Computer Aided Verification

Introduction

Georg Weissenbacher m n for syte

problem has been detected and windows has been shut down to prevent damage
0 your computer.

DRIVER_TIRQL_NOT_LESS_OR_EQUAL

If this is the first time you've seen this Stop error screen,
restart your computer, If this screen appears again, follow
hese steps:

heck to make sure any new hardware or software is properly installed.
If this is a new installation, ask your hardware or software manufacturer
or any Windows updates you might need.

If problems continue, disable or remove any newly installed hardware
or software. Disable BIOS memory options such as caching or shadowing.
1f you need to use safe mMode to remove or disable components, restart
our computer, press F8 to select Advanced Startup options, and then
select safe Mode.

echnical information:

WH¥ STOP: 0x00000001 (OX0000000C, 0x00000002, 0x00000000, OXFEEE5A89)

[gv3.sys - Address FB86B5A89 base at F86EB5000, DateStamp 3dd99leb

Beginning dump of physical memory

FPhysical memory dump complete.

ontact your system administrator or technical support group for further
assistance.

problem has been detected and windows has been shut down to prevent damage
0 your computer.

DRIVER_IRQL_NOT_LESS_OR_EQUAL

If this is the first time you've seen this Stop error screen,
restart your computer, I this scrgan annaarc aoade follow
hese steps:

Looks like you want to know what
heck to make sure any new hardwar y

If this is a new installation, ask
or any windows updates you might DRIVER_IRQL_NOT _LESS_OR_EQUAL

If problems continue, disable or r means ...
or software. Disabhle BIOS memory
If you need to use safe mMode to remove or d1sanie ComSERents,

our computer, press F8 to select Advanced Startup opti and then
select safe Mode.

echnical information:

#%¥ STOP: 0x000000D1 (OX0000000C, 000000002, 000000000, OXFBE.E%) -.

[y gv3.sys - Address F86B5ARY base at F86B5000, Datestarly| 3ddlfleb

Eeginning dump of physical memory |
FPhysical memory dump complete. h
ontact your system administrator or technical support group fol fur'T her
assistance. kb @

Ariane 5 — Flight 501

Ariane 5 — Flight 501

Caused by an inadequate data conversion of a floating point
number to a 16-bit signed integer (ADA code)

Northeast Blackout of 2003

Northeast Blackout of 2003

Race condition in General Electric Energy’s Unix-based XA/21
energy management system

Therac-25 Incident

Therac-25 Incident

Race condition caused massive overdose of radiation
(3 patients dead)

But all that’s ancient history, right?
Software and systems now are safe!?

What happened in the last few years...

Toyota Prius

(New York Times, Feb. 12, 2014)
Toyota Motor is recalling all of
the 1.9 million newest-generation
Prius vehicles it has sold world-
wide because of a programming
error ...

Heathrow Airport

(The Guardian, December 2014)

An unprecedented systems fail-
ure was responsible for the air
traffic control chaos [...] “In this
instance a transition between the
two states caused a failure in the
system which has not been seen
before,” ...

What happened in the last few years...

Toyota Prius

(New York Times, Feb. 12, 2014)
Toyota Motor is recalling all of
the 1.9 million newest-generation
Prius vehicles it has sold world-
wide because of a programming
error ...

Heathrow

Making every journey better

Lufthansa Airbus A321
(Spiegel, March 20, 2015)

Beinahe ware ein Airbus A321
der Lufthansa mit 109 Pas-
sagieren auf dem Flug von Bil-
bao nach Minchen abgestiirzt
— irregeleitete Bordcomputer hat-
ten die Kontrolle Gbernommen.

Boeing 787 Dreamliner

(The Guardian, May 2015)

The US air safety authority has
issued a warning and mainte-
nance order over a software bug
that causes a complete electric
shutdown of Boeing’s 787 ...

Lufthansa Airbus A321
(Spiegel, March 20, 2015)

Beinahe ware ein Airbus A321
der Lufthansa mit 109 Pas-
sagieren auf dem Flug von Bil-
bao nach Minchen abgestirzt
— irregeleitete Bordcomputer hat-
ten die Kontrolle Gbernommen.

Heartbleed Bug

(CNN, April 9, 2014)

A major online security vulnera-
bility dubbed “Heartbleed” could
put your personal information at
risk, including passwords, credit
card information and e-mails.

Rowhammer Bug

(InfoWorld, March 9, 2015)

... with certain varieties of DRAM
an attacker can create privilege
escalations by simply repeatedly
accessing a given row of mem-
ory.

Heartbleed Bug

(CNN, April 9, 2014)

A major online security vulnera-
bility dubbed “Heartbleed” could
put your personal information at
risk, including passwords, credit
card information and e-mails.

Software and integrated circuits are everywhere

Software and integrated circuits are everywhere

108 lines of code 70 micro-processors

Huge Effort Spent on V&V

01

131000101101
1000101011
010101010%
luuumnml

Software verification Hardware validation
50% of development time 35% of development time
[Myers 1979-2012] [Abramovici 2006]

Establishing correctness

Establishing correctness

Finding bugs

Establishing correctness

Finding bugs

Finding bugs

Computer Aided Verification

Model Checking 101

14

Turing Award 2007 (Clarke, Emerson, Sifakis)

1101030LE
000103100

0001010111

10

(transitions)

(pc+—2,x — 1)

(pc— 3,x — 2)

(pc+—2,x — 1) (pc— 3,x — 2)

(T: operational semantics of program or circuit)

(pc+—2,x — 1) (pc— 3,x — 2)

(T: operational semantics of program or circuit)

The Model Checking problem:

()

“starting states” “pad states”

(pc+—2,x — 1) (pc— 3,x — 2)

(T: operational semantics of program or circuit)

The Model Checking problem:

Ch

“starting states” “pad states”

(pc+—2,x — 1) (pc— 3,x — 2)

(T: operational semantics of program or circuit)

The Model Checking problem:

T
M
“starting states” “pad states”

(pc+—2,x — 1) (pc— 3,x — 2)

(T: operational semantics of program or circuit)

The Model Checking problem:

T T
CAS
“starting states” “pad states”

(pc+—2,x — 1) (pc— 3,x — 2)

(T: operational semantics of program or circuit)

The Model Checking problem:

T T T
Cnan

“starting states” “pad states”

(pc+—2,x — 1) (pc— 3,x — 2)

(T: operational semantics of program or circuit)

The Model Checking problem:

T T T
Cnan

“starting states” “pad states”

Model Checking and Counterexamples

m “Bad states” are determined by specification
m Violations are witnessed by a counterexample

T T T
Cnan

“starting states” “bad states”

Model Checking and Counterexamples

m “Bad states” are determined by specification
m Violations are witnessed by a counterexample
T T T

“starting states” “bad states”

m Example above is a safety violation
m Counterexample is a path of finite length

Model Checking and Liveness

m There are also counterexamples of infinite length

“starting states” “bad states”

Model Checking and Liveness

m There are also counterexamples of infinite length

“starting states” “bad states”

m Example above is a liveness violation

m Visits bad state repeatedly
m What kind of specification could such a path violate?

Model Checking and Temporal Logic

m “Every request is eventually acknowledged”
m Counterexample is infinite loop (lasso-shaped)

Model Checking and Temporal Logic

m “Every request is eventually acknowledged”
m Counterexample is infinite loop (lasso-shaped)
m Specification in Temporal Logic

m Introduced by Amir Pnueli
m Goal of Model Checking is to check Temporal Logic Specs

State Space Explosion

20

Why explore states one by one?

N

21

Why explore states one by one?

set of states post-image

21

Why explore states one by one?

st) (s
set of states post-image

S = T(S)E{s|T(s,s)Asec S}

21

22

How do we efficiently represent sets of states?

Logical Formulas!

4

—~ .
program variables,

registers, latches,
signals, ...

23

How do we efficiently represent sets of states?

Logical Formulas!

F(V)
~—~
program variables,

registers, latches,
signals, ...

23

How do we efficiently represent sets of states?

Logical Formulas!

(x >0) represents {s|s(x)> 0}

23

And what about transitions?

Binary Relations!

!
T(V.V)

target states

24

And what about transitions?

Binary Relations!

(X' =x+1) represents {(s,s')|s'(x)=s(x)+1}

24

And what about transitions?

Binary Relations!

(X' =x+1)
———

x++

represents {(s, s} |s'(x) = s(x) + 1}

24

25

Jv.

R(V)

A T(V, V)

25

R(V)
R(V)

v’.

25

10101010
101001001011

(transition relation)

26

akown-=

if (x>0) {
X =3x-1;

} else {
x =3+ 1;

}

(transition relation)

26

S

if (x>0) {
x=3x-1;
} else {
x =3+ 1;

}

(transition relation)

26

1: if (x>0)

2: X =x-1;
3. else

4. X =x + 1;
5: assert (x>0);

T({pc, x), (pc’, X))

27

AN

if (x>0)

X =x-1;
else
X =x+ 1;

assert (x>0);

T((pc, x), {pc’, x')) =

(x>0) =

def

27

1
2:
3:
4
5

if (x>0)

X =x-1;
else
X =x+ 1;

assert (x>0);

T((pe. x), (pc’, x')) =

(x>0) =
-(x>0) =

(b =2)
(pc’ = 4)

A
A

(x
(x

<

~

X
X

)
)

27

1
2:
3:
4
5

if (x>0)

x =x - 1;
else
X =x+ 1;

assert (x>0);

T((pe. x), (pc’, x')) =

(x>0) =
-(x>0) =

27

if (x>0)

x =x - 1;

—_

. else

. assert (x>0);

(x>0 =

>
ST T
O O O O

def

T({pe, x), (pc’;x"))

(623N~ \V)
— — — —

(pc’
= (pc
= (pc
= (pc

> > > >

>
ST

O O O O

1:
2:
3:

if (x>0)

x =x - 1;

else

. assert

(

)

T({pc,x), (pc’, X))

s 118

-~

=

=
=
=

(pc’
(pc’
(pc’
(pc’

def

[O20N 2 E ~S \V)
— — — —

> > > >

27

NP NS o)

tee

TN

28

T T T
()
I(Vo) A (/k\ T(Vi_1, Vi)) A =P(Vi)

i=1

“Can property P be violated in k steps?”
(here, property = assertion over variables)

30

31

31

32

32

dneN. i =i + n

32

dneN. i’ =i + n

32

dneN. i’ =i + n

m 7" is accelerated version of T:
JIn. TN

m computable if T{" is Presburger-definable (for instance)
m but not computable in general

32

3n (V) A TV, V) A =P(V)

33

in.

T<”>(

v,V

)

33

3n. TV, V')

P
reflexive transitive closure (T*)

33

In. T\ (v, V")

P
reflexive transitive closure (T*)

m Approach is known as acceleration
m Fails if transitive closure can’t be computed symbolically

33

34

34

k
Rek =R (with Ry = 1)
i=0

34

.
C)

k
Rek =R (with Ry = 1)
i=0

m “Fixed point” if T cannot escape R<k

34

m A<, the set of reachable states, is an inductive invariant

35

m A<, the set of reachable states, is an inductive invariant
m In fact, it is the smallest inductive invariant (least fixpoint)

35

:
[
T

>

m A<, the set of reachable states, is an inductive invariant
m In fact, it is the smallest inductive invariant (least fixpoint)
m Anything implied by an inductive invariant is an invariant

35

m R<., the set of reachable states, is an inductive invariant
m In fact, it is the smallest inductive invariant (least fixpoint)
m Anything implied by an inductive invariant is an invariant

m Invariant may also include states which allow “escape”

35

Inductive Invariants vs. Invariants

x = b;

while (x<10) {
assert (x # 2);
x=x+1;

}

a0

36

Inductive Invariants vs. Invariants

x = b5;

while (x<10) {
assert (x # 2);
X =3+ 1;

ahron

36

Inductive Invariants vs. Invariants

x = b;

while (x<10) {
assert (x > 2);
X =x + 1;

a0

36

Inductive Invariants vs. Invariants

x = 5;

while (x<10) {
assert ();
x =x + 1;

aRhwn

An inductive invariant
m needs to be satisfied by initial states (base case)
m needs to hold in (n+ 1)t step if it holds in N step

36

System is safe if:

37

System is safe if:
m A< contains /

37

System is safe if:
m A< contains /
m T cannot leave R<x

37

System is safe if:
m A< contains /
m T cannot leave R<x
m A< does not overlap with =P

37

Interpolation-based Model Checking

m Exact reachability retards convergence

38

Interpolation-based Model Checking

T H T I T
m Exact reachability retards convergence
m Over-approximate R; instead?

38

Craig’s Interpolation Theorem

"'@

39

Craig’s Interpolation Theorem

C “simpler” than A

39

Craig’s Interpolation Theorem

it (A(V, V') A B(V', V') £ L)
I
JC(V')
s.t.
AV, V') £ C(V)
B(V', V) £ —C(V))

C “simpler” than A

39

Interpolation-based Model Checking

40

Interpolation-based Model Checking

40

Interpolation-based Model Checking

40

Interpolation-based Model Checking

40

Interpolation-based Model Checking

40

Interpolation

m Interpolants from Propositional/First-Order Refutation Proofs

A A B B A A B B
X0 XoX2 X2 X1X2 X0 XpX2 X2 X2
A ~ K N A ~ ¥ N
X1X2 X2 X1 X2 X2 O

~a a4 Y :
% /
— P
1
- T

41

Interpolation

m Interpolants from Propositional/First-Order Refutation Proofs

A A B B A A B B
X0 XoX2 X2 X1X2 X0 XpX2 X2 X2
A ~ K N A ~ ¥ N
X1X2 X2 X1 X2 X2 O

S & Y = :
% /
— P

1
- N

m Over-approximates reachable states

ONO

41

Interpolation

m Interpolants from Propositional/First-Order Refutation Proofs

A A B B A A B B
Xo XoX2 X2 X1Xo X0 XoX2 X2 Xo
A ~ X N . A ~ K N e
X1 X2 X2 X1 X2 X2 O

X e ;
- / L
— P
1
s N

m Over-approximates reachable states

41

Interpolation

m Interpolants from Propositional/First-Order Refutation Proofs

A A B B A A B B
X0 XoX2 X2 X1X2 X0 XpX2 X2 X2
A ~ K N A ~ ¥ N
X1X2 X2 X1 X2 X2 O

S & Y = :
% /
— P

1
- N

m Over-approximates reachable states

41

Interpolation

m Interpolants from Propositional/First-Order Refutation Proofs

A A B B A A B B
X0 XoX2 X2 X1X2 X0 XpX2 X2 X2
A ~ K N A ~ ¥ N
X1X2 X2 X1 X2 X2 O

S & Y = :
% /
— P

1
- N

m Over-approximates reachable states

41

Interpolation

m Interpolants from Propositional/First-Order Refutation Proofs

A A B B A A B B
X0 XoX2 X2 X1X2 X0 XpX2 X2 X2
A ~ K N A ~ ¥ N
X1X2 X2 X1 X2 X2 O

S & Y = :
% /
— a0

1
s Y

m Over-approximates reachable states

m Can accelerate convergence of fixpoints

41

Interpolation

m Interpolants from Propositional/First-Order Refutation Proofs

A A B B A A B B
X0 XoX2 X2 X1X2 X0 XpX2 X2 X2
A ~ K N A ~ ¥ N
X1X2 X2 X1 X2 X2 O

S & Y = :
% /
— a0

1
s Y

m Over-approximates reachable states

m Can accelerate convergence of fixpoints
But may introduce spurious transitions!

41

Refinement with Interpolation

Cy Ck—1 Ck
T I T T l

42

Refinement with Interpolation

Cy Ck—1 Ck
T T T ﬁ

m Interpolation-based approximation might be too coarse

42

Refinement with Interpolation

C; Ck—1 Ck
T T T T

m Interpolation-based approximation might be too coarse
m Interpolation-based MC has to consider longer prefix

42

Refinement with Interpolation

C; Ck—1 Ck
T T T T

m Interpolation-based approximation might be too coarse

m Interpolation-based MC has to consider longer prefix
m Results in unwinding of T

42

Alternative: Other Model Checking Algorithms (e.g., IC3)

i H

m |C3 refines approximations by eliminating unreachable states

43

Alternative: Other Model Checking Algorithms (e.g., IC3)

T

VR

m IC3 refines approximations by eliminating unreachable states

43

Refinement with IC3

Cy Ck—1 Ck
T I T T .

44

Refinement with IC3

Cy Ck—1 Ck
T T T E

m The IC3 algorithm considers only single steps of T

44

Refinement with IC3

Ci Ck—1 Ck
T T

m The IC3 algorithm considers only single steps of T
m Can eliminate unreachable states s on-the-fly

44

Refinement with IC3

Ci Ck—1 Ck
T T

m The IC3 algorithm considers only single steps of T
m Can eliminate unreachable states s on-the-fly

Yet fixpoint challenging to find for concrete industrial-size systems

44

Abstraction

45

abstract

concrete

abstract

concrete

abstract

concrete

47

abstract

less abstract

47

48

refine

48

refine

refine

48

Counterexample-guided
Abstraction Refinement

(CEGAR)
Check Abstraction
abstract failure trace
Refine Check Feasibility
counter-
' " example

infeasible

49

Model Checking in Practice

50

!
Satisfiability Solver

(like linear programming, but for first-order/propositional logic)

51

Satisfiability Solvers

22 Yices2
MathSAT 5

PicoSAT Boolector Lingeling

m Satisfiability of First-Order/Propositional Logic
m Solve large instances with hundreds of thousands of variables
m Cornerstone of modern-day formal verification

52

Automated Verification in Industry

Software

Microsoft

Research

Pox

SLAM. sAGE

Google

Hardware

Sixth Sense

SYNoPSYs

cadence’

53

What we want to verify:

54

What we want to verify:

-
e ARBUSS

54

What we want to verify:

e g B RREUS

Ongoing research: Push the Boundary

54

Survey on SAT-based Model Checking

http://dx.doi.org/10.1109/JPROC.2015.2455034

55

http://dx.doi.org/10.1109/JPROC.2015.2455034

