Computer Aided Verification

Bounded Model Checking
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Flashback: Symbolic Transition Relations

» Encode states and transition relations as formulas
» Deploy off-the-shelf decision procedures/BDDs for verification
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1 if (x>0)

2: x=x-1;
3: else

4. x =x + 1;
5:

assert (x>0);

T({pc, x), {pc’, x'))
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if (x>0)
X = X
else
X = X

ahRhwn =

assert (x>0);
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1: if (x>0)

2. x =x - 1;
3. else
: assert ( );
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Bounded Model Checking

» Unwinding of a transition relation T

T(x,y, X,y

» For example:
(¥ =x+1)A(@F' =y



Unwinding Symbolic Transition Functions

Let T : p(S) — ¢(S) be a symbolic transition function

I' NT
°
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/(So) A T(So7 31)



Unwinding Symbolic Transition Functions

Let T : p(S) — ¢(S) be a symbolic transition function

INT AN T
° °

dsg, 51, S2

/(So) A T(SQ,S1) A T(S1,SQ)



Unwinding Symbolic Transition Functions

Let T : p(S) — ¢(S) be a symbolic transition function

INT AN T A
° ° °

dsp, S1, So, . ..

I(so) N T(S0,51) A T(S1,82)A... A



Unwinding Symbolic Transition Functions

Let T : p(S) — ¢(S) be a symbolic transition function
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Unwinding Symbolic Transition Functions

Let T : p(S) — ¢(S) be a symbolic transition function

AT AN T A AT
. . e

/
° °

3s0, 81,82, -+, Sk—1, Sk -
k
/(So) A T(So, 31) A T(S1 , 32) AN T(Sk,1,Sk) N \/ —\P(Si)
i=0

Checking safety properties P (assertions):

INT A T A N T
[ ] [ ] (] R [ ] [ ]
-P v =P v =P Vv =P Vv =P




Bounded Model Checking (BMC)

Unwinding as described before:
» Enables checking of safety properties (AG P)
» Incomplete: only correct up to bound k

» No fixpoint computation required
» deploy efficient satisfiability checkers!



BMC: Exploiting Locality

For Software or Hardware Description Languages (HDL)
» monolithic transition relation
» partitioned according to locations

T(s,s) & \/ (s.pc =) A Ty(s,s)

£eLocations



Unwinding Transition Relations

Assume we unwind the entire transition relation:
» at each step, many locations ¢ are unreachable!
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Assume we unwind the entire transition relation:
» at each step, many locations ¢ are unreachable!
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Unwinding Transition Relations

» Avoid construction of formulas for unreachable nodes

» Nodes unreachable in step #i in CFG grey in previous slide
» Is path-wise unwinding a good strategy?

» Previous unwinding contains 3 copies of L4 and L5!

» Path enumeration — exponential blowup!

#0
L1 #1

492
L2

#3
L3 "
L4 #5
L5 #6

CFG | unrolling



Unwinding Loops

» Idea: Process exactly one location in each timeframe
» Unwind loop bodies individually and merge on exit

#0
L1 #1
#2
D .
#4

L4
L5 #5




Unwinding Loops

while B do BODY done



Unwinding Loops

while B do BODY done



Unwinding Loops
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if (B) {
BODY
if (B) {
BODY



Unwinding Loops

while B do BODY done

if (B) {
BODY
if (B) {
BODY
if (B) {
BODY
assume (—B) {

}
}
}
}



Unwinding Loops

while B do BODY done

if (B) {
BODY
if (B) {
BODY
if (B) {
BODY
assume (—B) {

}
}
}
}

Size of resulting formula linear in depth and size of program!



Unwinding Loops

while B do BODY done

if (B) { if (B) {
BODY BODY
if (B) { if (B) {
BODY BODY
if (B) { if (B) {
BODY BODY
assume (—B) { assert (—B) {
} }
} }
} }
} }

What happens if we replace assume with assert?



Unwinding-Assertions

while B do BODY done

if (B) {
BODY
if (B) { » The assertion fails if the
BODY loop can be unwound
if (B) { further!
BODY » There are paths
assert (-B) { exceeding the bound k!
} » Applicable for run-time
) h bounds!

}



Literature

More details:

A Survey of Automated Techniques for Formal Software
Verification

» http://dx.doi.org/10.1109/TCAD.2008.923410, Sec. IV


http://dx.doi.org/10.1109/TCAD.2008.923410

Paths with Cycles

» Cases in which the unwinding assertion never fails?



Paths with Cycles

» Cases in which the unwinding assertion never fails?
» If there are paths with cycles!
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Paths with Cycles

» Cases in which the unwinding assertion never fails?
» If there are paths with cycles!

T

» But BMC can'’t detect those, right?
(so far, we've only looked at safety/reachability properties)



Paths with Cycles

x=1;

while(x < 10) {
x=x+nondet(); //addxtox
assume(x # 0);

CRONCNCNCONS)

}
x=0;

» Are there execution traces for which s.pc is never ®?
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Paths with Cycles

x=1;

while(x < 10) {
x=x+nondet(); //addxtox
assume(x # 0);

CRONCECNCONS)

}
x=0;

/(So)/\T1(So,S1)/\T2(S1,Sg)/\T3(32,83)/\T4(33,S4) A (S4:S1)
0. D@ D)@ @)@ 1)

T




Paths with Cycles

/(So)/\T1(So,S1)/\T2(S1,32)/\T3(32,83)/\T4(33,S4) A (S4:S1)

» Satisfying assignment represents execution trace with cycle
» Technique enables us to find counterexample to

» We always eventually reach location ®
(this is called a liveness property)

» i.e., the resulting execution trace is a witness for
» There is a path on which pc is never ®



Paths with Cycles

In general:

k
/(So) A </\ T(S,'7 Si+1)> A \/ (Si = S/)
i=0

ie{1..k},je{0..(i—-1)}

> Vieptky.jefo (-1} (51 = $7)
checks for every state s; whether there’s a back-edge
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Completeness Threshold

» Approximate completeness threshold!
» We can use SAT to find find cycles:

K
I(so) A (/\ T(si, 3i+1)> N \/ (si = s)

i=0 ie{1..k},je{0..(i—1)}
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Completeness Threshold

v

Approximate completeness threshold!
» We can use SAT to find find cycles:

K
I(so) A (/\ T(si, 3i+1)> N \/ (si = s)

i=0 ie{1..k},je{0..(i—1)}

v

We're done if there no more cycle free paths:

k
I(s0) A < N\ T(si, s/+1)> A A (si # )

i=0 ie{1..k},je{0..(i—1)}

smallest k for which formula above becomes unsatisfiable!



Completeness Threshold

» Typically, the recurrence diameter is large or co
» In particular in the presence of non-determinism
» Applied for hardware models (finite state space)
» Not for software



BMC Overview

program
—
Unroll
transition function Check for
k times counterexample
[error found]
report
Increase Compare K to
k by one completeness
! threshold
[reached]

OK



Recap from Lecture on Satisfiability

How can we compute satisfying assignments?

» Bit-vector arithmetic
» Bit-flattening
» Satisfiability checkers



Tool Support for BMC

CBMC (http://www.cprover.org/cmbc)
» Unwinds ANSI-C programs up to user-specified bound
» Bit-blasts the resulting formula
» Uses SAT solver to check satisfiability
» Also supports unwinding assertions


http://www.cprover.org/cmbc

CBMC example program

Example.C:

unsigned nondet();
unsigned a[100];

int main(int argc, charx* argv) {
unsigned i;
for (i=0; i<100; i++) {
al[il=nondet();
__CPROVER_assume(al[i] <= i);
}
i=nondet () ;
__CPROVER_assume (i<100) ;
__CPROVER_assert(a[i]<100, "Not too large");
return O;



CBMC command line parameters

» cbmc --show-claims Example.C
Claim main.1:
file Example.C line 14 function main
Not too large
ali]l < 100
» cbmc --claim main.l --unwind 10 Example.C
Violated property:
file Example.C line 8 function main

» cbmc --claim main.1 Example.C

VERIFICATION SUCCESSFUL



CBMC example program

Wegner.C:

unsigned nondet();

unsigned count(unsigned x) {
unsigned y, c=0;

y=X;

while (y!=0) {
y=y&(y-1);
c++;

__CPROVER_assert (x!=y, "Not equal");

}
}

int main(int argc, charx* argv) {
unsigned i=nondet();
return count(i);

}



CBMC command line parameters

» cbmc Wegner.C

Unwinding loop O iteration 1 file wegner.c line 7
function count

Unwinding loop O iteration 3227 file wegner.c line 7
function count

» cbmc --32 --unwind 32 Wegner.C

VERIFICATION SUCCESSFUL



Beyond Safety?

» So far, only support for assertions/safety properties
» What about temporal logic?



Recap: Semantics of LTL on Infinite Paths

» Next
M,W':X(P = M,ﬂj ':gé)
» Eventually
MrEFp &  3k>0.M o Eo
» Globally
M,mEGyp & Vi>0. M, 7 =
> Until

3k>0. M, 78 = o A

M, m U = .
=eles Vi€ {0.k -1} . M, 7 = o



Semantics of LTL on Finite Paths

Semantics doesn’t carry over to finite-length paths in BMC
» Need to adjust semantics!
» Letr & So, - - - , Sk be a path with bound k

M, = Xp & p holds in sy




Semantics of LTL on Finite Paths

More generally, “p holds at /”:

M, 7=l p &

p holds in s; with j < k




Semantics of LTL on Finite Paths

More generally, “p holds at /”:

M,m=kp &  pholdsins; with i < k

Then 7 |=} X p simply becomes (i < k) A7 =, p



Semantics of LTL on Finite Paths

Let ¢ be an LTL formula. Then:

M= Fe & Fji<j<k.mlEge

O D)D) )




Semantics of LTL on Finite Paths

What about the globally operator?



Semantics of LTL on Finite Paths

What about the globally operator?
» Remember that BMC is incomplete!



Semantics of LTL on Finite Paths

What about the globally operator?
» Remember that BMC is incomplete!

M,m =Gy &  false
¥ ¥

OO ()

» ¢ might not hold on sy 1!




Semantics of LTL on Finite Paths

Until:

M77T }:;( ©1 U()OZ
=

J,i<j<k. (7r )HMAVn,iSn</’-7T):Z<p1)

®1

¥1 P2
CoC =)




Semantics of LTL on Finite Paths

» s valid along 7 with bound k (7 [=x ) iff 7 =2 ¢



Semantics of LTL on Finite Paths

» s valid along 7 with bound k (7 [=x ) iff 7 =2 ¢
» Note that duality (-Fp = G—¢) doesn’t hold anymore!



Encoding LTL for Finite Paths

We start with a simple unwinding:
k
/(So) A (/\ T(S,;1 s S,'))
i=1

» Represents all paths up to bound k
» Does not reflect the LTL property ¢ yet



Encoding LTL for Finite Paths

k
/(So) A (/\ T(S,',1 s S,')) VAN

[]« is propositional encoding of ¢ for bound k



Encoding LTL for Finite Paths

Simple propositions p:
[olk = p(si)  [-plik = —p(si)
Boolean combinations:

[o1 A el = [erlic A2l [o1 V w2l = Terli V Teali



Encoding LTL for Finite Paths

Next operator:

[Xelk =
if (i < k) then ]} else false



Encoding LTL for Finite Paths

Globally: .
[G ¢]) = false



Encoding LTL for Finite Paths

Globally: .
[G ¢]) = false

Eventually:

k
[F el = \/ ¢l

=i



Encoding LTL for Finite Paths

Globally: .
[G ¢]) = false
Eventually:
K
[F Dk = \/ [l
j=i
Until:

P -
[e1 U] =\/ ([[902]]]/( A /\[[%M)

j=i n=i



Encoding LTL for Finite Paths

k
I(s0) A ( A T(s;_1,s;)> A

with [e]k =[]}



Encoding LTL for Finite Paths

k
I(so) A ( A T(s;_1,s;)> A

with [e]k =[]}

This formula is satisfiable if M = E ¢



What About Infinite Paths?

» Requires reasoning about “lassos”

» prefix reaching state s;
» suffix starting at s; and revisiting s,
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What About Infinite Paths?

» Requires reasoning about “lassos”

» prefix reaching state s;
» suffix starting at s; and revisiting s;
» we call such a path 7 a



Finding (k, /)-Loops

k
/(So) A </\ T(S,'1,S,')> A \/ T(Sk, S/)

1e{0..k}

» Unsatisfiable if no loop
» Otherwise, satisfying assignment provides values for (k, /)



Finding (k, /)-Loops

k
/(So) A </\ T(S,'1,S,')> A \/ T(Sk, S/)

1e{0..k}

v

Unsatisfiable if no loop
Otherwise, satisfying assignment provides values for (k, /)
We obtain states sy, . . . S(_1), S/, - - - , Sk such that

v

v

. def
> prefix u < sp,..., 501

def
» loopv =s,...5
» T(sk,s;) holds

Infinite lasso-shaped path 7 Lueww

v



Bounded Model Checking with (k, /)-Loops

def

Let Ly = \/}_, T(sk, s/). Then case-split:

k
I(so)\ (/\ T(si-1, Si)) A | CLeATelR) v
=1 ™

no loop

» We already know how to deal with loop-free paths: [¢]?



Bounded Model Checking with (k, /)-Loops

def

Let Ly = \/}_, T(sk, s/). Then case-split:

k k
/(So)/\</\ T(s,-1,s,-)> A CLeATelR) vV (T(sks) A7)
i=1

=0k nloop

no loop

» We already know how to deal with loop-free paths: [[<p}]2
» For (k, I)-loops, we need new encoding



Encoding for (k, /)-Loops

Some things stay the same:

Simple propositions p:
el =p(s)  i[-plk = —p(s)
Boolean combinations:

lor Agallk =1 Telk Ar el ilien Vv eellk =i Ttk Vi L2l



Encoding for (k, /)-Loops
Other things don’t change all that much:

k

Feli=\/ il

j=min(i,l)
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Encoding for (k, /)-Loops

Other things don’t change all that much:

k

Feli=\/ il

j=min(i,l)

min(i, /) is essential, however:

» without min(i, /), we miss if ¢ holds in later iteration



Encoding for (k, /)-Loops

Globally operator is not trivial anymore:

k

Geli= N ilelk

j=min(i,/)

» Argument for min(i, /) similar as before!



Encoding for (k, /)-Loops

Until operator 1 U 3 is left as an exercise.



LTL Bounded Model Checking: The Whole Picture

all paths up to bound k

K
A (/\ T(si-1, Si)>
=1

A

(ﬂ[_k A [[QO \/ Sk> S/ N [[(p]]k)

1=0
no loop (k,I)-loop

k—bounded encoding of ¢
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Solving the Existential Model Checking Problem

MEEp
Can be reduced to BMC!
1. (mnEke)= (T E¢)

2. If (M=), iff Tk e N. (M =« p)

Reduction of universal validity to existential invalidity:
» MEAypiff M [#E-p

Corollary: M = A—g iff [M, ¢] is unsatisfiable for all k € IN
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If M- = Eyp, bound has to be incremented indefinitely??
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Completeness and Complexity

If M- = Eyp, bound has to be incremented indefinitely??
» That means BMC is incomplete
» But recall reachability diameter!

LTL model checking is PSPACE complete. Since SAT is
NP-complete, there is probably no polynomial bound k.
» If we only allow F and G, LTL model checking is NP-complete.
In this case, there is a bound linear in the number of states
and the size of the formula.
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Special Cases and Efficiency

Let M be a Kripke structure in which every path = is
lasso-shaped:

» oy (my)

Assume that for every lasso-shaped path 7, (7,)%, we have
» |yl <wvand |7y | < v
We call (u, v) the loop-diameter of M.

Then M = E g if 3k < u+ v with M = E .



Implementation

» BMC is implemented in NUSMV (http://nusmv. fbk.eu/)
» You need this tool for one of the exercises


http://nusmv.fbk.eu/

Summary

» Bounded Model Checking reduces Model Checking to SAT
» Inherently incomplete, but good (efficient) for bug finding



