Question 1)

a)

Answer: Yes you can.

Reasoning: In Order for there to be Ambiguity between the 2 possible messages the following situation would have to occur:
$\operatorname{Dec}_{k_{1}}(c)=A D B E$, and $\operatorname{Dec}_{k_{2}}(c)=A X B Y$,
with c being the encrypted message and k_{1} and k_{2} being 2 different keys out of the 26 possibilities $(0-25)$.

This cannot happen because both possible messages have an "A" and a "B" at the same spot, which means that when shifting them by 2 different possible values k_{1} and k_{2} the result would need to be the same i.e.:
$E n c_{k_{1}}(A)=E n c_{k_{2}}(A)$ and Enc $k_{k_{1}}(B)=E n c_{k_{2}}(B)$
This is impossible, therefore when trying all 26 possible keys you will end up with either ADBE or AXBY but not both.
b)

Answer: No you can not.

Reasoning: Take the possible keys $k_{1}=A V$ and $k_{2}=A B$ for example.
This leads to the following situation:
$E n c_{k_{1}}(A D B E)=A Y B Z$, and $E n c_{k_{2}}(A X B Y)=A Y B Z$.
Therefore it is possible to end up with both possible messages when trying all possible keys.

Bernhard Katary

Question 2

(2 Points). Assume that a server uses a poly-alphabetic substitution cipher (Lecture 1, slide 22-1) with a key length of $\ell=2$ and the alphabet $\Sigma=\{A, \ldots, Z\}$. You have the possibility to get the encryption of one message of arbitrary length of your choice.

- Which message do you pick in order to fully recover the key?

I choose the message $A A B B C C . . . X X Y Y$. The resulting ciphertext will have its first two letters be $\pi_{1}(A) \pi_{2}(A)$, the next two be $\pi_{1}(B) \pi_{2}(B)$ etc, which allows us to recover all values of π_{1} and π_{2}. Note that the value of $\pi_{i}(Z)$ follows from the other values of π_{i}, since π_{i} must be bijective.

- How long does your message have to be at least?

At least $50(25 \cdot 2)$ letters. If there are any less, at least two values of one of the π_{i} do not appear in the ciphertext, and we have no way of knowing what π_{i} maps them to (i.e. the ciphertext is the same if they are, say, swapped or left the same).

Bernhard Katary

Question 3

(2 Points). Provide a specification of the Gen, Enc, and Dec algorithms for the Scytale cipher (Lecture 1, slide 16) over the alphabet $\Sigma=\{A, \ldots, Z\}$ and the message space $M=\Sigma^{n}$, i.e., messages of fixed length n. How you specify the three algorithms is up to you (e.g. textual description, pseudocode, . . .), as long as the specification is complete.

Gen: In a "physical" implementation, this would involve picking a stick with a specific diameter. In a computer implementation, we would pick an arbitrary number between 1 and some maximum key length (which should be longer than any message).

Enc: In a "physical" implementation, we would wrap the cloth around the stick and write our message laterally. In a computer implementation, we would first demand that the message length n is divisible by k (possibly padding with zeros if necessary). Then, we intersperse the letters of the message in the following way:

$$
\operatorname{Enc}_{k}\left(m_{1}, \ldots, m_{n}\right)=\left(m_{1}, m_{\frac{n}{k}+1}, m_{2 \frac{n}{k}+1}, \ldots, m_{n-\frac{n}{k}+1} \cdot m_{2}, m_{\frac{n}{k}+2}, \ldots\right)
$$

Dec: "Physically", we would just wrap the cloth around a stick of the same diameter and read the message. In a computer, we undo the interspersing in the following way:

$$
\operatorname{Dec}_{k}\left(c_{1}, \ldots, c_{n}\right)=\left(c_{1}, c_{k+1}, c_{2 k+1}, \ldots, c_{n-k+1}, c_{2}, c_{k+2}, \ldots\right)
$$

Question 3 (2 Points). Provide a specification of the Gen, Enc, and Dec algorithms for the Scytale cipher (Lecture 1, slide 16) over the alphabet $\Sigma=\{\mathrm{A}, \ldots, \mathrm{Z}\}$ and the message space $\mathcal{M}=\Sigma^{n}$, i.e., messages of fixed length n. How you specify the three algorithms is up to you (e.g. textual description, pseudocode, ...), as long as the specification is complete.

