Hybrid Systems Modeling, Analysis and Control

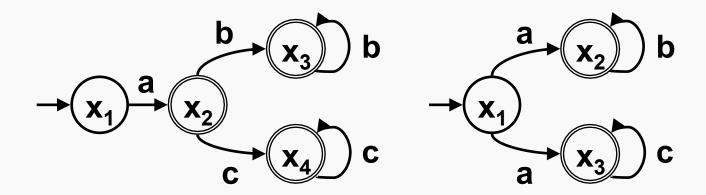
Radu Grosu
Vienna University of Technology

Lecture 5

Finite Automata as Linear Systems Observability, Reachability and More

Minimal DFA are Not Minimal NFA

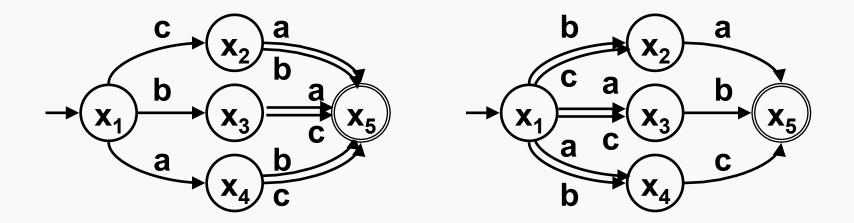
(Arnold, Dicky and Nivat's Example)



$$L = a (b^* + c^*)$$

Minimal NFA: How are they Related?

(Arnold, Dicky and Nivat's Example)

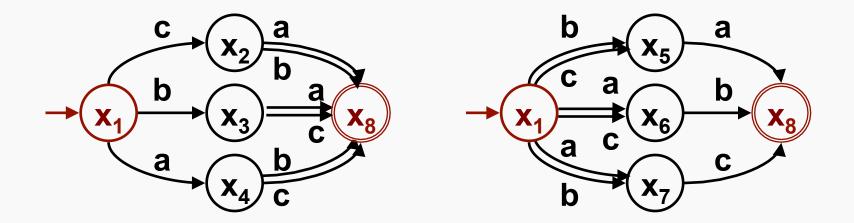


L = ab+ac + ba+bc + ca+cb

No homomorphism of either automaton onto the other.

Minimal NFA: How are they Related?

(Arnold, Dicky and Nivat's Example)



Carrez's solution: Take both in a terminal NFA.

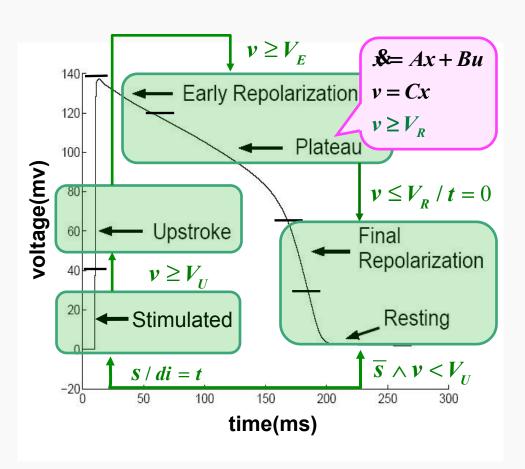
Is this the best one can do?

No! One can use use linear (similarity) transformations.

Convergence of Theories

- Hybrid Systems Computation and Control:
 - convergence between control and automata theory.
- Hybrid Automata: an outcome of this convergence
 - modeling formalism for systems exhibiting both discrete and continuous behavior,
 - successfully used to model and analyze embedded and biological systems.

Lack of Common Foundation for HA



- Mode dynamics:
 - Linear system (LS)
- Mode switching:
 - Finite automaton (FA)
- Different techniques:
 - LS reduction
 - FA minimization

LS & FA taught separately: No common foundation!

Main Conjecture of this Talk

- Finite automata can be conveniently regarded as time invariant linear systems over semimodules:
 - linear systems techniques generalize to automata
- Examples of such techniques include:
 - linear transformations of automata,
 - minimization and determinization of automata as observability and reachability reductions
 - Z-transform of automata to compute associated regular expression through Gaussian elimination.

- Consider a finite automaton M = (X,Σ,δ,S,F) with:
 - finite set of states X, finite input alphabet Σ ,
 - transition relation $\delta \subseteq X \times \Sigma \times X$,
 - starting and final sets of states S,F ⊆ X

- Consider a finite automaton $M = (X, \Sigma, \delta, S, F)$ with:
 - finite set of states X, finite input alphabet Σ ,
 - transition relation $\delta \subseteq X \times \Sigma \times X$,
 - starting and final sets of states S,F ⊆ X
- For each input letter $a \in \Sigma$:
 - represent $\delta(a) \subseteq X \times X$ as a boolean matrix A(a),

- write
$$A = \sum_{a \in \Sigma} A(a)$$
 a where $a(x) = \begin{cases} 1 & \text{if } x = a \\ 0 & \text{otherwise} \end{cases}$

• Now define the linear system $L_M = [S,A,C]$:

$$x(n+1) = x(n)A, x_0 = S(\varepsilon)\varepsilon$$

 $y(n) = x(n)C, C = F(\varepsilon)\varepsilon$

x and y are row vectors

Now define the linear system L_M = [S,A,C]:

$$x(n+1) = x(n)A, x_0 = S(\varepsilon)\varepsilon$$

 $y(n) = x(n)C, C = F(\varepsilon)\varepsilon$

• Example: consider following automaton:

b A(a) =
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $x_0(\epsilon)' = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$$A(b) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $C(\epsilon) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

Polynomials and their Operations

- A, C, x(n) and y(n) are polynomials with:
 - powers: strings in Σ^* (the input strings)
 - coefficients: matrices and vectors over B

Polynomials and their Operations

- A, C, x(n) and y(n) are polynomials with:
 - powers: strings in Σ^* (the input strings)
 - coefficients: matrices and vectors over B
- Addition and multiplication: done over polynomials

$$(A(a)a + A(b)b)^{2} =$$

$$A(a)A(a)aa + A(a)A(b)ab + A(b)A(a)ba + A(b)A(b)bb \stackrel{\hat{}}{=}$$

$$A(aa)aa + A(ab)ab + A(ba)ba + A(bb)bb$$

Boolean Semimodules

- B is a doubly idempotent, commutative semiring:
 - (B,+,0) is a commutative idempotent monoid (or),
 - (B,×,1) is a commutative idempotent monoid (and),
 - multiplication distributes over addition,
 - 0 is an annihilator: $0 \times a = 0$

Boolean Semimodules

- B is a doubly idempotent, commutative semiring:
 - (B,+,0) is a commutative idempotent monoid (or),
 - (B,×,1) is a commutative idempotent monoid (and),
 - multiplication distributes over addition,
 - 0 is an annihilator: $0 \times a = 0$
- Bⁿ is a semimodule over scalars in B:

$$- r(x+y) = rx + ry$$
, $(r+s)x = rx + sx$, $(rs)x = r(sx)$,

$$-1x = x, 0x = 0$$

Boolean Semimodules

- B is a doubly idempotent, commutative semiring:
 - (B,+,0) is a commutative idempotent monoid (or),
 - (B,×,1) is a commutative idempotent monoid (and),
 - multiplication distributes over addition,
 - 0 is an annihilator: $0 \times a = 0$
- Bⁿ is a semimodule over scalars in B:

$$- r(x+y) = rx + ry$$
, $(r+s)x = rx + sx$, $(rs)x = r(sx)$,
 $- 1x = x$, $0x = 0$

Note: No additive and multiplicative inverses!

Divergence of Classic/Discrete Math

Canonical partial order in semirings:

$$a \leq_{\perp} b \text{ iff } \exists !c. a + c = b$$

$$a \leq_{\downarrow} b \text{ iff } \exists !c. \ a \times c = b$$

Divergence of Classic/Discrete Math

Canonical partial order in semirings:

$$a \le_+ b$$
 iff $\exists !c. a + c = b$
 $a \le_\times b$ iff $\exists !c. a \times c = b$

Example of canonical PO for Natural numbers:

$$1 \leq_{\perp} 5 \text{ iff } \exists !4. \ 1+4=5$$

Divergence of Classic/Discrete Math

Canonical partial order in semirings:

$$a \le_+ b$$
 iff $\exists !c. a + c = b$
 $a \le_+ b$ iff $\exists !c. a \times c = b$

Example: Canonical PO for Natural numbers:

$$1 \leq_{+} 5 \text{ iff } \exists !4. \ 1+4=5$$

Example: Canonical PO for Integer numbers:

$$5 \leq_{+} -1 \text{ iff } \exists !(-6). 5 + (-6) = 1$$

Semiring: Either inverses or partial order!

Observability

• Let L = [S,A,C] be an n-state automaton. It's output:

$$[y(0) y(1) ... y(n-1)] = x_0[C AC ... A^{n-1}C] = x_0O$$
 (1)

L is observable if x_0 is uniquely determined by (1).

Observability

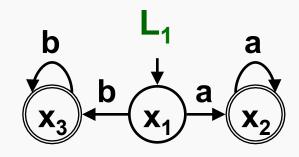
• Let L = [S,A,C] be an n-state automaton. It's output:

$$[y(0) y(1) ... y(n-1)] = x_0^t [C AC ... A^{n-1}C] = x_0^t O$$
 (1)

L is observable if x_0 is uniquely determined by (1).

Example: the observability matrix O of L₁ is:

$$O = \begin{bmatrix} A^{n}C & \epsilon & a & b & \frac{a}{a} & \frac{a}{b} & \frac{b}{a} & \frac{b}{b} \\ X_{1} & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ X_{2} & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ X_{3} & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$



- Initial vector x₀ selects a sum of rows from O. Hence:
 - if L is deterministic and therefore has a single initial state,
 x₀ is uniquely determined if all rows O_i in O are distinct

- Initial vector x₀ selects a sum of rows from O. Hence:
 - if L is deterministic and therefore has a single initial state, \mathbf{x}_0 is uniquely determined if all rows \mathbf{O}_i in O are distinct
 - if L is nondeterministic and has several initial states, x₀ is not uniquely determined if there are boolean a_i,b_i and:

$$\exists I, J \subset [1..n]. \quad I \cap J = \emptyset \quad \wedge \quad \sum_{i \in I} a_i O_i = \sum_{i \in I} b_i O_i$$
 (2)

- Initial vector x₀ selects a sum of rows from O. Hence:
 - if L is deterministic and therefore has a single initial state, x_0 is uniquely determined if all rows O_i in O are distinct
 - if L is nondeterministic and has several initial states, x_0 is not uniquely determined if there are boolean a_i , b_i and:

$$\exists I, J \subset [1..n]. \quad I \cap J = \emptyset \quad \wedge \quad \sum_{i \in I} a_i O_i = \sum_{i \in J} b_i O_i$$
 (2)

- Linear dependence: (2) for finite I,J and any vector set.
 - Def (2) generalizes linear dependence in vector spaces

- Initial vector x₀ selects a sum of rows from O. Hence:
 - if L is deterministic and therefore has a single initial state, x_0 is uniquely determined if all rows O_i in O are distinct
 - if L is nondeterministic and has several initial states, x_0 is not uniquely determined if there are boolean a_i,b_i and:

$$\exists I, J \subset [1..n]. \quad I \cap J = \emptyset \quad \wedge \quad \sum_{i \in I} a_i O_i = \sum_{i \in J} b_i O_i$$
 (2)

- Linear dependence: (2) for finite I,J and any vector set.
 - Def (2) generalizes linear dependence in vector spaces
 - Linear independence is consequently:

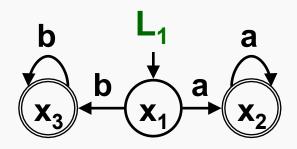
$$\forall I, J \subset [1..n]. \quad I \cap J = \emptyset \Rightarrow span(O_I) \cap span(O_J) = \{0\}$$

- An ordered set of vectors Y is a basis for X if:
 - (a) Y is independent, (b) span(Y) = X

- An ordered set of vectors Y is a basis for X if:
 - (a) Y is independent, (b) span(Y) = X
- Theorem (Basis) If $X \subseteq B^n$ has a basis Y then Y is unique.

- An ordered set of vectors Y is a basis for X if:
 - (a) Y is independent, (b) span(Y) = X
- Theorem (Basis) If $X \subseteq B^n$ has a basis Y then Y is unique.

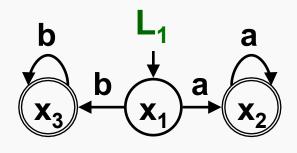
$$O = \begin{bmatrix} A^{n}C & \epsilon & a & b & \frac{a}{a} & \frac{b}{b} & \frac{b}{a} & \frac{b}{b} \\ x_{1} & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ x_{2} & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ x_{3} & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$



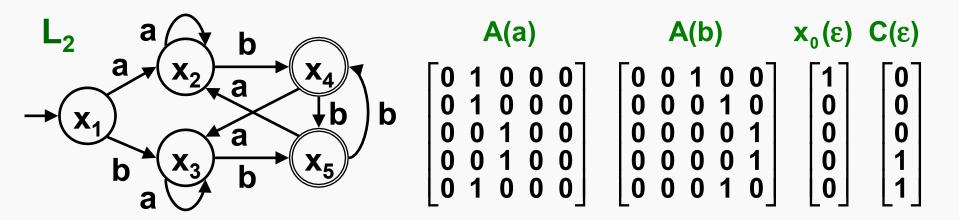
 $[x_1 x_2 x_3]$: row basis

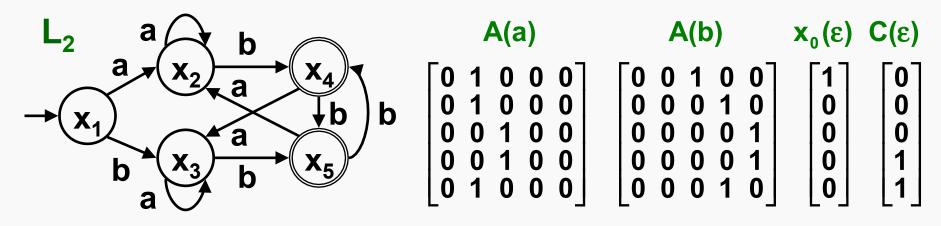
- An ordered set of vectors Y is a basis for X if:
 - (a) Y is independent, (b) span(Y) = X
- Theorem (Basis) If $X \subseteq B^n$ has a basis Y then Y is unique.

$$O = \begin{bmatrix} A^{n}C & \epsilon & a & b & \frac{a}{a} & \frac{b}{b} & \frac{b}{a} & \frac{b}{b} \\ x_{1} & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ x_{2} & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ x_{3} & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

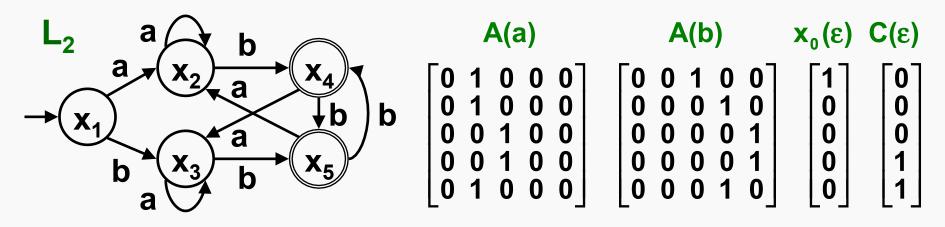


 $[x_1 \ x_2 \ x_3]$: row basis, $[C(\varepsilon) \ AC(a) \ AC(b)]$: column basis.

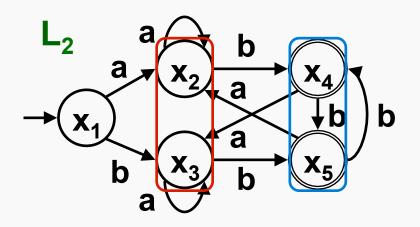




O	3	b	a	b		a b b	b a b	مطط
X ₁	0	0	1	1	1	1	1	1
X ₂	0	1	1	1	1	1	1	1
X_3	0	1	1	1	1	1	1	1
X ₄	1	1	1	1	1	1	1	1
X ₅	1	1	1	1	1	1	1	1



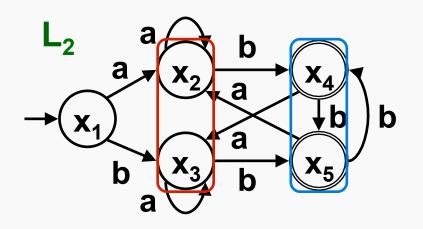
0	3	b	a	b	a a b	a b b	b a b	معم
X ₁	0	0	1	1	1	1	1	1
X ₂	0	1	1	1	1	1	1	<u>_</u>
X_3	0	1	1	1	1	1	1	1
X ₄	1	1	1	1	1	1	1	1
X ₅	1	1	1	1	1	1	1	1



		4 (a	a)			A	\(b)		X	₀ (ε)	C	(3)
0					[0	0	1	0	0		[1]		0
0	1	0	0	0	0	0	0	1	0		1 0		0
0	0	1	0	0	0	0	0	0	1		0		0
0					0	0	0	0	1		0		1
				0	0	0	0	1	0		0		0 0 0 1 1

O	ε	b	ab	b	aab	a b b	b a b	ppp
X_1	0	0	1	1	1	1	1	1
X ₂	0	1	1	1	1	1	1	1
X_3	0	1	1	1	1	1	1	1
X ₄	1	1	1	1	1	1	1	1
X ₅	1	1	1	1	1	1	1	1

Define linear transf $\bar{x} = xT$:

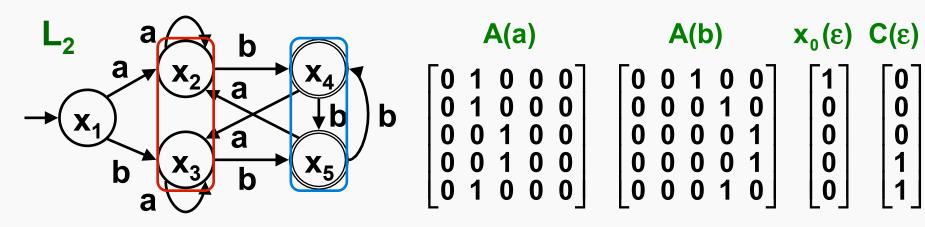


		4 (a	a)			F	\(b)		$\mathbf{x}_{0}(\varepsilon)$	$C(\epsilon)$
0 0 0	1	0	0	_	0	0	0	1	0 0 1	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	[0] 0 0 1 1
0	0	1	0						1 0	0	[1]

0	w	٥	ab	b	<u>ო ო</u> ტ	a b b	b a b	ರರರ
X_1	0	0	1	1	1	1	1	
X ₂	0	1	1	1	1	1	1	1
X_3	0	1	1	1	1	1	1	1
X ₄	1	1	1	1	1	1	1	1
X ₅	1	1	1	1	1	1	1	1

Define linear transf $\bar{x} = x T$:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad \overline{\mathbf{x}} \ (n+1) = \mathbf{x} \ (n+1)\mathbf{T} = \mathbf{x} \ (n)\mathbf{A}\mathbf{T} \\ = \overline{\mathbf{x}} \ (n)\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \overline{\mathbf{x}} \ (n)\overline{\mathbf{A}} \\ \overline{\mathbf{x}}_{0}(\varepsilon) = \mathbf{x}_{0}(\varepsilon)\mathbf{T} \\ \overline{\mathbf{C}}(\varepsilon) = \mathbf{T}^{-1}\mathbf{C}(\varepsilon)$$



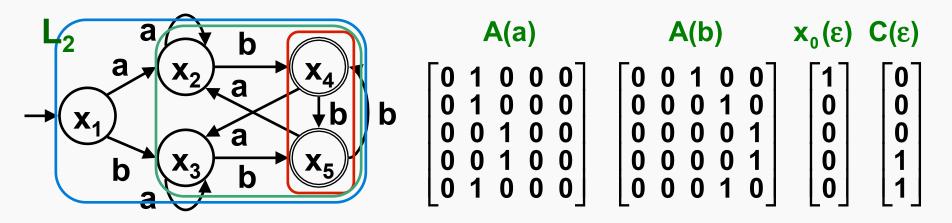
O	3	b	a b	b	a a b	a b b	b a b	bbb
X_1	0	0	1	1	1	1	1	1
X ₂	0	1	1	1	1	1	1	1
X_3	0	1	1	1	1	1	1	1
X ₄	1	1	1	1	1	1	1	1
X ₅	1	1	1	1	1	1	1	1

Define linear transf $\bar{x} = x T$:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\overline{A}(x) = [A(x)T]_T \overline{x}_0(\varepsilon) = x_0(\varepsilon)T \overline{C}(\varepsilon) = [C(\varepsilon)]_T$$

Observability Reduction by Columns



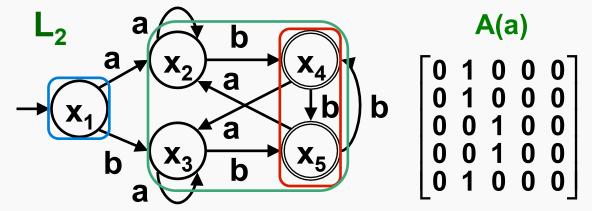
O	3	b	a	bb	a a b	a b b	b a b	bbb
X ₁	0	0	1	1	1	1	1	1
X ₂	0	1	1	1	1	1	1	1
X ₃	0	1	1	1	1	1	1	1
X ₄	1	1	1	1	1	1	1	1
X ₅	1	1	1	1	1	1	1	1

Define linear transf $\bar{x} = x T$:

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

 $\overline{A}(x) = [A(x)T]_T \overline{x}_0(\varepsilon) = x_0(\varepsilon)T \overline{C}(\varepsilon) = [C(\varepsilon)]_T$

Mixed Observability Reduction

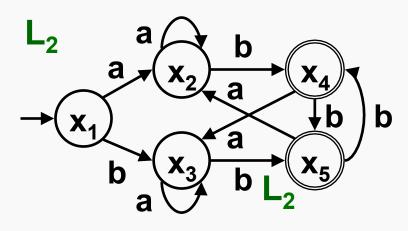


		4 (a	1)			A	\ (b)		$x_0(\epsilon$	2)	$C(\epsilon)$)
0									0	\[\begin{array}{c} 1 \\ 0 \end{array} \]		[0]	1
0	1	0	0	0		0	0	1	0	0		0	l
0	0	1	0	0)	0	0	0	1	0		0	l
0)	0	0	0	1	0		1	l
				0)	0	0	1	0	0			

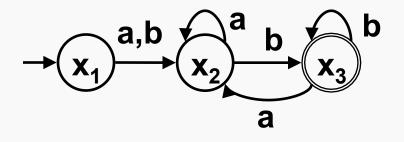
O	ε	b	a	b	aab	a b b	b a b	gad
X ₁	0	0	1	1	1	1	1	1
X ₂	0	1	1	1	1	1	1	1
X ₃	0	1	1	1	1	1	1	1
X ₄	1	1	1	1	1	1	1	1
X ₅	1	1	1	1	1	1	1	1

Define linear transf
$$\bar{x} = x T$$
:

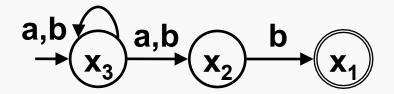
Original and Reduced Automata



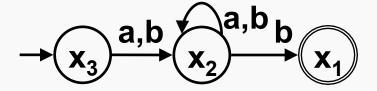
DFA L₂₁ by rows



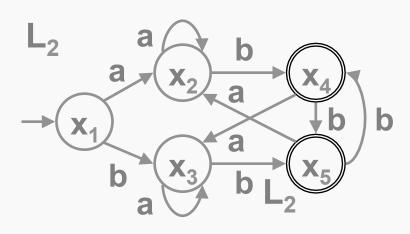
NFA L₂₂ by columns



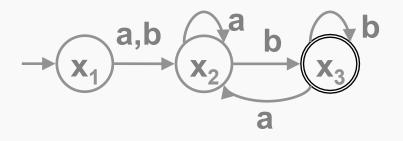
NFA L₂₃ mixed



Original and Reduced Automata



DFA L_{21} by rows



NFA L₂₂ by columns

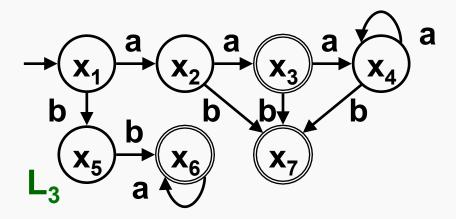
$$a,b$$
 x_3
 a,b
 x_2
 b
 x_1

NFA L_{23} mixed

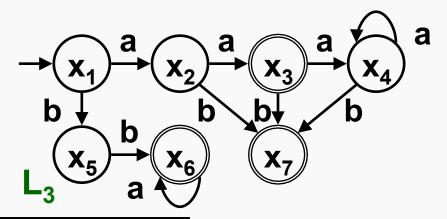
$$\rightarrow (x_3) \xrightarrow{a,b} (x_2) \xrightarrow{a,b} b (x_1)$$

Let
$$\bar{x} = x T$$
 in L_{21} where
Then $L_{22} = [\bar{A}_{21}, \bar{x}_{21,0}^t, \bar{C}_{21}]$
 $L_{23} = [\bar{A}'_{21}, \bar{x}'_{21,0}^t, \bar{C}'_{21}]$

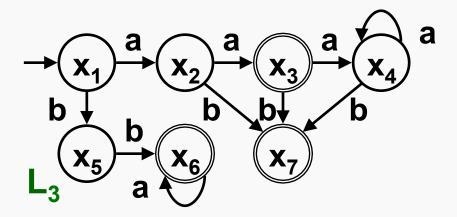
Let
$$\bar{\mathbf{x}} = \mathbf{x} \ \mathbf{T} \ \text{in L}_{21} \ \text{where}$$
Then $\mathbf{L}_{22} = [\bar{\mathbf{A}}_{21}, \bar{\mathbf{x}}_{21,0}^{\mathsf{t}}, \bar{\mathbf{C}}_{21}]$
 $\mathbf{L}_{23} = [\bar{\mathbf{A}}_{21}', \bar{\mathbf{x}}_{21,0}^{\mathsf{t}}, \bar{\mathbf{C}}_{21}']$
 $\mathbf{T} = \begin{bmatrix} 0 \ 0 \ 1 \ 0 \ 1 \ 1 \end{bmatrix} \quad \mathbf{T}' = \begin{bmatrix} 0 \ 0 \ 1 \ 0 \ 1 \ 0 \end{bmatrix}$



0	ε	а	b	a	b a	b	a a a
X ₁	0	0	0	1	0	1	0
X ₂	0	1	1	1	0	0	0
X ₃	1	0	1	1	0	0	0
X ₄	0	0	1	1	0	0	0
X ₅	0	0	1	0	0	0	0
X ₆	1	1	0	0	1	0	1
X ₇	1	0	0	0	0	0	0

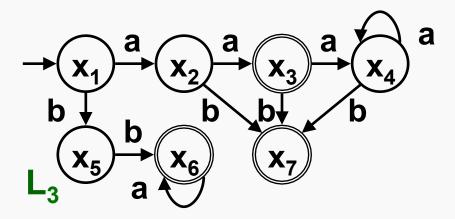


0	æ	а	b	ab	b a	مص	aaa
X ₁	0	0	0	1	0	1	0
X ₂	0	1	1	1	0	0	0
X ₃	1	0	1	1	0	0	0
X ₄	0	0	1	1	0	0	0
X ₅	0	0	1	0	1	0	0
X ₆	1	1	0	0	0	0	1
X ₇	4	0	0	0	0	0	0



0	3	а	b			b	a a a
X ₁	0	0	0	1	0	1	0
X ₂	0	1	1	1	0	0	0
X ₃	1	0	1	1	0	0	0
X ₄	0	0	1	1	0	0	0
X ₅	0	0	1			0	0
X ₆	1	1	0	0	0	0	1
X ₇	1	0	0	0	0	0	0

0	3	а	b	a b	b a	b	a a a
X ₁	0	0	0	1	0	1	0
X ₂	0	1	1	1	0	0	0
X ₃	1	0	1	1	0	0	0
X ₄	0	0	1	1	0	0	0
X ₅	0	0	1	0	1	0	0
X ₆	1	1	0	0	0	0	1
X ₇	1	0	0	0	0	0	0



0	3	а	b	b		b	a a a
X ₁	0	0	0	_ :	0	1	0
X ₂	0	1	1	1	0	0	0
X ₃	1	0	1	1	0	0	0
X ₄	0		1	1	0	0	0
X ₅	0	0	1	0	1	0	0
X ₆	1	- :	0		0	0	1
X ₇	1	0	0	0	0	0	0

0	3	а	b	a b	b a	b	a a
X ₁	0	0	0	1	0	1	0
X ₂	0	1	1	1	0	0	0
X_3	1	0	1	1	0	0	0
X ₄	0	0	1	1	0	0	0
X ₅	0	0	1	0	1	0	0
X ₆	1	1	0	0	0	0	1
X ₇	1	0	0	0	0	0	0

Observabilty Reduction

- Theorem (Cover): Finding a (possibly mixed) basis T for O_L is equivalent to finding a minimal cover for O_L.
 - either as its set basis cover or as its Karnaugh cover.
- Theorem (Complexity): Determining a cover T for O_L is NP-complete (set basis problem complexity).
- Theorem (Rank): The row (= column) rank of O_L is the size of the set cover T (size of Karnaugh cover).

Reachability: Dual of Observability

• Let L = [S,A,C] be an n-state automaton. It's output:

$$[y(0) \ y(1) \ ... \ y(n-1)]^t = C^t[x_0 \ A^tx_0 \ ... \ (A^t)^{n-1}x_0] = C^tR^t$$
 (3)
where x_0 is now a column vector.

L is reachable if C is uniquely determined by (3).

Reachability: Dual of Observability

Let L = [S,A,C] be an n-state automaton. It's output:

$$[y(0) y(1) ... y(n-1)]^{t} = C^{t}[x_{0} A^{t}x_{0} ... (A^{t})^{n-1}x_{0}] = C^{t}R^{t}$$
 (3)

L is reachable if C is uniquely determined by (3).

Example: the reachability matrix of L₁ is:

	$(A^t)^n X_0$	3	а	b	a	a b	b a	b
$R^{t} =$	X ₁	1		0		•	0	
	X ₂	0	1	0	1	0	0	0
	X ₃	0	0	1	0	0	0	1

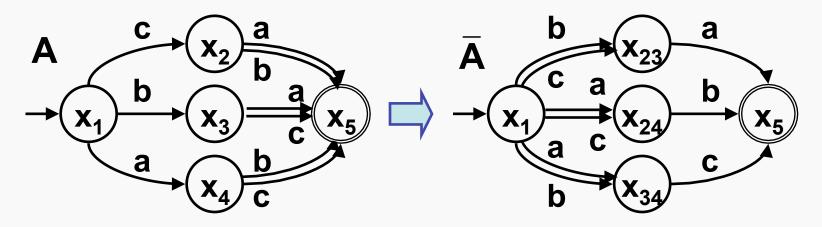
• Row basis $[x_1 \ x_2 \ x_3] = [x_0(\varepsilon) \ A^t x_0(a) \ A^t x_0(b)]$ col basis.

Observabilty, Reachability and More

- DFA Minimization: Is a particular case of observability reduction (single initial state requires distinctness only)
- NFA Determinization: Is a particular case of reachability transformation (take all distinct columns as "basis")
- Minimal automata: Are related by linear maps (but not by graph isomorphisms!). Better definition of minimality
- Other techniques: Are easily formalized in this setting: Pumping lemma, NFA to RE, Z-transforms, etc.

Arnold, Dicky & Nivat's Example Revisited

(Observability Reduction)



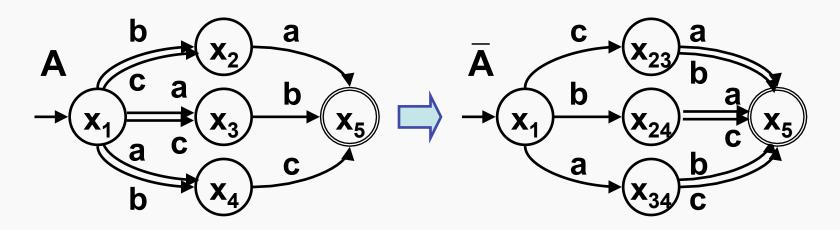
Define linear transf $\bar{x}^t = x^t T$:

$$T = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \overline{X}_{0}^{t}(\epsilon) = [C(\epsilon)]_{T}$$

$$\overline{C}(\epsilon) = [C(\epsilon)]_{T}$$

Arnold, Dicky & Nivat's Example Revisited

(Reachability Reduction)



Define linear transf $\bar{x} = x T$:

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \overline{X}_{0}(\varepsilon) = X_{0}(\varepsilon)T$$

$$\overline{C}(\varepsilon) = [C(\varepsilon)]_{T}$$

