Lecture Notes: Discrete Mathematics

Note 0.1:
Contributions to this summary and the corresponding formula sheet are welcome on Github .

Inhaltsverzeichnis

Graph Theory 2
Trees and Forests . 3
Spanning Trees of Minimal Weight . 6
Combinatorics 6
Balls in Boxes . 7
Stirling Numbers . 8
Generating Functions . 10
Operations on Formal Power Series 11
Unlabelled Enumeration . 14
Dictionary for unlabelled structures 14
Labelled Enumeration . 15
Dictionary for labelled enumeration 15
Partially Ordered Sets . 17
Lattices . 21
Number Theory 23
Congruence Relations and Residue Classes 26
Chinese Remainder Theorem . 27
Euler-Fermat and Rivest-Shamir-Adleman 29
Primitive Roots . 31
Polynomials over Finite Fields 32
Algebraic Extensions . 37
Finite Fields . 39
Linear Codes 40
Polynomial Codes 41
Linear (Feedback) Shift Registers (LFSRs) 42
Repetition on Counting Structures with Generating Functions (Combinatorial Species) 43
Operations on Species 45

Graph Theory

Definition 0.1: Walk, Trail, Path
TODO
[Theorem 0.1:
TODO

Lemma 0.1: Handshaking Lemma
$\sum_{v \in V} \operatorname{deg}(v)=2 \cdot|E|$

Definition 0.2: Eularian Trail
A Eulerian Trail is a trail that uses every edge exactly once.

Theorem 0.2:
A connected graph has a Eulerian circuit if and only if all its vertices have even degree.

Abbildung 1: no eulerian circuit as every vertex has odd degree

Proof 0.1:

\Rightarrow : In any circuit every vertex is entered as often as it serves as a point of departure.
\Leftarrow : Induction on the number of edges

- if the graph G has no edges $G=(V=1, E=\emptyset)$
- otherwise let W be any circuit in G (this exists: start anywhere, choose any edge unused so far, continue until you hit starting vertex)
- let $G^{\prime}=(V(G), E(G) \backslash E(W))$, all vertices in G^{\prime} have even degree and G^{\prime} need not be connected.
- let $G_{1}^{\prime}, \ldots G_{c}^{\prime}$ be the connected components of G^{\prime}. In each component of G_{i}^{\prime} find a Eulerian circuit $W_{i} . W_{i}$ and W have atleast one vertex in common, because G is connected and removing W produces the components.
- therefore $W_{1}, \ldots W_{c}$ and W can be combined to a Eulerian circuit.

Trees and Forests

Definition 0.3:

- A forest is a graph without cylces (=acyclic).
- A tree is a connected forest.
- A leaf is a vertex of degree 1 .
[Lemma 0.2:
If T is a tree and has two vertices it has at least 2 leafs.
[Proof 0.2:
$V(T)$ and $E(T)$ are finite $\Rightarrow T$ contains a maximal path and this path has two leafs (because it is maximal).
[Definition 0.4: Spanning subgraphs
A subgraph H of a graph G is spanning if $V(H)=V(G)$.
[heorem 0.3:
Let T be a graph, then the following are equivalent:

1. T is a tree.
2. Any 2 vertices are connected with a unique path.
3. T is connected and every edge is a bridge (min. connected).
4. T has no cycles and adding any edge yields a cycle (maximal acyclic)

Proof 0.3:

- $1 \Rightarrow 2$: otherwise T would not be connected or T would have a cylce.
- $2 \Rightarrow 3$: A unique path from u to v exists, which means every edge has to be a bridge.
- $3 \Rightarrow 4$: An edge in a cycle would not be a bridge $\Rightarrow T$ has no cycles,
adding an edge would yield a cyle because T is connected.
- $4 \rightarrow 1$: adding any edge (u, v) yields a cycle $=T$ is connected.
[Theorem 0.4:
A connected graph G has a spanning tree.

[Proof 0.4:

As long as there is a non-bridge, remove it, and use 3. of the previous theorem.
[Theorem 0.5:
A graph is a tree if and only if it is connected and $|V|=|E|+1$.
[Proof 0.5:
\Rightarrow : induction on $|V|:|V|=1$
If $|V| \geq 2$: remove a leaf to obtain T^{\prime}, by induction $\left|V\left(T^{\prime}\right) \models\right| V(T) \mid-1$ and $\left|E\left(T^{\prime}\right)\right|=|E(T)|-1$
$|V(T)|=\left|V\left(T^{\prime}\right)\right|+1=\left|E\left(T^{\prime}\right)\right|+1+1=|E(T)+1|$
\Leftarrow : Let T^{\prime} be a spanning tree of T
$\left|V\left(T^{\prime}\right) \models\right| E\left(T^{\prime}\right) \mid+1$
$|V(T) \models| E(T)\left|+1,|V(T) \models| V\left(T^{\prime}\right)\right| \Rightarrow|E(T) \models| E\left(T^{\prime}\right) \mid \Rightarrow T=T^{\prime}$
How many spanning trees are there?

Definition 0.5:

- $\tau(G)$ is the number of spanning trees of G.
- $G \backslash e$ is the graph obtained by removing edge e.
- G / e is the graph obtained by contracting edge e.
$\left[\begin{array}{l}\text { Theorem 0.6: Deletion Contraction Theorem } \\ \tau(G)=\tau(G \backslash e)+\tau(G / e)\end{array}\right.$ $\tau(G)=\tau(G \backslash e)+\tau(G / e)$

Example 0.1:

Proof 0.6:

The set of spanning trees is the disjoint union of spanning trees containing e and spanning trees not containing e.

More generally: If G is a weighted graph with $w: E(G) \rightarrow \mathbb{R}$ and H is a subgraph of G, then $w(H)=\prod_{e \in E(H)} w(e)$
For weighted graphs, $\tau(G)$ is the sum of the weights of the spanning trees of G

$$
\tau(G)=\sum_{T} \prod_{e \in E(T)} w(e)
$$

Example 0.2:

Definition 0.6: Degree Matrix
The degree matrix of a graph is

$$
D=\left(\begin{array}{cccc}
d\left(v_{1}\right) & & & \\
& \cdot & 0 & \\
& 0 & & \\
& & & d\left(v_{n}\right)
\end{array}\right)
$$

(The degree of a vertex in a weighted graph is $d(u)=\sum_{(u, v) \in E(G)} w(v, u)$)

Theorem 0.7:
Let $n=|V(G)|$, let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of $D-A$. One of these is 0 , w.l.o.g. $\lambda_{1}=0$

Then, $\tau(G)=\frac{1}{n} \cdot \lambda_{2} \cdots \lambda_{n}$.
Equivalently: $\tau(G)=\operatorname{det}\left((D-A)_{i, i}\right)$, where $M_{i, i}$ is obtained by removing row and column i. $M=D-A$

Example 0.3:

Spanning Trees of Minimal Weight

Assume graph G is connected.
Kruskal's Algorithm:

Combinatorics

unfinished

```
Require: Sorted edges by weight: \(w\left(e_{1}\right) \leq \cdots \leq w\left(e_{m}\right)\).
    \(T_{1} \leftarrow \emptyset\)
    for \(i\) in \(1 \ldots m\) do
        if \(E\left(T_{i}\right) \cup e_{i}\) is acyclic then
            \(E\left(T_{i+1}\right) \leftarrow E\left(T_{i}\right) \sqcup e_{i}\)
        else
            \(E\left(T_{i+1}\right) \leftarrow E\left(T_{i}\right)\)
        end if
        if \(\mid E\left(T_{i+1} \mid+1=n-1\right.\) then
            return \(E(T) \leftarrow E\left(T_{i+1}\right)\)
        end if
    end for
```

 content...

Balls in Boxes

We have k balls and n boxes. Balls and boxes could be labelled. Count any assignment

$$
f:[k] \rightarrow[n] .
$$

Notation: $[n]=\{1, \ldots, n\} . f$ means 'put balls into boxes". f can be injective (no two balls in same box) or surjective (no empty box). How many arbitrary functions from $[k]$ to $[n]$ are there? Answer: n^{k}. For injective case: $n \cdot(n-1) \cdots(n-k+1)$. For surjective case: not a nice formula.
Let the balls are unlabelled and the boxes are labelled. Injective case:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

because $k!\cdots\binom{n}{k}=n \cdot(n-1) \cdots(n-k+1)$. For the arbitrary case: $\binom{n+k-1}{k}$.
TODO\{make table for these verbal descriptions $\}$
Some identities:

- $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$ means n balls and 2 boxes. TODOswitch k and n For instance, the term $2 x y^{3}$ means two possibilities to put 1 ball in the x -box and 3 balls in the y -box.
- $\sum_{m=0}^{n}\binom{m}{k}=\binom{n+1}{k+1}$
- $\sum_{k=0}^{n}\binom{m+k}{k}=\binom{m+n+1}{n}$

Lemma 0.3:
$\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \forall n \in \mathbb{C}$

[Proof 0.7:

left hand side is a polynomial in n. call it $p(n)$ with degree k. The right hand side is $q(n)$ with degree $\max \{k-1, k\}=k$.

We have two polynomials with the same degree $\Rightarrow p(x)=q(x) \forall x \in \mathbb{C}$ because $p(n)=q(n) \forall n \in \mathbb{N}$ (which is left as an exercise).
[Theorem 0.8: Vandermonde
$\binom{x+y}{n}=\sum_{k=0}^{n}\binom{x}{k}\binom{y}{n-k}$

Proof 0.8:

$x, y \in \mathbb{N}$: let $|X|=x,|Y|=y, X \cap Y=\varnothing$
$\binom{x+y}{n}$: \#subsets of $X \cup Y$ of size n
$\binom{x}{k}\binom{y}{n-k}: \#$ subsets of $x \cup Y$ with $|X|=k$

Stirling Numbers

Every permutation of $[n]$ is a product of cycles: start at 1 , apply π, obtain $\pi(1)$, apply again, obtain $\pi(\pi(1))$, eventually we will reach $\pi^{k}(1)=1$ again, which forms a cycle. Take any $i \in[n]$ that is not contained in the cycle and repeat.
Notations:

- Two-line notation: $\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n)\end{array}\right)$
- Cycle Notation: $\left(1, \pi(1), \ldots, \pi^{k}(1)\right)(\ldots)(\ldots)$

Example 0.4:

$$
\left(\begin{array}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
3 & 1 & 8 & 9 & 2 & 4 & 7 & 5 & 6 & 11 & 10
\end{array}\right)
$$

is the same as

$$
(10,11)(1,3,8,5,2)(6,4,9)(7)
$$

In this case, (7) is called a fixed point and $(10,11)$ is a transposition. If a number is not written in the cycle notation, then it is a fixed point (by convention).

Product:

$$
(1,3,2) \cdot(2,3,4)=(1,3,4)(2)
$$

[Definition 0.7: Stirling Numbers (First Kind)
$s_{n, k}$ is the number of permutations in \mathfrak{S}_{n} with k cycles. It's called the Stirling number of the first kind.

Example 0.5:

- $s_{n, 1}=(n-1!)$
- $s_{n, n-1}=\binom{n}{2}$
- $s_{n, n}=1$
[Theorem 0.9:
$s_{n, k}=s_{n-1, k-1}+(n-1) s_{n-1, k}$

[Proof 0.9:

- Case: 1 is a fixed point, then $s_{n-1, k-1}$
- otherwise: $s_{n-1, k}$ has k cycles but element 1 is missing, put 1 before any of $\{2, \ldots, n\}$
[Definition 0.8: Set Partition
A set partition of a finite set A is a set of disjoint, non-empty sets with union A. The sets are called parts or blocks. (Block is more common.)
[Definition 0.9: Stirling Number (Second Kind)
$S_{n, k}$ is the number of set partitions of [n] with k parts. This is called the Stirling number of the second kind.

Example 0.6:

- $S_{0,0}=1$
- $S_{n, 0}=S_{0, n}=0$ for $n>0$
[Theorem 0.10:
$S_{n, k}=S_{n-1, k-1}+k \cdot S_{n-1, k}$

Proof 0.10:

- Case: $\{n\}$ is a singleton block. Then $S_{n-1, k-1}$
- otherwise: put n into one of the k blocks: $k \cdot S_{n-1, k}$

Notation: the standard way to write set partitions is to sort each set and then sort the sets by their minimal elements:

$$
\{5,9,3\}\{4,2,6\}\{7\} \rightarrow\{2,4,6\}\{3,5,9\}\{7\}
$$

Theorem 0.11:

- $(x)_{n}:=x^{\underline{n}}=x \cdot(x-1) \cdots(x-n+1)=\sum_{k=0}^{n}(-1)^{n-k} \cdot s_{n, k} \cdot x^{k}$
- $x^{n}=\sum_{k=0}^{n} S_{n, k} \cdots x^{\underline{n}}$

Remark 0.1:

$V_{n}=\{ \}$ is a vector space. $\left\{1, x, \cdots, x^{n}\right\}$ is a basis of V_{n} and $\left\{1, x, x^{\underline{2}}, \ldots, x^{\underline{n}}\right\}$ is also a basis. The change of basis matrices are $\left(S_{n, k}\right)_{n, k}$ and $\left((-1)^{n-k} s_{n, k}\right)_{n, k}$ TODO: finish

Proof 0.11:

Induction on n : $x^{\underline{0}}=1=s_{0,0} \cdot x^{0}$
$x^{\underline{n}}=x^{n-1} \cdot(x-n+1)=(x-n+1) \sum(-1)^{n-1+k} \cdot s_{n-1, k} \cdot x^{k}=\sum(-1)^{n-1+k}$.
$s_{n-1, k} \cdot x^{k+1}+(n-1) \sum(-1)^{n-1+k} \cdot s_{n-1, k} \cdot x^{k}=$ TODO

Generating Functions

Power series: a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}, a_{n} \in \mathbb{C}$
Consider $\sum_{n \geq 0} a_{n} z^{n}$ is the series with cofficients a_{n}.
Idea: Power series is useful for approximating functions.
$\sum a_{n} z^{n}$ may or may not converge for a given $z \in \mathbb{C}$.
[Definition 0.10: Formal Power Series (FPS)
A formal power series (FPS), written $\sum a_{n} z^{n}$ is the same information as the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$

Operations on FPS, like addition, multiplication, differentiation, etc. $\sum_{n=0}^{\infty} a_{n} z^{n} \stackrel{\text { powerset }}{=} \lim _{N \rightarrow \infty} \sum_{n=0}^{N} a_{n} z^{n}$ is a limit of a sequence of complex numbers: $a_{0},\left(a_{0}+a_{1} z\right), \ldots$

Theorem 0.12:

$\lim _{N \rightarrow \infty} \sum_{n=0}^{N} a_{n} z^{n}$ exists, if $|z|<\frac{1}{\underset{\substack{\limsup _{n \rightarrow \infty}}}{\left|a_{n}\right|}}=: R$ TODO $\{$ it should be the nth root $\}$

If $|z|>R$, the series diverges.
(If $|z|=R$, an ad hoc analysis is necessary.)

Remark 0.2:

$\{z \mid$ series converges $\}$ is the domain of convergence, essentially a circle centered at the origin

Example 0.7:

- $\sum_{n \geq 0} z^{n}=\frac{1}{1-z} \ldots$ geometric series, $R=1$
- $\sum_{n \geq 0} \frac{z^{n}}{n!}=e^{z} \ldots$ exponential series, $R=\infty$
- $\sum_{n \geq 0}\binom{\alpha}{n} z^{n}=(1+z)^{\alpha}, \alpha \in \mathbb{C}$
[Theorem 0.13: Identity Theorem for Power Series
$f(z)=\sum a_{n} z^{n}$ converges for $|z|<R$ and $R>0$
$\Rightarrow a_{n}=\frac{f^{(n)(0)}}{n!}$

Corollary:
$f(z)=\sum a_{n} z^{n}=\sum b_{n} z^{n} \Rightarrow a_{n}=b_{n} \forall n($ if $|z|<R)$

Operations on Formal Power Series

Let $A(z)=\sum a_{n} z^{n}, B(z)=\sum b_{n} z^{n}$, however, z is not a complex number now.
Write $\left(a_{n}\right) \leftrightarrow A(z),\left(b_{n}\right) \leftrightarrow B(z)$
$((0,1,0, \ldots) \leftrightarrow z,(1,0,0, \ldots) \leftrightarrow 1,(0,0,0, \ldots) \leftrightarrow 0)$

Definition 0.11: Operations on FPS

- $\left(\alpha a_{n}+\beta b_{n}\right)_{n \in \mathbb{N}} \leftrightarrow: \alpha A(z)+\beta B(z)$
- $\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right)_{n \in \mathbb{N}} \leftrightarrow: A(z) \cdot B(z)$
- $\left(a_{n} \gamma^{n}\right)_{n \in \mathbb{N}} \leftrightarrow: A(\gamma z)$
- $\left(a_{n-1}\right)_{n \in \mathbb{N} \geq 1} \leftrightarrow: z A(z)$
- $\left(n a_{n}\right) \leftrightarrow: z A^{\prime}(z)$

Note 0.2:
We will use the term generating function for formal power series. Therefore, a generating function is not a function

Example 0.8:

- $\frac{1}{1+z}=\sum_{n \geq 0}(-1)^{n} z^{n}$ is an equality of FPS
- $\frac{z}{(1-z)^{2}}=z\left(\frac{1}{1-z}\right)^{\prime}=\sum n z^{n}$
- $\frac{1}{(1-z)^{k}}=\sum_{n \geq 0}\binom{n+k-1}{k-1} z^{n}$

Remark 0.3:

if $A(z)=B(z)$ as FPS and $A(z)$ and $B(z)$ converge as power series for $|z|<R$, then $A(z)=B(z)$ as power series
For instance, $\sum_{n \geq 0} n!z^{n}$ is a FPS. It converges only at 0 as a power series

Why are FPS useful?

Example 0.9: Towers of Hanoi

Discs of different sizes on three pegs. Goal: move discs to another peg, but no disc is allowed to be under a larger disc, and we may only move one disc at a time.

Recurrence for number of required moves a_{n} to move n discs to a different peg.
First move smaller $n-1$ discs to other peg, then move largest disc to third peg, and then move the $n-1$ discs on top of that.
$a_{n}=2 a_{n-1}+1$ and $a_{0}=0$, but we want an explicit formula for a_{n} :

- $a_{n}=2 a_{n-1}+1 \mid z^{n}$
- $a_{n} z^{n}=2 a_{n-1} z^{n}+z^{n} \mid \sum$
- $\underbrace{\sum a_{n} z^{n}}_{A(z)}=2 \underbrace{\sum a_{n-1} z^{n}}_{z A(z)}+\underbrace{\sum_{z} z^{n}}_{\frac{1}{1-z}}$
- $A(z)-a_{0}=2 z A(z)+\frac{1}{1-z}-1$
- $A(z)(1-2 z)=a_{0}+\frac{1}{1-z}-1=\frac{z}{1-z}$
- $A(z)=\frac{z}{(1-z)(1-2 z)}=\frac{-1}{1-z}+\frac{1}{1-2 z}$
- $A(z)=-\sum z^{n}+\sum 2^{n} z^{n}=\sum\left(2^{n}-1\right) z^{n}$
- $\Rightarrow a_{n}=2^{n}-1$

Example 0.10: Solving Recurrences with Generating Functions

 $F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$- $F(z):=\sum F_{n} z^{n}$
- $\sum F_{n+2} z^{n+2}=\sum F_{n+1} z^{n+2}+F_{n} z^{n+2}$
- $F(z)-F_{0}-F_{1} z=z\left(F(z)-F_{0}\right)+z^{2} F(z)$
- $F(z)\left(1-z-z^{2}\right)=F_{0}+z\left(F_{1}-F_{0}\right)$

In general $a_{n+k}+q_{1} a_{n+k-1}+\cdots q_{k} a_{n}=0$ for $n \geq 0, a_{0}, \ldots, a_{k-1}$ are given as initial conditions

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{z} \\
\sum_{n \geq 0} a_{n+k} z^{n+k}+q_{1} \sum a_{n+k-1} z^{n+k}+\cdots+q_{k} \sum a_{n} z^{n+k} & =0 \\
A(z)-a_{0}-a_{1} z-\cdots-a_{k-1} z^{k-1}+q_{1} z\left(A(z)-\sum_{i=0}^{k-2} a_{i} z^{i}\right)+\cdots q_{k} z^{k} A(z) & =0 \\
A(z) \underbrace{\left(1+q_{1} z+\cdots q_{k} z^{k}\right)}_{q(z)} & =p(z)
\end{aligned}
$$

with $p(z)$ a polynomial of degree at most $k-1$. Essentially, $p(z)$ contains the initial conditions while $q(z)$ describes the recurrence.
Then, $A(z)=\frac{p(z)}{q(z)}$, which is a reational function! (very nice)
Partial fraction decomposition:

1. find roots of $q(z)=\prod_{i=1}^{r}\left(z-z_{i}\right)^{\lambda_{i}}, \sum \lambda_{i}=l$
2. Ansatz: $\frac{p(z)}{q(z)}=\sum_{i=1}^{r} \sum_{j=1}^{\lambda_{i}} \frac{\tilde{A}_{i j}}{\left(z-z_{i}\right)^{j}}$
3. expand to generating function: $\sum_{i=1}^{r} \sum_{j=1}^{\lambda_{i}} \frac{A_{i j}}{\left(1-z / z_{i}\right)^{j}}$
4. $\sum_{n \geq 0} \underbrace{\left(A_{11}+\binom{n+1}{1} A_{12}+\cdots+\binom{n+\lambda_{1}-1}{\lambda_{1}} A_{1 \lambda_{1}}\right)\left(\frac{z}{z_{1}}\right)^{n}+\cdots+\sum \cdots .}_{p_{1}(n)}$
5. $=\sum \underbrace{\sum\left(p_{1}(n)\left(\frac{1}{z_{1}}\right)^{n}+\cdots+p_{r}(n)\left(\frac{1}{z_{r}}\right)^{n}\right)}_{=a_{n}} z^{n}$
[Definition 0.12: Characteristic Polynomial
$\chi(z):=z^{k}+q_{1} z^{k-1}+\cdots+q_{k}$ is the characterisitc polynomial of the recurrence relation.
$\left(\chi(z)=\left.q(z)\right|_{z^{k} n \rightarrow z^{n}-k}\right)$
$\chi(z)=\prod_{i=1}^{r}\left(z-\frac{1}{z_{i}}\right)^{\lambda_{i}}$

Unlabelled Enumeration

[Definition 0.13: Binary Trees
A binary tree is a rooted tree where each node has no successors or 2 successors.

Definition 0.14: Set of all Binary Trees
\mathcal{B} is the set of all binary trees
$\mathcal{B}=\{\cdot\} \cup\{ \}$ TODO\{finish depiction $\}$
$\mathcal{B}(z)=\sum_{n \geq 0} b_{n} z^{n}$ where b_{n} is the number of binary trees with n internal nodes, $b_{0}=1, b_{1}=1, b_{2}=2$

- $\mathcal{B}(z)=1+z \mathcal{B}^{2}(z)$
- $\mathcal{B}=\frac{1-\sqrt{1-4 z}}{2 z}=1+z+2 z^{2}+5 z^{3}+14 z^{4}+42 z^{5}+\ldots$

Dictionary for unlabelled structures

Definition 0.15:
$A(z)=\sum_{n \geq 0}$ \#elements of size $n \cdot z^{n}$

- $(\mathcal{A} \cup \mathcal{B})(z)=A(z)+B(z)$
- $(A \times B)(z)=A(z) \cdots B(z)$, (size of (a, b) is the size of a plus size of $b)$
- $($ sequencesofobjectsin $A)(z)=1+A(z)+A^{2}(z)+\cdots=\frac{1}{1-A(z)}$

Example 0.12: Sequences of Ones and Twos

Ones have size 1, twos have size 2.

- \varnothing
- 1
- $1+1,2$
- $1+1+1,1+2,2+1$
- $1+1+1+1,1+1+2,1+2+1,2+1+1,2+2$
- ...
$1+\left(z+z^{2}\right)^{2}+\left(z+z^{2}\right)^{3}+\left(z+z^{2}\right)^{4}+\cdots=\frac{1}{1-\left(z+z^{2}\right)}$

Example 0.13:

We have read, blue and yellow balls. $\underbrace{2 \text { or } 3 \text { red ones, }}_{r^{2}+r^{3}} \underbrace{}_{b+b^{2}+b^{3}+\ldots=\frac{b}{\text { at least one blue }}}$ and at most one yellow. We have n ball. How many possibilities are there?

$\Rightarrow A(z)=\left((r z)^{2}+(r z)^{3}\right) \frac{b z}{1-b z}(1+y z)$
We want to find $\$\left[z^{\wedge} n\right] A(z)=\$$ generating function in r, b, y

Example 0.14: Combinations without Repetitions

Balls $a_{1}, a_{2}, \ldots, a_{N}$ Select balls, but no ball twice, generating function:

$$
\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{N}\right), a_{i}:=z:(1+z)^{N}=\sum_{n} \geq 0\binom{N}{n} z^{n}
$$

If we allow repetition: $\left(\sum a_{1}^{n}\right)\left(\sum a_{2}^{n}\right) \cdots\left(\sum a_{N}^{n}\right) \rightarrow\left(\frac{1}{1-z}\right)^{N}=\sum\binom{n+N-1}{n} z^{n}$

Labelled Enumeration

For the unlabelled case, we had $A(z)=\sum a_{n} z^{n}$, where a_{n} was the number of objects of size n.
For the labelled case, it is a bit more complicated: $\hat{A}(z)=\sum a_{n} \frac{z^{n}}{n!}$. This is called the exponential generating function.

Example 0.15: Permutations
$A(z)=\sum n!z^{n}$
$\hat{A}(z)=\sum n!\cdot z^{n} / n!=\frac{1}{1-z}$

Example 0.16: Cyclic Permutations
$\hat{A}(z)=\sum_{n \geq 1}(n-1)!\cdot z^{n} / n!=\ln \left(\frac{1}{1-z}\right)$

Dictionary for labelled enumeration

- $(\widehat{A \cup B})(z)=\hat{A}(z)+\hat{B}(z)$
- $(\widehat{A \times B})(z)=\hat{A}(z) \cdot \hat{B}(z)$
- setofobjectsin $\hat{A}(z)=e^{\hat{A}(z)}$
- cyclesofobjectsin $\hat{A}(z)=\log \left(\frac{1}{1-\hat{A}(z)}\right)$
- $\widehat{A B}$

Definition 0.16: Product of Labelled Set (Pairs of Labelled Objects)
Let \mathcal{A}, \mathcal{B} be sets of labelled objects that are closed under relabelling. Let $\mathcal{A}[1, \ldots, n]$ be the set of objects with labels $1, \ldots, n$.
Then, $\mathcal{A} \times \mathcal{B}[1, \ldots, n]$ is the set of pairs (a, b) with $a \in \mathcal{A}, b \in \mathcal{B}$ such that the total set of labels is $1, \ldots, n$.

Formally, $\mathcal{A} \times \mathcal{B}[1, \ldots, n]=\underset{T O D O}{ } \mathcal{A}[U] \times[V]$.

Example 0.17:

$A[1,2,3]=\{1,2,3\}$ is not closed under relabelling. $A[1,2,3]$ produces all objects with labels $\{1,2,3\}$

$$
\left[\begin{array}{l}
\text { Example } 0.18: \\
A[1,2]=\{12,21\} \\
B[1,2]=\{12,21\} \\
A \times B[1,2,3,4]=\{(13,42),(12,34),(13,24),(31,42),(21,34),(12,43), \ldots\} \\
\\
\text { (There will be } 24 \text { pairs. })
\end{array}\right.
$$

$$
\begin{aligned}
{\left[z^{n}\right](\widehat{A \times B})(z) } & =\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k} \\
(\widehat{A \times B})(z) & =\sum_{n} \sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k} \cdot z^{n} / n! \\
& =\sum_{n} \sum_{k=0}^{n} \frac{n!}{k!(n-k!)} \frac{1}{n!} a_{k} b_{n-k} z^{k} z^{n-k} \\
& =\sum_{n} \sum_{k=0}^{n} \frac{a_{k} z^{k}}{k!} \frac{b_{n-k} z^{n-k}}{(\underbrace{n-k}_{l})!} \\
& =\sum_{k \geq 0} \sum_{l \geq 0} \frac{a_{k} z^{k}}{k!} \frac{b_{n-k} z^{n-k}}{l!} \\
& =\hat{A}(z) \cdot \hat{B}(z)
\end{aligned}
$$

[Definition 0.17:

Let A be a set closed under relablling. Then, $\operatorname{set}(A)[1, \ldots, n]$ is the set of objects $\left\{a_{1}, \ldots, a_{l}\right\}$ such that the total set of labels is $\{1, \ldots, n\}$

Example 0.19:
Sets of cycles with lables $\{1,2,3,4\}$
Cycles of $\{1\}$
TODO
Sets of cycles are permutations!
$\widehat{\operatorname{sets}}(z)=e^{z}, \widehat{\operatorname{cycles}}(z)=\ln \left(\frac{1}{1-z}\right)$
$\operatorname{set}(\widehat{\text { cycles }})(z)=e^{\ln \left(\frac{1}{1-z}\right)}=\frac{1}{1-z}=\operatorname{permutations}(z)$
$B:=$ setsofnon - emptysets

$$
\hat{B}(z)=e^{e^{z}-1}
$$

$\hat{B}(z)$ istheexponentialgeneratingfunction forsetpartitions.

Partially Ordered Sets

[Definition 0.18: Partial Order
A partial order $(P,<)$ is a set P together with a relation $<$, such that

- $a<b \Rightarrow \neg b<a$ (anti-symmetry)
- $a<b, b<c \Rightarrow a<c$ (transitivity)

Notation:

- $a \leq b$ means $a<b \vee a=b$.
- $a \lessdot b$ means $a<b$ and $\nexists c: a<c \wedge c<b, " a$ is covered by $b "$
[Remark 0.4:
Notation: In Hasse diagrams, the arcs are drawn from bottom to top.

```
[ Example 0.20:
\((\mathbb{N}, \mid)\)
TODO
```

[Remark 0.5:
$1 \mid 6$ but not $a \lessdot 6$
[Definition 0.19: Total Order
A linear (or total) order is a poset with $a \leq b$ or $b \leq a$ for all a, b
[Example 0.21:
$\left(2^{A}, \subseteq\right)$
TODO
[Definition 0.20: Minimal/Maximal Elements
A minimal element of a poset (P, \leq) is an element $a \in P$ such that $\forall b \in P$: $a \leq b$. Analogously for maximal elements.
(Minimal/maximal elements are not necessarily unique.)
[Definition 0.21: Interval
An interval is a subset $[x, y]:=\{z \mid x \leq z \leq y\}$ of P
(P, \leq) is locally finite if $|[x, y]| \leq \infty \forall x, y \in P$
[Definition 0.22: Boundedness
P is bounded if

- $\exists M \subseteq P: \forall x \in P \exists y \in M: x \leq y$ and
- $\exists M \subseteq P: \forall x \in P \exists y \in M: y \leq x$
(P, \leq) a poset, $f: P \rightarrow \mathbb{R}, S_{f}(x):=\sum_{z \leq x} f(z)$.
Given S_{f}, can we recover f ?: Yes!
[Definition 0.23: Möbius Function
(P, \leq) a poset, locally finite, with a minimal element 0
$\mu: P \times P \rightarrow \mathbb{R}$ is the Möbius function of P if it satisfies

$$
\forall x, y: \sum_{z \in[x, y]} \mu(z, y)=\delta_{x, y}= \begin{cases}0 & x \neq y \\ 1 & x=y\end{cases}
$$

[Remark 0.6:
This Relation determines μ uniquely.
[Remark 0.7:
For $x \not \leq y: \mu(x, y):=0$

Example 0.22:

- $[x, x]=\{x\} \Rightarrow \mu(x, x)=1$
- $[x, y]=\{x, y\} \Rightarrow \mu(x, y)+\mu(y, y)=0 \Rightarrow \mu(x, y)=-1$

Example 0.23:
(\mathbb{N}, \leq) :

- $\mu(n, n)=1$
- $\mu(n, n+1)=-1$
- $\mu(n, m)=0 \forall m \geq n+2 \vee m<n$
[Example 0.24:
TODO\{finish example\}
[Definition 0.24: Product of Posets
$\left(P_{1}, \leq\right),\left(P_{2}, \leq\right)$ Posets. Then $\left(P_{1}, \leq\right) \times\left(P_{2}, \leq\right):=\left(P_{1} \times P_{2}, \leq\right):$
$\operatorname{Has}\left(x_{1}, x_{y}\right) \leq\left(y_{1}, y_{2}\right) \Leftrightarrow\left(x_{1} \leq y_{1}\right) \wedge\left(x_{2} \leq y_{2}\right)$
[Theorem 0.14:
If P_{1} and P_{2} ahve both a unique minimal element, then $P_{1} \times P_{2}$ has a unique minimal element and $\mu_{P_{1} \times P_{2}}(\vec{x}, \vec{y})=\mu_{P_{1}}\left(x_{1}, y_{1}\right) \cdot \mu_{P_{2}}\left(x_{2}, y_{2}\right)$ with $\vec{x}=\left(x_{1}, x_{2}\right)$ and $\vec{y}=\left(y_{1}, y_{2}\right)$

[Proof 0.12:

L Left as an exercise to the reader
[Example 0.25:
$A=\left\{a_{1}, \ldots, a_{n}\right\},\left(2^{A}, \subseteq\right) \cong(\{0,1\}, \leq)^{n}$
e.g. $n=5, X=\left\{a_{2}, a_{5}\right\} \cong 01001, Y=\left\{a_{1}, a_{3}, a_{3}, a_{5}\right\} \cong 11101 \Rightarrow X \leq Y$
$\mu(X, Y)=\mu(0,1) \mu(1,1) \mu(0,1) \mu(0,0) \mu(1,1)=(-1) \cdot 1 \cdot(-1) \cdot 1 \cdot 1=1$
Note: The relation is a component wise comparison. It is not the lexicographical order.
In general, $X \subseteq Y: \mu(X, Y)=(-1)^{\text {different places }}=(-1)^{|Y \backslash X|}=(-1)^{|Y|-|X|}$
[Theorem 0.15: Möbius Inversion
(P, \leq) locally ifnite with a unique minimal element 0
$f: P \rightarrow \mathbb{R}, S_{f}(x)=\sum_{z \in[0, x]} f(z) \Rightarrow f(x)=\sum_{z \in[0, x]} S_{f}(z) \mu(z, x)$

Proof 0.13:

$$
\begin{aligned}
\sum_{z \in[0, x]} S_{f}(z) \mu(z, x) & =\sum_{0 \leq z \leq x} \sum_{0 \leq y \leq z} f(y) \mu(z, x) \\
& =\sum_{0 \leq y \leq z} \sum_{y \leq z \leq x} f(y) \mu(z, x) \\
& =T O D O \\
& =\sum_{y \in[0, x]} f(y) \delta_{y, x} \\
& =f(x)
\end{aligned}
$$

Example 0.26:
(\mathbb{N}, \leq)
$\mu(m, n)= \begin{cases}1 & m=n \\ -1 & m+1=n \\ 0 & \text { otherwise }\end{cases}$
$f: \mathbb{N}_{0} \rightarrow \mathbb{R}$
TODO

Example 0.27: Inclusion Exclusion
$A_{1}, \ldots, A_{m} \subseteq M$
consider $\left(2^{\{1, \ldots, m\}}, \supseteq\right)$ (the poset of indices)
$I \subseteq\{1, \ldots, m\}$
$f(I):=\left|\bigcap_{i \in I} A_{i} \cap \bigcap_{j \in\{1, \ldots, m\} \backslash I} \overline{A_{j}}\right|$
$f(I)$ is the number of elements precisely in all $A_{i}, i \in I$
$S_{f}(I)=\sum_{J \supseteq I} f(J)=\left|\bigcap \bigcap_{i \in I} A_{i}\right|$
$S_{f}(I)$ is the number of elements in $A_{i}, i \in I$ (but not precisely in A_{i})
Möbius inversion: $f(I)=\sum_{J \supseteq I} S_{f}(J) \mu(J, I)=\sum_{J \supseteq I}(-1)^{|I|+|J|}\left|\bigcap_{j \in J} A_{j}\right|$
In particular, $f(\varnothing)=\left|\bigcap_{j \in\{i, \ldots, m\}} \overline{A_{j}}\right|=\sum_{J \subseteq\{1, \ldots, m\}}(-1)^{|J|\left|\bigcap \bigcap_{j \in J} A_{j}\right|}$
This is the principle of inclusion/exclusion

Example 0.28:
"classical" number theoretic Möbius functions
(\mathbb{N}, \mid)
$m=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}} \backslash n=p_{1}^{f_{1}} \cdots p_{r}^{f_{r}}$ with $e_{i}, f_{i} \in \mathbb{N}_{0}$
$m \mid n \Leftrightarrow e_{i} \leq f_{i} \forall i$
$(\mathbb{N}, \mid) \cong\left(\mathbb{N}_{0}, \leq\right) \times\left(\mathbb{N}_{0}, \leq\right) \times \ldots$
$\mu(n):=\mu_{(\mathbb{N}, \mid)}(1, n)=\mu\left(0, e_{1}\right) \cdot \mu\left(0, e_{2}\right) \cdots \mu\left(0, e_{r}\right) \cdot \underbrace{\mu(0,0)}_{1} \cdots$
$\mu(0, k)=\left\{\begin{array}{ll}1 & k=0 \\ -1 & k=1 \\ 0 & k>1\end{array}\right\}=\left\{\begin{array}{ll}1 & \cdots \\ (-1)^{r} & \ldots \\ 0 & \text { otherwise }\end{array} \quad\right.$ TODO\{finish formula\}
Conclusion: $f: \mathbb{N}_{\rightarrow} \mathbb{R}$ TODO\{finish\}

Lattices

Definition 0.25:
(P, \leq) poset, $x, a, b \in P$, then if $a \leq x \leq b$, then a is called a lower bound and b an upper bound for x.

Let $x \vee y$ (say "x join y ") be the smallest common upper bound of x and y (if it exists).
Let $x \wedge y$ (say "x meet y ") be the largest common lower bound of x and y (if it exists).
(If x, y have no common upper/lower bound or more than one, they cannot be joined/met.)
Notation: TODO\{insert big vee\}
Basic properties:

- $x \vee y=y \vee x$
- $x \vee x=x$
- $(x \vee y) \vee z=x \vee(y \vee z)$
- $a \vee(a \wedge b)=a=a \wedge(a \vee b)$

[Definition 0.26: Lattices

L is a lattice if $\forall x, y \in L: \exists x \vee y$ and $x \wedge y$.
J is a join-semi-lattice if $\forall x, y \in J: \exists x \vee y . \backslash J$ is a meet-semi-lattice if $\forall x, y \in J: \exists x \wedge y$.
L is a complete lattice if $\forall X \in L: \exists V_{x \in X} x$ and $\&{ }_{x \in X} x$ TODO\{fix notation $\}$

Example 0.29:
$\left(2^{M}, \subseteq\right)$ is a lattice: $A, B \subseteq M \Rightarrow A \vee B:=A \cup B$ and $A \wedge B:=A \cap B$.

Lemma 0.4:

L lattice, $x, y, s, t \in L$

- $x \leq s$ and $y \leq s \Rightarrow x \vee y \leq s$
- $x \geq t$ and $y \geq t \Rightarrow x \wedge y \geq t$
- $x \leq y \Leftrightarrow x \vee y=y \Leftrightarrow x \wedge y=x$

Lemma 0.5:
L a finite meet-semi-lattice with a ' 1 " element (a top element which is larger than all others)
$\Rightarrow L$ is a lattice

> Proof 0.14:
> $x, y \in L, B=\{u \in L \mid x \leq u$ and $y \leq u\}$
> $B \neq \varnothing$ because $1 \in B$
> $|B|<\infty$ (because L is finite) $\Rightarrow B=\left\{u_{1}, \ldots, u_{m}\right\}$
> $u:=u_{1} \wedge \ldots \wedge u_{m} \in B$
> $\Rightarrow u=: x \vee y$

Example 0.30:

$\Pi_{n}=\{\pi$ a set partition of $[\mathrm{n}]\}$
Π_{n}, refinement is a lattice. (Refinement means take a block and split it into two.)
" 1 " is the set partition with one block.
" 0 " is the set with all singletons.
$\alpha, \beta \in \Pi_{n}: \alpha \wedge \beta=$ set partition where i, j are in the same block $\Leftrightarrow i, j$ are in the same block in α and in β

Theorem 0.16:
L lattice with " 0 " and " 1 " elements, $b \in L, b \neq 1$
$\Rightarrow \mu(0,1)=-\sum_{x: x \wedge b=0, x \neq 0} \mu(x, 1)$

Proof 0.15:

$\Leftrightarrow \sum_{x: x \wedge b=0} \mu(x, 1)=0$ (because $0 \wedge b=0$)
$N(y):=\sum_{x: x \wedge b=y} \mu(x, 1) \forall y \leq b$
$S_{N}(b):=\sum_{y: y \leq b} N(y)=\sum_{y \leq b} \sum_{x \wedge b=y} \mu(x, 1)=\sum_{x \in L} \mu(x, 1)=\sum_{x \in[0,1]} \mu(x, 1)=0$

Möbius inversion $\Rightarrow N(b)=\sum_{y \leq b} \underbrace{S(y)}_{0} \mu(y, b)=0$
And therefore, in particular, $N(0)=0$.

$$
\$ \backslash m u_{-}\left\{\backslash P i _n\right\}(0,1)=(-1) \wedge\{n-1\} \quad(n-1)!\$
$$

Proof 0.16:
$\Leftrightarrow \sum_{x: x \wedge b=0} \mu(x, 1)=0$ (because $0 \wedge b=0$)
$N(y):=\sum_{x: x \wedge b=y} \mu(x, 1) \forall y \leq b$
$S_{N}(b):=\sum_{y: y \leq b} N(y)=\sum_{y \leq b} \sum_{x \wedge b=y} \mu(x, 1)=\sum_{x \in L} \mu(x, 1)=\sum_{x \in[0,1]} \mu(x, 1)=0$
Möbius inversion $\Rightarrow N(b)=\sum_{y \leq b} \underbrace{S(y)}_{0} \mu(y, b)=0$
And therefore, in particular, $N(0)=0$.
TODO\{make corollary environment $\}$

```
Proof 0.17:
choose b={{1\ldotsn-1}{n}}
then use induction
```


Number Theory

$\left[\begin{array}{l}\text { Definition 0.27: Divisibility } \\ a, b \in \mathbb{Z} \text { then } a \mid b \Leftrightarrow \exists c \in \mathbb{Z}: a \cdot c=b \\ \left.\text { More generally, this applys to any ring, e.g. } \mathbb{Z}[X] \text { or } \mathbb{Z}_{m}\right)\end{array}\right.$
[Definition 0.28: GCD
$a, b \in \mathbb{Z}, d=\operatorname{gcd}(a, b) \Leftrightarrow d \mid a$ and $d \mid b$ and it is the greates TODO\{notation\}
$b>0 \Rightarrow \exists q, r \in \mathbb{Z}: a=b q+r$ and $0 \leq r<b$
Euclidean Algorithm:
TODO\{insert algorithm
$\left[\begin{array}{l}\text { Theorem 0.17: } \\ d=\operatorname{gcd}(a, b) \Rightarrow \exists e, f \in \mathbb{N}: d=a e+b f\end{array}\right.$

[Proof 0.18:

Euclidean Algorithm backwards
[Remark 0.8:
$d=a e+b f \Rightarrow \operatorname{gcd}(a, b) \mid d$
[Definition 0.29: Integral Domain
R is an integral domain if it has no zero-divisors:
$a \cdot b=\Rightarrow a=0$ or $b=0$

Example 0.31:
$\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$
$2 \cdot 3=0$, therefore, 2 and 3 are zero-divisors
[Example 0.32:

- \mathbb{Z}_{p} for p prime
- $\mathbb{Z}[X]$
[Definition 0.30: Euclidean Ring
R is a Euclidean ring if R is an integral domain and there exists a "Euclidean function" $n: R \rightarrow \mathbb{N}_{0}$ such that $\forall a, b, \in R, b \neq 0 \exists q, r \in R: a=b q+r$ TODO\{finish definition\}

Example 0.33:

- $\mathbb{Z}: n(a):=|a|$
- k a field, $k[X]: n(a):=\operatorname{deg}(a)$ (Warning: $\mathbb{Z}[X]$ is not euclidean)
[Remark 0.9:
If x is invertible $(x$ is a unit, i.e. $\exists \bar{x}: x \cdot \bar{x}=1)$ then $\operatorname{gcd}(a, b)=g c d a, x \cdot b$
[Remark 0.10:
$R^{*}:=\{x \mid x$ a unit $\}$

Example 0.34:
$\operatorname{gcd}\left(\mathrm{x}^{\wedge} 4+3 \mathrm{x}^{\wedge} 3-3 \mathrm{x}^{\wedge} 2-7 \mathrm{x}+6, \mathrm{x}^{\wedge} 3+\mathrm{x}^{\wedge} 2-\mathrm{x}+15\right)=\mathrm{x}+3$
because

$$
\begin{aligned}
& x^{4}+3 x^{3}-3 x^{2}-7 x+6=\left(x^{3}+x^{2}-x+15\right) \cdot x+\underbrace{2 x^{3}-2 x^{2}-22 x+6}_{\operatorname{deg}(\cdot)=3<4} \\
& x^{3}+x^{2}-x+15=\left(2 x^{3}-2 x^{2}-2 x x+6\right) \cdot \frac{1}{2}+2 x^{2} \cdots \\
& \vdots
\end{aligned}
$$

Definition 0.31: Prime Numbers $p \in \mathbb{N}_{>1}$ is a prime number if $m \mid p \Rightarrow m \in\{ \pm 1, \pm p\}$ \mathbb{P} is the set of primes.

Remark 0.11:
In arbitrary integral domains, such a p is called irreducible. In Euclidean domains, prime and irreducible is the same.

Remark 0.12:
properly:
$p \in R$ is irreducible if $\forall m: m \mid p \Rightarrow m \in\{ \pm 1, \pm p\}$.
$p \in R$ is prime if $\forall a, b: p|a b \Rightarrow p| a o r p \mid b$.
If R is a euclidean domain (e.g. \mathbb{Z}), then prime and irreducible are equivalend
[Theorem 0.18:
$p \in \mathbb{P}, p|a \cdot b \Rightarrow p| a \vee p \mid b$
(In Euclidean domains, this is the denition of primes.)

Proof 0.19:

two cases:

- $p \mid a$
- $p \nmid a \Rightarrow \operatorname{gcd}(p, a)=1$ and therefore $\exists e, f: p e+a f=1 . b=b \cdot 1=$ $b \cdot(p e+a f)=b p e+a b f$. We see that $p \mid b p e$ and $p \mid a b f$. Therefore, $p \mid b$

Remark 0.13:

Consider $\mathbb{Z}[\sqrt{-5}]$, then 3 is irreducible, i.e. $m \mid 3 \Rightarrow m \in\{ \pm 1, \pm 3\}$, but $3 \mid 9=$ $(2+\sqrt{-5})(2-\sqrt{-5})$ but neither is divisble by 3 .
[Theorem 0.19: Prime Factorization
$n \in \mathbb{N}_{\geq 1} \Rightarrow n=p_{1} \cdots p_{r}$ for $p_{i} \in \mathbb{P}$

[Proof 0.20:

Induction: Base case: $n \in \mathbb{P} \Rightarrow n=p$
Otherwise: $\exists n_{1}, n_{2}<n: n=n_{1} n_{2} \Rightarrow n_{1}=p_{1} \cdots p_{k}, n_{2}=p_{k+1} \ldots p_{r}$
[Theorem 0.20:
The factorization into primes is unique (except for the ordering), i.e.:

$$
n=\prod_{p \in \mathbb{R}} p^{\nu_{p}(n)}
$$

where $\nu_{p}(n)$ is the multiplicity of p in n

$$
\operatorname{gcd}(a, b)=\prod_{p \in \mathbb{P}} p^{\min \left(\nu_{p}(a), \nu_{p}(b)\right)}
$$

[Theorem 0.21:
There are infinitely many primes.

Proof 0.21:

Let a, b, c, \ldots, k be (finitely many) prime numbers. Take the product $P=$ $a b c \cdots k$ and add 1 . Either $P+1$ is prime or not. If it is prime, then it is larger than a, b, c, \ldots, k. Otherwise, there exists a prime p which divides $P+1 . p$ is different from a, b, c, \ldots, k because it would divide P and $P+1$ so it would divide $P-P+1=1$, which is impossible.

Congruence Relations and Residue Classes

[Definition 0.32:
$m \in \mathbb{Z}_{\geq 1}$, we call it "modulus"; $\bar{a}:=a+m \cdot \mathbb{Z}:=\{a+m \cdot z \mid z \in \mathbb{Z}\}$

> Remark 0.14:
> $a \in \bar{a}, \bar{a}=\bar{b} \Leftrightarrow m \mid a-b$

Notation:
$a \equiv b \bmod m a=b(m)$
[Definition 0.33:
$\mathbb{Z}_{m}=\{\bar{a}=a+m \mathbb{Z} \mid a \in \mathbb{Z}\}=\{\overline{0}, \overline{1}, \ldots, \overline{m-1}\}$
[Example 0.35:
$\mathbb{Z}_{2}=\{\overline{0}, \overline{1}\}$
$\overline{0}$ are the even numbers, $\overline{1}$ are the odd ones.
[Definition 0.34:
$\left(\mathbb{Z}_{m},+, \cdot\right)$ with $\bar{a}+\bar{b}:=\overline{a+b}$ and $\bar{a} \cdot \bar{b}:=\overline{a \cdot b}$, then $\left(\mathbb{Z}_{m},+, \cdot\right)$ is a commutative ring.
$\left[\begin{array}{l}\text { Remark 0.15: } \\ \text { Notation: } \bar{x} \cdot \bar{a}=1 \text {, then } \bar{x}^{-1}:=\bar{a}\end{array}\right.$
[Example 0.36:
$m=5, \overline{2}^{-1}=\overline{6}$
[Theorem 0.22:
$\exists \bar{a}^{-1} \in \mathbb{Z}_{m} \Leftrightarrow \operatorname{gcd}(a, m)=1$ (i.e. a and m are coprime)
[Proof 0.22:
TODO
[Definition 0.35:
$\mathbb{Z}_{m}^{*}=\left\{\bar{a} \in \mathbb{Z}_{m} \mid \operatorname{gcd}(a, m)=1\right\}$
[Example 0.37:

- $\mathbb{Z}_{5}^{*}=\{1,2,3,4\}$
- $\mathbb{Z}_{6}^{*}=\{1,5\}$

```
Example 0.38:
n\in\mathbb{N}
9|}n\Leftrightarrow9|\mathrm{ sum of digits of n
Proof: TODO
```


Chinese Remainder Theorem

Theorem 0.23:
$m=m_{1} \cdot m_{2}, \operatorname{gcd}\left(m_{1}, m_{2}\right)=1$ (coprime)
Then, $x \equiv y \bmod m \Leftrightarrow x \equiv y \bmod m_{1} \wedge x \equiv y \bmod m_{2}$
[Proof 0.23:
TODO
$\$ \mathrm{~m}=\backslash \mathrm{prod} \backslash \mathrm{limits}\{i=1\}^{\wedge} \mathrm{r} \mathrm{m}_{-} \mathrm{i} \$$ with $\$ \mathrm{~m} _i \$$ pairwise coprime
then, \$x \equiv y \mod m \Leftrightarrow \forall i: x \equiv y \mod m_i\$

Proof 0.24:
TODO

Theorem 0.24: Chinese Remainder Theorem

$$
\begin{array}{cc}
x \equiv a_{1} & \bmod m_{1} \\
\vdots & \\
x \equiv a_{r} & \bmod m_{r}
\end{array}
$$

where all m_{i} are pairwise coprime.
This system of congruences has a unique solution $\bmod m=\prod_{i=1}^{r} m_{i}$
The solution is given by

$$
x:=\sum_{j=1}^{r} \frac{m}{m_{j}} b_{j} a_{j}
$$

with $b_{j}:=\left(\frac{m}{m_{j}}\right)^{-1} \bmod m_{j}$

Example 0.39:

$$
\begin{gathered}
3 x \equiv 2 \quad \bmod 5 \\
2 x \equiv 7 \quad \bmod 11 \\
\Downarrow \\
\qquad \equiv 4 \quad \bmod 5 \\
x \equiv 9 \quad \bmod 11 \\
\Downarrow \\
\Downarrow \\
b_{1}=11^{-1}=1 \quad \bmod 5 \\
b_{2}=5^{-1}=9 \quad \bmod 11 \\
\Downarrow \\
x=11 \cdot 1 \cdot 4+5 \cdot 9 \cdot 9=9 \quad \bmod 55
\end{gathered}
$$

(which is the unique solution mod 55)

Proof 0.25:

1. x is a solution:
since $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for $i \neq j$ it follows that $\operatorname{gcd}\left(\frac{m}{m_{j}}, m_{j}\right)=1 \Rightarrow \exists b_{j}$ $\frac{m}{m_{j}} \equiv 0 \bmod m_{i} \forall i \neq j \Rightarrow \sum_{j=1}^{r} \frac{m}{m_{j}} b_{j} a_{j} \equiv \frac{m}{m_{i}} b_{i} a_{i} \equiv a_{i} \bmod m_{i}$
2. x is unique $\bmod m$: suppose $x \equiv a_{i} \bmod m_{i}$ and $y \equiv a_{i} \bmod m_{i}$ for all i $\Rightarrow x \equiv y \bmod m_{i} \Rightarrow x \equiv y \bmod m$

Example 0.40: finding inverses
$m=17$, find 13^{-1}, ie, solve $13 x \equiv 1 \bmod 17$
$\operatorname{gcd}(13,17)=1$, which is the condition for the existence of an inverse
$\Rightarrow \exists e, f: 13 e+17 f=1$
$\Rightarrow 13 e=1 \bmod 17$
e and f can be found with the extended Euclidean algorithm. In this case, it gives us $e=4, f=-3$
[Remark 0.16: Reduction of congruence relations
$3 b \equiv 3 c \bmod 5 \Rightarrow b \equiv c \bmod 5$ because 3 has an inverse $\bmod 5$.
But: In $3 b \equiv 3 c \bmod 6,3$ has no inverse

- $\Rightarrow 3 b=3 c+6 k$
- $\Rightarrow b=c+2 k$
- $\Rightarrow b \equiv c \bmod 2$

In general: $a b \equiv a c \bmod a m \Rightarrow b \equiv c \bmod m$

Euler-Fermat and Rivest-Shamir-Adleman

Definition 0.36:
$<\mathbb{Z}_{m}^{*}, \cdot>$ is a group
$\left|\mathbb{Z}_{m}\right|=m \backslash\left|\mathbb{Z}_{m}^{*}\right|=: \phi(m)$ is the (Euler) totient, i.e. the number elements coprime m

$$
\begin{aligned}
& \text { Example 0.41: } \\
& \phi(5)=4 \backslash \phi(6)=2
\end{aligned}
$$

Theorem 0.25:

For $p \in \mathbb{P}: \phi(p)=p-1$

$$
\begin{aligned}
\phi\left(p^{e}\right) & =\left|\left\{0, \ldots, p^{e}-1\right\}\right|-\left|\left\{0, p, 2, p, \ldots,\left(p^{e-1}-1\right) p\right\}\right| \\
& =p^{e}-p^{e-1} \\
& =p^{e(1-1 / p)}
\end{aligned}
$$

- $\phi(\underbrace{p_{1}^{e_{1}} \cdot p_{2}^{e_{2}}}_{m})=m \cdot\left(1-1 / p_{1}\right) \cdot\left(1-1 / p_{2}\right)$ TODOproof
- $m=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}} \Rightarrow \phi(m)=m \cdot\left(1-1 / p_{1}\right) \cdots\left(1-1 / p_{r}\right)$
[Example 0.42:
$\phi(6)=\phi(2) \cdot \phi(3)=6(1-1 / 2)(1-1 / 3)=2$
[Theorem 0.26: Euler-Fermat
$\operatorname{gcd}(a, m)=1 \Rightarrow a^{\phi(m)}=1 \bmod m$
Special Case: $p \in \mathbb{P}, p \nmid a \Rightarrow a^{p-1}=1 \bmod p$

$$
\begin{aligned}
& \text { Proof } 0.26: \\
& \left.\mathbb{Z}_{m}^{*}\right)\left\{\bar{a}_{1}, \ldots, \bar{a}_{k}\right\}, k=\phi(m) \\
& g c d(a, m) \Rightarrow a \text { is invertible in } \mathbb{Z}_{m} \Rightarrow \bar{a} \in \mathbb{Z}_{m}^{*} \\
& \Rightarrow \mathbb{Z}_{m}^{*}=\left\{\bar{a} \bar{a}_{1}, \ldots, \bar{a} \bar{a}_{k}\right\} \text { is a permutation of the original residue classes } \\
& \Rightarrow \text { TODO\{finish }\}
\end{aligned}
$$

[Theorem 0.27:
$p, q \in \mathbb{P}$ different odd primes, $m=p q, v=\operatorname{lcm}(p-1, q-1)$
$\Rightarrow \forall a, k \in \mathbb{Z}: a^{k v+1} \equiv a \bmod m$

Proof 0.27:

$p q \mid a^{k v+1}-a$ iff. $p \mid a^{k v+1}-a$ and $q \mid a^{k v+1}-a$
$p \mid a^{k v+1}-a$ because : case 1: $p \mid a$ or case2: $a^{p-1} \equiv 1 \bmod p \Rightarrow a^{k v} \equiv 1$ $\bmod p \Rightarrow a^{k v+1} \equiv a \bmod p$
(same for q)
[Definition 0.37: RSA Algorithm
$m=p \cdot q, g c d(e, v)=1$ with $v=l c m(p-1, q-1) \Rightarrow \exists d: d \cdot e \equiv 1 \bmod v$ message: a_{1}, a_{2}, \ldots with $0 \leq a_{i}<m$
$E\left(a_{j}\right)=\left(a_{j}^{e} \bmod m\right)=: b_{j} \backslash D\left(b_{j}\right)=\left(b_{j}^{d} \bmod m\right)$
Note that $\left(a_{j}^{e}\right)^{d}=a_{j}^{k v+1} \equiv a_{j} \bmod m$
(m, e) is called the "public key"
"E-Sagnature": several pairs $\left(e_{j}, d_{j}\right)$ and e_{j} 's are public
User i sends $y:=E_{j}\left(D_{i}(x)\right)=x^{d_{i} e_{j}} \bmod m$ to user j
User j checks: $D_{j}(y)=D_{j} E_{j} D_{i}(x)=D_{i}(x)$ and $E_{i}\left(D_{i}(x)\right)=x$
Problem: $E(x)$ may have (many) fixed points in \mathbb{Z}_{m}

Primitive Roots

Definition 0.38:
G is a group: $|G|$ is the oder of G.
minimal k such that $x^{k}=1$ is the order $\operatorname{ord}_{G}(x)$ of x in G.
Proposition: $\operatorname{or}_{G}(x)| | G \mid$
[Definition 0.39: Cyclic Group
A group generated by a single element, $G=<x>=\left\{x^{0}, x^{1}, x^{2}, x^{3}, \ldots\right\}$ is called cyclic.

Remark 0.17:

Groups can may be written multiplicatively or additively, depending on convention. Abelian group are often (but not always) written additively.
[Definition 0.40: Primitive Roots
$\bar{a} \in \mathbb{Z}_{m}^{*}$ such that $\mathbb{Z}_{m}^{*}=<\bar{a}>$, the \bar{a} is called a primitive root $\bmod m$.

Example 0.43:

- $\mathbb{Z}_{2}^{*}=<\overline{1}>$
- $\mathbb{Z}_{3}^{*}=<\overline{2}>$
- $\mathbb{Z}_{5}^{*}=<\overline{2}>$
- $\mathbb{Z}_{8}^{*}=\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ has no generator

Proposition: \bar{a} is a primitive root $\bmod m$, then $\mathbb{Z}_{m}^{*}=\left\{a, a^{2}, \ldots, a^{\phi(m)}\right\}$ and $a^{\phi(m)} \equiv 1$.
[Theorem 0.28:
\mathbb{Z}_{m}^{*} is cyclic iff $m \in\left\{2,4, p^{e}, 2 p^{e}\right\}$ with $p \in \mathbb{P} \backslash\{2\}$ and $e \in \mathbb{N}_{\geq 1}$

Lemma 0.6:

- g is a primitive root $\bmod p \Rightarrow g$ or $g+p$ is a primitive root $\bmod p^{e}$
- g is a primitive root $\bmod p^{e} \Rightarrow g$ or $g+p$ is a primitive root $\bmod 2 p^{e}$
[Proof 0.28:
(using the following lemma)
$\phi\left(p^{2}\right)=p(p-1)$, assum that $p-1=k l$ with $k, l<p-1$ and $\operatorname{ord}_{\mathbb{Z}_{p^{2}}^{*}}(g)=p l$

Lemma 0.7:

$g^{p-1} \equiv 1 \bmod p^{2}$ or $(g+p)^{p-1} \not \equiv 1 \bmod p^{2}$ for g a primitive root $\bmod p$
TODO
$\left[\begin{array}{l}\text { Proof 0.29: } \\ (g+p)^{p-1} \equiv g^{p-1}+p g^{p-2} \bmod p^{2}(\text { by the binomial theorem }) \\ \text { TODO }\end{array}\right.$
[Example 0.44:
14 is a primitive root $\bmod 29$ but not 29^{2}.
[Definition 0.41: Carmichael Function
$\lambda(m)=\max _{a \in \mathbb{Z}_{m}^{*}} \operatorname{ord}_{\mathbb{Z}_{m}^{*}}(a)$ is the Carmichael function

Remark 0.18:

- $\lambda(m) \mid \phi(m)$
- $p \in \mathbb{P} \backslash\{2\} \Rightarrow$
- TODO

TODO \{include lecture 17\}

Polynomials over Finite Fields

Definition 0.42: Rings
$(R,+, \cdot)$ is a ring if $(R,+)$ is an abelian group with neutral element 0 and multiplication satisfies

- $(a+b) c=a c+b c$
- $c(a+b)=c a+c b$
- $a(b \cdot c)=(a \cdot b) c$
- $\exists 1 \in R: \forall a \in R: a \cdot 1=1 \cdot a=a$

Remark 0.19:

1. A ring is not a field because in a ring, multiplication does not necessarily have inverse elements.
2. Recall that $\left(R^{*}, \cdot\right)$ is the group of units where R^{*} is the set of elements with multiplicative inverse.
3. R is an integral domain if $a b=0 \Rightarrow a=0 \vee b=0$ and multiplication is commutative.
[Definition 0.43: Euclidean Ring
R is a euclidean ring if there is a map $n: R \backslash\{0\} \rightarrow \mathbb{N}_{0}$ such that $\forall a, b \in$ $R \exists q, r \in R, q \neq 0: a=b q+r$ with $n(r)<n(b)$ or $r=0$, and $\forall a, b \in R \backslash\{0\}:$ $n(a) \leq n(a b)$

The reason we are interested in integral domains is that there, we have a theory of divisibility.

- $t \mid a: \Leftrightarrow \exists c: a=t \cdot c$
- $d=\operatorname{gcd}(a, b):, \Leftrightarrow d|a \wedge d| b \wedge(t|a \wedge t| b \Rightarrow t \mid d)$
[Definition 0.44: Associated Elements
$a, b \in R$ are called associated (write $a \sim b$) iff $\exists r \in R^{*}: a=r b$

Lemma 0.8:

1. R euclidean ring, $a, b \in R, b \neq 0, a \mid b \Rightarrow n(a) \leq n(b)$.
2. If $a, b \notin R^{*} \cup\{0\} \Rightarrow n(a)<n(a b)$
[Proof 0.30:
3. $a \mid b \Rightarrow \exists c: b=a c, n(a) \leq n(a c)=n(b)$
4. $x=a b, \ldots$ Professor didn't manage to prove this
```
If \$d\$ and \$d'\$ are gcd's of \$a\$ and \$b\$, then \(\$ \mathrm{n}(\mathrm{d})=\mathrm{n}(\mathrm{d})\) \$
```


Proof 0.31:

1. $a \mid b \Rightarrow \exists c: b=a c, n(a) \leq n(a c)=n(b)$
2. $x=a b, \ldots$ Professor didn't manage to prove this
[Definition 0.45:
R integral domain, $a \in R \backslash\left(R^{*} \cup\{0\}\right)$, then

- a is called irreducible iff $a=b c \Rightarrow b \in R^{*}$ or $c \in R^{*}$
- a is called prime TODO
[Example 0.45:
$R=\mathbb{Z}$, then $x \in R$ irreducible $\Leftrightarrow x \in \mathbb{P}$ or
TODO

Theorem 0.29:

- prime \Rightarrow irreducibe
- R euclidean, then irreducible \Leftrightarrow prime

Proof 0.32:

- a prime, $a=b c$, if $a \mid b$ then c TODO
- TODO

Example 0.46:
$R=\mathbb{Z}[i \sqrt{(5)}]=\{a+b i \sqrt{5} \mid a, b \in \mathbb{Z}\}$
$6=2 \cdot 3=(1+i \sqrt{5})(1-i \sqrt{5})$
$2 \mid 6$ but $2 \mid 1+i \sqrt{5}$ because

$$
\begin{aligned}
1+i \sqrt{5} & =2 c \\
& =2(a+b i \sqrt{5}) \\
& =2 a+2 b i \sqrt{5} \\
1 & =2 a \Rightarrow a \notin \mathbb{Z}
\end{aligned}
$$

Similarilly, $2 \nmid 1-i \sqrt{5}$. Therefore, 2 is not prime.
But 2 is irreducible:
$2=(a+b i \sqrt{5})(c+d i \sqrt{5})$
TODO

Example 0.47:
K a field $\Rightarrow K[x]$ is a euclidean ring (with euclidean function $n(\cdot)=\operatorname{deg}(\cdot)$)
\Rightarrow primes are irreducible polynomials
That is, $a(x)=b(x) \cdot c(x) \Rightarrow \operatorname{deg}(b(x))=0$ or $\operatorname{deg}(c(x))=0$
In $\mathbb{C}[x]$, these are the linear polynomials $a x+b$ with $a \neq 0$.

Definition 0.46: Unique-Factorization Domain

R integral domain. R is a unique fractorization domain (UFD) or factorial ring if $\forall a \in R \backslash\left\{R^{*} \cup\{0\}\right\}$ there exists a unique factorization $a=\varepsilon \cdot p_{1} \cdots p_{k}$ with $\varepsilon \in R^{*}, p_{i}$ prime
(unique: TODO)
[Theorem 0.30:
R euclidean $\Rightarrow R$ UFD

Proof 0.33:

Existence of a factorization:

- Case 1: a irreducible $\Rightarrow a$ prime $\Rightarrow a=1 \cdot a$
- Case 2: $a=b c, b c \in R^{*} \Rightarrow n(b), n(c)<n(a)$. Suppose a has no factorisation, $n(a)$ minimal. Then $b=\varepsilon \cdot p_{1} \cdots p_{k}$ and $c=\eta \cdot q_{1} \cdots q_{l}$ $\Rightarrow a=b c=\varepsilon \cdot \eta \cdot p_{1} \cdots p_{k} \cdot q_{1} \cdots q_{1}$

Uniqueness:
TODO

> Definition 0.47: Ideals
> $(R,+\cdot)$ integral domain.
> $J \subseteq R$ is called an ideal of R iff
> - $(J,+) \leq(R,+)$ (additive subgroup)
> - $\forall a \in R: a \cdot J \subseteq J$

Example 0.48:
$m \mathbb{Z}$ is an ideal of \mathbb{Z}.
[Definition 0.48:
J ideal of R
$a \equiv b \bmod (J)$ iff $a-b \in J(\Leftrightarrow a+J=b+J)$.

Lemma 0.9:
J ideal of R
$a \equiv b \bmod (J)$
$c \equiv d \bmod (J)$$\Rightarrow \begin{gathered}a+c \equiv b+d \bmod (J) \\ a \cdot c \equiv b \cdot d \bmod (J)\end{gathered}$
$R / J=\{a+J \mid a \in R\}$
$(a+J)+(b+J):=(a+b)+J$
$(a+J) \cdot(b+J):=a \cdot b+J$
$\Rightarrow(R / J,+, \cdot)$ is a ring!
For instance, $\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}$
The ideals $J=\{0\}$ and $J=R$ are trivial ideals.
[Definition 0.49: Principal Ideals
$m \in R$.
$(m):=m R=\{m \cdot a \mid a \in R\}$ is an ideal of R. Ideals of this form are called principal Ideals.
[Remark 0.20:
K field (i.e. $\left.K^{*}=K \backslash\{0\}\right)$
$\Rightarrow\{0\}$ and K are the only ideals of K.

Proof 0.34:
TODO
[Definition 0.50: Ring Homomorphism
R, S integral domains.
$\phi: R \rightarrow S$ is called a ring homomorphism iff $\forall a, b \in R$:

- $\phi(a+b)=\phi(a)+\phi(b)$
- $\phi(a \cdot b)=\phi(a) \cdot \phi(b)$
$\operatorname{ker}(\phi):=\{a \mid a \in R, \phi(a)=0\}$
[Lemma 0.10:
$\phi: R \rightarrow S$ ring homomorphism.
$\Rightarrow \operatorname{ker}(\phi)$ is an ideal of R

Proof 0.35:
TODO

Lemma 0.11:
$J_{i}, i \in I$ ideals of R.
$\Rightarrow \bigcap_{i \in I} J_{i}$ ideal of R
$M \subseteq R$
$(M):=\bigcap$ (ideals that contain M)
$=$ ideal that is generated by M
$M=\{m\} \Rightarrow(m)=m R$
R euclidean.
$M=\left\{m_{1}, \ldots, m_{k}\right\}$
$\Rightarrow(M)=\left(\operatorname{gcd}\left(m_{1}, \ldots, m_{k}\right)\right)=\operatorname{gcd}\left(m_{1}, \ldots, m_{k}\right) \cdot R$ principal ideal
[Theorem 0.31:
R euclidean ring.
J ideal of $R \Rightarrow \exists m \in R: J=(m)=m R$
(all ideals are principal)

Proof 0.36:
TODO
R euclidean, $J=(m)=m R$
$a \equiv b \bmod J \Leftrightarrow a \equiv b \bmod m \Leftrightarrow m \mid a-b$
[Example 0.49:
$R=\mathbb{Z}, J$ ideal of $\mathbb{Z} \Rightarrow J=m \mathbb{Z}$
$R / J=\mathbb{Z} / m \mathbb{Z}$

Remark 0.21:

- $\mathbb{R}[x] /\left(x^{2}-1\right)$ is not an integral domain because $(x-1)(x+1)=x^{2}-1=0$ (zero dividers).
- $p(x) \equiv 0 \Rightarrow x^{n} \equiv-a_{n-1} x^{n-1} \cdots-a_{0} \Rightarrow$ any polynomial in $K[x] /(p(x))$ has a representative of degree strictly less than n.

Theorem 0.32:
K a field, $p(x) \in K[x]$, then $K[x] / p(x)$ is a field iff $p(x)$ irreducible.

Remark 0.22:

- $p(x)$ irreducible $\Rightarrow \mathrm{p}(\mathrm{x})$ has no zeros, because otherwise $x-a \mid p(x)$
- K is a subfield of $K[x] / p(x)$

Algebraic Extensions

Let $p(x)$ be monic (leading coefficient 1) and irreducible of field K.
Define a new element $a \in L$ by $p(a)=0$.

Theorem 0.33:
Let $L \supseteq K$ such that a is a zero of $p(x) \in K[x]$, then exists a unique monic, irreducible polynomial $m \in K[x]$ with $m(a)=0$, which is the minimal polynomial.
[Example 0.50:
\mathbb{C} is defined as the field containing \mathbb{R} and the roots of $x^{2}+1$.

Proof 0.37:
$p_{1}(x), p_{2}(x)$ monic irreducible $\mathrm{p} _1(\mathrm{a})=\mathrm{p} _2(\mathrm{a})=0$
$d(x):=\operatorname{gcd}\left(p_{1}, p_{2}\right)=A(x) p_{1}(x)+B(x) p_{2}(x)$
$\Rightarrow d(a)=A(a) p_{1}(a)+B(a) p_{2}(a)=0 \Rightarrow p_{1}(x)=p_{2}(x)$
[Remark 0.23:
$m(x)$ has minimal degree aong all polynomials with $p(a)=0$.
$\$ \mathrm{p} \backslash$ in $\mathrm{K}[\mathrm{x}], \mathrm{p}(\mathrm{a})=0 \backslash$ Rightarrow $\mathrm{m}(\mathrm{x}) \mid \mathrm{p}(\mathrm{x}) \$$

Remark 0.24:
$m(x)$ has minimal degree aong all polynomials with $p(a)=0$.

> Proof 0.38: $\begin{aligned} & p(x)=q(x) m(x)+r(x) \text { with } \operatorname{deg}(r)<\operatorname{deg}(m) \text { or } r=0 \\ & \Rightarrow 0=p(a)=q(a) m(a)+r(a)=r(a)\end{aligned}$

Since m is minimal, we have $r(x)=0$ and therefore $m(x) \mid p(x)$.
Let $L:=\left\{\sum_{i=0}^{n-1} b_{i} a^{i} \mid b_{i} \in K\right\}$ is the smallest field containing K and a, because
$a^{n}=-\sum_{k=0}^{n-1} c_{k} a^{k}$, with $\operatorname{deg}(m)=n$ and $m(x)=\sum_{k=0}^{n} c_{k} x^{k}$.
$L \cong K[x] / m(x)$
[Example 0.51:
$K=\mathbb{R}, m(x)=x^{2}+1, a=i$ with $i^{2}=-1$.
$K[x] / m(x)=\mathbb{R} \cup\{a x+b \mid a \neq 0\}$, eg. $x^{3}=x \cdot x^{2}=-x$.
$L=\{a \cdot i+b \mid a, b \in \mathbb{R}\}$
[Definition 0.51: Algebraic Elements
$a \in L$ is called algebraic over K

Example 0.52:

- $\mathbb{Q}[x] /\left(x^{2}-2\right) \cong \mathbb{Q}[\sqrt{2}]=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}$
- $a, b \in K, K[x] /(a x+b) \cong K$

[Definition 0.52: Algebraic Closure

A field with no algebraic extensions (i.e. any polynomial is a product of linear factors) is algebraically closed.

Remark 0.25:

- For any field K, there is an algebraically closed field $L \supseteq K$.
- If $|K|=p \in \mathbb{P}$ (i.e., $K \cong \mathbb{Z}_{p}$), then, $\forall n \in \mathbb{N} \exists m(x)$ such that $|K[x] / m(x)|=p^{n}$.

Finite Fields

[Theorem 0.34:
Field K finite. $\left(K^{*}, \cdot\right)$ is a cyclic group of order $p^{n}-1=\left|K^{*}\right|$.
$\forall a \in K: a^{p^{n}}=a$

Proof 0.39:
$\left|K^{*}\right|=p^{n}-1$, let $a \in K^{*}$ with $\operatorname{ord}_{\left(K^{*}, \cdot\right)}(a)=: r$ is maximal.
$\Rightarrow r \mid p^{n}-1$ and $\forall y \in K^{*}: \operatorname{ord}_{\left(K^{*}, \cdot\right)}(y) \mid r$
$\Rightarrow \forall y \in K^{*}: y^{r}-1=0$ but the number of zeros of $x^{r}-1 \leq r$
$\Rightarrow p^{n}-1 \leq r \rightarrow p^{n}-1=r$
Since the maximal order of an element equals the order of the group, the group is cyclic.
[Definition 0.53: Primitive Element and Primitive Polynomial a is called primitive element. Its minimal polynomial is called primitive polynomial.

[Definition 0.54: Generator

A generator of $\left(K^{*}, \cdot\right)$ is a primitive element. Its minimal polynomial (in $\mathbb{Z}_{p}[x]$ is the primitive polynomial).
$\left[\begin{array}{l}\text { Theorem 0.35: } \\ q(x) \text { is a primitive polynomial of } k=G F\left(p^{n}\right) \text { (Galois-field of size } p^{n} \text {) } \\ \Leftrightarrow q(x) \mid x^{p^{n}-1}-1 \text { and } q(x) \nless x^{k}-1 \text { for } 1 \leq k<p^{n}-1 \text { and } q \text { is irreducible (in } \\ \left.\mathbb{Z}_{p}[x]\right) .\end{array}\right.$
$\left[\begin{array}{l}\text { Proof } 0.40: \\ \text { TODO }\end{array}\right.$

Next goal: $q(x)=(x-a)\left(x-a^{p}\right) \cdot\left(x-a^{p^{n}-1}\right)$

Theorem 0.36:
$q(x)$ has the following form:
$q(x)=(x-a)\left(x-a^{p}\right)\left(x-a^{p^{2}}\right) \cdots\left(x-a^{p^{n-1}}\right)$, that is it has n zeros

Lemma 0.12:
$\phi: G F\left(p^{n}\right) \rightarrow G F\left(p^{n}\right)$ (field-automorphism)
$x \mapsto x^{p}$ (i.e. a homomorphism and bijective)

Proof 0.41:

homomorphism:

- $(a+b)^{p}=a^{p}+b^{p}$ (no joke, see exercise)
- $(a b)^{p}=a^{p} \cdot b^{p}$
bijektive:
- $\operatorname{ker}(\phi)$ is an ideal of $G F\left(p^{n}\right)$ but fields only have two (trivial) ideals: the field itself and zero.
- but $\operatorname{ker}(\phi) \neq G F\left(p^{n}\right)$ because $\phi(1)=1$

Fact: All automophisms are powers of $\phi:\left\{\phi, \phi^{2}, \ldots, \phi^{n}=i d_{K}\right\}$
\Rightarrow TODO
Let $q(x)$ be a primitive polynomial:
$G F\left(p^{n}\right)=\mathbb{Z}_{p}[x] / q(x)$
$b=\phi(a)$ for an automorphism ϕ
$\Rightarrow q(b)=q(\phi(a))=\phi(q(a))=\phi(0)=0$
Since $\phi(x)=x, \phi(x)=x^{p}, \ldots, \phi(x)=x^{p^{2}}$ are all automorphisms, we have that $\phi_{0}(a), \phi_{1}(a), \ldots$ are zeros of $q(x)$ and these are actually all zeros of $q(x)$
Corollary: The number of primitive polynomials is $\frac{1}{n} \phi\left(p^{n}-1\right)$, because any two primitive polynomials have no common root.

Linear Codes

Definition 0.55: Linear Codes, Generator Matrix, Codewords
$K=G F(q), f: K^{k} \rightarrow K^{n}$ linear (i.e. homomorphic) and injective
$C=f\left(K^{k}\right)$ is an (n, k)-linear code
Let $\left\{c_{1}, \ldots, c_{k}\right\}$ be a basis of C, then

$$
G=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{k}
\end{array}\right) \in M_{k \times n}
$$

(with the c_{i} 's as row vectors) is the generator matrix.
Codewords are elements of C, i.e. linear combinations of $\left\{c_{1}, \ldots, c_{k}\right\}$.

Definition 0.56: Check Matrix

A generator matrix of $C^{\perp}:=\left\{v \in K^{n} \mid v \cdot u=0 \forall u \in C\right\}$ (orthogonal space to $C)$ is called check matrix.

Proposition: Let H be a check matrix, then $G \cdot H^{\top}=\mathbf{0}_{k \times(n-k)}$

Remark 0.26:

A code C is called systematic if $G=\left(I_{k} \| F\right)$, i.e. if $v=\left(v_{1}, \ldots, v_{k}\right)$ is the message then the encoding is $v G=\left(v_{1}, \ldots, v_{k}, w_{k}+1, \ldots, w_{n}\right)$. That is, the code just appends stuff.
If C is systematic, then $H=\left(-F^{\top} \| I_{n-k}\right)$

Definition 0.57: Syndromes
$s_{H}(c)=c \cdot H^{\top}$ is called the syndrome of c (with $c \in K^{n}$).
The syndrom is 0 iff c is a correct codeword (no error detected).
Proposition: C an (n, k)-linear code, then u, v are in the same coset of $a+C \Leftrightarrow$ $s_{H}(u)=s_{H}(v)$

Polynomial Codes

Polynomial Codes are linear codes, but we take a different vector space
$K_{n-1}[x]=\{p(x) \in K[x] \mid \operatorname{deg}(p(x) \leq n-1)\}$ $\left(\operatorname{dim}\left(K_{n-1}[x]\right)=n\right)$
$g(x) \in K[x], \operatorname{deg}(g)=n-k$ (generator polynomial)
Encoding: $f(p(x))=p(x) \cdot g(x)$ for $p(x) \in K_{k-1}[x]$
(f injective and linear)
$C=f\left(K_{k-1}[x]\right)$ is a k-dimensional subspace of $K_{n-1}[x]$
To check a an encoded message, choose $f(x) \in K[x]$ with $\operatorname{deg}(f)=n$ and $h(x)$ such that $c(x) \in C \Leftrightarrow c(x) \cdot h(x)=0 \bmod f(x)$.

Proposition: $f(x)=\lambda g(x) h(x), \lambda \in K^{*}$
$\left[\begin{array}{l}\text { Definition } 0.58: \\ s(v(x)):=v(x) \bmod g(x) \text { is the syndrome of } v(x)\end{array}\right.$
Proposition: $v(x)$ is a code iff $s(v(x))=0$

[Definition 0.59:

A code is cyclic if for any $c_{0}+c_{1} \cdot x+\cdots+c_{n-1} \cdot x^{n-1} \in C$ also the cyclic shift is in C. TODO
[Theorem 0.37:
C is cyclic iff $g(x) \mid x^{n}-1$.

Linear (Feedback) Shift Registers (LFSRs)

start with sequence $R_{0}, \ldots, R_{k_{1}}$
TODO $\{$ Create Graphic of LFSR (tikz) \}
e.g. $R_{n} \in G F(2)$
$R_{k}=a_{0} R_{0}+a_{1} R_{1}+\cdots+a_{k-1} R_{k-1}$
Remark: We assume $a_{0} \neq 0$. Otherwise, the LFSR behaves like a different LFSR with the leading zero-multipliers cut off.
new sequence is R_{1}, \ldots, R_{k}
Example 0.53:
TODO
$101 \rightarrow 010 \rightarrow 100 \rightarrow 001 \rightarrow 011 \rightarrow 111 \rightarrow 110 \rightarrow 101$
Observations:

- If $K=G F(2)$, there are 2^{n} states. Therefore, the sequence of states is periodic \rightarrow this forms a cycle.
- The zero-state will always be a fixed point

The maximally possible period is $2^{k}-1$ (for $G F(2)$). But when is the period actually maximal?

The register sequence is the sequence $\left(R_{n}\right)_{n \geq 0}$ and it satisfies the linear recurrence

$$
R_{n}+k=\sum_{i=0}^{k-1} a_{i} R_{n+1}
$$

The generating function $R(x):=\sum_{n \geq 0} R_{n} x^{n}=\frac{g(x)}{f(x)}$ for two polynomials $g, f \in$ $G F(2)[x]$. We know that $f(x)=1-a_{k-1} x-a_{k-2} x^{2}-\ldots-a_{0} x^{k}$ and $\operatorname{deg}(g)<k$

Example 0.54:
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(1,1,0,1)$
$\Rightarrow f(x)=1+x+x^{3}+x 4$ (addition and subtraction is the same in $G F(2)$)
TODO\{finish example (tabular) \}

Theorem 0.38:

Let $\left(R_{n}\right)_{n \geq 0}$ be a register sequence with denominator polynomial $f(x)$ irreducible. Then, the period equals $t \Leftrightarrow f(x) \mid 1-x^{t}$

Proof 0.42:

- $R_{n+t}=R_{n} \forall n \geq 0$ $R(x)=\underbrace{\left(R_{0}+\ldots+R_{t-1} x^{t-1}\right)}_{\sigma(x)} \cdot \underbrace{\left(1+x^{t}+x^{2 t}+\cdots\right)}_{\frac{1}{1-x^{t}}}$

$$
R(x)=\frac{\sigma(x)}{1-x^{t}}
$$

TODO

- TODO

[Remark 0.27:

In the example above, the polynomial is not irreducible. Therefore, the theorem does not apply. This is also why the period depends on the initial state (which does not reflect) in the theorem.

Recall the following theorem we had before:
[Theorem 0.39:
$q(x)$ is primitive polynomial iff $q(x) \mid x^{p^{n}-1}$ and $q(x) \not x^{k}-1$ for $k<p^{n}-1$
Therefore:
[Theorem 0.40:
R_{n} has period $2^{n}-1$ iff $R(x)=\frac{g(x)}{f(x)}$ with $f(x)$ a primitive polynomial.

Repetition on Counting Structures with Generating Functions (Combinatorial Species)

Definition 0.60:
A combinatorial species F is an assignment

- of finite sets (of labels) U to finite sets (of strutures) $F[U]$
- of bijections $\sigma: U \rightarrow V$ between sets of labels to bijections $F[\sigma]$: $F[U] \rightarrow F[V]$
such that
- $F[\sigma \circ \tau]=F[\sigma] \circ F[\tau]$
- and $F\left[i d_{U}\right]=i d_{F[U]}$

Example 0.55:

Relabelling: $\mathcal{L}\left[\begin{array}{c}1, a, \bigcirc \\ 1,2,3\end{array}\right](\bigcirc a 1)=321 \in \mathcal{L}[\{1,2,3\}]$
Permutations $S[\{1, a, \odot\}]=T O D O$

- $S\left[\begin{array}{l}1,2,3 \\ 2,3,1\end{array}\right](T O D O)=T O D O$
- $S\left[\begin{array}{l}1,2,3 \\ 2,3,1\end{array}\right](T O D O)=T O D O$

TODO
[Definition 0.61: Atom or Singleton or X
$X[U]: \begin{cases}\{U\} & \ldots|U|=1 \\ \varnothing & \ldots \text { otherwise }\end{cases}$
$X\left[i d_{U}\right]=i d_{x[U]}$
[Definition 0.62: Empty Set or One or 1
$1[\mathrm{U}]=\mathrm{TODO}$
[Definition 0.63: Set Species ()
TODO
[Definition 0.64:
two structures $f_{1} \in F[U]$ and $f_{2} \in F[V]$ are isomorphic iff there is a relabelling $\sigma: U \rightarrow V$ such that $F[\sigma]\left(f_{1}\right)=f_{2}$

Notation: $F[n]:=F[\{1, \ldots, n\}], \tilde{F}[n]$ is the set of isomorphism classes in $F[n]$ $\left(f_{1} \in F\left[U_{1}\right], f_{2} \in F\left[U_{2}\right]\right.$ are isomorphic if $\left.\exists \sigma: U_{1} \rightarrow U_{2}: F[\sigma]\left(f_{1}\right)=f(2).\right)$

> Example 0.56:
> $S[\{1, a, \oslash\}]=T O D O$
> $\tilde{S}[3]=T O D O$

Remark: $|\tilde{S}[n]|=$ number of integer partitions
$\tilde{\mathcal{L}}=\{T O D O\}$

Definition 0.65:
The exponential generating function of a species F is $F(x)=\sum_{n \geq 0}|F[n]| \cdot \frac{x^{n}}{n!}$

The ordinary generating function of a species F is $\tilde{F}(x)=\sum_{n \geq 0}|\tilde{F}[n]| \cdot x^{n}$

Operations on Species

F, G combinatorial species
Addition:
$(F+G)[U]:=F[U] \cup G[U]$
$(F+G)[\sigma: U \rightarrow V](s):=\begin{array}{ll}F[\sigma](s) & s \in F[U] \\ G[\sigma](s) & s \in G[U]\end{array}$
Example 0.57:
$F=G=X$
$(F+G)[\{\odot\}]=\{($ left,$\bigcirc),($ right,$\odot)\}$
Multiplication:
$(F \cdot G)[U]:=\bigcup_{V, W, V \cup W=U} F[V] \times G[W]$
$(F \cdot G)\left[\sigma: U \rightarrow U^{\prime}\right]\left(f_{v}, g_{w}\right):=\left(F\left[\left.\sigma\right|_{V}\right]\left(f_{V}\right), G\left[\left.\sigma\right|_{W}\right]\left(g_{W}\right)\right)$ where σ is restricted to V or W respectively.

Example 0.58:
\mathcal{L}... linear orders
$\mathcal{L}=1+X \cdot \mathcal{L}$ (say out loud: "A linear oder is either the empty order or a first element concatenated with a linear order.")
$\mathcal{L}[\{a, b\}]=1[\{a, b\}] \cup(X \cdot \mathcal{L})[\{a, b\}]$
$1[\{a, b\}]=\emptyset \operatorname{TODO}\{$ replace varnothing by emptyset in whole document $\}$ $(X \cdot \mathcal{L})[\{a, b\}]=X[\emptyset] \times \mathcal{L}[\{a, b\}] \cup X[\{a\}] \times \mathcal{L}[\{b\}] \cup X[\{b\}] \times \mathcal{L}[\{a\}] \cup X[\{a, b\}] \times$ $\mathcal{L}[\emptyset]$
$=\emptyset \cup\{(a, b)\} \cup(\{b, a\}) \cup \emptyset$
$=\{(a, b),(b, a)\}$

Example 0.59:
 binary (rooted ordered) trees

TODO
$\mathcal{B}=1+X \cdot \mathcal{B} \cdot \mathcal{B}$
e.g. $\mathcal{B}[\{a\}]=1[\{a\}] \cup(X \cdot \mathcal{B} \cdot \mathcal{B})[\{a\}] \cup \ldots$
$=\emptyset \cup(a, \emptyset, \emptyset)$

Theorem 0.41:
F, G comb. species
$(F+G)(x)=F(x)+G(x)$
$(F \cdot G)(x)=F(x) \cdot G(x)$

```
\((\widetilde{F+G})(x)=\tilde{F}(x)+\tilde{G}(x)\)
\((\widetilde{F \cdot G})(x)=\tilde{F}(x) \cdot \tilde{G}(x)\)
```

(This theorem is the reason why combinatorial species work. In the original article the author said that species are a liftig of generating functions.)

> Example 0.60:
> $\mathcal{B}=1+X \cdot \mathcal{B} \cdot \mathcal{B} \Rightarrow \mathcal{B}(x)=1+X \cdot \mathcal{B}^{2}(x)$ and $\tilde{\mathcal{B}}(x)=1+\tilde{\mathcal{B}}^{2}(x)$
> $\mathcal{L}=1+X \cdot \mathcal{L} \Rightarrow \mathcal{L}(x)=\tilde{\mathcal{L}}(x)=\frac{1}{1-x}$

Substitution:
$G[\emptyset]=\emptyset$
$(F \circ G)[U]:=\underset{P=\left\{B_{1}, \ldots, B_{k}\right\}, \text { partition }}{\bigcup} F[P] \times \prod_{i=1}^{k} G\left[B_{i}\right]$

Theorem 0.42:
$(F \circ G)(x)=F(G(x))$
WARNING: $(\widetilde{F \circ G})(x) \neq \tilde{F}(\tilde{G}(x))$!

Example 0.61:

rooted (but unordered) trees:
TODO\{illustration\}
$\mathcal{A}=X \cdot(\mathcal{E} \circ \mathcal{A})$
$\mathcal{A}(x)=x \cdot \exp (\mathcal{A}(x))$
$A[\{1,2,3\}]=X[\{1\}] \times(\mathcal{E} \circ \mathcal{A})[\{2,3\}] \cup T O D O$

Example 0.62:

ordered rooted trees (order of successors matters):
TODO\{illustration\}
$\mathcal{A}_{\mathcal{L}}=X \cdot\left(\mathcal{L} \circ \mathcal{A}_{\mathcal{L}}\right)$
$\mathcal{A}_{\mathcal{L}}(x)=x \cdot \frac{1}{1-\mathcal{A}_{\mathcal{L}}(x)}$

Example 0.63:
plane rooted trees:
TODO\{illustration\}
$F=X+X \cdot\left(\mathcal{C} \circ \mathcal{A}_{\mathcal{L}}\right)$ with \mathcal{C} being the cycle structure

Example 0.64:
Permutation:
$S=\mathcal{E} \circ \mathcal{C}$
$\Rightarrow T O D O$
A permutation is just a set of cycles (of labels).
[Example 0.65:
Involutions:
$I=\mathcal{E} \circ\left(X+\mathcal{E}_{2}\right)$
$I(x)=\exp \left(x+\frac{x^{2}}{2}\right)$

