Makroökonomische Vertiefung WS22

N.F. Meizer

Inhaltsverzeichnis

1 Introduction 2
2 One-Period Real Macroeconomic Model 3
3 T-Period Real Macroeconomic Model 5
4 Ramsey-Cass-Koopmans Model 7

1 Introduction

Macroeconomists...

- empirically describe the aggregate economy.
- theoretically explain the determination of production, prices, employment, exchange rates, etc.
- quantitatively evaluate economic policies.

1.1 Trend versus Cycle

Macroeconomic time series are often decomposed into two components:

- trend component: long-term growth
- cyclical component: fluctuations around trend (business cycles)

1.2 HP-Filter

$$
\begin{gathered}
y_{t}=g_{t}+c_{t} \\
\min _{\left(g_{t}\right)_{t=1}^{T}} \underbrace{\sum_{t=1}^{T}\left(y_{t}-g_{t}\right)^{2}}_{\text {cyclical fluctuation }}+\lambda \cdot \underbrace{\sum_{t=2}^{T-1}\left(\left(g_{t+1}-g_{t}\right)-\left(g_{t}-g_{t-1}\right)\right)^{2}}_{\text {change in growth trend }}
\end{gathered}
$$

The parameter λ smoothes the trend:

- $\lambda=0 \Rightarrow g_{t}=y_{t}$ (no cyclical fluctuations)
- $\lambda \rightarrow \infty \Rightarrow g_{t+1}-g_{t}=g_{t}-g_{t-1}$ (linear trend)

2 One-Period Real Macroeconomic Model

2.1 Assumptions

representative rousehold

- Life-time utility function $u(C, l)$ describes the preferences over consumption C and leisure l :

$$
\begin{aligned}
u_{C}(\cdot) & >0 & u_{C C}(\cdot) & <0 \\
u_{l}(\cdot) & >0 & u_{l l}(\cdot) & <0
\end{aligned}
$$

- Time constraint: $l+N^{S}=h$, where N^{S} is labour supply and h is the available time.
- Flow budget constraint: $C \leq w N^{S}+r K^{S}$, where N^{S} and K^{S} are labour and capital supplied by the household. The household takes the wage w and the interest rate r as given.

representative firm

- The final good Y at given total factor productivity A is produced with $Y=A F\left(K^{d}, N^{d}\right)$, where $F(\cdot)$ is a Neoclassical production function combining capital K^{d} and N^{d}.

2.2 Representative Household: utility maximation

$$
\begin{array}{rl}
\max _{C, l, K^{S}} & u(C, l) \\
\text { s.t. } \quad & C \leq w(h-l)+r K^{S} \\
C & \geq 0, l \in[0, h], K^{S} \in\left[0, K_{0}\right] \\
\Rightarrow \quad \mathcal{L}\left(\lambda, C, l, K^{S}\right) & =u(C, l)+\lambda \cdot\left(w(h-l)+r K^{S}-C\right)
\end{array}
$$

The relevant FOCs for an optimum are:
I. $\frac{\partial \mathcal{L}(\cdot)}{\partial C} \stackrel{!}{=} 0 \Rightarrow u_{C}(\cdot)=\lambda$
II. $\frac{\partial \mathcal{L}(\cdot)}{\partial l} \stackrel{!}{=} 0 \quad \Rightarrow \quad u_{l}(\cdot)=\lambda w$
III. $\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda} \stackrel{!}{=} 0 \Rightarrow C=w(h-l)+r K^{S}$

Solutions can be characterised by:

$$
\begin{aligned}
\mathrm{MRS}_{l, C} & \equiv \frac{u_{l}(\cdot)}{u_{C}(\cdot)}=w \\
C & =w(h-l)+r K^{S}
\end{aligned}
$$

For given (w, r) and endowment $K_{0}, \mathbf{2}$ equations can be solved for $\mathbf{2}$ unknowns, (C, l).

2.3 Representative Firm: profit maximisation

$$
\max _{N^{d}, K^{d}} \Pi^{F}\left(N^{d}, K^{d}\right)=A F\left(N^{d}, K^{d}\right)-w N^{d}-r K^{d}
$$

The FOCs for an optimum are:
I. $\frac{\partial \Pi^{F}(\cdot)}{\partial K^{d}} \stackrel{!}{=} 0 \quad \Rightarrow \quad A F_{K}(\cdot)=r$
II. $\frac{\partial \Pi^{F}(\cdot)}{\partial N^{d}} \stackrel{!}{=} 0 \Rightarrow A F_{N}(\cdot)=w$

2.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households maximise utility and firms maximise profit. \Rightarrow The decision of households and firms are consistent with each other, therefore all markets are clear:
- Good market clearing: $C=Y$
- Labour market clearing: $N^{d}=N^{S}$
- Capital market clearing: $K^{d}=K^{S}$

The system can be reduced to:

$$
\begin{aligned}
\frac{u_{l}(C, l)}{u_{C}(C, l)} & =A F_{N}(K, h-l) \\
C & =A F_{N}(K, h-l)(h-l)+A F_{K}(K, h-l) K \\
C & =A F(K, h-l)
\end{aligned}
$$

3 T-Period Real Macroeconomic Model

3.1 Assumptions

representative household

- Life-time utility function $U\left(\left(C_{t}, l_{t}\right)_{t=0}^{T}\right)$ describes the preferences over consumption C_{t} and leisure l_{t} and is time-separable:

$$
U(\cdot)=\sum_{t=0}^{T} \beta^{t} u\left(C_{t}, l_{t}\right)
$$

- $\beta \in(0,1)$ is the houshold's discount factor.
- Time constraint: $l_{t}+N_{t}=h, \quad \forall t$
- Household's initial capital endowment is $K_{0}>0$.
- Net investment in the capital stock via savings, $S_{t}=I_{t}$:
$K_{t+1}-K_{t}=I_{t}-\delta K_{t}, \quad \forall t$, where $\delta \in[0,1]$ is the rate of depreciation and I_{t} is gross investment.
- Flow budget constraint: $C_{t}+I_{t} \leq w_{t} N_{t}+r_{t} K_{t}, \quad \forall t$

representative firm

- The final good Y at given total factor productivity A is produced with $Y=A F\left(K^{d}, N^{d}\right)$, where $F(\cdot)$ is a Neoclassical production function combining capital K^{d} and N^{d}.

3.2 Representative Household: utility maximisation

$$
\begin{aligned}
& \max _{\left(C_{t}, l_{t}, I_{t}\right)_{t=0}^{T}} \sum_{t=0}^{T} \beta^{t} u\left(C_{t}, l_{t}\right) \\
& \text { s.t. } C_{t}+I_{t} \leq w_{t}\left(h-l_{t}\right)+r_{t} K_{t} \\
& K_{t+1}=(1-\delta) K_{t}+I_{t} \\
& C_{t} \geq 0, l_{t} \in[0, h], K_{t+1} \geq 0 \\
& \Rightarrow \mathcal{L}=\sum_{t+1}^{T} \beta^{t} u\left(C_{t}, l_{t}\right)+\lambda_{t}\left(w_{t}\left(h-l_{t}\right)+\left(1-\delta+r_{t}\right) K_{t}-C_{t}-K_{t+1}\right)
\end{aligned}
$$

The relevant FCOs are:
I. $\frac{\partial \mathcal{L}(\cdot)}{\partial C_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad \beta^{t} u_{C}\left(C_{t}, l_{t}\right)=\lambda_{t}, \quad \forall t$
II. $\frac{\partial \mathcal{L}(\cdot)}{\partial l_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad \beta^{t} u_{l}\left(C_{t}, l_{t}\right)=\lambda_{t} w, \quad \forall t$
III. $\frac{\partial \mathcal{L}(\cdot)}{\partial K_{t+1}} \stackrel{!}{=} 0 \quad \Rightarrow \quad\left(1-\delta+r_{t+1}\right) \lambda_{t+1}=\lambda_{t}, \quad \forall t \in[0, T-1]$
IV. $\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad K_{t+1}=w_{t}\left(h-l_{t}\right)-C_{t}+\left(1-\delta+r_{t}\right) K_{t}, \quad \forall t$

Solutions can be characterised by:

$$
\begin{aligned}
\operatorname{MRS}_{l t}, C_{t} & \equiv \frac{u_{l}\left(C_{t}, l_{t}\right)}{u_{C}\left(C_{t}, l_{t}\right)}=w_{t} & & \forall t \\
\operatorname{MRS}_{C_{t}, C_{t+1}} & \equiv \frac{u_{C}\left(C_{t}, l_{t}\right)}{\beta u_{C}\left(C_{t+1}, l_{t+1}\right)}=1-\delta+r_{t+1} & & \forall t \in[0, T-1] \\
K_{t+1} & =w_{t}\left(h-l_{t}\right)+\left(1-\delta+r_{t}\right) K_{t}-C_{t} & & \forall t
\end{aligned}
$$

3.3 Representative Firm: profit maximisation

$$
\max _{N_{t}, K_{t}} \Pi^{F}\left(N_{t}, K_{t}\right)=A F\left(N_{t}, K_{t}\right)-w_{t} N_{t}-r_{t} K_{t}
$$

The FOCs for an optimum are:
I. $\frac{\partial \Pi^{F}(\cdot)}{\partial K_{t}} \stackrel{!}{=} 0 \Rightarrow A F_{K}(\cdot)=r_{t}$
II. $\frac{\partial \Pi^{F}(\cdot)}{\partial N_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad A F_{N}(\cdot)=w_{t}$

3.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households maximise utility and firms maximise profit. \Rightarrow The decision of households and firms are consistent with each other, therefore all markets are clear.

The system can be reduced to a system of $\mathbf{3 T}+\mathbf{2}$ nonlinear equations and $\mathbf{3 T}+\mathbf{2}$ unknowns (endogenous variables):

$$
\begin{aligned}
\frac{u_{l}\left(C_{t}, l_{t}\right)}{u_{C}\left(C_{t}, l_{t}\right)} & =A_{t} F_{N}\left(K_{t}, h-l_{t}\right) \\
\frac{u_{C}\left(C_{t}, l_{t}\right)}{\beta u_{C}\left(C_{t+1}, l_{t+1}\right)} & =1-\delta+A F_{K}\left(K_{t+1}, h-l_{t+1}\right) \\
K_{t+1} & =A F\left(K_{t}, h-l_{t}\right)-C_{t}+(1-\delta) K_{t}
\end{aligned}
$$

4 Ramsey-Cass-Koopmans Model

4.1 Assumptions

representative household

- The representative household grows at rate $n \geq 0$:
$N_{t+1}=(1+n) N_{t}, \quad \forall t, \quad N_{0}=1$
- Life-time utility function $U\left(\left(c_{t}\right)_{t=0}^{\infty}\right)$ describes preferences over consumption c_{t} :

$$
U(\cdot)=N_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t} u\left(c_{t}\right) \quad c_{t} \equiv \frac{C_{t}}{N_{t}}
$$

- $T \rightarrow \infty$ can be justified since the representative household is a family, where altruistic parents care about their offspring (dynasty).
- The instantenious utility function is isoelastic:

$$
u\left(c_{t}\right)= \begin{cases}\frac{c_{t}^{1-\sigma}-1}{1-\sigma} & \sigma \neq 1 \\ \ln \left(c_{t}\right) & \text { otherwise }\end{cases}
$$

- σ measures relative risk aversion: $\sigma(c) \equiv-\frac{u_{c c} \times c}{u_{c}(c)}$
- Household's initial capital endowment is $K_{0}>0$.
- Net investment in the capital stock via savings, $S_{t}=I_{t}$:
$K_{t+1}-K_{t}=I_{t}-\delta K_{t}, \quad \forall t$
- Flow budget constraint: $C_{t}+I_{t} \leq w_{t} N_{t}+r_{t} K_{t}, \quad \forall t$

representative firm

- A_{t} is interpreted as an exogenous labour-augmenting technology, $g \geq 0$ being the rate technological progress: $A_{t+1}=(1+g) A_{t}, \quad \forall t, \quad A_{0}=1$

$$
\begin{array}{ll}
y_{t}=F\left(k_{t}, A_{t}\right) & y_{t} \equiv Y_{t} / N_{t} \\
\tilde{y}_{t}=F\left(\tilde{k}_{t}, 1\right)=f\left(\tilde{k}_{t}\right) & \tilde{y}_{t} \equiv Y_{t} /\left(A_{t} N_{t}\right) \\
& \Rightarrow F_{K}\left(K_{t}, A_{t} N_{t}\right)=F_{k}\left(k_{t}, A_{t}\right)=f_{\tilde{k}}\left(\tilde{k}_{t}\right)
\end{array}
$$

4.2 Representative Houshold: utility maximisation

$$
\begin{aligned}
\max _{\left(c_{t}, i_{t}\right)_{t=0}^{\infty}} & N_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t} u\left(c_{t}\right) \\
\text { s.t. } & c_{t}+i_{t}
\end{aligned} \leq w_{t}+r_{t} k_{t} .
$$

The relevant FCOs are:
I. $\frac{\partial \mathcal{L}(\cdot)}{\partial c_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad \beta^{t}(1+n)^{t} u_{C}\left(C_{t}, l_{t}\right)=\lambda_{t}, \quad \forall t$
II. $\frac{\partial \mathcal{L}(\cdot)}{\partial k_{t+1}} \stackrel{!}{=} 0 \quad \Rightarrow \quad\left(1-\delta+r_{t+1}\right) \lambda_{t+1}=(1+n) \lambda_{t}, \quad \forall t \in[0, T-1]$
III. $\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad(1+n) k_{t+1}=w_{t}-c_{t}+\left(1-\delta+r_{t}\right) k_{t}, \quad \forall t$

Optimal behaviour requires the transversality condition to hold:

$$
\lim _{T \rightarrow \infty} \beta^{T}(1+n)^{T+1} \lambda_{T} k_{T+1}=0
$$

Solutions can be characterised by:

$$
\begin{aligned}
\operatorname{MRS}_{c_{t}, c_{t+1}} & \equiv \frac{u_{c}\left(c_{t}\right)}{\beta u_{c}\left(c_{t+1}\right)}=1-\delta+r_{t+1} \\
k_{t+1}(1+n) & =w_{t}+\left(1-\delta+r_{t}\right) k_{t}-c_{t}
\end{aligned}
$$

4.3 Representative Firm: profit maximisation

$$
\max _{N_{t}, K_{t}} \Pi^{F}\left(N_{t}, K_{t}\right)=F\left(K_{t}, A_{t} N_{t}\right)-w_{t} N_{t}-r_{t} K_{t}
$$

The FOCs for an optimum are:
I. $\frac{\partial \Pi^{F}(\cdot)}{\partial K_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad F_{K}(\cdot)=r_{t}$
II. $\frac{\partial \Pi^{F}(\cdot)}{\partial N_{t}} \stackrel{!}{=} 0 \Rightarrow F_{N}(\cdot)=w_{t}$

4.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households maximise utility and firms maximise profit. \Rightarrow The decision of households and firms are consistent with each other, therefore all markets are clear.

The system can be reduced to:

$$
\begin{aligned}
\frac{u_{c}\left(c_{t}\right)}{\beta u_{c}\left(c_{t+1}\right)} & =1-\delta+F_{k}\left(k_{t+1}, A_{t+1}\right) \\
k_{t+1}(1+n) & =F\left(k_{t}, A_{t}\right)+\left(1-\delta+r_{t}\right) k_{t}-c_{t}
\end{aligned}
$$

It is helpful, to define the composite parameter $(1+z) \equiv(1+g)(1+n)$. With the isolelastic utility function and by normalising by A_{t} :

$$
\begin{aligned}
\frac{\tilde{c}_{t+1}}{\tilde{c}_{t}} & =\frac{\beta^{1 / \sigma}\left((1-\delta)+f_{\tilde{k}}\left(\tilde{k}_{t+1}\right)\right)^{1 / \sigma}}{1+g} \\
\tilde{k}_{t+1}-\tilde{k}_{t} & =\frac{f\left(\tilde{k}_{t}\right)-\tilde{c}_{t}}{1+z}-\frac{(z+\delta) \tilde{k}_{t}}{1+z}
\end{aligned}
$$

4.5 Steady State

Steady-state quilibrium with population growth and technological progress is an equilibrium path with $\tilde{k}_{t}=\tilde{k}^{s s}$, therefore $\Delta \tilde{k}_{t}=0, \Delta \tilde{c}_{t}=0$ and $\Delta \tilde{y}_{t}=0$.

- A steady state equilibrium is a fixed point of a dynamic system.
- No growth in per effective labour variables implies sustained growth in per capita and aggregate variable if $g>0$.
$\Delta \tilde{c}_{t}=0$ determines $\tilde{k}^{s s}$:

$$
f_{\tilde{k}}\left(\tilde{k}^{s s}\right)-\delta=\beta^{-1}(1+g)^{\sigma}-1
$$

$\Delta \tilde{k}_{t}=0$ and $\tilde{k}^{s s}$ determine $\tilde{c}^{s s}:$

$$
\tilde{c}_{t}=f\left(\tilde{k}^{s s}\right)-(z+\delta) \tilde{k}^{s s}
$$

4.6 Log-linearised Equilibrium Conditions

4.7 Equilibrium Dynamics

