (S, C) be a poset.
> element of a poset (T, supremum, maximum) satisfies

Vse §.sC T

v

element of a poset (L, infimum, minimum) satisfies

Vse S.1Cs

v

A bounded poset has T as well as L.



Joins and Meets

v

Let (S,C) be a poset, X C S
» uec Sisan of X if

Vxe X.xCu

(Note that u is not necessarily in X)
» A LIX is the of X
A MXis the of X

v
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Joins and Meets: Examples

» Let (INU {oo}, <) be a poset
» The greatest lower bound of Nis ... 1
» The least upper bound of {6,9,17}is...17
» The least upper bound of N is ... 00

» Let (p(S), C) be a poset

» The least upper bound of p(S)is...S
» The greatest lower bound of (S)is ... 0
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Lattices

Definition (Lattice)

» A (S,C, ) is a poset with a binary join L.
» A (S,C,M) is a poset with a binary meet M.
» A (S,C, U, M) is a poset with a join and a meet.



Lattices

Definition (Lattice)

» A (S,C, ) is a poset with a binary join L.

» A (S,C,M) is a poset with a binary meet M.

» A (S,C, U, M) is a poset with a join and a meet.
Examples:

» (IN, <, max, min) is a lattice.
» (p(S), S,U,N) is a the power-set lattice over S.



Complete Lattices

Definition (Complete Lattice)

> A lattice (S, C, L, M) is a lattice in which for every
XCS
» LIX and
» X

are defined and belong to S.

def def

» Note: L =mnfPand T =US.



Complete Lattices

Definition (Complete Lattice)

> A lattice (S, C, L, M) is a lattice in which for every
XCS
» LIX and
» X

are defined and belong to S.

def def

» Note: L =mnfPand T =US.

Examples:
» The power-set lattice (p(S), C,U,N) is a complete lattice.
» (IN, <, max, min) is not complete.



Finite Lattices

Theorem

Every finite lattice is complete.



Fixed Points

You’ve reached a fixed point if
» every morning 6am
you get woken up by
» Sonny & Cher’s
“I Got You Babe”




Fixed Points

You’ve reached a fixed point if
» every morning 6am
you get woken up by
» Sonny & Cher’s
“I Got You Babe”
And if you're a monotone function
there’s really nothing you can do
about it.




Fixed Points

Definition (Fixed Points, Fixpoints)
Let F : S — S be a function on a poset (S, C).
Thens e Sis

> a if .

» a pre-fixpoint if s C F(s)

» a post-fixpoint if F(s) C s



Examples of Fixed Points

» f(x) = x2 has two fixed points in (INg, <), 0 and 1.
» 2.3,4,... are pre-fixpoints
» f(x) = x+ 1 has no fixed point in IN, but co in IN U co



Examples of Fixed Points

» f(x) = x2 has two fixed points in (INg, <), 0 and 1.
» 2.3,4,... are pre-fixpoints
» f(x) = x+ 1 has no fixed point in IN, but co in IN U co

» true and false are a fixed points of f(P) = wp(x :=x+ 1, P)



Extremal Fixed Points

Definition (Least and Greatest Fixpoint)

Let F : S — S be a function on a poset (S, C).
» The least fixpoint of F (Ifp(F) or nF) is a fixpoint such that for
any fixpoint s of F it holds that uF C s.
» The greatest fixpoint of F (gfp(F) or vF) is a fixpoint such that
for any fixpoint s of F it holds that s C vF.




How To Find Fixed Points?

Maybe we can just iterate the function?

Definition (lterates of a Function)
The iterates of F : S = S starting from sy € S (where (S, C,LI,)
is a lattice) are defined as

» FO(sp) = 59

» F*(sp) = F(F"(sp)) for n € IN

def

» F*(so) = U{F"(s0) | n € IN} if this lfp exists



Behaviour of Iterates

» Infinite, non-repeating

a — F(a) > F2(a) »F3a)— -

» Oscillating

— T

a > F(a) > F2(a) - >F"(u)

» Eventual stabilisation (reaches a fixed point)

a > F(a) > F2(a) > e =F"(3)3




Behaviour of Iterates

v

Infinite, non-repeating

a — F(a) > F2(a) »F3a)— -

v

Oscillating

— T

a > F(a) > F2(a) - >F"(u)

v

Eventual stabilisation (reaches a fixed point)

a > F(a) > F2(a) > e =F"(3)3

v

How can we make sure that the last case happens?
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Monotonicity

Definition (Monotone Function)

A function F : S — S for a complete lattice (S, C) is monotone if

Vsi,5 C S.(s1 C s2) = F(s1) C F(s2)

» Monotone functions are also called isotone or order
preserving. If (s1 C sp) = F(sz) C F(s1) then F is anti-tone.

» Do you remember a monotone function from one of the
previous lectures?



Monotonicity

Definition (Monotone Function)

A function F : S — S for a complete lattice (S, C) is monotone if

Vsy,52 C S.(s1 C s2) = F(s1) C F(s2)

» Monotone functions are also called isotone or order
preserving. If (s1 C sp) = F(s2) C F(s1) then F is anti-tone.

Theorem
Let F: S — S by a function on a complete lattice (S, C, LI, ).

F is monotone
&

VX C S. UF(X)C F(UX)



Continuous Functions

Definition (Continuous Function)

Let (S,C, U, M) be a lattice and F : S — S be a function.

» Fis LI-continuous, if for any ascending chain C C Sthat has a
least upper bound in S, F(LC) = U F(C).

» Fis M-continuous, if for any ascending chain C C Sthat has a
greatest lower bound in S, F(MC) =M F(C).



Continuous Functions

Definition (Continuous Function)

Let (S,C, U, M) be a lattice and F : S — S be a function.

» Fis LI-continuous, if for any ascending chain C C Sthat has a
least upper bound in S, F(LC) = U F(C).

» Fis M-continuous, if for any ascending chain C C Sthat has a
greatest lower bound in S, F(MC) =M F(C).

Theorem
A continuous function on a lattice is monotone.



Knaster-Tarski & Kleene’s Fixpoint Theorem

Theorem (Knaster-Tarski Theorem)

Let F : S — S be monotone on the complete lattice (S, C, LI, ).
1. F has a least fixpoint:

uF £1{sec S| F(s) C s}
2. F has a greatest fixpoint:

vFELU{se S|sC F(s)}



Knaster-Tarski & Kleene’s Fixpoint Theorem

Theorem (Knaster-Tarski Theorem)

Let F : S — S be monotone on the complete lattice (S, C, LI, ).
1. F has a least fixpoint:

uF £1{sec S| F(s) C s}
2. F has a greatest fixpoint:

vFELU{se S|sC F(s)}

Theorem (Kleene’s Fixpoint Theorem)

Let F : S — S be a continuous function on the complete lattice
(S,C,U, ). Then

p(F) = F* (L) = l{F"(L)[n e N}



Fixed Point Computation by Iteration

p(F) = F*(L) = u{F"(L)|n e N}

» Assumption: F is continuous
» Initialvalue € S

X:=1
Y == F(/)
while (X # Y) do
X =Xuy
Y = F(X)



Fixed Point Induction Principle

Theorem (Fixed Point Induction Principle)

Let F: S — S be a monotone function on a complete lattice
(S,C,u,m).

uFCP
VP e S. &
eSS ICPAFHCI



Fixed Point Induction Principle

Theorem (Fixed Point Induction Principle)

Let F: S — S be a monotone function on a complete lattice
(S,C,u,m).

uFCP
VP e S. &
eSS ICPAFHCI

Proof.

= Assume J/ € S as above.

» Then /is a post-fixpoint of F.
» uF is lower bound on post-fixpoints (Knaster-Tarski), tf. uF C /
» Thus, uF C P

< Suppose uF C P. Then choose | = uF.



Fixed Point Induction

» The fixed point induction principle is at the heart of many
verification techniques (remember loop rule of Hoare logic)

» Intuitively, / corresponds to an invariant strong enough to
prove a property P

» The pivotal problem is finding such an invariant

F(/ III
( ) Ifp-induction

C
IEF) = gfp-induction



Summary

v

Orders, Lattices

v

Fixed Points

v

Knaster-Tarski and Kleene’s Fixed Point Theorem

Next time:
Applying the fixed point theorems to finite-state models

v



