Makroökonomische Vertiefung ws22

N.F. Meizer

Inhaltsverzeichnis

1	Introduction	2
2	One-Period Real Macroeconomic Model	3
3	T-Period Real Macroeconomic Model	5
4	Ramsey-Cass-Koopmans Model	7

1 Introduction

Macroeconomists...

- empirically **describe** the aggregate economy.
- theoretically **explain** the determination of production, prices, employment, exchange rates, etc.
- quantitatively evaluate economic policies.

1.1 Trend versus Cycle

Macroeconomic time series are often decomposed into two components:

- trend component: long-term growth
- cyclical component: fluctuations around trend (business cycles)

1.2 HP-Filter

$$y_t = g_t + c_t$$

$$\min_{(g_t)_{t=1}^T} \sum_{t=1}^T (y_t - g_t)^2 + \lambda \cdot \sum_{t=2}^{T-1} ((g_{t+1} - g_t) - (g_t - g_{t-1}))^2$$

$$\text{change in growth trend}$$

The parameter λ smoothes the trend:

- $\lambda = 0 \Rightarrow g_t = y_t$ (no cyclical fluctuations)
- $\lambda \to \infty \Rightarrow g_{t+1} g_t = g_t g_{t-1}$ (linear trend)

2 One-Period Real Macroeconomic Model

2.1 Assumptions

representative rousehold

• Life-time utility function u(C, l) describes the preferences over consumption C and leisure l:

$$u_C(\cdot) > 0$$
 $u_{CC}(\cdot) < 0$
 $u_l(\cdot) > 0$ $u_{ll}(\cdot) < 0$

- Time constraint: $l + N^S = h$, where N^S is labour supply and h is the available time
- Flow budget constraint: $C \leq wN^S + rK^S$, where N^S and K^S are labour and capital supplied by the household. The household takes the wage w and the interest rate r as given.

representative firm

• The final good Y at given total factor productivity A is produced with $Y = AF(K^d, N^d)$, where $F(\cdot)$ is a Neoclassical production function combining capital K^d and N^d .

2.2 Representative Household: utility maximation

$$\max_{C,l,K^S} u(C,l)$$

$$s.t. \quad C \le w(h-l) + rK^S$$

$$C \ge 0, \ l \in [0,h], \ K^S \in [0,K_0]$$

$$\Rightarrow \mathcal{L}(\lambda,C,l,K^S) = u(C,l) + \lambda \cdot \left(w(h-l) + rK^S - C\right)$$

The relevant FOCs for an optimum are:

I.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial C} \stackrel{!}{=} 0 \quad \Rightarrow \quad u_C(\cdot) = \lambda$$

II.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial l} \stackrel{!}{=} 0 \implies u_l(\cdot) = \lambda w$$

III.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda} \stackrel{!}{=} 0 \quad \Rightarrow \quad C = w(h-l) + rK^S$$

Solutions can be characterised by:

$$MRS_{l,C} \equiv \frac{u_l(\cdot)}{u_C(\cdot)} = w$$

$$C = w(h-l) + rK^S$$

For given (w, r) and endowment K_0 , 2 equations can be solved for 2 unknowns, (C, l).

2.3 Representative Firm: profit maximisation

$$\max_{N^d,K^d} \Pi^F \Big(N^d,K^d \Big) = AF \Big(N^d,K^d \Big) - wN^d - rK^d$$

The FOCs for an optimum are:

I.
$$\frac{\partial \Pi^F(\cdot)}{\partial K^d} \stackrel{!}{=} 0 \quad \Rightarrow \quad AF_K(\cdot) = r$$

II.
$$\frac{\partial \Pi^F(\cdot)}{\partial N^d} \stackrel{!}{=} 0 \quad \Rightarrow \quad AF_N(\cdot) = w$$

2.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households maximise utility and firms maximise profit. ⇒ The decision of households and firms are consistent with each other, therefore all markets are clear:
 - Good market clearing: C = Y
 - Labour market clearing: $N^d = N^S$
 - Capital market clearing: $K^d = K^S$

The system can be reduced to:

$$\frac{u_l(C,l)}{u_C(C,l)} = AF_N(K,h-l)$$

$$C = AF_N(K,h-l)(h-l) + AF_K(K,h-l)K$$

$$C = AF(K,h-l)$$

3 T-Period Real Macroeconomic Model

3.1 Assumptions

representative household

• Life-time utility function $U\left(\left(C_t, l_t\right)_{t=0}^T\right)$ describes the preferences over consumption C_t and leisure l_t and is time-separable:

$$U(\cdot) = \sum_{t=0}^{T} \beta^{t} u(C_{t}, l_{t})$$

- $\beta \in (0,1)$ is the houshold's discount factor.
- Time constraint: $l_t + N_t = h$, $\forall t$
- Household's initial capital endowment is $K_0 > 0$.
- Net investment in the capital stock via savings, $S_t = I_t$: $K_{t+1} - K_t = I_t - \delta K_t$, $\forall t$, where $\delta \in [0, 1]$ is the rate of depreciation and I_t is gross investment.
- Flow budget constraint: $C_t + I_t \leq w_t N_t + r_t K_t$, $\forall t$

representative firm

• The final good Y at given total factor productivity A is produced with $Y = AF(K^d, N^d)$, where $F(\cdot)$ is a Neoclassical production function combining capital K^d and N^d .

3.2 Representative Household: utility maximisation

$$\max_{\substack{(C_t, l_t, I_t)_{t=0}^T \\ s.t.}} \sum_{t=0}^T \beta^t u(C_t, l_t)$$

$$S.t. \qquad C_t + I_t \le w_t (h - l_t) + r_t K_t$$

$$K_{t+1} = (1 - \delta) K_t + I_t$$

$$C_t \ge 0, \ l_t \in [0, h], \ K_{t+1} \ge 0$$

$$\Rightarrow \mathcal{L} = \sum_{t=1}^{T} \beta^t u(C_t, l_t) + \lambda_t \left(w_t (h - l_t) + (1 - \delta + r_t) K_t - C_t - K_{t+1} \right)$$

The relevant FCOs are:

I.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial C_t} \stackrel{!}{=} 0 \implies \beta^t u_C(C_t, l_t) = \lambda_t, \quad \forall t$$

II.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial l_t} \stackrel{!}{=} 0 \quad \Rightarrow \quad \beta^t u_l(C_t, l_t) = \lambda_t w, \quad \forall t$$

III.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial K_{t+1}} \stackrel{!}{=} 0 \implies (1 - \delta + r_{t+1})\lambda_{t+1} = \lambda_t, \quad \forall t \in [0, T - 1]$$

IV.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda_t} \stackrel{!}{=} 0 \implies K_{t+1} = w_t(h - l_t) - C_t + (1 - \delta + r_t)K_t, \quad \forall t$$

Solutions can be characterised by:

$$MRS_{l_{t},C_{t}} \equiv \frac{u_{l}(C_{t}, l_{t})}{u_{C}(C_{t}, l_{t})} = w_{t} \qquad \forall t$$

$$MRS_{C_{t},C_{t+1}} \equiv \frac{u_{C}(C_{t}, l_{t})}{\beta u_{C}(C_{t+1}, l_{t+1})} = 1 - \delta + r_{t+1} \qquad \forall t \in [0, T - 1]$$

$$K_{t+1} = w_{t}(h - l_{t}) + (1 - \delta + r_{t})K_{t} - C_{t} \qquad \forall t$$

3.3 Representative Firm: profit maximisation

$$\max_{N_t, K_t} \Pi^F(N_t, K_t) = AF(N_t, K_t) - w_t N_t - r_t K_t$$

The FOCs for an optimum are:

I.
$$\frac{\partial \Pi^F(\cdot)}{\partial K_t} \stackrel{!}{=} 0 \quad \Rightarrow \quad AF_K(\cdot) = r_t$$

II.
$$\frac{\partial \Pi^F(\cdot)}{\partial N_t} \stackrel{!}{=} 0 \quad \Rightarrow \quad AF_N(\cdot) = w_t$$

3.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households **maximise utility** and firms **maximise profit**. ⇒ The decision of households and firms are consistent with each other, therefore all markets are clear.

The system can be reduced to a system of $\mathbf{3T} + \mathbf{2}$ nonlinear equations and $\mathbf{3T} + \mathbf{2}$ unknowns (endogenous variables):

$$\frac{u_l(C_t, l_t)}{u_C(C_t, l_t)} = A_t F_N(K_t, h - l_t)$$

$$\frac{u_C(C_t, l_t)}{\beta u_C(C_{t+1}, l_{t+1})} = 1 - \delta + A F_K(K_{t+1}, h - l_{t+1})$$

$$K_{t+1} = A F(K_t, h - l_t) - C_t + (1 - \delta) K_t$$

4 Ramsey-Cass-Koopmans Model

4.1 Assumptions

representative household

- The representative household grows at rate $n \ge 0$: $N_{t+1} = (1+n)N_t$, $\forall t$, $N_0 = 1$
- Life-time utility function $U((c_t)_{t=0}^{\infty})$ describes preferences over consumption c_t :

$$U(\cdot) = N_0 \sum_{t=0}^{\infty} \beta^t (1+n)^t u(c_t) \qquad c_t \equiv \frac{C_t}{N_t}$$

- $T \to \infty$ can be justified since the representative household is a family, where altruistic parents care about their offspring (**dynasty**).
- The instantenious utility function is isoelastic:

$$u(c_t) = \begin{cases} \frac{c_t^{1-\sigma} - 1}{1-\sigma} & \sigma \neq 1\\ \ln(c_t) & \text{otherwise} \end{cases}$$

- σ measures relative risk aversion: $\sigma(c) \equiv -\frac{u_{cc} \times c}{u_{c}(c)}$
- Household's initial capital endowment is $K_0 > 0$.
- Net investment in the capital stock via savings, $S_t = I_t$: $K_{t+1} K_t = I_t \delta K_t$, $\forall t$
- Flow budget constraint: $C_t + I_t \leq w_t N_t + r_t K_t$, $\forall t$

representative firm

• A_t is interpreted as an exogenous labour-augmenting technology, $g \ge 0$ being the rate technological progress: $A_{t+1} = (1+g)A_t$, $\forall t$, $A_0 = 1$

$$y_t = F(k_t, A_t) y_t \equiv Y_t/N_t$$

$$\tilde{y}_t = F(\tilde{k}_t, 1) = f(\tilde{k}_t) \tilde{y}_t \equiv Y_t/(A_tN_t)$$

$$\Rightarrow F_K(K_t, A_tN_t) = F_k(k_t, A_t) = f_{\tilde{k}}(\tilde{k}_t)$$

4.2 Representative Houshold: utility maximisation

$$\max_{\substack{(c_t, i_t)_{t=0}^{\infty} \\ s.t.}} N_0 \sum_{t=0}^{\infty} \beta^t (1+n)^t u(c_t)$$

$$c_t + i_t \le w_t + r_t k_t$$

$$(1+n)k_{t+1} = (1-\delta)k_t + i_t$$

$$\Rightarrow \mathcal{L} = \sum_{t=0}^{\infty} \beta^{t} (1+n)^{t} u(c_{t}) + \lambda_{t} (w_{t} + (1-\delta + r_{t})k_{t} - c_{t} - (1+n)k_{t+1})$$

The relevant FCOs are:

I.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial c_t} \stackrel{!}{=} 0 \quad \Rightarrow \quad \beta^t (1+n)^t u_C(C_t, l_t) = \lambda_t, \quad \forall t$$

II.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial k_{t+1}} \stackrel{!}{=} 0 \implies (1 - \delta + r_{t+1})\lambda_{t+1} = (1+n)\lambda_t, \quad \forall t \in [0, T-1]$$

III.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda_t} \stackrel{!}{=} 0 \implies (1+n)k_{t+1} = w_t - c_t + (1-\delta + r_t)k_t, \quad \forall t$$

Optimal behaviour requires the transversality condition to hold:

$$\lim_{T \to \infty} \beta^T (1+n)^{T+1} \lambda_T k_{T+1} = 0$$

Solutions can be characterised by:

$$MRS_{c_t,c_{t+1}} \equiv \frac{u_c(c_t)}{\beta u_c(c_{t+1})} = 1 - \delta + r_{t+1}$$
$$k_{t+1}(1+n) = w_t + (1 - \delta + r_t)k_t - c_t$$

4.3 Representative Firm: profit maximisation

$$\max_{N_t, K_t} \Pi^F(N_t, K_t) = F(K_t, A_t N_t) - w_t N_t - r_t K_t$$

The FOCs for an optimum are:

I.
$$\frac{\partial \Pi^F(\cdot)}{\partial K_t} \stackrel{!}{=} 0 \quad \Rightarrow \quad F_K(\cdot) = r_t$$

II.
$$\frac{\partial \Pi^F(\cdot)}{\partial N_t} \stackrel{!}{=} 0 \quad \Rightarrow \quad F_N(\cdot) = w_t$$

4.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households maximise utility and firms maximise profit. ⇒ The decision of households and firms are consistent with each other, therefore all markets are clear.

The system can be reduced to:

$$\frac{u_c(c_t)}{\beta u_c(c_{t+1})} = 1 - \delta + F_k(k_{t+1}, A_{t+1})$$
$$k_{t+1}(1+n) = F(k_t, A_t) + (1 - \delta + r_t)k_t - c_t$$

It is helpful, to define the composite parameter $(1+z) \equiv (1+g)(1+n)$. With the isolelastic utility function and by normalising by A_t :

$$\frac{\tilde{c}_{t+1}}{\tilde{c}_t} = \frac{\beta^{1/\sigma} \left((1-\delta) + f_{\tilde{k}} \left(\tilde{k}_{t+1} \right) \right)^{1/\sigma}}{1+g}$$
$$\tilde{k}_{t+1} - \tilde{k}_t = \frac{f\left(\tilde{k}_t \right) - \tilde{c}_t}{1+z} - \frac{(z+\delta)\tilde{k}_t}{1+z}$$

4.5 Steady State

Steady-state quilibrium with population growth and technological progress is an equilibrium path with $\tilde{k}_t = \tilde{k}^{ss}$, therefore $\Delta \tilde{k}_t = 0$, $\Delta \tilde{c}_t = 0$ and $\Delta \tilde{y}_t = 0$.

- A steady state equilibrium is a fixed point of a dynamic system.
- No growth in per effective labour variables implies sustained growth in per capita and aggregate variable if g > 0.

 $\Delta \tilde{c}_t = 0$ determines \tilde{k}^{ss} :

$$f_{\tilde{k}}\left(\tilde{k}^{ss}\right) - \delta = \beta^{-1}(1+g)^{\sigma} - 1$$

 $\Delta \tilde{k}_t = 0$ and \tilde{k}^{ss} determine \tilde{c}^{ss} :

$$\tilde{c}_t = f(\tilde{k}^{ss}) - (z + \delta)\tilde{k}^{ss}$$

4.6 Log-linearised Equilibrium Conditions

4.7 Equilibrium Dynamics