# Summary 3D Vision (SS2016)

# 1. Image Acquisition

# 1.1. Human Eye

Retina, Fovea (center of view), Optic Disc, Lens, Cornea, Iris, Pupil, Muscles; Rods (brightness), Cones (Colors)

# 1.2. Pinhole Camera

- Aperture  $\approx 0$
- upside down and flipped image
- "Camera Obscura"
- Perspective Projection



# 1.3. Perspective Projection

- Angles are <u>not</u> preserved
- Non-Linear Projection!
- Points → Points,
   Lines → Lines,
   Planes → whole/half image
- Degenerate cases:
   Plane through focal point → line, etc.
- Use case: Structure from motion

# Vanishing Point:

Each set of parallel lines meet in a different point (Vanishing point)





# 1.4. Normal Projection





# 1.5. Lens



#### Assumptions for Thin Lens Equation

- Spherical Lens surface
- Small angles of light rays to optical axis
- Small lens
- Same refractive index on both sides of lens

Then:  $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ 

# 1.6. Focus and Depth of Field

- Only objects in a certain distance are imaged sharply at the image plane
- The bigger the aperture, the bigger the blur circles
- The smaller the aperture, the sharper is the image (too small  $\rightarrow$  diffraction, dark)

# 1.7. Radiometry

- Radiance = Amount of light that is reflected by a surface point
- **Irradiance** = Amount of light that is projected from this point onto the image
- Unit =  $W/m^2$

# 1.8. Camera Sensors

- CCD integrative method
- CMOS non-linear method, directly addressable

# 1.9. Shannon Theorem

Exact reconstruction of a continuous-time baseband signal from its samples is possible if the signal is band-limited and the sampling frequency is greater than twice the signal bandwidth.

$$f_{Sampling} > 2 \cdot f_{max}$$

# 1.10. Camera Problems

- Optical Distortion
  - Blur
  - Lens glare (tray inter-reflections of light when very bright sources are present)
  - Vignetting
  - Aberration (Geometrical, Chromatic)
  - Lens distortions
- CCD artifacts
  - motion blur
  - blooming (e.g. high dynamic light in CCD) / smearing (lines of image)
- Gamma distortion

#### Aberrations

2 Types:

- Geometrical (Spherical, Astigmatism, radial/tangential Distortion, Coma)
- Chromatic (refractive index is function of wavelength)

Further Parameters: White-Balance, Color, SNR, Resolution, Thermal-/ Photon Shot Noise

# 2. Camera Calibration

# 2.1. Calibration

Correct 3D information from 2D images Extrinsic Parameters (location and orientation)

- 3 Euler angles
- 3 Translational vector components

Intrinsic Parameters (pixel coordinates w.r.t. camera reference frame)

- Focal length f (distance image plane projection center)
- Lens distortion coefficient κ (κ<sub>1</sub>, κ<sub>2</sub>)
- Scaling Factor s (sampling factor in x-direction)
- Principal Point C<sub>x</sub>, C<sub>y</sub> (Intersection of optical axis with image plane)

# 2.2. Geometrical Aberrations

- Spherical aberration
- Astigmatism
- Distortion
- Chromatic aberration
- $\rightarrow$  Can be reduced by combining lenses

# 2.3. Lens Distortion

- Radial distortion κ<sub>1</sub> (barrel/pincushion)
- Tangential distortion κ<sub>2</sub>



# 2.4. Principal Point

Determination in 3 ways

- Mathematical model fit (radial distortion)
- Direct optical method (Laser beam is projected through the lens onto the sensor)
- Variation of focal length (a: variation of image plane, b: Use 2 lenses)

# 2.5. Calibration Procedure

#### Linear with Target

- Use calibration plate with known structure
- Positioning in view of camera and find edges
- Calculate parameters

#### **Image Processing**

- Canny edge detection
- Straight line fitting to detect long edges
- Intersection of lines to find image corners
- matching of image corners and 3D checkerboard corners

#### **Nonlinear Methods**

Linear methods have problems: too many parameters, does not model lens distortion  $\rightarrow$  Tsai Calibration. Covers all intrinsic and extrinsic parameters

#### 4 Steps:

- World COS  $\rightarrow$  Camera COS (R,T)
- Camera COS  $\rightarrow$  undistorted image COS (f)
- Consider lens distortion (κ)
- Metric image COS  $\rightarrow$  pixel image COS (C<sub>x</sub>, C<sub>y</sub>, s)

#### 2D Motion

- Structure from motion
  - Track points over sequence of images
  - o calibrate internal parameters beforehand
- Self-Calibration
  - Ultimate Solution (-;

#### **Radiometric Calibration**

Radiometric Errors:

- Different Sensitivity
- Same Brightness  $\rightarrow$  Scaling coefficient for every pixel
- Different Brightness → Gamma correction

# 3. Range Scanner

# 3.1. Time of Flight Range Finder

Determine distance by runtime measurement (optical or ultrasound)

- Transmitter  $\rightarrow$  Deflector  $\rightarrow$  Receiver  $\rightarrow$  Phase comparator
- Other method: Sending light pulses

# 3.2. Laser Radar ToF

# $d = \frac{c \cdot t}{2} \Longrightarrow$ for 1 meter: t = 6.7 ns!

Phase detection leads to ambiguities by  $n \cdot \frac{\lambda}{2}$  (solution: sweeping to finer wavelengths)  $\rightarrow$  Continuous wave needed

| Time of Flight                                  | Pulse-based (AMCW)                               |                                  | Measuremen |  |
|-------------------------------------------------|--------------------------------------------------|----------------------------------|------------|--|
| Large distances: up to 1000 m                   | Distances up to 100 m                            | Triangulation                    |            |  |
| Lower measuring speed:<br>1000-10000 points / s | High measuring speed:<br>up to 650000 points / s | Range camera                     | 0.1 mm     |  |
| Short pulse: eye save                           | Reflectance of material also determined          | TOF based laser scanner (AM, PM) | 2-20 mm    |  |
| Absolute depth measured                         | Ambiguity of distance                            | Laser Radar (FM CW)              | 0.1 mm     |  |

#### 3.3. Interferometry

- Coherent laser light is split into two paths (reference mirror, object)
- Beams are added again (Interference)

High accuracy (nm), works only with smooth/mirror-like surfaces

# 3.4. Ultrasound/Infrared Range Finder

#### Advantages

- Illumination independent
- Low speed of measurement beam

#### Disadvantage

- Poor resolution
- Low accuracy
- Deflector necessary

#### Applications: Car Parking radar, filling measurement, underwater meas.

#### 3.5. Triangulation Range Finder

- Projection of light plane into measuring area
- Distortion defines distance from camera via triangulation

#### **Coded light approach**

- Moiré techniques
- Pattern projection
- Gray-Code
- Color coding



object

5

#### Problems

- Occlusions
- Contrast and sharpness of laser
- Speckle noise from laser

# 3.6. Types of Range Finder

- Spot Projection (point by point measurement and triangulation)
- Light point stereo Analysis (use 2 cameras, laser point)
- Light strip range finder (projecting light planes)
- Shadow scanning (like light strip but using shadows)
- Pattern projection (use pattern instead of point/line)
  - Random patterns
  - Encoded patterns (e.g. gray code, phase/freq./amp. modulation, color coding)

# 3.7. Errors in optical triangulation

- Laser width limits accuracy (e.g. at sharp edges)
- Different surface colors/reflectivity
- Occlusions (solution: use more lasers or cameras)

# 3.8. Specifications for 3D Scanners

- Standoff
- Depth of view (DOV)
- Near field of view (near FOV)
- Far field of view (far FOV)
- Accuracy
- Reproducibility
- Uncertainty of Precision
- Systematic Errors
- Random Errors
- Resolution



# 4. Shape from Monocular Images

| Shape from    | How many images | Method type<br>passive |  |
|---------------|-----------------|------------------------|--|
| Stereo        | 2 or more       |                        |  |
| Motion        | a sequence      | active/passive         |  |
| Focus/defocus | 2 or more       | active                 |  |
| Zoom          | 2 or more       | active                 |  |
| Contours      | single          | passive                |  |
| Texture       | single          | passive                |  |
| Shading       | single          | passive                |  |

# 4.1. Shape from Shading

- Shading on the surface gives the depth information
- Surface reflection of untextured objects includes depth information
- Surface boundaries play crucial role in interpretation by humans

#### **Mechanisms for Reflection**

- Body Reflection: Diffuse, matte, non-homogeneous (e.g. paper, clay)
- Surface Reflection: Glossy, specular (=mirror-like) (e.g. metals)
  - → Many materials have both types

For simplification normal projection is always used (object far away and close to optical axis)



# 4.2. Reflectance Map

#### Lambertian Surface

Brightness depends only on the direction of illumination, not observation

#### **Reflectance Map**

2D plot of gradient space (p,q) of normalized image brightness of a surface as function of surface orientation.



Straight line is called Terminator and separates illuminated from shaded regions.

Problem: in reality combination of matte and specular reflection

- Weighted average of diffuse and specular component
- Reflectance map must be determined experimentally
- not possible for general shape from shading (with known standard forms like ellipse, parable, hyperbola and line/terminator)

Another Problem: Rounded corners lead to overshooting

# 4.3. Shape determination in Shape from Shading

Methods: Strip Method, Photometric Stereo, Polarized Light

#### Strip Method

- For each brightness value of a pixel  $\rightarrow$  Reflectance Map restricts surface orientation
- Strips of equal brightness in the picture = height lines
- Starting point with known surface normal
- Small movement in the direction of greatest change in brightness
   → small movement in the direction of greatest slope
- Requires one or more starting points

Disadvantage: Errors cumulate, no stable solution (depending on starting point)



#### Photometric Stereo

Basis: 2 images with same geometry but different illumination directions

- 1 Reflectance Map limits surface orientation only by one isobrightness contour (many solutions possible)
- 2 RM restrict possible directions of a surface normal to 2 candidates (intersection of lines in gradient space)
- Clear solution by using third light source
- Practical application: using colored light or use of a chrome sphere

#### Procedure

- 1. Estimate light source directions
- 2. Compute surface normals
- 3. Compute albedo values
- 4. Estimate depth from surface normals
- 5. Relight the object (with original texture and uniform albedo)



#### **Prerequisites for SfS**

- Surfaces with constant albedo  $\rightarrow$  rotationally invariant
- Orthographic projection
- Distant and calibrated sources of illumination
- No drop shadows
- No reflection illumination inter reflection

### 4.4. Shape from Shading Variants

- Shape from Specularity (for highly reflective Surfaces)
- Extension for non-lambertian surfaces by using polarized light (exact surface normal but only approximate position)
- Shape from Shadow (Reconstruct surface topography from self-occlusion)

# 4.5. Shape from Texture

#### Texture

- Repetition of a basic pattern
- Pattern repetition neither regular nor deterministic (e.g. human made texture), only statistically regularly (e.g. grass, ocean, etc.)

#### **Statistical Texture Analysis**

- Suitable for all natural textures
- Used for classification rather than for shape determination

#### **Structural Texture Analysis**

For deterministic textures (mostly made by humans), made out of elements called texels.

#### Shape from Texels

- Is based on the distortion of the single texel
- Texel must be clearly identifiable and must not overlap
- All texels have the same spatial extent
- Texel are "small", i.e. are planar and have unique surface normal

# 5. Shape from Stereo / Stereo Vision

Correct 3d information using 2d images:

- 2 or more images taken from different positions plus geometric calibration of camera
- Tries to imitate human visual system
- Is also used in the entertainment industry

#### Examples



# 5.1. Entertainment Industry

- Dual Displays (Oculus, HTC Vive, etc.)
- 3D Glasses
  - Anaglyph (cyan/red)
  - Polarized Displays
  - Active shutter/Field sequential
- Lenticular Display / Barrier strip Displays

# 5.2. Stereo Geometry

#### Objective

- Given two images of a scene acquired by known cameras compute the 3D position of the scene (structure recovery)
- Basic principle: triangulate from corresponding image points

#### Disparity

Disparity:  $D = x_1 - x_2$ 

Distance to center of projection:  $-Z = \frac{f \cdot B}{D}$ 

B...Baseline, f...focal length, Z...distance of object point

#### **Epipolar Constraint**

Each point of the left image can lie only on a specific line in the right image: the Epipolar Line



#### Rectification

Normal Case

- Disadvantage: small distance between the centers of projection
- Advantage: low computational complexity

# General Case

- the larger the distance between projection centers, the more accurate
- but larger distance leads to large occlusion areas

We can always get to the normal case by image re-projection

- Re-project image planes onto common plane parallel to line between optical centers
- Notice, only focal point of camera really matters

# 5.3. Correspondence Analysis

#### Area Based

- Compare intensity levels of left and right image
- Correspondence due to similarity of intensity levels
- Correspondence for each pixel

#### Feature Based

- Compare features of left and right image
- Correspondence on basis of selected characteristics (edge, gradient, etc.)
- Correspondence only for selected Pixels
- more accurate (sub-pixel positioning)

#### Problem: Point does not exist or is not distinct



# 5.4. Hierarchical Stereo Matching

- Faster Computation
- Deals with large disparity ranges







# 5.5. Energy Minimization

- Matching pixels should have similar intensities
- Most nearby pixels should have similar disparities
- $\rightarrow$  Labeling problem

#### 5.6. Feature-based Correspondence Analysis

- Look for a feature in an image that matches a feature in the other
- Set of geometric features is used (e.g. edges, line segments, corners, etc.)
- Need for interpolation if only sparse set of points available

#### 5.7. Active Stereo

- Feature-based methods cannot be used when objects have smooth surfaces or surfaces of uniform intensity
- Patterns of light can be projected onto the surface of objects, creating "interesting" points even in regions which would be otherwise smooth

#### **Problem**: Ambiguity

 $\rightarrow$  Using multiple cameras reduces likelihood of false matches

#### 5.8. Components of Stereo Vision Systems

- Camera calibration: Find inner and outer parameters of cameras
- Image rectification: simplifies the search for correspondences
- **Correspondence**: which item in the left image corresponds to item in the right image
- Reconstruction: recovers 3-D information from the 2-D correspondences

# 6. Shape from Multiple Images

# 6.1. Depth from Focus

- Range from focus using  $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$
- Take pictures along axis
- find image having highest frequency (best focus)
- more than 10 images needed (monocular)
- use Gaussian interpolation to form a set of approximations

# **Disadvantage**: many images must be captured to find best focus $\rightarrow$ Depth from defocus

# 6.2. Depth from Defocus

- Assume a blurring function (blur model)
- Diffusion parameter is related to blur radius
- Depth can be computed from the two measurements (2 unknowns: depth and image frequencies)
- Needs textured surfaces
- Active depth from defocus: project pattern onto surface (frequency of scene is then known)

**Problem**: Ambiguity (object too near or too far) **Solution**: Use two sensor planes

If no texture available  $\rightarrow$  project structured lighting onto surface (Active Depth from Defocus)

# 6.3. Shape from Motion

- Motion of an observer relative to the environment
- Problem: moving direction and amount of camera movement
- Prerequisites:
  - Known moving direction of camera
  - Known speed of camera3rd Dimension = time dimension
- Correct Assumptions  $\rightarrow$  Depth calculation possible

#### **Motion Field**

... is characterized by vectors that represent the movement of the corresponding scene points. If camera does not rotate:

- Vectors point radially to or from a focus
- Point where motion vector of camera intersects image plane:
  - FOE: Focus of Expansion (forward movement)
  - FOC: Focus of Contraction (backward movement)
- Length of the vector is:
  - o inversely proportional to distance of point
  - o proportional to sine of the angle between moving direction and image point
- $\rightarrow$  movement zero = FOE or FOC (except for points at infinity!)

#### **Motion Field Determination**

Task: Determination of corresponding points in two images

- sparse vector field
- same problem as stereo only moving direction of camera not known
- Epipolar line not known at the beginning

To find correspondence between images:

- high temporary sampling = slight differences
- either unchanged intensities in both images, or unchanged edges in both images

#### 2 Strategies for determination:

- Spatio-temporal <u>derivation</u>: Intensities do not change in timeline, gray values are continuously differentiable
- Spatio-temporal <u>coherence</u>: Intensity and edges are preserved



# Motion Field vs. Optical Flow

<u>Motion Field</u>: Projection of movement onto the image plane <u>Optical Flow</u>: Observed flow in the image plane (constant brightness constraint) Assumption: motion field = optical flow





We can only determine the motion parallel to the gradient but not normal to the gradient!

# 7. Registration

Range Images are 2.5 D – Full 3D is made of multiple range images. Process of putting single images together  $\rightarrow$  **Registration** 

The result of a single scan is called Range Map (depth value for each pixel  $\rightarrow$  point grid) and is an incomplete 3D Model. Multiple shots are needed!

#### The Scanning Pipeline

- 1. Scanning (data acquisition)
- 2. Alignment of data
- 3. <u>Merging</u> to get single surface
- 4. Manipulation (simplification, coloring, mesh cleaning)
- 5. Visualization

# 7.1. Alignment

- Each part has its own COS
- Objective: bring all parts in common reference system
- First step: roughly positioning to have an overlap region

#### 2 Approaches

- <u>Target</u> based registration
- <u>Surface</u> based registration

# 7.2. Target based Registration

- Align scans by using reference markers
- Automatic matching possible

#### Advantage

- Less computational effort
- Geo-Referencing to a higher reference system

#### Disadvantage

- Longer fieldwork time
- Accuracy

# 7.3. Surface based Registration

- Only point cloud data used for registration
- uses more scans

#### Advantage

- Better accuracy
- Optimizing project cost and duration

#### Disadvantage

- Computationally expensive
- Not well-suited for geo-referencing

#### Methods

- <u>Zippering</u>
  - Scans are simply joined to one surface
  - o Simple and fast
  - o does not use redundancy to eliminate sampling error
- Volumetric Methods
  - Range Maps are mapped in a volumetric grid
- Marching Cube
  - Mostly used of merging software

#### 7.4. Iterative Closest Points

General: Closest Point approach converges if starting position is "close enough"





# Algorithm



The ICP algorithm always converges to a local minimum

#### Variations

- Selection of Points: all available, random samples, uniform subsampling
- Matching: Closest point, normal shooting, reverse calibration, include color/intensity
- <u>Weighting of Pairs</u>: w.r.t. distance, compatibility of normal vectors, scanner uncertainty
- <u>Rejecting Pairs</u>: w.r.t. distance, worst n%, points at and of lines, not consistent neighboring pairs
- Error Metric: sum of squared distance, SVD, orthonormal matrices

# 8. Space Carving

#### Algorithm

- Initialize a volume V containing the true scene
- Choose a voxel on the surface
- Project to visible input images
- Carve if not photo-consistent
- Repeat until convergence



#### Photo Hull

...is the union of all photo-consistent scenes in V (tightest possible bound on the scene)





# 9. Shape from Silhouette

#### Basics

- Silhouette of object contains 3D information
- Only binary images used
- Voxel is photo-consistent if it lies inside silhouettes of all views

Final model: intersection of all conic volumes





Visual hull is a good starting point for optimizing photo-consistency

- Easy to compute
- Tight outer bound
- parts already lie on the surface and thus are photo-consistent

#### Algorithms

- Voxel based method (standard)
- Marching intersections
- Image-Based visual hulls
- Exact polyhedral methods

#### Strengths

- Reconstructs visual hull of object that is never larger than model
- can reconstruct handle (of a cup?)

#### Weaknesses

- Unable to reconstruct concavities
- Flat surfaces reconstructed poorly
- Sufficient for convex, oval objects

# 10. Medical 3D Scanning / Volume Scanners

## Types

- X-Ray Projection (Radiography)
- X-Ray Computed Tomography (CT)
- Magnetic Resonance Imaging (MRI)
- Nuclear Medicine (PET)
- Ultrasound

# 10.1. Radiography

X-Ray density increases for different tissues

- Air (minimal absorption)
- Adipose tissue
- connective tissue of organs
- Bones (large nuclei, high density)



#### 10.2. Computed Tomography

- X-rays that scan axial sections/layers of body
- Propagation delays produce scan data
- Computer calculates image

Used especially for the analysis of bone structures, low contrast in tissue

# 10.3. Magnetic Resonance Imaging

- Atomic nuclei and hydrogen nuclei, 1H, in particular, have a magnetic moment
- Moments tend to become aligned to applied field
- Creates magnetization, m(x,y,z) (a tissue property)
- MRI makes images of m(x,y,z)







#### **Working Principle**

- object is located in a homogeneous static magnetic field B<sub>0</sub>
- B<sub>1</sub> is radiated perpendicular to B<sub>0</sub>
- Record the magnetic resonance signal



# 10.4. Nuclear Medicine / Positron Emission Tomography (PET)

- Radioactive test solutions are given to patients
- Evaluating the radioactive radiation

Example: administration of radioactively enriched oxygen to verify the brain activity zones Often combined with CT  $\rightarrow$  PET/CT

#### 10.5. Ultrasound Tomography

- Image reflectivity of acoustic wave
- Depth function of time
- Lateral focusing of wavefronts



#### 10.6. Comparison

|                                                     | X-Ray             | СТ                   | MR                | US               |
|-----------------------------------------------------|-------------------|----------------------|-------------------|------------------|
| Representation of                                   |                   |                      |                   |                  |
| Bones                                               | + + +             | + + +                | +                 | -                |
| Tissue                                              | - / +             | -                    | + +               | +                |
| Vessels                                             | + +               | + +                  | + +               | +                |
| <ul> <li>Function</li> </ul>                        | -                 | -                    | + +               | ++               |
| Volumes                                             | -                 | + +                  | + +               | +                |
| Real-time                                           | ·                 | +                    | +                 | + +              |
| Psychological stress<br>Physical stress<br>Invasive | low<br>high<br>no | medium<br>high<br>no | high<br>Iow<br>no | low<br>low<br>no |
| Cost (EUR)                                          | ~ 40              | ~ 100                | ~ 400             | ~ 10             |

# 11. 3D Printing

- Also known as: rapid prototyping, additive manufacturing
- Biggest market: Motor vehicles, consumer products
- Form of additive Manufacturing (joining material layer-by-layer)

# 11.1. 3D Printing Techniques

#### Subtractive

- Milling
- Turning
- Drilling
- CNC

#### Additive

• Glue slices of object back together

#### **Types of Additive Manufacturing**

- SLS (Selective Laser Sintering)
- FDM (Fused Deposition Modeling)
- SLA (Stereo lithography)
- DLP (Digital Light Processing)
- EBM (Electron Beam Melting)

#### 11.2. Selective Laser Sintering

- Platform with layer of powder
- Fuse powder with laser or by adding binder
- Lower platform, add powder and repeat

#### 11.3. Fused Deposition Modeling

- Squirt semi-liquid material (plastic, wax, chocolate, etc)
- Add layer by layer
- Nozzle is heated to melt material and is moved horizontally and vertically

#### 11.4. Stereo Lithography

- Tank of liquid polymer
- harden (polymerize) with laser beam
- Accurate, relatively fast

#### 11.5. Digital Light Processing

Same as Stereo Lithography, but instead of a laser a DLP projector is used

#### 11.6. Electron Beam Melting

- Power source: Electron beam
- Melting metal powder layer by layer in vacuum
- Parts are fully dense, void-free and extremely strong





# 11.7. Applications

- Medical procedures
- Advances in research
- Product prototyping
- Historic Preservation
- Architectural Engineering Construction
- Advanced Manufacturing
- Food Industries
- Automotive
- Accessories