Name:

You are allowed to use your own copy of the lecture notes, a formulary and a calculator. Any other documents, especially pre-calculated examples, are forbidden.

Problem 1 (13 points) Let us consider the following system model

$$
\underline{Y}=\underline{\underline{W}} \underline{X}+\underline{V},
$$

where \underline{Y} is the observed random vector and $\underline{X}=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right)^{T}$ is the random vector we would like to estimate, with $\sigma_{X_{1}}^{2}=\sigma_{X_{2}}^{2}=4, R_{X_{1}, X_{2}}=2$, and $\underline{\mu}_{\underline{X}}=\left(\begin{array}{ll}1.5 & 1.5\end{array}\right)^{T}$. Further assume that $\underline{V}=\left(\begin{array}{ll}V_{1} & V_{2}\end{array}\right)^{T}$ is a zero-mean noise vector with $\sigma_{V_{1}}^{2}=\sigma_{V_{2}}^{2}=1.5, R_{V_{1}, V_{2}}=1$ and $\underline{\underline{R}}_{\underline{X}, \underline{V}}=0$. The constant matrix $\underline{\underline{W}}$ is given by

$$
\underline{\underline{W}}=\left(\begin{array}{cc}
2 & 1.5 \\
1.5 & 2
\end{array}\right) .
$$

a) Are \underline{X} and \underline{V} uncorrelated? Justify your answer.
b) Find the homogeneous LMMSE estimator for estimating \underline{X} from the observed random vector \underline{Y}.
c) Find the corresponding MMSE.

Problem 2 (13 points) Let $X[n]$ and $Y[n]$ be two jointly wide-sense stationary (WSS), complex-valued, correlated processes. Consider two new random processes $W[n]=X[n]+Y[n]$ and $Z[n]=X[n]-Y[n]$.
a) Are $W[n]$ and $Z[n]$ individually WSS? Are $W[n]$ and $Z[n]$ jointly WSS? Justify your answers.
b) Assume that $X[n]$ and $Y[n]$ are zero-mean. Calculate the cross-correlation coefficients $\rho_{W, Z}[m]=c_{W, Z}[m] /\left(\sigma_{W} \sigma_{Z}\right)$ and $\rho_{W, X}[m]=c_{W, X}[m] /\left(\sigma_{W} \sigma_{X}\right)$.
c) Assume that $X[n]$ and $Y[n]$ are statistically independent. Is $U[n]=$ $X[n] Y[n]^{*}$ WSS? Justify your answer.

Problem 3 (23 points) Consider the joint probability density function (pdf)

$$
f_{X, Y}(x, y)= \begin{cases}K, & x^{2}+y^{2} \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

The random variables X and Y are mapped onto two new random variables Z and R as shown in Fig. 1.

Figure 1: Relation between random variables X, Y, R, and Z.
a) Sketch the joint pdf $f_{X, Y}(x, y)$ and calculate the constant K.
b) Calculate the expectations $E\{R\}$ and $E\left\{R^{2}\right\}$.
c) Calculate the probability $\mathrm{P}\left\{X^{2}+Y^{2}<1 / 2\right\}$.
d) Calculate the marginal pdfs $f_{X}(x)$ and $f_{Z}(z)$.
e) Calculate the mixed moments $m_{X Y}^{(1,1)}$ and $m_{X Z}^{(1,1)}$.
f) Are X and Y uncorrelated and/or statistically independent? Justify your answer.

Hints:

- $\int_{0}^{1} \sqrt{1-u^{2}} d u=\frac{\pi}{4}$
- Conversion between cartesian coordinates and polar coordinates: $d x d y=r d r d \phi$

Problem 4 (21 points) Consider a Gaussian distributed random variable $A \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and a discrete random variable $B \in\{-1,1\}$ with $\mathrm{P}\{B=$ $1\}=\mathrm{P}\{B=-1\}=1 / 2$, i.e., $p_{B}(b)=1 / 2[\delta(b-1)+\delta(b+1)]$. The random variables A and B are statistically independent.
a) Calculate the joint probability density function (pdf) $f_{A, W}(a, w)$ for $W=A B$.
b) Calculate the marginal pdf $f_{W}(w)$.
c) Find out whether W and A are statistically independent and/or uncorrelated and/or orthogonal. Justify your answer.
d) Repeat subtasks a) - c) for the case:
A is a discrete random variable with probability $\mathrm{P}\{A=1\}=\mathrm{P}\{A=$ $-1\}=1 / 2$ and B is a Gaussian distributed random variable with $\mathcal{N}\left(0, \sigma^{2}\right)$.

