
Algorithmics
Ganian, Nöllenburg, Obszelka, Raidl, Slivovsky, Szeider

Winter term 2020/21

Mirkl Mork der Markur Mer (o)der Tom Poise

9. April 2021

Inhaltsverzeichnis

1 Network Flows and Matchings 2
1.1 Preliminaries . 2
1.2 Ford-Fulkerson Algorithm . 2
1.3 Extensions to Max Flow . 4
1.4 Bipartite matching . 5

2 Parameterized Algorithms 6
2.1 Fixed Parameter Tractability . 6
2.2 Kernelization . 9
2.3 Structural Parameters . 11

3 Planarity, A* Search, and Randomized Algs. 11
3.1 Planar Graphs . 11
3.2 A∗ Algorithm . 14

4 Structural Decompositions and Algorithms 14
4.1 Definitions and basic properties . 14
4.2 Courcelles’s Theorem . 16

5 Linear and Mixed Integer Linear Programming 17
5.1 Linear Programming . 17
5.2 Duality theory . 19
5.3 Mixed Linear Integer Programming . 20
5.4 Branch-and-bound . 22

6 Geometric Algorithms 22
6.1 Sweep Line . 22
6.2 The Voronoi Diagram . 23
6.3 Smallest enclosing disk . 25

1

1 Network Flows and Matchings

1.1 Preliminaries

Definition 1 (Maximum Flow Problem). A flow network is a structure N = (V,E, s, t, c), where
G = (V,E) is a directed graph1, s = source and t = sink, c : E → R+ capacity. Assumptions:
c(e) ∈ Z+, s has no incoming edges, t has no outgoing edges and no vertex is isolated.

Definition 2 (s-t flow). An s-t flow is a function f that satisfies:

◦ For each e ∈ E: 0 ≤ f(e) ≤ c(e) (capacity)

◦ For each v ∈ V − {s, t}:
∑

e in to v f(e) =
∑

e out of v f(e) (conservation)

Definition 3 (Value). The value of a flow f is v(f) =
∑

e out of s f(e).

Problem 1: Maximum Flow

Find a s-t flow of largest value.

Definition 4 (s-t cut). An s-t cut is a partition (A,B) of V with s ∈ A and t ∈ B.

Definition 5 (Capacity). The capacity of a cut (A,B) is cap(A,B) =
∑

e out of A c(e).

Problem 2: Minimum Cut

Find a s-t cut of smallest capacity.

Lemma 1 (Flow value). Let f be a flow in a network (V,E, s, t, c), and let (A,B) be an s-t cut.
Then ∑

e out of A

f(e)−
∑

e in to A

f(e) = v(f)

where the LHS is the net flow sent across the cut and the RHS is the flow leaving s.

Theorem 1 (Weak duality). Let f be a flow in a network (V,E, s, t, c), and let (A,B) be an s-t
cut. Then v(f) ≤ cap(A,B).

Corollary 1 (Equivalence). Let f be a flow in a network (V,E, s, t, c), and let (A,B) be an s-t
cut. If v(f) = cap(A,B), then f is a maximum flow and (A,B) is a minimum cut.

1.2 Ford-Fulkerson Algorithm

Definition 6 (Augmenting Path). Let f be a flow in a network (V,E, s, t, c). An augmenting
path is a directed path P from s to t such that for every edge e on P we have f(e) < c(e).

Definition 7 (Bottleneck value). The bottleneck value of an augmenting path P is mine∈P c(e)−
f(e), denoted by bottleneck(P, f).

1If not stated otherwise, then G is always a digraph with vertex set V of size n and edge set E of size m.

2

Method 1 (Augmenting the flow along a path). Given an augmenting path P with bottleneck
value b we can find a flow f ′ which is defined f ′(e) = f(e) + b for edges e on P and f ′(e) = f(e)
for all other edges.

Definition 8 (Residual graph). The residual graph Gf = (V,Ef) of a network (V,E, s, t, c) is
defined as follows:

◦ Ef := {e : f(e) < c(e)} ∪ {eR : f(e) > 0} where eR := (w, v), given e = (v, w).

◦ Moreover, for flow f(e) and capacity c(e): Residual capacity cf (e) = c(e) − f(e) (leftover
cap) and cf (eR) = f(e) (undo cap).

Note, if an edge is full, the residual graph contains only the reversed edge and if an edge is empty,
the residual graph contains only the edge in its original direction.

Algorithm 1: Ford-Fulkerson Algorithm
Input: (G, s, t, c)
foreach e ∈ E: f(e)← 0
Gf ← residual graph
while there exists an augmenting path P do

f ← Augment(f, c, P)
update Gf

end
return f

where in Augment(f, c, P) for each e ∈ P :

• if e ∈ E, then put f ′(e) = f(e) + bottleneck(f, c, P) (forward edge)

• if eR ∈ E, then put f ′(eR) = f(eR)− bottleneck(f, c, P) (reverse edge)

Theorem 2 (Augmenting Path). If there are no augmenting paths P in the residual graph, then
flow f is a max flow.

Theorem 3 (Runtime: Ford-Fulkerson). For |V | = n and |E| = m, Ford-Fulkerson runs in
O(nmC) time.2

Theorem 4 (Max-flow min-cut). The value of a max flow is equal to the capacity of a min cut.3

Theorem 5 (Integrality). If all capacities are integers, then there exists a max flow f for which
every flow value f(e) is an integer.

Remark 1. Note, that the runtime of the naive Ford-Fulerson is not yet polynomial (e.g. maximum
capacity is C) w.r.t to input size. Optimization via Scaling-Max-Flow(G, s, t, c), where we
choose paths with the highest bottleneck value. Runtime: O(m2 logC).

2Where we assumed that all capacities c are integers between 1 and C and the flow values f(e) and residual
capacities cf (e) are integers (Invariant).

3Given a flow f of maximum value, we can compute an s-t cut of minimum capacity in O(m) time. Hence,
Ford-Fulkerson finds a minimum cut.

3

1.3 Extensions to Max Flow

Definition 9 (Circulations with demands). Given a directed graph G = (V,E), capacities c and
supplies and demands d : V → R. Vertex v is called

1. demand node, if d(v) < 0,

2. supply node, if d(v) > 0,

3. transshipment node, if d(v) = 0.

A circulation f is a function such that

◦ For each e ∈ E: 0 ≤ f(e) ≤ c(e) (capacity)

◦ For each v ∈ V :
∑

e in to v f(e)−
∑

e out of v f(e) = d(v) (conservation)

Problem 3: Circulation with demands

Given (V,E, c, d), decide whether there exists a circulation.

Method 2 (Reduction to Maximum Flow 1). Add new source s and sink t. For each v with
d(v) < 0, add edge (s, v) with capacity −d(v) and for each v with d(v) > 0, add edge (v, t) with
capacity d(v).

Theorem 6. (V,E, c, d) has a circulation iff the corresponding flow network (V,E, s, t, c) has a
maximum flow with value D, where D is defined as∑

v with d(v)>0

d(v) =
∑

v with d(v)<0

−d(v)

Definition 10 (Circulation with demands and lower bounds). Give G, c, d like before and lower
bounds ` : V → R. A circulation f is a function such that

◦ For each e ∈ E: `(e) ≤ f(e) ≤ c(e) (capacity)

◦ For each v ∈ V :
∑

e in to v f(e)−
∑

e out of v f(e) = d(v) (conservation)

Problem 4: Circulation with demands and lower bounds

Given (V,E, `, c, d), decide whether there exists a circulation.

Remark 2. Idea: Model lower bounds with demands, i.e. transform an instance (V,E, `, c, d) to an
instance (V,E, c, d). Then there exists a circulation in (V,E, `, c, d) iff there exists a circulation
in (V,E, c, d)

Application (Matrix Rounding). Given a matrix Dij ∈ Rp×q with row sums ai and column sums
bj . We want to round each dij , ai and bj to an integer, such that the sum of rounded elements
in each column (row) equals the corresponding column (row) sum.

4

Problem 5: Circulation with demands and lower bounds

Find a feasible rounding, if one exists.

Theorem 7 (Matrix rounding). Feasible matrix rounding always exists.4

1.4 Bipartite matching

Definition 11 (Matching). M ⊆ E is called matching if each vertex appears in at most one
edge in M . A matching is perfect if 2|M | = |V |.

Definition 12 (M -Cover). A vertex v ∈ V is called M -covered if there exists an edge {v, w} ∈
M . Otherwise v is called M -exposed.

Definition 13 (Bipartite Graph). An undirected graph (V,E) is called bipartite if there is a
partition of V = L∪̇R such that any e ∈ E connects one vertex from L to one vertex in R.

Definition 14 (Bipartite Matching). M ⊆ E is a matching if each vertex appears in at most
edge in M .

Problem 6: Maximum (Bipartite) Matching

Find a matching of maximal cardinality.

Method 3 (Reduction to Maximum Flow 2). Create graph G′ = (L∪R ∪ {s, t}, E′) and direct
all edges from L to R with capacities of infinite (or unit) value and direct edges from s to all
nodes in L with unit value and direct edges from all nodes in R to t with unit value.

Theorem 8 (Cardinality and Max Flow). Let M be matching of maximal cardinality. Then
|M | = v(f) for maximal flow f in G′.

Corollary 2 (Runtime: Maximum Bipartite Matching). With the Ford-Fulkerson algorithm we
can find a maximum bipartite matching in O(mn) time. (Or with shortest-augmenting path:
O(m

√
n))

Vertex Cover

Definition 15 (Vertex Cover). A vertex cover (VC) of a graph (V,E) is a set C ⊆ V such that
every edge e ∈ E has at least one of its ends in C.

Problem 7: Minimum Vertex Cover

Find a vertex cover of minimal cardinality.

Theorem 9 (König-Egerváry Theorem: 1931). The size of a smallest vertex cover of a bipartite
graph equals the size of a maximum matching.

Corollary 3. A minimum vertex cover of a bipartite graph can be found in polynomial time.5
4Proof: Formulate as a circulation problem with lower bounds.
5By the way: Finding a smallest vertex cover of a general graph is NP-hard. This is done via reducing 3-SAT

to VC.

5

Perfect Matching and k-regular bipartite graphs

Definition 16 (Bipartite perfect matching). A matching M ⊆ E is perfect if each vertex is
incident with exactly one edge in M .

Theorem 10 (Marriage Theorem: Frobenius 1917, Hall 1935). Let G = (L∪R,E) be a bipartite
graph with |L| = |R|. Then, G has a perfect matching iff |N(S)| ≥ |S| for all subsets S ⊆ L,
where N(S) is the set of vertices adjacent to vertices in S.

Definition 17 (k-regular bipartite Graph). A graph G is k-regular if each vertex has the same
degree k. A graph has degree d if each vertex has at most d neighbors.

Theorem 11 (König 1916, Frobenius 1917). Every k-regular bipartite graph has a perfect mat-
ching.

Disjoint Paths

Definition 18 (edge-disjoint). Two paths are edge-disjoint if they have no edge in common.

Problem 8: Disjoint Path

Given a digraph (V,E) and two vertices s and t: Find a maximum number of edge-disjoint
s-t paths

Theorem 12. The maximum number edge-disjoint s-t paths equals the maximum flow value6.

Definition 19 (Disconnection). A set of edges F ⊆ E disconnects t from s if every s-t path
uses at least one edge in F .

Problem 9: Network Connectivity

Given a digraph (V,E) and two vertices s and t: Find a minimal number of edges whose
removal disconnects t from s.

Theorem 13 (Menger 1927). The maximum number of edge-disjoint s-t paths is equal to the
minimum number of edges whose removal disconnects t from s

2 Parameterized Algorithms

2.1 Fixed Parameter Tractability

Problem 10: (Parameterized) Vertex Cover

Instance: A graph G and an integer k.
Parameter: k.
Task: Choose at most k vertices in G such that each edge is covered by at least one chosen
vertex.

6In the corresponding transformation/reduction

6

Problem 11: k-Vertex Cover

Instance: A graph G.
Task: Choose at most k vertices in G such that each edge is covered by at least one chosen
vertex.

Remark 3. In the Vertex Cover we treat k as a parameter, whereas in the k-Vertex Cover
we treat k as a constant. Consequently, one can show that k-Vertex Cover is in P.

Method 4 (Bounded search tree: Vertex Cover).

1. test k 6= 0; if k = 0 and G contains an edge, output false (for this branch).

2. pick a vertex v incident to some edge.

3. either v is in the vertex cover, or all its neighbors are branching.
7

Definition 20 (Fixed-Parameter Algorithm). A fixed-parameter algorithm (or FPT Algorithm)
for a parameterized problem is an algorithm that runs in time:

f(k) · poly(n)

where f is an arbitrary computable function and poly is a polynomial function independent of
k. If there exists a FPT algorithm for a given problem, then we call the problem fixed parameter
tractable.

Example 1. Bounded search tree w.r.t. to VC: Branching tree with 2 children and depth at
most k yields runtime O(2k · n). Thus, it is a FPT algorithm.

Definition 21 (Independent set). A set S ⊆ V is called independent if for any two vertices in
S, there is no edge connecting the two.

Problem 12: Independent Set

Instance: A graph G and an integer k.
Parameter: k.
Task: Choose at least k vertices in G which are pairwise independent.

Theorem 14 (Optimality rule). If there exists an independent set which does not contain a
vertex v and any neighbor of v, then adding v results in a new independent set which is larger.8

Definition 22 (Proper c-coloring and k-coloring). A proper c-coloring of a graph is a coloring
of the vertices by c colors such that no two neighbors have the same color.
A coloring using at most k colors is called a proper k-coloring. The smallest number of colors
needed to color a graph G is called its chromatic number, and is often denoted χ(G).

7The algorithm tries to build a feasible solution to the problem by making a sequence of decisions on its
shape, such as whether to include some vertex into the solution or not. Whenever considering one such step, the
algorithm investigates many possibilities for the decision, thus effectively branching into a number of subproblems
that are solved one by one. In this manner the execution of a branching algorithm can be viewed as a search
tree. If the total size of the search tree is bounded by a function of the parameter alone, and every step takes
polynomial time, then such a branching algorithm runs in FPT time.(Parameterized Algorithms, 2015)]

8if there exists a solution which does not pick a vertex v and any neighbor of v, then there also exists a
solution which picks v.

7

Problem 13: k-coloring

Instance: A graph G and an integer k.
Parameter: k.
Task: Find a proper k-coloring of G.

Theorem 15 (Runtimes: k-coloring and independent set). The problems k-coloring and inde-
pendent set are not FPT, but paraNP-complete9.

Problem 14: Independent set on graphs of bounded degree

Instance: A graph G of degree at most 3 and an integer k.
Parameter: k.
Task: Choose at least k vertices in G which are pairwise independent.

Method 5 (Bounded search tree: Independent set on graphs of bounded degree).

1. if k = 0, output true, else if k > 0 and the graph is empty, output false (for this branch).

2. pick an arbitrary vertex v.

3. Branch into 4 options as per the previous slide to choose at least one vertex into the
independent set.

4. Delete the chosen vertex and all of its neighbors.

5. Restart on the remaining graph with k := k − 1.

Theorem 16 (Runtime: Bounded search tree: Independent set on graphs of bounded degree).
The algorithm above is in O(4k · n).

Definition 23 (Dominating set). A set X ⊆ V is dominating set in a graph G if each vertex of
G is either in X or has a neighbor in X.

Problem 15: Dominating Set

Instance: A graph G of maximum degree 3 and an integer k.
Parameter: k.
Task: Find a dominating set in G of cardinality at most k.

Method 6 (Bounded search tree: Dominating set on graphs of bounded degree).

1. if k = 0 and there is an undominated vertex, output false (for this branch) else if k > 0
and there are no undominated vertices, output true.

2. pick an arbitrary undominated vertex v.

3. Branch into 4 options (v or a neighbor of v) to put at least one vertex into the dominating
set.

9class of parameterized problems that can be solved by a nondeterministic algorithm in time f(k) · |x|O(1)

8

4. Delete the chosen vertex and mark all of its neighbors as dominated.

5. Restart on the remaining graph with k := k − 1.

Theorem 17 (Runtime: Bounded search tree: Dominating set on graphs of bounded degree).
The algorithm above is in O(4k · n).

2.2 Kernelization

Definition 24 (Kernelization). A kernelization (kernelization algorithm) is a polynomial-time
algorithm which takes as input an instance (I, k) of P (parameterized decision problem) and
outputs an instance (I ′; k′) of P such that:

1. (I, k) is a yes-instance iff (I ′k′) is a yes-instance of P ,

2. there exists a computable function h such that |I ′| ≤ h(k) and10 k′ ≤ h(k). The instance
(I ′, k′) is then called the kernel. If h is a polynomial function, then we speak of polynomial
kernels.

Lemma 2 (Kernelization). Any decidable parameterized problem P is FPT iff it admits a ker-
nelization.

Method 7 (Reduction rules). Most standard kernelization technique: reduction rules, the idea
being to formulate a set of reduction rules such that (1) each rule runs in polytime and (2) each
rule slightly modifies the instance to obtain an equivalent instance (typically the new instance is
smaller and the parameter value does not increase). To successfully obtain a kernel, it is necessary
to show:

1. each rule is safe: it does not change yes-instances to no-instances and vice-versa

2. if no rule can be applied, then we already have a (polynomial) kernel

Method 8 (Reduction rules: : Vertex Cover).

1. Rule 1: If there is a vertex v of degree at least k + 1, then delete v and set k := k − 1.

2. Rule 2: If there is a vertex v with no neighbors, then delete v.

Theorem 18 (Runtime VC). Vertex Cover admits a quadratic kernel.

Definition 25 (Clique). A Clique C ⊆ V of an undirected graph, such that every two distinct
vertices in C are adjacent; that is, its induced subgraph is complete11.

Problem 16: Clique

Instance: A graph G and an integer k.
Parameter: k.
Question: Do there exist at least k vertices in G which form a clique?

10|I ′| denotes the number of vertices and edges of instance I ′.
11A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a

unique edge.

9

Remark 4 (Observation). A C ⊆ V is independent iff it is a clique in the graph’s G complement
G12, so the two concepts are complementary.

Theorem 19 (Runtime: Clique). Clique is not FPT, and hence does not admit a kernel.

Problem 17: Maxsat

Instance: A CNF formula F and an integer k.
Parameter: k.
Question: Is there an assignment satisfying at least k clauses in F?

Theorem 20 (Runtime: Maxsat). Maxsat admits a O(k2) kernel.

Definition 26 (Hitting set). Let F be a set of subsets of finite set U . The smallest subset Y of
U that meets every member of F is called the hitting set. A set X hits a set F ∈ F iff F ∩X 6= ∅.

Problem 18: Hitting set

Instance: A ground set U , a set F of subsets of U , and an integer k.
Parameter: k.
Question: Does there exist a set X ⊆ U of cardinality at most k which hits each subset in
F?

Problem 19: d-Hitting set

Instance: Set U , set F of subsets of U each of cardinality at most d, and an integer k.
Parameter: k.
Question: Does there exist a set X ⊆ U of cardinality at most k which hits each subset in
F?

Theorem 21 (Runtime: (d-)Hitting set). Hitting Set is not FPT, whereas d-Hitting Set
is FPT.

Lemma 3 (Sunflower lemma). Let F be a set of subsets of a ground set U such that

1. each F ∈ F has cardinality at most d, and

2. |F| > d! · kd

Then there exists a (k + 1)-sunflower. Moreover, such a (k + 1)-sunflower can be found in poly-
nomial time.

Method 9 (Reduction: Sunflower lemma). For an instance (U,F , k) of d-Hitting Set:

1. Remove elements of U that do not intersect anything in F .

2. If |F| ≤ d! · kd, then we already have a O(kd) kernel, otherwise we apply the Sunflower
lemma and

find a (k + 1)-sunflower.
12A complement (of a graph G) is the graph obtained by complementing (reversing) all edges, i.e., an edge is

in the complement iff it is not there in the original graph.

10

3. Apply sun ower reduction rule to remove k + 1 elements of F and add the core C to F ;
this reduces the size of F by k13.

4. Restart.

Theorem 22. d-Hitting Set admits a O(kd) kernel.

2.3 Structural Parameters

Definition 27 (Hamiltonian Cycle). A cycle which goes through each vertex in G is called
Hamiltonian.

Problem 20: Hamiltonian Cycle using vertex cover

Instance: A graph G and a vertex cover X of G.
Parameter: k = |X|.
Question: Does there exist a Hamiltonian cycle in G?

Problem 21: Chromatic Number using vertex cover

Instance: A graph G, an integer q and a vertex cover X of G.
Parameter: k = |X|.
Question: Does there exist a proper q-coloring of G?

Problem 22: Independent Set using vertex cover

Instance: A graph G, an integer p and a vertex cover X of G.
Parameter: k = |X|.
Question: Does there exist an independent set of size at least p in G?

Theorem 23 (Runtimes). Hamiltonian Cycle using vertex cover admits a polynomial
kernel. Chromatic Number using vertex over is FPT, but does not admit a polynomial
kernel. Independent Set using vertex cover admits a polynomial kernel.

3 Planarity, A* Search, and Randomized Algs.

3.1 Planar Graphs

Definition 28 (Planar Graph). A graph G = (V,E) is called planar, if it can be drawn (planar
embedding)in the plane in a way such that no two edges intersect geometrically except at a vertex
to which both are incident.

Definition 29 (Face). A face of the graph is a region bounded by a set of edges and vertices in
the embedding. The unbounded region is called the outer/external face of G.

13If C = ∅ we’ll be adding ∅ to F , which correctly results in a clear no-instance (can’t hit k+1 petals without
using a core)

11

K5 K3,3

These graphs are often called Kuratowski graphs, they cannot be drawn in the plane without
crossing edges.

Theorem 24 (Euler). Let G = (V,E) be a connected, planar graph, and let f denote the number
of faces. Then |V | − |E|+ f = 2 holds for any planar embedding of G.

Definition 30 (Simple graph). A simple graph is an unweighted, undirected graph containing
no graph loops or multiple edges.

Corollary 4.

1. If G is a simple, planar graph with |V | ≥ 3, then the number of edges is |E| ≤ 3|V | − 6.

2. For any simple, planar, bipartite graph with |V | ≥ 3 vertices and |E| edges, |E| ≤ 2|V | − 4
holds.

3. Each simple, planar graph contains a vertex v of degree d(v) ≤ 5.

Definition 31 (Subdivision). Subdividing an edge (u, v) ∈ E of a graph G = (V,E) is the
operation of deleting (u, v) and adding a path P = (u,w1, . . . , wk, v), wi /∈ V , 1 ≤ i ≤ k to G. A
graph G is called a subdivision of a graph G′ if it is obtained by subdividing some of the edges
of G′.

Theorem 25 (Kuratowski). A graph is planar iff it does not contain a subdivision of K5 or
K3,3.

Definition 32 (Graph Minor). A graph H is a minor of G if H is obtained from G by deleting
and contracting edges and/or deleting vertices.

Theorem 26 (Wagner). A graph is planar iff it has no minor isomorphic to K5 or K3,3.

Method 10 (Randomized algorithms). Depend on uniformly random numbers as an auxilia-
ry input to guide behavior, usually implemented by a pseudo-random number generator. Two
variants:

1. Monte Carlo algorithms: always time-efficient (e.g. polynomial), but correct output only
with high probability (e.g. Miller-Rabin Primality Test)

2. Las Vegas algorithms: always correct output, but time-efficient only in expectation (e.g.
Randomized Quicksort)

Remark 5. One can always turn a Las Vegas into a Monte Carlo (stoping the algorithm). The
other direction is not always true.

12

Problem 23: Primality Test

Given a positive integer number n (typically very large), determine whether or not n is
prime.

Theorem 27 (Fermat’s Little Theorem). If n is prime, an−1 ≡ 1 mod n holds for all a ∈
{1, . . . , n− 1}.

Corollary 5. If for some basis a:

◦ If an−1 6≡ 1 mod n then n is not prime and a is called a witness for the compositeness.

◦ If an−1 ≡ 1 mod nthen n is prime with some probability.

Algorithm 1: Miller-Rabin Primality Test
Input: n
for i← 1, . . . , s
if Witness (random(2, n− 1), n) then

return not prime
end
return prime

Algorithm 2: Witness
Input: a, n
result← 1 (c← 0)
for i = k − 1, . . . , 0

result← (result · result) mod n (c← 2c)
if bi = 1 then result← (result · a) mod n (c← c+ 1);

if result 6= 1 then
return true (a is witness for n not prime)

else
return false (a is not a witness)

end

Theorem 28 (Runtime: Miller-Rabin). Miller-Rabin Primality Test is in O(s · k3).

Problem 24: Max 3-SAT

Given a set of clauses C1, . . . , Ck, each of length 3, over a set of binary variables X =
x1, . . . , xn, find a variable assignment satisfying as many clauses as possible.

Lemma 4. Given a Max-3SAT instance with k clauses, the expected number of clauses satisfied
by a random assignment is 7/8k.

Method 11. Repeatedly generate random assignments until one satisfies ≥ 7/8k clauses. (This
yields a 7/8-approximation algorithm)

Theorem 29 (Runtime: Johnson). Johnson is in O(k2 + kn)

13

3.2 A∗ Algorithm

Method 12 (A∗ Algorithm). Priority function: f(x) = g(x) + h(x), x ∈ V , where

◦ g(x): best cost so far to reach x

◦ h(x): estimated cost from x to goal t (cost-to-go), e.g. d1(x, t) or d2(x, t)

I.e., f(x) estimates the total cost from s to t via node x.

Algorithm 3: A∗ Algorithm
Input: digraph G = (V,A) with wij > 0 ∀(i, j) ∈ A, source node s, target node t
g(s) = 0; g(x) =∞ ∀x ∈ V − {s}
priority queue Q← {(s, f(s) = h(s))}
while Q 6= ∅ do

x← Q.getMin() remove node with min. f(x)
if x=t then

return f(t), path given by predecessor list pred(t);
end
forall v adjacent to x do
g′ ← g(x) + wxv

if g′ < g(v) then
g(v)← g′; pred(v)← x new/better path to v;
Q.put(v, g′ + h(v))

end
end
return no path to target t;

Theorem 30. A∗ will always terminate in limited time. If a path from s to t exists, A∗ will
always find one.

Definition 33 (Admissible heuristic). Let h∗(x) be a true minimal cost from x to t. A heuristic
h(x) is admissible if it represents a lower bound, i.e. h(x) ≤ h∗(x) ∀x ∈ V .14

Theorem 31. If h(x) is admissible, A∗ is guaranteed to find a least-cost path.

Definition 34 (Monotonic heuristic). A heuristich(x) is monotonic (consistent) if h(x) ≤ wxy +
h(y) ∀(x, y) ∈ A and h(t) = 0.15

4 Structural Decompositions and Algorithms

4.1 Definitions and basic properties

Definition 35 (Elimination ordering). Let G = (V,E) be a graph. An elimination ordering of
G is simply an ordering σ = (v1, . . . , vn) of V .

Method 13. Upon eliminating vi create (fill-in) edges between its neighbors.

Definition 36 (Width of an elimination ordering). The width of σ is the maximum degree of a
vertex upon elimination.

14An admissible heuristic is optimistic. h(x) = 0 is an admissible heuristic.
15Monotonicity implies admissibility of the heuristic.

14

Definition 37 (Treewidth). Let G be a graph. The treewidth of G is the minimum width of an
elimination ordering of G.16

Definition 38 (Tree decomposition). Let G be a graph. A tree decomposition of G is a pair
(T, χ) consisting of a tree T = (V ′, E′) and a mapping χ : V ′ → P(V ′) (bag) such that

1.
⋃

t∈V ′ χ(t) = V

2. For each (v, w) ∈ E there is a t ∈ V ′ with v, w ∈ χ(t).

3. T [{t ∈ V ′|v ∈ χ(t)}] is a connected subtree for each t ∈ V ′.

The width of (T, χ) is maxt∈V ′ |χ(t)| − 1.

Definition 39 (Treewidth and Pathwidth). LetG be a graph. The treewidth ofG is the minimum
width of a tree decomposition of G. A path decomposition of G is a tree decomposition (T, χ) of
G where T is a path. The pathwidth of a graph G is the minimum width of a path decomposition
of G.

Theorem 32.

1. If H ≤ G (subgraph), then tw(H) ≤tw(G).

2. If G = G1 ∪̇G2 (disjoint graphs), then tw(G) = max{tw(G1), tw(G2)}.

3. The treewidth of a graph G is the maximum treewidth of a connected component of G.

4. If G has minimum degree d then d ≤ tw(G).

5. A graph of treewidth k has at most kn edges.

Definition 40 (Small tree decomposition). A tree decomposition (T, χ) is small if there is no
pair t, t′ of adjacent nodes such that χ(t) ⊆ χ(t′).17

Graph Minors and Treewidth

Definition 41 (Graph minors). Let G be a graph. A graph H is called a minor of G if it can
be obtained from by successive applications of the following operations:

1. Deleting an edge.

2. Deleting an isolated vertex.

3. Contracting an edge.

Theorem 33. If H is a minor of G, then tw(H) ≤tw(G).

16Observation: The treewidth of an n-vertex graph is at most n− 1.
17A small tree decomposition of an n-vertex graph has at most n nodes.

15

4.2 Courcelles’s Theorem

Definition 42 (MSO: Syntax). Fix a relational model signature M with finitely many relations
R ∈M (of arity ≥ 1) and a set of individual variables x, y, . . . and a set of set variables X,Y . . .
(altogether: signature Σ). Then the following formulas are formulas of MSO:

1. x = y (equality)

2. x ∈ X (or Xx) (membership)

3. R(x1, . . . , xn) for each R ∈M (atomic relational formulas)

Moreover, if ϕ,ψ are MSO formulas, then the following formulas are formulas of MSO:

1. (¬ϕ) (negation)

2. (ϕ ∨ ψ) (disjunction)

3. (∃x)[ϕ] (existential quantification for individual)

4. (∃X)[ϕ] (existential quantification for set of individual)

Nothing else is a MSO formulas18.

Definition 43 (MSO: Semantics). Given a Σ-structureM with assignment I from variables to
individuals (in M) and ϕ,ψ ∈ MSO[Σ] we say19:

1. M, I |= x = y ⇐⇒ I(x) = I(y)

2. M, I |= Xx⇐⇒ I(x) ∈ I(X)

3. M, I |= R(x1, . . . , xn)⇐⇒ (I(x1), . . . , I(xn)) ∈ R

4. M, I |= (¬ϕ)⇐⇒ ¬(M, I |= ϕ)

5. M, I |= (ϕ ∨ ψ)⇐⇒M, I |= ϕ orM, I |= ψ

6. M, I |= (∃x)[ϕ]⇐⇒ (∃s ∈M)[M, I |= ϕ(x/s)]

7. M, I |= (∃X)[ϕ]⇐⇒ (∃S ⊆M)[M, I |= ϕ(X/S)]

Problem 25: MSO Model Checking

Given a structureM and an MSO[Σ] sentence ϕ decide whetherM |= ϕ.

Theorem 34 (Courcelle). Let M be an n-element structure and ϕ ∈ MSO[Σ]. There exists an
algorithm A that, given a tree decomposition of of width k, determines whether M |= ϕ in time
f(|ϕ|, k) · n+O(||M||) for some computable f .

Theorem 35 (Runtime: MSO Model Checking). MSO Model Checking is FPT paramete-
rized by the treewidth ofM and |ϕ|.

18As usual, (∀X)[ϕ] = (¬∃X)[¬ϕ] etc . . . bla bla.
19An expression of the form ϕ(a/b) denotes the formula that results from ϕ after applying a 7→I b.

16

Problem 26: LinEMSO Maximization

Input: A graph G = (V,E, fG1 , . . . f
G
m, r1, . . . , rt), an MSO formula ϕ(X1, . . . , Xl), and a

linear EMS evaluation term g(x11, . . . , xml, y1, . . . , yl).
Output: maxA1,...Al⊆V ∪E

G|=ϕ[A1,...,Al]

g
(∑

a∈A1
fG1 (a), . . . ,

∑
a∈Al

fGm(a), r1, . . . , rt

)
whereX1, . . . , Xl are free set variables in ϕ, g is a linear function, fGi : V ∪E → Q for i = 1, . . . ,m
and r1, . . . , rt ∈ Q.

Theorem 36 (Arnborg, Lagergren, Seese). There is a computable function f(. , .) such that
LinEMSO Maximization can be solved in time20 f(|ϕ| + |g|, k) · ||G|| given a width k tree
decomposition of G.

5 Linear and Mixed Integer Linear Programming

5.1 Linear Programming

Traditional approach:

1. identify the problem

2. learn about the problem’s properties

3. design an algorithm

4. implement the algorithm

5. compute a solution

Model-based approach:

1. identify the problem

2. learn about the problem’s properties

3. design a model

4. feed the model to a solver

5. obtain a solution from the solver

Example 2. Consider the Maximum Flow problem. Then we write the linear program:

max
∑

(s,i)∈E

fsi

s.t.
∑

(i,v)∈E

fiv =
∑

(v,j)∈E

fvj , ∀v ∈ V − {s, t}

0 ≤ fe ≤ ce ∀e ∈ E

Definition 44 (Linear program). A linear program (LP) is the problem of minimizing a linear
cost function subject to linear equality and inequality constraints, that is

min c′x

s.t. a′
ix ≥ bi, ∀i ∈M1

a′
ix ≤ bi, ∀i ∈M2

a′
ix = bi, ∀i ∈M3

xj ≥ 0, ∀j ∈ N1

xj ≤ 0, ∀j ∈ N2

20where |ϕ| is the size of formula ϕ, |g| is the size of the term g (linear function) and ||G|| is the size of graph
G (including |V |+ |E|).

17

◦ x1, . . . , xn are decision variables,

◦ c′x =
∑n

i=1 cixi is the linear (objective) cost function,

◦ M1,M2,M3 finite index sets for the constraints,

◦ N1, N2 are subsets of {1, . . . , n} for variables constraints,

◦ xj , j /∈ N1 ∪N2 free (unrestricted) variables.

or, more compactly, for m constraints, A ∈ Rn×m, b ∈ Rm:

min c′x

s.t. Ax ≥ b

x ∈ Rn

Definition 45 (Feasible solution). A vector x satisfying all constraints is called a feasible solution
or feasible vector. A set of feasible solutions is called feasible set (region), i.e. {x ∈ Rn|Ax ≥ b}.
Definition 46 (Optimal feasible solution). A feasible solution x∗ that minimizes the objective
function (c′x∗ ≤ c′x for all feasible solutions x) is called an optimal feasible solution. In this
case c′x∗ is called optimal cost.

Method 14 (Transformation rules).

1. max c′x⇐⇒ −min c′x

2. a′
ix = bi ⇐⇒ a′

ix ≤ bi and a′
ix ≥ bi

3. a′
ix ≤ bi ⇐⇒ −a′

ix ≥ −bi
Definition 47 (Standard form). A LP of the following form is said to be in standard form:

min c′x

s.t. Ax = b

x ∈ Rn

Method 15 (Transformation). Transformation a LP into a LP in standard form via the following
reduction rules:

1. Unrestricted variable: xj ⇐⇒ x+j − x
−
j where x+, x− ≥ 0.

2. Introduction of slack (surplus) variables: Given
∑n

j=1 aijxj ≤ bj (or ≥ bj), introduce si ≥ 0
and rewrite

∑n
j=1 aijxj + si = bj (or −si)

Theorem 37 (Solutions). Given a LP and feasible set P = {x ∈ Rn|Ax ≥ b} the following
possibilities exist:

1. P = ∅: No solutions exists.

2. c′x∗ = −∞, i.e. inf{c′x∗|x ∈ P} does not exist: LP is unbounded and no solutions is
optimal.

3. A unique optimal solution exists, that is, P is not empty and bounded (geometrically spea-
king: there exists an optimal solution which is an extreme point.)

4. Multiple optimal solutions exist and set of optimal solutions may be bounded or unbounded.

18

5.2 Duality theory

Definition 48 (Primal problem, relaxed problem and dual problem). A LP in standard form
such that

min c′x

s.t. Ax = b

x ≥ 0

with optimal solution x∗ is called primal problem (within duality theory). The following relaxed
variant

g(p) = min c′x + p′(Ax− b)

x ≥ 0

with price vector p and penalty p′(Ax− b) yields the dual problem

max p′b

s.t. p′A ≥ c′

x ≥ 0

Scheme.

Example.

Theorem 38 (Duality). The optimal cost in the dual problem is equal to the optimal cost in the
primal problem.

19

Theorem 39. The dual of the dual is the primal.

Theorem 40 (Weak duality). If x is a feasible solution to the primal problem an p is a feasible
solution to the dual problem, then p′b ≤ c′x

Theorem 41 (Strong duality). If a linear programming problem has an optimal solution, so does
its dual, and the respective optimal costs are equal.

Theorem 42 (Complementary slackness). Let x and p be feasible solutions to the primal and
the dual problem, respectively. They are optimal if and only if:

pi(a
′
ix− bi) = 0 ∀i

(cj − p′Aj)xj = 0 ∀j

5.3 Mixed Linear Integer Programming

Definition 49 (Mixed Linear Integer Programming). Recollect the notion of LP. A mixed linear
integer program is of the following form:

max c1x1 + c2x2

s.t. A1x1 + A1x2 ≤ b

x1 ≥ 0

x2 ≥ 0,x2 ∈ Z

◦ c1(c2) is a n-dimensional (p-dimensional) row vector.,

◦ x1(x2) is a n-dimensional (p-dimensional) column vector,

◦ A1 ∈ Rm×n,A2 ∈ Rm×p and b ∈ Rm×1.

Problem 27: Assignment Problem

Given n jobs, n persons and cost cij for assigning person i to job j, find an assignment with
minimum cost.

Method 16 (MILP Formulation: AP).

1. Variables: xij ∈ {0, 1}, ∀i, j ∈ {1, . . . , n}

xij =

{
1 if person i is assigned to job j,
0 else

2. Constraints: Each person i is assigned exactly one job:

n∑
j=1

xij = 1, ∀i ∈ {1, . . . , n}

Each job j is done by exactly one person:

n∑
i=1

xij = 1, ∀j ∈ {1, . . . , n}

20

3. Objective function: minimize the total assignment costs

min
n∑

i=1

n∑
j=1

cijxij

Problem 28: The 0-1 Knapsack Problem

Given n possible projects with costs aj for project j, estimated profit cj for selecting project
j and available budget B, find a subset of projects that maximizes the total profit while
not exceeding the budget

Method 17 (MILP Formulation: 0-1KP).

1. Variables: xj ∈ {0, 1}, ∀j ∈ {1, . . . , n}

xj =

{
1 if project j is selected,
0 else

2. Constraints: The budget must not be exceeded:
n∑

j=1

ajxj ≤ B

3. Objective function: maximize the total profit

max

n∑
j=1

cjxj

Problem 29: The Traveling Salesman Problem

Given a set N = {1, . . . , n} of cities and costs cij for traveling from city i to city j, find a
tour with minimum traveling cost; where each city has to be visited exactly once and the
salesman has to return to his starting city at the end.

Method 18 (MILP Formulation: TSP).

1. Variables: xij ∈ {0, 1}, ∀i, j ∈ N, i 6= j

xij =

{
1 if the salesman travels directly from city i to j,
0 else

2. Constraints: The salesman leaves each city i exactly once:∑
j∈N,j 6=i

xij = 1, ∀i ∈ N

The salesman arrives at each city j exactly once:∑
i∈N,i6=j

xij = 1, ∀j ∈ N

21

3. Objective function: minimize the total traveling costs

min
∑
i∈N

∑
j∈N
j 6=i

cijxij

Treating subtours via

◦ Sequential Formulation [Miller, Tucker and Zemlin (1960)]

◦ Single-Commodity Flow Formulation [Gavish and Graves (1978)]

◦ Multi-Commodity Flow Formulation [Wong (1980)]21

5.4 Branch-and-bound

Definition 50 (Primal bounds and dual bounds). Lower bounds in maximization problems and
upper bounds in minimization problems are called primal bounds. Upper bounds in maximization
problems and lower bounds in minimization problems are called dual bounds22.

Theorem 43. Let S = S1 ∪ . . . ∪ SK be a decomposition of S into smaller sets, and let zk =
max{cx|x ∈ Sk}, ∀k ∈ {1, . . . ,K}. Then z = maxk z

k.

Theorem 44. Let S = S1 ∪ . . . ∪ SK be a decomposition of S into smaller sets, and let zk =
max{cx|x ∈ Sk}, ∀k ∈ {1, . . . ,K}, zk be an upper bound and zk be a lower bound on zk. Then
z = maxk z

k is an upper bound and z = maxk z
k is a lower bound on z.

6 Geometric Algorithms

6.1 Sweep Line

Problem 30: Segment Intersections

Set S of n line segments in the plane R2 decide whether any two segments in S intersect?

Method 19 (Sweep line: Segment Intersections).

1. Observation: two segments separated by a (vertical) line cannot intersect

2. Observation: two segments stabbed by a (vertical) line may intersect iff there is such a line
on which they are neighbors

3. sweep a vertical line ` (sweep line) across the plane from left to right and perform the
intersection tests when necessary

Definition 51. Two segments s1 and s2 are comparable for a given sweep line ` if they both
intersect ` but not in the (potential) intersection point of s1 and s2. In this case we define s1 <` s2
if s1 lies below s2 on ` (or vice versa).

21Btw.: PMCF ⊂ PSCF ⊂ PMTZ
22In most cases dual bounds are obtained by relaxations: a difficult (maximization) IP is replaced by a simpler

optimization problem with an optimal value at least as large as z∗, e.g., by removing some constraints.

22

Algorithm 4: Sweep Line Algorithm: Intersect
T ← ∅ (sweep-line status)
Q← sorted list of endpoints from left to right (event queue)
if two endpoints coincide then

return true
end
foreach endpoint p in Q do

if p left endpoint of segment s then
Insert(T, s)
if s intersects Above(T, s) then

return true
end
if s intersects Below(T, s) then

return true
end

end
if p right endpoint of segment s then

if Above(T, s) intersects Below(T, s) then
return true

end
Delete(T, s)

end
end
return false

where sweep-line status is data structure storing all objects intersected by the current sweep line
(and their possible relationships) and event queue priority queue of all sweep-line events, i.e.,
x-coordinates at which the sweep-line status changes combinatorially.23

6.2 The Voronoi Diagram

Definition 52 (Voronoi Diagram). Let P be a set of points in the plane and let p, p′, p′′ ∈ P .
23Above(T, s) and Below(T, s) yields the segment directly above (below) s in T .

23

◦ Voronoi cell : V({p}) = V(p) = {x ∈ R2 : |xp| < |xq|,∀q ∈ P − {p}} =
⋂

q 6=p h(p, q) where
h(p, q) = x ∈ R2 : |xp| < |xq| h(q, p) = x ∈ R2 : |xq| < |xp|.

◦ Voronoi edge: V({p, p′}) = {x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}.

◦ Voronoi vertices: V({p, p′, p′′}) = ∂V(p)∩∂V(p′)∩∂V(p′′) where ∂X denotes the boundary
of X.

Theorem 45. Let P ∈ R2 be a set of n points. The size of V or(P) is linear in n = |P |: It has
at most 2n− 5 vertices and at most 3n− 6 edges.

Definition 53. Let q be a point. Define CP (q) to be the largest empty circle (no points from P
in the interior) with center q.

Theorem 46.

1. A point q ∈ R2 is a Voronoi vertex iff |∂CP (q) ∩ P | ≥ 3.

2. The bisector24 b(pi, pj) of pi, pj ∈ P defines a Voronoi edge iff ∃q ∈ b(pi, pj) with ∂CP (q)∩
P = {pi, pj}.

Theorem 47 (Runtime: Compute V or(P)). The V or(P) of a set P of n points in the plane can
be computed in O(n · log n) time.

Definition 54 (Dual of Voronoi graph). The graphG = (P,E) withE = {pq| V(p) and V(q) adjacent}
is called the dual graph of V or(P) and its embedding (straight line drawing) is called the Delau-
nay graph DG(P).

24b(p, q) = {x ∈ R2 : |xp| = |xq|}

24

Remark 6. If we have V or(P) we can easily compute DG(P) in time O(n). If all Voronoi vertices
have degree 3, then DG(P) is a (Delaunay) triangulation of P .

Corollary 6.

1. DG(P) is planar and crossing free.

2. Points p, q ∈ P are connected by an edge in DG(P) iff there exists an empty circle C
through p and q, i.e. p, q ∈ ∂C and C◦ = ∅.

3. Points p, q, r are vertices of the same face in DG(P) iff the circle through p, q, r is empty.

6.3 Smallest enclosing disk
25

Problem 31

Given set P of n points in R2, find a disk D with minimum radius r that contains P .

Method 20 (Incremental algorithm: SED). Let P = {p1, p2, . . . , pn} and define Pi := {p1, . . . , pi}
and let Di be the smallest enclosing disk for Pi. Idea: Incrementally compute all disks Di for
i = 2, . . . , n by adding the points one-by-one and obtain the final solution D = Dn where we
make use of

1. SEDWithTwoPoints(P, q, r)

2. SEDWithPoint(P, q)

3. SEDisk(P)

Theorem 48 (Runtime: SED).

1. SED is in O(n) (best case) if never calling the else-case.

2. SED is in O(n3) (worst case) if always calling the else-case.

3. The randomized incremental algorithm for SED is in O(n).

25Assume your village needs to build a new fire station and the time needed to reach any house should be
smallest possible. What is the best location?

25

Problem Kernel Poly
Kernel FPT Parameterized

by
Based on
graphs

Parameterized
Vertex Cover

Yes O(k2)
Yes

O(2k · n)
k Yes

Independent
Set

Yes Yes Treewidth Yes

Independent
Set

No – No – Yes

Independent
Set

Yes Yes Treewidth Yes

Parameterized
Independent

Set
No – No k Yes

Parameterized
Independent

Set
Yes poly(k)

Yes
O(4k · n)

Vertex Cover Yes

Parameterized
Independent
Set (Deg ≤ 3)

Yes – Yes
O(4k · n)

k Yes

Parameterized
Dominating

Set
No – No – Yes

Parameterized
Dominating

Set (Deg ≤ 3)
Yes Yes

O(4k · n)
k Yes

Parameterized
Clique

No – No k Yes

Parameterized
MaxSat

Yes O(k2) Yes k No

Hitting Set No – No k No

d-Hitting Set
(for fixed d)

Yes O(kd) Yes k No

Hamiltonian
Cycle

Yes poly(k) Yes Vertex Cover Yes

Chromatic
Number

Yes – Yes Vertex Cover Yes

SAT Using
Deletion to
Unit Clauses

Yes – Yes k No

A little overview

26

»And how many hours a day did you do lessons?«
said Alice, in a hurry to change the subject.

»Ten hours the first day,« said the Mock Turtle:
»nine the next, and so on.«

»What a curious plan!« exclaimed Alice.
»That’s the reason they’re called lessons,« the Gry-

phon remarked: »because they lessen from day to day.«

	Network Flows and Matchings
	Preliminaries
	Ford-Fulkerson Algorithm
	Extensions to Max Flow
	Bipartite matching

	Parameterized Algorithms
	Fixed Parameter Tractability
	Kernelization
	Structural Parameters

	Planarity, A* Search, and Randomized Algs.
	Planar Graphs
	A* Algorithm

	Structural Decompositions and Algorithms
	Definitions and basic properties
	Courcelles's Theorem

	Linear and Mixed Integer Linear Programming
	Linear Programming
	Duality theory
	Mixed Linear Integer Programming
	Branch-and-bound

	Geometric Algorithms
	Sweep Line
	The Voronoi Diagram
	Smallest enclosing disk

