6.0 ECTS/4.5h VU Programm- und Systemverifikation (184.741) 29 September 2023

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Platz (seat)

1.) Consider the following Kripke Structure:

For each formula, give the states of the Kripke structure for which the formula holds. In other words, for each of the states from the set $\left\{s_{0}, s_{1}, s_{2}\right\}$, consider the computation trees starting at that state, and for each tree, check whether the given formula holds on it or not.
(a) EG a Solution: \emptyset
(b) EGFa Solution: $\left\{s_{0}, s_{1}, s_{2}\right\}$
(c) $\mathbf{A}(a \wedge \mathbf{X} b) \quad$ Solution: $\left\{s_{0}\right\}$
(d) $\mathbf{A}(a \mathbf{U} b) \quad$ Solution: $\left\{s_{0}, s_{1}, s_{2}\right\}$
(e) $\mathbf{E}(b \mathbf{U} a) \quad$ Solution: $\left\{s_{0}, s_{1}, s_{2}\right\}$
(f) $(\mathbf{A X} a) \vee(\mathbf{A X} b) \quad$ Solution: $\quad\left\{s_{0}, s_{2}\right\}$
2.) Consider the following Kripke structure with initial state s_{0} :

Use the tableaux algorithm from the lecture to compute the sets of states in which the formula EG (EX a) (and its subformulas) hold.

- For every subformula, compute the states for which it holds!
- For fixpoints, list every step of the computation!

Solution: $\left\{s_{0}, s_{1}\right\}$. We use the tableaux algorithm:

- States that satisfy a : $\left\{s_{0}, s_{2}\right\}$.
- States that satisfy $\mathbf{E X} a$: these are the states with some successor satisfying a, that is, $\left\{s_{0}, s_{1}\right\}$.
- States that satisfy EG EX a : these are the states where some path completely contained within states satisfying EX a start. We compute a fixpoint, starting with $\left\{s_{0}, s_{1}\right\}$. In each step, we remove elements whithout a successor in the set. Both s_{0} and s_{1} do, so the fixpoint is $\left\{s_{0}, s_{1}\right\}$.
3.) Consider the following formula in propositional logic; is it satisfiable?
- If yes, provide all satisfying assignments and explain how you arrived at that number.

1	2	3	4	5	6	\sum
$/ 18$	$/ 10$	$/ 10$	$/ 09$	$/ 06$	$/ 07$	$/ 60$

- If not, provide the CDCL steps leading to that conclusion. In particular, you must provide the propagated literals and reason clauses leading to each conflict, and the clauses learned from such conflicts.

$$
\begin{aligned}
&\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge \\
&\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{4} \vee x_{5}\right) \wedge \\
&\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(x_{5} \vee x_{6}\right) \wedge\left(\neg x_{6} \vee \neg x_{7}\right) \wedge\left(x_{6} \vee x_{7}\right) \wedge \\
&\left(\neg x_{1} \vee \neg x_{6} \vee x_{7}\right) \wedge\left(\neg x_{1} \vee \neg x_{7} \vee x_{6}\right) \wedge\left(\neg x_{6} \vee \neg x_{7} \vee x_{1}\right) \wedge\left(x_{1} \vee x_{6} \vee x_{7}\right)
\end{aligned}
$$

Solution: A satisfying assignment μ must satisfy either x_{1} or $\neg x_{1}$.

- If μ satisfies x_{1}, then by unit propagation we conclude that:
$-\mu$ satisfies $\neg x_{2}$, because otherwise μ cannot satisfy the clause $\neg x_{1} \vee \neg x_{2}$.
$-\mu$ satisfies x_{3}, because otherwise μ cannot satisfy the clause $x_{2} \vee x_{3}$.
$-\mu$ satisfies $\neg x_{4}$, because otherwise μ cannot satisfy the clause $\neg x_{3} \vee \neg x_{4}$.
$-\mu$ satisfies x_{5}, because otherwise μ cannot satisfy the clause $x_{4} \vee x_{5}$.
$-\mu$ satisfies $\neg x_{6}$, because otherwise μ cannot satisfy the clause $\neg x_{5} \vee \neg x_{6}$.
$-\mu$ satisfies x_{7}, because otherwise μ cannot satisfy the clause $x_{6} \vee x_{7}$.
However, then μ falsifies the clause $\neg x_{1} \vee \neg x_{7} \vee x_{6}$. Therefore, there is no satisfying assignment that also satisfies x_{1}.
- If μ satisfies $\neg x_{1}$, then by unit propagation we conclude that:
$-\mu$ satisfies x_{2}, because otherwise μ cannot satisfy the clause $x_{1} \vee x_{2}$.
$-\mu$ satisfies $\neg x_{3}$, because otherwise μ cannot satisfy the clause $\neg x_{2} \vee \neg x_{3}$.
- μ satisfies x_{4}, because otherwise μ cannot satisfy the clause $x_{3} \vee x_{4}$.
$-\mu$ satisfies $\neg x_{5}$, because otherwise μ cannot satisfy the clause $\neg x_{4} \vee \neg x_{5}$.
- μ satisfies x_{6}, because otherwise μ cannot satisfy the clause $x_{5} \vee x_{6}$.
$-\mu$ satisfies $\neg x_{7}$, because otherwise μ cannot satisfy the clause $\neg x_{6} \vee \neg x_{7}$.
We then conclude that, if there is a satisfying assignment that also satisfies $\neg x_{1}$, then it must be unique assignment satisfying $\neg x_{1}, x_{2}, \neg x_{3}, x_{4}, \neg x_{5}, x_{6}, \neg x_{7}$. This assignment does indeed satisfy each clause in the formula. Hence, there is exactly one satisfying assignment that also satisfies $\neg x_{1}$.

In total, there is exactly one satisfying assignment.
4.) Consider the following formulas in Equality Logic with Uninterpreted Functions (EUF); are they satisfiable?

- If yes, provide a satisfying interpretation.
- If not,
(a) encode the formula as an equisatisfiable formula in equality logic without uninterpreted functions, and
(b) give the reasoning based on equivalence classes that leads to this conclusion.
(a) $(g=h) \wedge(a=b) \wedge(a=c) \wedge(e \neq i) \wedge(d=e) \wedge(f=e) \wedge(h=i) \wedge(z(c) \neq z(i)) \wedge(a=i)$ Solution: This formula is unsatisfiable. Let us first encode it without uninterpreted functions. We define z_{x} as $z(x)$:

$$
(g=h) \wedge(a=b) \wedge(a=c) \wedge(e \neq i) \wedge(d=e) \wedge(f=e) \wedge(h=i) \wedge\left(z_{c} \neq z_{i}\right) \wedge(a=i)
$$

We then obtain the following equivalence classes:

$$
\{a, b, c, i, g, h\} \quad\{d, e, f\} \quad\left\{z_{c}\right\} \quad\left\{z_{i}\right\}
$$

We must also include the functional constraint $c=i \rightarrow z_{c}=z_{i}$. Since c and i are in the same equivalence class, we can then add the atom $z_{c}=z_{i}$, so the final equivalence classes are:

$$
\{a, b, c, i, g, h\} \quad\{d, e, f\} \quad\left\{z_{c}, z_{i}\right\}
$$

We now check that for each disequality $x \neq y$ variables x, y are in different equivalence classes. This holds for $e \neq i$, but it does not hold for $z_{c} \neq z_{i}$, so the formula is unsatisfiable.
(b) $(g=h) \wedge(a=b) \wedge(a=c) \wedge(e \neq i) \wedge(d=e) \wedge(f=e) \wedge(h=i) \wedge(z(b) \neq z(f))$

Solution: This formula is satisfiable. For example, the interpretation I with domain $1,2,3$ given by
$I(a)=I(b)=I(c)=1 \quad I(d)=I(e)=I(f)=2 \quad I(g)=I(h)=I(i)=3 \quad I(z)=x \mapsto x$
satisfies the formula.
(c) $(a=b) \wedge(d=e) \wedge(c=b) \wedge(e=f) \wedge(z(a)=z(d)) \wedge(z(c) \neq z(f))$

Solution: This formula is unsatisfiable. Let us first encode it without uninterpreted functions. We define z_{x} as $z(x)$:

$$
(a=b) \wedge(d=e) \wedge(c=b) \wedge(e=f) \wedge\left(z_{a}=z_{d}\right) \wedge\left(z_{c} \neq z_{f}\right)
$$

We then obtain the following equivalence classes:

$$
\{a, b, c\} \quad\{d, e, f\} \quad\left\{z_{a}, z_{d}\right\} \quad\left\{z_{c}\right\} \quad\left\{z_{f}\right\}
$$

We must also include the following functional constraints:

$$
\begin{array}{lll}
(a=c) \rightarrow\left(z_{a}=z_{c}\right) & (a=d) \rightarrow\left(z_{a}=z_{d}\right) & (a=f) \rightarrow\left(z_{a}=z_{f}\right) \\
(c=d) \rightarrow\left(z_{c}=z_{d}\right) & (c=f) \rightarrow\left(z_{c}=z_{f}\right) & (d=f) \rightarrow\left(z_{d}=z_{f}\right)
\end{array}
$$

Since a and c are in the same equivalence class, the atom $z_{a}=z_{c}$ can be added. Similarly, the atom $z_{d}=z_{f}$ can be added because d and f are in the same equivalence class. The final equivalence classes are:

$$
\{a, b, c\} \quad\{d, e, f\} \quad\left\{z_{a}, z_{c}, z_{d}, z_{f}\right\}
$$

We now check that for each disequality $x \neq y$ variables x, y are in different equivalence classes. This does not hold for $z_{c} \neq z_{f}$, so the formula is unsatisfiable.
5.) The unquantified equality logic formula $(a=b) \wedge(c=d) \wedge(f(a) \neq f(c))$ logically implies the formula $d \neq b$.
Solution: True. The question is equivalent to whether $(a=b) \wedge(c=d) \wedge(f(a) \neq f(c)) \wedge(d=$ $b)$ is unsatisfiable, which it is.
6.) The LTL formula $a \wedge \mathbf{G}(a \rightarrow \mathbf{X X} a)$ is logically equivalent to the LTL formula $\mathbf{G} a$.

Solution: False. Consider the Kripke structure

This Krikpe structure satisfies $\mathbf{G} a$ but falsifies $a \wedge \mathbf{G}(a \rightarrow \mathbf{X X} a)$
7.) The CTL formula AG AG a is logically equivalent to the LTL formula EG AG a.

Solution: True. Let us first check that $\varphi=\mathbf{A G} \mathbf{A G} a$ implies $\psi=$ EG AG a. Given a Kripke structure K that satisfies φ, let s be an arbitrary initial state, and a path π based on s. Then, the path π satisfies G AG a, and the existence of such a π shows that the state s also satisfies ψ. Since s was an arbitrary initial state, then K satisfies ψ.
Now let us check that ψ implies φ. Given any Kripke structure K satisfying ψ, we consider an arbitrary initial state s. Because K satisfies ψ, we know that there is some path σ based on s that satisfies G AG a. In particular, the state s satisfies AG a. Now, let π be an arbitrary path based on s, and let $i \geq 0$ be arbitrary. We show that π_{i} satisfies $\mathbf{A G} a$. To do that, let θ be an arbitrary path based on π_{i}. Then, we can construct a path τ with $\tau_{j}=\pi_{j}$ for $j<i$ and $\tau_{j}=\theta_{j-i}$ for $j \geq i$. The path τ is based on s, so it satisfies $\mathbf{G} a$. Hence, the path θ also satisfies $\mathbf{G} a$.
Since θ was arbitrary, we have shown that the state π_{i} satisfies AG a. Since i was arbitrary too, we have shown that π satisfies G AG a. Since π was arbitrary, we have shown that s satisfies φ. And since s was an arbitrary initial state of K, we have shown that K satisfies φ.
8.) There are formulas that can be represented as a BDD but not as a CNF formula.

Solution: False. All BDDs can be represented as a propositional formula, and all propositional formulas can be represented as a CNF formula.
9.) For any formula in unquantified equality logic, if there is an interpretation (that satisfies the formula) with an infinite domain, there is also an interpretation with a finite domain.
Solution: True, because we can convert a formula in unquantified equality logic to a formula in unquantified equality logic without function symbols.
10.) The equivalence logic formula $(a=b) \wedge(e=f) \wedge(c \neq b) \wedge(c=d) \wedge(z(a)=z(f)) \wedge(z(b)=$ $z(c))$ is satisfiable.
Solution: True. The interpretation I with domain $\{1,2\}$ and

$$
I(a)=I(b)=I(e)=I(f)=1 \quad I(c)=I(d)=2 \quad I(z)=x \mapsto 1
$$

satisfies this formula.

