Examination for "Logic and Computability" July 9, 2014 — 4th Exam for WS13/14 Matrikelnummer FAMILY NAME First Name

Task 1:

Prove or provide a counter example for the following statment:

• $Q(x) \to \forall x P(x)$ is logically equivalent to $\forall x (Q(x) \to P(x))$

Task 2:

Provide a formal proof of the following statement in the classical sequent calculus LK:

• $\{ \forall x (A(x) \to B(x)), \forall x A(x) \} \models \forall x B(x)$

Is your proof also a valid LJ-proof?

Task 3:

If I is a recursive set and J is recursively enumerable, what can be said about

 $I \setminus J = \{x \mid x \in I \text{ and } x \notin J\}$ in the following cases:

- (a) $J = \emptyset$,
- (b) J is recursive,
- (c) I is finite,
- (d) J is infinite and not recursive.

Task 4:

Compute all Robinson-Resolvents of the two clauses $\neg p(x, g(y))$ and $p(y, z) \lor p(g(x), y)$.

Task 5

Prove or refute: $(A \land \neg \Box B) \lor (\Diamond \neg B \to \neg A)$ is valid in every Kripke frame.

Task 6

Suppose that the system Σ over some standard artithmetic language is sound and that for all Turingmachines M the statement 'M terminates on every input' can be expressed in Σ . Can one conclude that Σ is incomplete? Why and how?