{A} P {B} The partial correctness assertion does not require p to terminate. n n(n +1) B ni4n

n—1 k= n®—n
2 2

k=1 2

[A] P [B] The total correctness assertion requires p to terminate. k=1

i ‘A,E o 451‘ B A—nﬁa 4/5("\ P'SE‘] s E‘Jq’('al& ubna].'lj: » Soundness: if - {A} p { B} using Hoare rules then - {A} p { B}

“if a Hoare triple is proved to be valid using Hoare rules, theniitis a

. vﬁN] 5 62;3 Mplﬁ ARy v Ry s W-LJ valid Hoare triple”
\w‘q_ i Hom " “\} ,]31( » Completeness: if = {A} p {B} then I- {A} p { B} using Hoare rules.
: f 0 : [N uleA 18 [
l,fi" 60..“. [ é@ Si%}ﬂl@ﬂuﬁi :S" R 5311) 2 < d:‘/l; “any valid Hoare triple can be proved to be valid using Hoare rules”

Hoare rule of consequence:
Strengthen precon

Rule for Assignment

Weaken postcon {B[x/d]} x := a {B}

[Alskip {A] [truc} abort {B) [false] abort [B]

A=A {A}p{B} B =B
(A} p {B} {A} p1 {C} {C}p={B} {AnbYpi {B}Y {Anr-b}p{B}
p {A} pi:p= {B} {A} if b then p else p- {B}
Rule of sequence [A/\b/\f:tg],()[A/\f(fg] AAnb=1t>0
{Inb} p{l} [A] while b do p od [A A —b]

{1} while b do p od {/ A b}

> Ais weaker than Biff B = A.

where Ais an inductive
loop invariant
t € AExp is a loop variant:
- t positive before each iteration
- t decreases strictly with each iteration

“‘weaker” = “more states satisfying it" = “easier to satisfy”

-l is (fresh) auxiliary variable,
storing value of t before iteration

> Ais stronger than B iff A = B.
“stronger” = “less states satisfying it” = “harder to satisfy”
wip(x := & B) = B[x/a]
wip(skip, B) — B Theorem: {A} p {B} is valid if VC(p,B) A (A= wlp(p. B))

wip(abort, B) = true ~ wp(abort, B) = false

(1) Division
wip(p1; P2, B) = wip(ps, wip(p2, B))

wip(if b then p, else pz. B) = (b = wip(p1, B) A —b = wip(pz, B)) {x>0Ay>0}
quo :=0; rem:= x;
while y < rem do

rem:=rem—y; quo:= quo+ 1
od

wlp(while b do p od, B) = /, i 5’
where /is an inductive loop invariant. Wﬁl]ej’/ do
VC(x := a, B) = true X=x4+2%y, y=y+1

= <
VC of a sequence of S od ol ,‘cﬂ&a&]
VC(skip. B) = true assignments is "true" o, y=n} «EGA-—Q = (GG.Q A
VC(abort, B) = true S
( e Uiz EIBNE =S Invariant? Egc“‘lC %
VC(py; p2, B) = VC(p2, B) A VC(py, wip(p2, B)) 0<rempn0<ynx=>0 A
VvC(if b then p; else p:, B) = VC(pi, B) » VC(p2. B) «(Cav) 9‘["};';?“

VC(while bdo god.B) = (I »n-b)= B
A

C s
(I~ B) = wip(g, ) 'itu] = %tﬁj* &.Q\-%—‘-‘ e KE"‘] = xG s l":EZ -

57/67
A Consider the loop while b do p od.
ve(g. b A loop invariant A: An inductive loop invariant A:
vC(while bdo god. B) = (/1 ~b)= B > holds after each > holds before and after each
A iteration of the loop. iteration of the loop.
That is: {AA b} p {A}.
(Iab)=t>0
A Example: Consider the following IMP program:

X:=0;y:=0;n:=10;
while x < ndo
X =x+1y=y+x
VC(m | At < 1) od
where [ an inductive loop invariant, ¢ is a loop variant.

{(Inbat=t)=wp(@ IAl<h)

dx>5Y

forns % mtzt

(%>53Uxax+]

t=22<102t=10-2
t=2iz20Ai=i—-1—=t=i
t2z#0Az=z+12t==z
torx#EyAhy>0Az=c+1—-y—x=1
t=y<nAn=10Ay=y+1l=t=n-y
z#F0&z=xc—1thanz >0
s#y&r=zx+1thany>=z

2>0& z2z=2—-1thanz2>0

wenn n vorkommt als konstante in [k+1]
dann ist es kn in [k]

x < nisinductive invariantiffF {x < nAx <n} x:=x+1,y:=y+x{x<n}

{x+1<n}x:=x+1{x<n} {xgn}y::y+x{x§n}seq
x<nAx<n=x+1<n {x+1<nfx:=x+1y=y+x{x<n}
{x<nAax<nix:=x+1y=y+x{x<n}

conseq

So, x < nis inductive invariant.

The Hoare triple is not valid. For example, let o be a state with o(i) = Oand o(n) = —1. Then (1) o =i = 0,
(2) (o, while i < ndoi:=i-+1o0d) — o (because the loop is executed zero times) and (3) o [~ i = n.



CTL can be seen as a logic that is based on the compound temporal

operators AX, EX, AF, EF, AG, EG, AU, and EU. In fact, each of the operators *y is true now”
can be expressed in terms of the operators EX, EG, and EU: My o -t - - - -8 -
AX iy =-EX-p *i5 Is true in the neXt state”
EF ¢ = E[TrueU ¢] MrEXy _,.@:,_. L B . - -8 -
AGy =-EF-y
AF 0 = —EG 0 “iz will be true in the Future”
¥= ¥ MnrlEFy = = = —»{wj—» -
Alp U] =-E[~ U{~p A )] A~EG~) .
iz will be Globally true in the future”
The logic LTL only uses path formulas. This means that we restrict CTL* to  M.tk=6y (@ —E—E—E—E—0E—E—
disallow path guantification. . :
“iz will hold true Until 4 becomes true”
M, EgUy (v,—rl’w)a—rl“w},—;-@:—- —a —a( +—a

E1 If p € AP, then pis an LTL formula.

E2 If @ is an LTL formula, then -y, X, F i, and G ¢ are LTL formulas.
E3 If p and ¢ are LTL formulas, then ¢ Ay, @ WV, and p Uy are LTL

formulas.
P — Subformular: wenn neg dann
W= He P auch das pos (sonst nicht)

s If M = M’ then for every CTL* formula i,

MEp & MEe

® If M’ = M then for every ACTL* formula @,

A formula

to hold in a Kripke
Structure it only needs to
hold in the initial states.

bo=p Corollary
Wo=-p
¢, =EF-p P -P P
§, = EF-p EF-p EF-p
Does not have
@, = EGEF-p EGEF-p ﬂ;% a successor
U, = -EGEF-p -EGEF-p -EGEF-p
(1) M,;sk=p & pel(s), forpe AP
(2) M,sl=-p o Msoe

B MsEp,Vp, &
(4) Misk=p1Apy &

M;skEpiorMsE ¢,
M,sE ¢ and M,s = ¢,

(5 M,sEEY & there is a path 7 starting at state s such tnat
M,y

6) M,s =AYy & for every path 7 starting at state s we have
M, =y

(7) MnkEyp & sis the first state on path 7w and M,s = ¢

(8 MrmE-y o MrmEY

9 MrEY VY, & MrEyporM =y,

(10) M\t =y AY, & M rnEy,andM, =y,

(11) M, 7t =X = Mty

(12) M, t =Fa & there exists a k > 0 such that M, ¥ |= 4

(13) M, t =G < foralli>0O,M, ' =4

(14) M, =44 Uqp, & there exists a k > 0 such that M, 7% = 4,

and forall 0 <j < k,M, 10 }= 1),
Finally, we define |= over Kripke structure M as follows:

(15) M=y & forallse Sy, M,sE= ¢

MEg = MEy

Let  be an ACTL specification. If M < M’ and M |= ¢ then M |= .

K > Ks: Assume K; > K5 holds. Then, there is a simulation relation H € Sy x 5.
Now, consider state ¢3 (note, ¢3 is reachable from the initial state). In the simulation
relation, the only possible corresponding state in K; would be s4 (because of the
labeling). Due to the transition (t3,%o), the pair (to,s5) would have to be in the
simulation relation as well. Then, (¢,s6) and (fs, s¢) have to be in the simulation
relation as well. But, there is no corresponding transition for (¢1,¢y) starting in sg
and, therefore, (¢, s6) can’t be in the simulation relation. Therefore, H can’t exist
and K7 > K5 does not hold.

GFGp < FGp

For the second direction, assume K, 7 = FGp. Consequently, 3z > 0: K,7° £ Gp.
In order to show the left hand side, we have to show that Vi >0:35>i: K, 7/ £ Gp.
Let i > 0.

e Case 1: i <z. In this case set j := x. By assumption, I, 7% = Gp.
e Case 2: i > . In this case set j :=i. In order to show K, 7' = Gp, let k > i.
Given that K, 7% = Gp and k > 1> z, it follows that K, 7% = p.

. an arl; path in K.

™ Ea

Let K be a arb. Kripke structure and 7 = sp, s1,
Assume K, 7 = (Ga A Fb). Consequently, (1) Vi > 0:
and (2)3z > 0: K, 7* Eb

By semantics of A and (1) and (2) we can conclude K, 7
By semantics of V and (1) we can conclude Vi > 0: K, 7!
We need to show K, 7 |= (a Vv b)U(a Ab):

™ E=(bAa) (*)
E (aVb) (**)

‘M’ simulates M” is denoted by M' =M 1ot i, = (8,, 11, Ry. Ly) and Ky = (Sa. I, Ra, Ly).

(16) M=+ & foralls €Sy and all paths 7 startingat s, M, m =4 - By (*) we have 3z > 0: K. 7" = (a A b)
-By (*)wehave VO< j<z: K, 77 E(aVb})
Combining the later two we have by semantics of U K,

mE(avbU(anb)

X;lshnt. 4hue) alook ‘)j»‘)

To show the validity of {1 < n r = m xn}, we need to show that VC'(p,z = m*n) A ((1 < n) = -~
yof {1 <n}p{ } (p, )A (<) T e /

wlp(p,r = m * n))
We use the invariant = (y — 1) + m A y — 1 < n, and compute the weakest liberal precondition wip(p,

| x=t=2624 'mﬂﬁ P iy
m = n) and the verification condition VC(p, x = m * n).

7 el riza $a-dy /S
T = )

By the definition of weakest preconditions we have
VC(p, y>=n) = VC(x:=0,y:=1;while-loop, y>=n)
wlp(p,x = m*n) = wip(x := 0, wlp(y := 1; while y < n do g od,z = m xn))

- wlp(.r =0, wlp(y =1, wlp(w]n']e y<ndogod,z=m= n))) =VC(x:=0; y:=1, wp(while-loop, y>=n)) \ VC(while-loop, y>=n)

= wip(z .= 0,wlp(y =L,z = (y - *mAy—1<n)) = VC(x:=0; y:-1, loop-invariant) [\ VC(while-loop, y>=n)
wip(z =0,z =(1—-1)*xmA (1 —-1) <n)
0<n

= VC(while-loop, y>=n)

A Kripke structure is a five-tuple M = (S, So, R, AP, L) where

As 1 < nimplies 0 < n, we have that the implication (1 < n) = wip(p, z = m = n) evaluates to true. « Sis a (finite) set of states S

It remains to show that VC(p, z = m = n) evaluates to true as well. We proceed by applying the definition ¢ So S is the set of initial states

of verification conditions and computing VC'(p, z = m * n). * RCSxSis a transition relation such that ¥s3s': (s,s") € R
* AP is some finite set of atomic propositions
VC(p,x =mxn) =VC(y:=q;whiley <ndogod,z =mxn) o L:S— 2*Pisais a function that labels each state with the set of those
AVC(z:=0,wlp(y = 1;while y < ndoqod,r =m=xn)) atomic propositions that are true in that state
=VC(while y <ndogod,z =mx*n) AVC(y:= 1, wip(while y < ndo god,z = m xn)) Atrue
=VC(while y < ndogod,z =mxn)A true

Thus, VC(p, x = mxn) = VC(while y < ndo g od, z = m xn). By the definition of verification condition
for the while loop, we have



The following function f provides a polynomial-time many-one reduction

We provide a polynomial time many-one reduction from 1-IN-3-SAT. from IDS to SAT: for a directed graph G = (V, E), let

Assume an arbitrary instance _
o F6)= A (V-x)A Abev \V x) complete graph =

= /\ ViVl (u,v)€E vev (u,v)eE alle knoten sind mit

i=1

of 1-IN-3-SAT over variables V = {v,..., Vn}. We construct an instance We show: G is a yes-instance of IDS <= f(G) is a yes-instance of SAT.  gllen verbunden

C of EXACT-HITTING-SET by setting (=): Suppose G is a yes-instance of IDS. |.e., there exists a set S C V

ey 2 satisfying (1) and (2). We construct a truth assigment T as follows:
¢ ={{v,~v} \1717"}U'{{/i1-’i2-’i3'}|17’7")' T(x,) = true for v € S; T(x,) = false for ve V\ S. conected graph =
We show the correctness of the reduction by proving that We first show that ¢ = /\(u.v)eE(_‘Xu V —x,) evaluates to true under T. alle knoten sind
@ is a positive instance of 1-IN-3-SAT <= C is a positive instance of EHS  Let (u,v) € E. If u ¢ S, (—x, V —x,) evalutes to true under T since —x,

is then true under T. If u € S, by (1) v ¢ S, and thus (—x, V -x,) miteinander

=) Assume ¢ is a positive instance of 1-IN-3-SAT. Then there exists a b K :
(=) ? P evalutes to true under T as well (since —x, is then true under T). Since

truth assignment T over variables V that satisfies exactly one literal in this holds for all edges, ¢y evalutes to true under T verhiinden
each clause of . Let
. . Now conside = \ .Letve V. IfveSthen
S ={v| T assigns true to v} U {-v | T assigns false to v}. » ider ¢2 = Avev (6 V Viuee %) B e P
XV v(u.v)éEX“ evalutes to true under T thanks to the first disjunct x,. A
We have to show |SN C| =1, for each C € C. This holds for all sets Ifvés, by (2) there exists (u,v) € E with u € S. Then the NP-hard [ coNP-hard
{\/j,ﬂ\g} since T is a truth-as&gnment..l,e. assigns either true or félse to corresponding disjunct in \/(u.v)EEXU evalutes to true under T. Since
vj, and it holds for all sets {/i1, /i2, li3} since T makes exactly one literal this holds for all vertices, ¢, evalutes to true under T.

true in each clause /i1 V [ V Ij3.

(=) Assume C is a postive instance of EHS. Then there exists a set S (<=): Suppose f(G) is a yes-instance of SAT. Hence, there exists a
such that |[SN C| =1, for each C € C. Define now an assignment T truth-assignment T to the variables in f(G) making this formula true.
which assigns (for each j s.t. 1 < j < n) true to variable v; if v; € S and We construct a set S = {ve V| T(x) = true} and show that S
false to v; if -v; € S. In fact, T is a truth-assignment, because either v; satisfies (1) and (2).

or = is in S by definition of EHS and sets {v;, -} in C. Moreover, T (1): Towards a contradiction suppose (1) is violated by S, i.e. there

satisfies exactly one literal per clause in ¢ since S hits exactly one exists (u, v) € E such that u, v € S. By construction P QP=Q P q P—=q
element in sets {/;1, iz, li3}. Thus ¢ is a positive instance of 1-IN-3-SAT  T(x,) = T(x,) = true. But then the conjunct (=x, V =xy) in the first rlrl 7
part of the formula f(G) evalutes to false under T and thus T cannot T T T
Implication Law: (p—¢q) = (-pVq). make f(G) true. Contradiction. Hence, S satisfies (1). T|F| F T F F
Distributive Laws: (pV (¢ Ar ) =((pva)AlpVr)), (2): Towards a contradiction suppose (2) is violated by S, i.e. there FlT| T F T F
(p/\ qVvr ) = ((p/\q) (p/\T)). exists a vertex v € V such that v ¢ S and for aII(u,Iv)eE, u¢S. By Flel T F F T
a5 Moteany T ( v ) (_‘ A ) construction, we have T(x,) = false and, for all u with (u,v) € E,
o & W PV.g D q T(xy) = false. Since f(G) has as a conjunct x, V \/(u Ve Xu, this both directions: 4 diff o
(p A q) (—|p \Vi ﬂq) A m prove both directions; 4 different options:
. subformula then evaluates to false under T and so does f(G). o pos. instance of A = pos. instance of B:
Absorption Laws: (pV (pAq)) = Contradiction. Hence, S satisfies (2). ios. instnceTor B s pos. Fistanicercr
(p AlpV Q)) =D Our reduction shows NP-membership of 1DS. e pos. instance of A = pos. instance of B;

, e 3 neg. instance of A = neg. instance of B;
We provide a polynomial time reduction from 3-COLORABILITY.

g ; Provide a reduction from 2-COLORABILITY (2COL) to ® neg. instance of B => neg. instance of A;
Assume an arbitrary instance G of 3-COLORABILITY. We construct an 3-COLORABILITY (3COL), and prove that your reduction is correct. pos. instance of B => pos. instance of A;
instance (G, G’) of 3COL-UNCOL by taking G’ to be a fixed graph that Given this reduction and the fact that 3COL is NP-complete, what can * neg. instance of B = neg. instance of A;
is not 3-colorable, e.g. the complete graph Kj (clique with 4 vertices). It be said about the complexity of 2COL? neg. instance of A = neg. instance of B;

remains to show the correctness of the reduction.

Assume G is a positive instance of 3-COLORABILITY. Then for the
instance (G, G’) the answer to the question in the definition of
3COL-UNCOL is “yes" since G’ is not 3-colorable by definition. Hence,
(G, G’) is a positive instance of 3COL-UNCOL.

Assume an arbitrary instance G = (V, E) of 2COL. We create a new
graph G’ = (V' E’), where

m V' =V U{V'} where v is a fresh vertex, and

m E'=EU{[v,V]|veV}
Intuitively, we add to G a new vertex v/ and connect it to each original

Assume (G, G') is a positive instance of 3COL-UNCOL. Then G is vertex of G.
3-colorable and G’ is not 3-colorable, thus G is a positive instance of We show that G is a positive instance of 2COL iff G’ is a positive
3-COLORABILITY. instance of 3COL.

m Suppose G can be properly colored with 2 colors (i.e., with 1 and 2).
Then the existing coloring can be extended to G’ by coloring v/ with
the additionally available color 3.

Suppose G’ can be properly colored with 3 colors. Since v/ has an

Membership: By providing a dual reduction from UNCOL to
3COL-UNCOL, we observe that 3COL-UNCOL is not only NP-hard but
also coNP-hard. Thus unless NP=coNP the problem cannot be

i - = 0a1
contained in NP. edge to every original node of G, all the original nodes must be i
NP-hardness: We provide a polynomial-time reduction from 3COL. L¢ properly colored with 2 colors only. It follows that G is 2-colorable. Cs
G = (V, E) be an arbitrary instance of 3COL. We construct an instance E :
1 ¢* Formeln: = 0a
G’ = (V',E’) of 3COL-NT by setting V' = {v,v},v? | v € V} and 4 : ' iz i ; i
E' = EU{[v,v!],[v},v?], [v.v2]}. By definition, each such G’ is a dashed line = equality; solid line = inequality
non-terminal graph thus the reduction yields the correct objects for the 1) umformen x5!=x6 in -e56 etc und aufzeichnen 9 =082
problem 3COL-NT. We next show the correctness of the reduction. 2) remove all pure literals not part of f=1a2
fASSUf"e Gisa P;SitiVe ilnstarjce of13(2lOL. 'Il;hehn there exists a fu’f‘CtIO" I contradictional cycles (only 1 solid edge in cycle) ez
[OMy yertoesiin Weto e il {0’,, ” }, such that ju(v) # p(vz) for Ay 3) vereinfachte formel anschreiben + aufzeichnen
edge [v1, vo] € E. Consider now p* : V' — {0,1,2} defined as follows: S f o i :
4) alle linien dick machen und linien einzeichnen res(Cq,Cs,e) =(cV gV —d)
for each v € V, let p*(v) = p(v) and p*(v') = (u(v) + i) mod 3. so dass es nur mehr 3ecke gibt res(Ry, Co,d) =(eV gV g)
We have to show that for any [x,y] € E’, u*(x) # p*(y). We have the 5) Bt = (el and €2 — e3) and (€2 allfl 3 — el) and fae(Ry) =(c Vv g)
following cases: (1) x,y € V: then by construction and assumption that (e3 and el — e2) and... (for each dreieck)
G is 3-colorable, y*(x) # p*(y); otherwise x,y € {v, v}, v?} for some 6) aufschreiben vereinfachteFormel and B, (propositional logic
t \Prof 2
v € V; by definition of 1*, we then have p*(x) # p*(y) as well. Hence,
G’ is 3-colorable and thus a positive instance of 3COL-NT. (1) We provide a polynomial time reduction from HALTING. Assume an
arbitrary instance (I, /) of HALTING. We construct an instance
Decidable problems Undecidable problems dimacs - sat solver (N’, h, k) of DIFFERENT RUNTIME by setting
1) Tabelle umwandeln: -1 4 0 wird zu cl: (!x1 v x4) Boolean N’ (String S)
2) wenn da assigned "true” stetht dann 1@1 starten if S =1, then { while (true) do {} }
PRIME halting co-halting 3) aufzeichnen und neuen state starten wenn man else return M1(S) // M hardcoded
einen neuen pfeil von auBen her braucht h =1l and k # | an arbitrary string.
4) UIP: letzer knoten iiber den alle pfade zum conflict gehen We show the correctness of the reduction, i.e. (I,/) is a positive instance
Undec{dab\e of HALTING iff (N, /1, /) is a positive instance of DIFFERENT
Semi-decidable (there is no RUNTIME.
there is an alggrithm uppose (I1,/) is a positive instance of TING, then M halts on / in a
g algorithm) S / f HALTING, th |
finite number of steps. By definition I also halts on 4 =/ in a finite
number of steps, but 1" does not terminate on k. Hence, (I, I, /) is a
s A={1.4.7) This is very similar to Exercise 6 of the Block 1 Exercises: positive instance of DIFFERENT RUNTIME.
e B={1,4}% Sample solutions (Page 21). Think of the definition of NP: a Likewise, if (I, I)‘ |§? neg,atlve instance of HALTING, then I does not
e C={4,5 7} prablem is in NP if there is a non-deterministic TM that halt o /. E,;y definizion: [ then;also.does not. halton ;. and thus
. i terminates in the same number of steps than " does on /.
« D=(3, 5,6} (...). What happens when you apply this TM to instances of
+ E={2,3,6, 7} and a special case of the problem? — Proof by structural induction of the complexity of ¢
. F={2,7). Base case: Let ¢ = p with pe AP’
oS R il Faciact] . i I g By semantics of ACTL we have Vs € Sy : M, s |=p
en X*={1, 2, 5}is an exact hitting set, since each subset in S contains exactly one element in X*, As (by definition of M’) §" = S, S} = So, h" iy

L'(s)=L(s)NAP" wehave Vs’ € S : M' s Epea M p

B
7 e 7 e N 3 3 3 Same for ¢ = —p
e @ Implication step:
AnB AUB A\B i Tca Let M |= @A by semantics of A = M =pand M |= ¢
By IH: M’ |= ¢ and M’ |= ¢ by semantics of A > M' =AY



Assume there is a program [1j, such that:
o [1, takes two strings as input:
m I (the source code of a program)
m / (an input for the program IM)
e [ outputs:
m true if T terminates on /
m false if 1 does not terminate on /

My

We provide a reduction from co-HALTING, which is known to be
undecidable. Let (I, /) be an arbitrary instance of co-HALTING. We
build an instance M’ of ALL-FALSE by constructing I’ as follows:

String I’ (Int n)
return M;,,(M,/,n) // N and [ are 'hard-coded’ in M’

To prove the correctness of the reduction we have to show:

true (if M halts on /

false (if M doesn't halt on 1)

n
—

(M, 1) is a positive instance of co-HALTING < 1’ is a positive instance
of ALL-FALSE. N

(1) We can assume the availability of a decision procedure M, that does
the following:
M;ye takes as input a program I, a string /, and a natural number n.
Mine emulates the first n steps of the run of M on /. If I terminates
on | within n steps, then M, returns true. Otherwise, M, returns
false.
We now provide a reduction from HALTING. Let (M, /) be an arbitrary
instance of HALTING. We construct an instance " of DIFFERENT
OUTPUT as follows:

Boolean " (Int n)

return M (M./,n) // N and I are "hard-coded’ in N’

If (M, 1) is positive instance of HALTING, then M halts on / after n steps.
Hence, M'(n) # N’(n — 1). It follows that M’ is a positive instance of

“=" Assume (1, /) is a positive instance of co-HALTING, i.e. I does
not terminate on /. In particular, for any n, 1 does not terminate on /
within n steps. Hence, for any n, Min(M,/, n) = false by definition of
Mine and M’(n) = false by definition of ". That is, [’(n) = false for any
natural number n. Thus I’ is a positive instance of ALL-FALSE.

X <p Y - Y mind so schwer wie X
A<pB& BeNP=Ae NP
A<pB&BeP=AcP

“<" Assume [N’ is a positive instance of ALL-FALSE, i.e. '(n) = false ~NP-vollstindig: NP-hard + € NP
for all natural numbers n. By definition of I, M;,.(M, /, n) = false for all
n. That is, there is no number n such that M, (M, /, n) = true, i.e. such
that I terminates on / within n steps. Thus (I1,/) is a positive instance

of co-HALTING.

(1) We provide a many-one reduction from HALTING. Assume an
arbitrary instance (M, /) of HALTING. We construct an instance

(M4, My, ") of ALOH by setting My = 1, M, to a fixed program that runs
into an infinite loop, and /" = I.

We show the correctness of the reduction, i.e. (1, /) is a positive instance

of HALTING iff (My, My, I") is a positive instance of ALOH.

reduziert werden.

3-SAT

INSTANCE: Propositional formula ¢ in 3-CNF (i.e., CNF where each

clause consists of exactly 3 literals).
QUESTION: Is ¢ satisfiable?
HAMILTON-CYCLE

QUESTION: Does G have a Hamilton cycle?
i.e., a cycle visiting all vertices of G exactly once.

VALIDITY

INSTANCE: Propositional formula .
QUESTION: Is ¢ valid?
HAMILTON-PATH

INSTANCE: (directed or undirected) graph G = (V, E)

QUESTION: Does G have a Hamilton path?
i.e., a path visiting all vertices of G exactly once.

REACHABILITY

(=) Suppose (I, /) is a positive instance of HALTING, i.e. M =,

halts on | = /" in a finite number of steps. By definition, (My, My, /")
is a positive instance of ALOH.

(«=) Likewise, if (M, /) is a negative instance of HALTING, then

My = M does not halt on / = I”. Since M, does not halt on /' either
by construction, (My, My, /") is thus a negative instance of ALOH.

Let G = (V, E) be an arbitrary undirected graph, with V = {v1,...,v,}.
Then the instance ¢ of 2-SAT resulting from G is defined as follows:
06 = Ny, y1ee(xi V) A (=% V =xj). s .

) . S . e INSTANCE: A graph (V, E) and nodes u,v € V.
Wet dieuy fG2 |séla-\1805|t|ve TisiEiEe 6 240l Pig 158 [T QUESTION: Is there a path in the graph from u to v?
instance of 2- : B
—: Suppose G is a positive instance of 2COL. Hence, there is a color
assignment f : V — {0,1} such that f(v;) # f(v;) for all [v;, vj] € E.
To show that ¢ is satisfiable, we define a truth assignment T as
follows. For all i € {1,...,n},

nicht rekursiv aufzihlbar <

rekursiy aufzihibar &

entscheidbar:

EXPSPACE

EXPTIME

PSPACE

T(x;) = true if f(v;) =1 T(x;) = false if f(v;) = 0.

It remains to show that ¢ evaluates to true under T. Let [v;, vj] € E.
Since f is a proper 2-coloring of G, T(x;) # T(x;).
m T(x;) = true and T(x;) = false. Then trivially both clauses (x; V x;)
and (—x; VV —x;) evaluate to true under T.
m T(x;) = false and T(x;) = true. Again, both clauses (x; V x;) and
(=i V —x;) evaluate to true under T.

<=: Suppose @ is positive instance of 2-SAT. Then, there exists a
truth assignment T such that T(pg) = true. We define a color
assignment f : V — {0,1} as follows (for i € {1,...,n}):

@ Vertex Cover

@ Independent Set
f(vi) = 1if T(x;) = true f(vi) = 0if T(x;) = false.

It remains to show that f is a proper 2-coloring of G. Towards a
contradiction, suppose this is not the case, i.e. there exists [v;,v;] € E
with f(v;) = f(v;) = a (a € {0,1}). We proceed with the argument for
a =1 (the other case is analgous): by definition of f, we observe that
T(x;) = T(xj) = true. But then, conjunct (—x; V —x;) cannot be true
under T. Consequently, also ¢ cannot be true under T. A contradiction

to the assumption that T(pg) = true. INDEPENDENT SET
INSTANCE: Undirected graph G = (V, E) and integer K.

QUESTION: Does there exist an independent set | of size > K?
ie, I CV, st foralli,j € I the condition [i,j] & E holds?

VERTEX COVER

INSTANCE: Undirected graph G = (V, E) and integer K.

QUESTION: Does there exist a vertex cover N of size < K?

ie, NCV,st. forall [i,j] € E, either i € N or j € N or both.

CLIQUE

INSTANCE: Undirected graph G = (V, E) and integer K.

QUESTION: Does there exist a clique C of size > K?

ie, CCV, st foralli,je Cwithi#j [i,j] €E.
PROGRAM-EQUIVALENCE

JG)

colorable due to the given property. &

The reduction is defined as follows. Let (I, /) be an arbitrary instance of
HALTING. We build an instance (', n) of REACHABLE-CODE as
follows. We let " be defined as

String I’ (String S)
M(/); // N and [ are hardcoded, S is ignored
return 0;

We let n be the line number of “return 0;" in .
In other words, for an instance x = (I, /), the instance R(x) resulting

from the reduction is (M’, n). To prove the correctness of the reduction
we have to show:

(M, 1) is a positive instance of HALTING < (I, n) is a positive instance
of REACHABLE-CODE.
“=" Assume (I, /) is a positive instance of HALTING, i.e. 1 terminates
on /. Then the call (/) in program I’ terminates on any input S to I1".
Thus the statement “return 0;” is reached on any input to IM". Hence,
(M, n) is a positive instance of REACHABLE-CODE.

“<" Assume (I, n) is a positive instance of REACHABLE-CODE, i.e.
M’ has an input S on which it reaches the line number n. Since the code
of line n comes after the call M(/), it must be the case that I1 terminates
on [, i.e. (M,/) is a positive instance of HALTING.
1-IN-3-SAT
INSTANCE: Propositional formula ¢ in 3-CNF
QUESTION: Does there exist a satisfying truth assignment T on ¢, such that the 3 literals in each clause do not have the same truth value?
that in each clause, exactly one literal is true in 77 _JEACHABLE-CODE
SAME-OUTPUT
TGS A et T o T o . INSTANCE: Source code of a program [1, a number n of a line in M.
i str}"g’f" 1. M of programs that take a single string as input, - | JEGTION: Is there an input / for M such that the run of M on / will
QUESTION: Do MMy and M, behave the same on input /? That is, M, on F€ach the code on line n?
I and My on [ both return the same value or both do not terminate?

QUESTION: Are MMy and I, equivalent?

the same value or both do not terminate?

CORRECTNESS

a string, and a pair of strings 1, h.
QUESTION: Does I return l, when run on input /4 7?

INSTANCE: Propositional formula ¢ in 3-CNF

NP-hart: Jedes Problem in NP kann in poly Zeit auf dieses NP harte Problem

NP-vollstéindige Probleme = schwerste Probleme in NP

INSTANCE: (directed or undirected) graph G = (V, E)

(V' E') which were added during constru
(V. ') is therefor also a yes instance of
HALTING PROBLEM

INSTANCE: A (source code of) a SIMPLE program 1, an input string /.
QUESTION: Does the program [ terminate on input /?

INSTANCE: A pair My, M, of programs that take a single string as input.

That is, is it true that for all inputs /, My on / and I, on / both return

Not-all-equal SAT (NATI at least one is true, and at least one is false

QUESTION: Does there exist a satisfying truth assignment T on ¢, such
k-COLORABILITY (for fixed value k > 1)

INSTANCE: Undirected graph G = (V, E)

QUESTION: Does G have a k-coloring?
colors to each of the vertices in V such that any two vertices i, j
connected by an edge [i,j] € E do not have the same color?

DIFFERENT OUTPUT.

If (M, 1) is negative instance of HALTING, then M;y (M, /, k) returns false
for any k. Hence, M'(n;) = N’(ny) for any pair of integers ny, ny. It
follows that N’ is a negative instance of DIFFERENT QUTPUT.

AeNP& Be NP & A<p B & A= NP — compl = B = NP — compl
A<pB& B¢ NP & A= NP —comp= B=NP — hard

SAT
INSTANCE: Propositional formula .
QUESTION: Is ¢ satisfiable?

The reduction is defined as follows. Let (I, /1, k) be an arbitrary instance
of CORRECTNESS. We build an instance (1, /") of HALTING by
setting I’ =l and constructing N’ as follows:

String " (String S)
OUT =T(S); // Mis hardcoded in N’
if OUT = I, then return 0

else while True do {}

To prove the correctness of the reduction we have to show:

(N, h, b) is a positive instance of CORRECTNESS « (I, /') is a
positive instance of HALTING.

“=" Assume (I, h, k) is a positive instance of CORRECTNESS, i.e.
M returns h on input /. Then OUT = l, when / is input to I". Then
M’ terminates with output 0 on input /. Hence ([, /") is a positive
instance of HALTING.

“«<" Assume (I, I) is a positive instance of HALTING, i.e. [
terminates on /. Then the call M1(S) in program M’ terminates on

S = I". This means that the “if" statement is reached by M on input /’.
Since M’ terminates on /’, it must be the case that OUT = k. Hence, we
have the fact that I returns h on input /”, where I’ = |, by problem
reduction, i.e. ([, h, k) is a positive instance of CORRECTNESS.

We provide a polynomial-time reduction from 3SAT.

Let ¥ = A1 (ln V lio V I3) be an arbitrary instance of 3SAT We

construct an instance ¢ of RC3SAT defined as
@=9A(xVxVx)A(-xV-xV-x)

with x a fresh atom not occurring in 7).

To prove the correctness of the reduction we have to show:

1 is a positive instance of 3SAT < ¢ is a positive instance of RC3SAT.

“=" Let 9 be satisfiable and T be a satisfying truth-assignment for 7.

We extend T to T* by additionally assinging x to true. We observe that
¢ without the last clause (—x V —x V —x) evalutes to true under T* (since
T satisfies clauses 1..m of ¢ and setting x to true satisfies the remaining
additional clause x V x V x). Hence ¢ is a positive instance of RC3SAT.

“«<" Recall that ¢ consists of m clauses stemming from ) and two
additional clauses and assume ¢ is a positive instance of RC3SAT.
Hence, there exists j (1 < j < m+ 2) such that ¢~/ is satisfiable. By
definition of the additional clauses, j must be either m+ 1 or m + 2
(otherwise ¢~/ contains (x V x V x) A (=x V =x V —1x) as subformula and
would thus be unsatisfiable). It follows that ¢/ contains 1 as
subformula. Hence, 9 is satisfiable and thus a positive instance of 3SAT.

We know, that all threecolorable graphs stay threecolorable by removing vertices. By removing all nodes from

o, we reeeive the previc aph which is then also three

-COL

Clique: Subgraph wo alle knoten

Adominating mjeinander verbunden sind=
set is a subset

S of vertices

such that e_VerywsmNcs A pair (G,
vertex not in S
is adjacent to le.is it the case that Gy is a positive instance of 3-COLORABILITY

vollstindiger Teilgraph

3COL-UNCOL
G5) of undirected graphs.
QUESTION: Is it true that Gy is 3-colorable and G, is not 3-colorable?

and G is a negative instance of 3-COLORABILITY?

some VerteX Mgy acT HITTING SET (EHS)

INSTANCE: A collection C of sets of elements.

QUESTION: Does there exist a set S of elements, such that for each
C e |SNC| =1, ie each set in C contains exactly one element
from S$?

INDEPENDENT DOMINATING SET (IDS)

INSTANCE: A directed graph G = (V, E).
QUESTION: Does there exists a set S C V of vertices, such that

INSTANCE: Source code for a program I that takes a string and outputs (1) for each (u,v) € E, {u,v} £ S;

(2) for each v € V either v € S or there exists an (u,v) € E, such
that u € S.

ALL-HALTING

INSTANCE: A program 1 that takes a single string as input.
QUESTION: Does I halt on all input strings /?

i.e., an assignment of one of k



