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Question 1 (2 Points). Give a proof that the Vernam cipher (Lecture 1, slide 23) is perfectly
secret (Definition 2.3, Lecture 2, slide 16).

The proof is analogous to the one for one time pad from the lecture.
We know that the keys are random with P [K = k] = 1

26l
for every k. Where l is the length of the

message.

Calculate the chance that a certain cyphertext is produced for a known plaintext.
For arbitrary k,m, c:
P [C = c|M = m] =

Substitute the encryption formula for C. mod is defined as vector modulo operator.
P [(M +K) mod 26 = c|M = m] =

As we already know M = m we can substitute.

P [(m+K) mod 26 = c|M = m]
K,Mindep.

=
We know that key-generation and message are independent so we can skip the condition.

P [(m+K) mod 26 = c] =
We refactor to isolate K

P [K = (c−m+ 26) mod 26] =
We know the probability for any key is the same so we can solve here.

1
26l

Calculate the probability of getting a certain cyphertext c

P [C = c]
tot.prob.
=

∑
m′ P [C = c|M = m′] ∗ P [M = m′] =

Substitue P [C = c|M = m′]
1
26l

∗
∑

m′ P [M = m′] =
The sum of the probability of all possible messages is 1

1
26l

Use Bayes theorem to state what is needed for Def. 2.3

P [M = m|C = c]
Bayes
= P [C=c|M=m]∗P [M=m]

P [C=c]
=

1

26l
∗P [M=m]

1

26l

= P [M = m]

q.e.d
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1.2 Question 2

(a) The encryption scheme is not perfectly secret. I came up with two different proofs, which
I am going to discuss both. Without loss of generality, I assumed a uniform distribution over
M.

– Arithmetic proof
The message space contains only three possible messages and the key space contains
only four possible keys. This means there are only 12 combinations of a message and a
key. The modulo operation maps these combinations to only three possible ciphertext
values ({0, 1, 2}), of which all three are equally likely to occur.

This means that every ciphertext fits four combinations of message and key. Since there
are only three possible messages, one of the three messages is twice as likely to be the
cleartext of a given ciphertext.

To illustrate this, these are the possible combinations for the ciphertext 0:

m k
0 0
0 3
1 2
2 1

Here, it is clearly visible: Given the ciphertext 0, the probability for the message being 0
is 0.5, while the probabilities for the message being 1 or 2 are 0.25 each. This contradicts
the requirement for perfect secrecy that Pr[M = m|C = c] = Pr[M = m].

– Number-theoretic proof
Enck contains a modulo operation (mod 3) mapping each message to one of three
residue classes, but there are four keys ({0, 1, 2, 3}), of which two (0 and 3) are in
the same residue class, 0̄. For these two keys, the ciphertext is the same. In fact, it
is also equal to the cleartext message. This means that for any given ciphertext, the
probability for the message being equal to the ciphertext is 0.5, while the probability
for the other two cases is 0.25 each, which again contradicts the requirement for perfect
secrecy that Pr[M = m|C = c] = Pr[M = m].

(b) The encryption scheme is not perfectly secret. At a first glance, the encryption scheme
seems very similar to the One-Time-Pad, except that it might use unnecessarily long keys.
In fact, no information about the bits in the cleartext message can be derived from the
ciphertext. However, the message space allows messages of length up to l. Since Enck
returns a ciphertext of the same length as the message and discards the extra bits of the
key, the length of the cleartext message can be derived from the ciphertext. This is also a
violation of the principle of perfect secrecy.

To illustrate this with an example, let’s set l = 2. This means that there are six possible
messages: M = {0, 1, 00, 01, 10, 11}. Without loss of generality, I will assume a uniform
distribution over M, so that for any given m ∈ M, Pr[M = m] = 1/6. Now, let us assume
that we received the ciphertext 01. While we cannot infer anything about the bits in the
cleartext, we know that the original message is two bits long. Therefore, the probabilities
for the messages change: Pr[M = 0|C = 01] = 0 ̸= 1/6 = Pr[M = 0].
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Another way of proving that the scheme is not perfectly secret is to compare the sizes of the
message space and the key space. Shannon’s theorem for perfect secrecy states that for a
perfectly secret encryption scheme, the number of possible keys is equal to or greater than
the number of possible messages: |K| ≥ |M|. For the given encryption scheme, the keys are
limited to length l, while the messages can also be shorter. This means that |M| = Σl

12
l >

2l = |K|. There are more possible messages than there are possible keys, so the encryption
scheme cannot be perfectly secret. The only exception is the case in which l = 1, which
means that |M| = |K| = 2. This is equivalent to a One-Time-Pad (and therefore perfectly
secret), but it only allows single bits, which of course is of no practical use.
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1.3 Question 3

The statement is wrong. For a perfectly secret encryption scheme with message space M and
ciphertext space C, and for every m,m′ ∈ M and every c ∈ C, of course it holds that

Pr[M = m|C = c] = Pr[M = m], and

Pr[M = m′|C = c] = Pr[M = m′]

Perfect secrecy, however, does not imply that the messages themselves are equalls likely to occur.
This depends on the distribution on M. Since the statement is made for every distribution on M,
it cannot hold true.

A simple counter-example would be a distribution over M = {A, B} with Pr[M = A] = 0.8 and
Pr[M = B] = 0.2. Perfect secrecy means that

Pr[M = A|C = c] = Pr[M = A] = 0.8 and

Pr[M = B|C = c] = Pr[M = B] = 0.2

Obviously, Pr[M = A|C = c] ̸= Pr[M = B|C = c].


