Y Informatics

Advanced Computer Architecture
D4 —High Level Synthesis (HLS) — /O and Loop Optimizations

Daniel Mueller-Gritschneder

D4-1 1/0 Scheduling

V1-0 ACA

Register Interface

» Data ist stored in Registers in the Interface (e.g. adressable via bus)

* Read/Write operations can be scheduled concurrently with zero delay

A — Data path
D Q f——p ——[>

En

BusDatalN ol Clk Rin2 R

BusDataO

- e

Mux,1

BusAdr t

BusCtrl IF FSM t Control Unit
< ; < j¢

HW Module Interface

V1-0 ACA 3

Register Interface

* Example: Read/Write operations scheduled implicitly.

C-Code section
int binomial (int a, int Db) {

int c=a+b;
c=c*c; Vo
return c;

- Data path

—0 o | >——[>a v2 (%)

En

clk U3
— L}DRbQ _>[:>_>:> b @

En

&

HW Module Interface

V1-0 ACA 4

Array Register Interface

V1-0

* Array is stored in registers in the interface (e.g. adressable via bus)

* Read/Write operations can be scheduled concurrently with zero delay

* Example:

C-Code section

int acc(int af4]) {
cl= ajf0l+all];
int c2= al[2]+al3];

int c=cl+c?2;

return c;

2\

BusDatalN
»F

N

R1

En
D Clk

R2

En
Clk

N7

Data path

> al0]

[>a[1]

ACA

Array FIFO Interface

* Array is stored in FIFO buffer in the interface (e.g. adressable via bus)
* Read/Write operations can be scheduled only sequencially with zero delay
* Stalls possible if FIFO is empty

* Example:

C-Code section

int acc(int a[4]) {
cl= ajf0l+all];
int c2= al2]+al[3];
int c=cl+c2;
return c;
}
SueDatalN Data path
usData
> In FIFO OUL [y >—>{>a[]
Full : Empty
WTrEn ReadEn
v T Clk ‘_‘
V1o ACA

SRAM buffers

On chip buffers using SRAM cells (different from flip-flops)
e Single-port SRAM

* Only one port to read or write

Single port
* Dual-port SRAM —>| W SRAM
. h R en
e Two ports to read or write] Adar WR
» Cannot read/write same location on both ports at same time

* True dual port SRAM: Can read same location on both ports, writes or read/write still needs to be abitrated

* Timing
* Return data either in same (zero delay) —
. . ual por
or next clock cycle (pipelined) —| W1 SRAN‘,’ enl
R1 WR1
> w2 en2
=] R2
WR2
P! Addr2

V1-0 ACA 7

Input Array Memory Interface

* Array is stored in RAM block in the interface (e.g. adressable via bus)

* Read/Write operations can be scheduled only one per cycle to diff. address

Read a[0] A
int c2= al[ll+al3];
int c=cl*c2;

return c;
} © :
Read a[3]
Data path e
>> W1 RAM R2 _-—>[:>_>[>a[] °
—<

r Addrl Addr2 4——<:]

C-Code section
int acc(int af4]) {
cl= ajl0l+al2];

V1-0 ACA 8

Input/Output Array Memory Interface

* Array is stored in RAM block in the interface (e.g. adressable via bus)

* Dual-port: Read/Write operations (R1+W1/R2+W2) can be scheduled only one per cycle
and port 1 and port 2 need different addresses

* True dual-port: Read operations (R1/R2) can read same address in parallel

Data path

w1 RAM R2 <_'_<:] out(]
R1 w2 S| >in]]
f—<

I—» RIW1Addr Row2Addr 4_<]

V1-0 ACA 9

Ping Pong Array Memory Interface

* One RAM for input one RAM for output

» Switch/overlap between phases (ping pong scheme)

» All ports can be kept busy if read/writes from two different execution runs overlap
(high utilization of memory ports).

=

y ¥

W1 RAM1I W2 |e=
\ R1 R2 =
3 --—»| Addr1 Addr2 <=
=
—|w1 RAM2 W2 |e= «
N R1 R2 = »
% Ht—p| Addr1 Addr2 |e= «
p=
| <
C
x

V1-0

ACA

\ 4

|

/o \\ mux / \ mux /

W1 RAM1

R1

Addrl

W2

R2

Addr2

L2

W1 RAM2

R1

Addr1l

w2

R2

Addr2

Tt

A

10

V1-0

D4-2 Control Flow and Loop Scheduling

ACA

11

Combining Schedules of SGUs

* Algorithms find schedule for a single sequencing graph unit
(SGU).

e Hierarchy nodes (CALL, BR, LOOP) represent a SGU.

* Schedule for complete sequencing graph is found by:
* Compute schedule for SGU on lowest level of hierarchy first.

* Extract execution time of hierarchy nodes from latency of schedule of
their corresponding SGUs.

* Schedule top level SGU with hierarchy node.

e Shift start time of schedule of lower level SGU to start time of
corresponding hierarchy node.

* Schedule can be data dependent or independent.

V1-0 ACA 12

Execution time of hierarchy nodes

Usually only support for data-independent schedule

CALL node: Execution time equals to latency of schedule of
corresponding SGU in the lower hierarchy.

BR node (branch): Execution time equals to maximal latency of all
corresponding SGUs in the lower hierarchy.

LOOP node:

* Requirement: Fixed number of loop iterations

* Execution delay equals latency of SGU of lower hierarchy times number of loop
iterations.

V1-0 ACA 13

Execution time of hierarchy nodes

V1-0

* Example: Goertzel algorithm NOP

Bl:

s prevl :=
S _prev2z :=
i:=0

tl := 6.28
f := tl * freq
param f

t2 := call cos,1
coeff:=2.0*t2

o O
o O

B2:

t3:= coeff * s prevl
td:= x[1]

tS5 := t4 - s prev2

8 s= €3 + €5

s_prev2 := s prevl

s prevl := s

i:=i+1

if i < 64 goto B2

B3:

t6:= s prevl * s prevl
t7:= s prev2 * s prev2
t8:= s prevl * s prev2
t9:= t8 * coeff

tl1l0:= te+t7

power:= tl10 - t9
return power

return

Nop) SGU1

—

ACA

14

Execution time of hierarchy nodes

* Example: Goertzel-Algorithm
* ASAP Schedule

e Operationdelays: | .

* 0O clock cycles for :=
(Both := merged to allow scheduling in
same cycles)

* 1 clock cycles for -,+,incr,>,read
* 2 clock cycles for *

* Latency Ay ;=3

V1-0 ACA 15

Execution time of hierarchy nodes

 Example: Goertzel algorithm NOP
* ASAP Algorithm
* Execution delays: CC1-2 ((=)\x) (=)=
* 0 cycles for := CC3 """ _C_AL_L_ """"""
e 1cyclefor -,+,incr> VT /[
» 2 cycle for * CC4-5 3
e CALLnode: T e
CC 6-CC197 | Loop
e 1 cycle for cos
* Lookup table cc19s8-cc199) () (*
e LOOP node: e N Y
* 64 loop iterations CC200-CC201 © * v
* Asgus=3 -
* 3*%64=192 cycles CC 202
return
CC 203 NOP

V1-0 ACA 16

Scheduling Do-all Loops

* Example:

C-Code section
void loopex (int* a,int* Db)
{

for (int 1=0;1<20;i++)

bli]l=ali]l*ali]+ali];

}

Three-address code

loopex:

1:=0

Bl:tl:=al[i]
t2:=tl*tl
t3:=tl+t2
b[i]:=t3
i=i+1
if (1<20) goto Bl

V1-0 ACA 17

Scheduling Do-all Loops

V1-0

* Apply tree-height reduction (THR)

Three-address code

loopex:

1i:=0

Bl:tl:=a[i]
t2:=tl1*tl
t3:=t1l+t2
b[i]:=t3
i=i+1

if (i<20) goto Bl

Three-address code with THR

loopex:

i:=0

Bl:tl:=1 //THR
t2:=a[tl]
t3:=t2*t2
td:=t2+t3
b[tl]:=t4
i=i+1

if (i<20) goto Bl

ACA

18

Sequential Loop Schedule

Iteration 1

* Loop iterations scheduled after each other CCl __
* 4 cycles*20=80 cycles cc2
CC3
CC4
Three-address code cCs Iteration 2
1:=0
Bl:tl:=1i //THR
t2:=a[tl]
t3:=t2*t2 | TTTTTTTTTTTTTTTTTTTTTommmomoosoo e
t4:=t2+t3 CC6
Bbltl]:=td |
i=i+1
if (i<20) goto BI < X
ccs
CC9

V1-0 ACA

Full Loop Unrolling

Loop iterator and condition removed: Full parallism

Requires many resources.

Scheduling with known methods.

4 cycles

C-Code section
void loopex(int a[20],int b[20])

b[19]=a[l1l9]*a[l1l9]1+all9];
}

Three-address code

tl:=a[0]
t2:=t1*tl
t3:=tl+t2
b[0]:=t3
td:=a[l]
th:=t4*t4

V1-0 ACA 20

Partial Unrolled Loops

[teration 1
 Unroll factor =2

* Two loop iterations scheduled in parallel

* 5cycles * 10 = 50 cycles cc1
CC2
Three-address code _mf?? __________
1:=0
Bl:tl:=1 //THR CC4a
t2:=i+1 //THR | ---------
t3:=a[tl] ccs
td:=t3*t3
t5:=t4+t3 | TN

bltl]:=tb

to:=a[t2] Ccco
t7:=t6*t6
t8:=t7+te | N
b[t2]:=t8
i=i+2 7
if (1<20) goto Bl | = —--mmmmmmmmm
CC8
ACA

V1-0

Loop Pipelining

* Execution of loop iteration starts before last loop iteration ended

* Initialization Interval T, is delay between start of iterations

* Forloop pipelining | 7,< Agc00p

* Start time of nodes for different iterations k,k+1: | 0V = t®+T,

* Latency of Loop Node|d,,,, = T, #iterations + (Asgy.00p- 1))

* Example:

e N2 Y

V1-0 ACA 22

Pipelined Loop Schedule

Iteration 1

* Loop iterations scheduled with 7/ =1
cc1

* 1cycle * 20 + 4 cycles — 1 cycle = 23 cycles

Iteration 2

Three-address code
i:=0 CC2
Bl:tl:=i //THR
t2:=al[tl]
t3:=t2*t2
td:=t2+t3
b[tl]:=t4
i=i+1
if (i<20) goto Bl

Iteration 3

ACA

V1-0 23

Scheduling Do-accross Loops

* Loop-carried dependencies: Data dependencies between loop iterations

* Example: Goertzel Algorithmus

lteration X lteration X+1

B2: t3:= coeff * s _prevl

td:= x[1i]

t5 := t4 - s_prev2

s = t3 + t5

s_prev2 := s_prevl

s_prevl := s

i:=1i+1

if 1 < 64 goto B2

Loop-carried dependencies

V1-0 ACA 24

SGU with Loop-Carried Dependencies

GV, Ey
Es={e,=(v,v): i,j=K...S}

Edge weight: 6(e;) = & ((vi,vj)) =wy 8:E; > 7" ={0,1,2..}

* Wg: Number of iterations the loop-carried dependency crosses

* Wg=0: Dep. In same iteratinos (as in standard SGU)

SGU not an directed acyclic graph (DAG) anymore

Example: Goertzel Algorithmus

B2: t3:= coeff * s prevl
td:= x[1i]
t5 := t4 - s_prev2
s = t3 + t5
s _prev2 := s prevl
s _prevl := s
1:=i+1
if i < 64 goto B2

V1-0 ACA 25

Constraints for Loop-Carried Dependencies

* Loop carry-dependencies lead to additional constraints

For ¢,=(v,v;) with w;>0: tj(HW") = tl-(l) + d;

Operation j in iteration (/+wk) may only start after
operation i in iteration (/) finished.

* Example: Goertzel Algorithmus
(D 5 1Oy g,
(D 5 10 4 g,

D) o L@
Lo =ty +do All others 0

tD >t 4 q,

V1-0 ACA 26

Pipelining do-across loops

* Constraints for pipelining

For e,=(v,v;) with w;>0 tj(HWk) > tl-(l) + d;

For pipelining:

Constraint for loop-carry dep

* Example: Goertzel Algorithmus

t + 1, =tV + do
All others O
t + 1, 2 tP + dg
tV + T, >t + do

tV+1, 2P +d,

V1-0 ACA 27

Pipelining do-across loops

* Example: Scheduled Loop of Goertzel Algorithmus
t + 1, =t + do

ALAP Schedul
tV + T, >t + de chedt®
t + T, > t5” + do

tY+1, >0 +d,

Assignment with zero
execution time d,=d,=0 ts=1y=3

24T, 24 mp T, =2

2+ T, >3 t=4

3+7T, >4
1+T,23 =T, =2

Scheduling needs to find solution fulfilling all constraints and possible
Pivelining with T =2 also resource constraints. List scheduling not possible due to cycles!
P o 8 p SOLUTION: Scheduling with Integer Linear Programming (ILP)
possible

V1-0 ACA 28

Loop Implementation with Counter

* Loop iterator can be implemented as counter (Operation: Acc)

* Loop condition can be implemented as comparator (Operation: >)

C-Code section

3 0] ——p
void loopex(int a[20],int b[20]) (0]

—
(a[l] —— % g
all
for (int i=0;i<20;i++) =
bl[il=a[il*a[i]+al[i]; a[19] =——>
}
) bli]
Three-address code) T
1:=0
Bl:tl:=a[i]
t2:=tl*tl Counter i o >
t3:=t1+t2
b[i]:=t3 Clk Reset En Result
i—i+1 T T |
if (i<20) goto Bl

V1-0 ACA 29

Loop Implementation with Counter

* Doubling of interfaces for loop unrolling with factor 2

C-Code section (Unroll factor 2) 0]
void loopex (int a[20],int b[20]) A= il

{ a[2] — x
for (int i1=0;1<20;i=+2) { a[18] ———| =
bl[il=al[il*al[il+tali];
b[i+1]= al[it+l]*ali+l]+ali+1]; a1l ——IN_
=

\ 4

J a[3] ali+1]

»

}
Three-address code a[19] __’Xb[i+1]

1:=0

Bl:tl:=1 b[i]
t2:=1+1
t3:=a[tl]
td:=t3*t3
t5:=t4+t3
b[tl]:=t5 Counter i

to:=afte] Clk Reset En Result
t7:=t6*to6

il 1
b[t2]:=t8

i=1i+1

if (i<20) goto Bl

A

S

S

\ 4
\V/

V1-0 e 30

	Folie 1
	Folie 2
	Folie 3: Register Interface
	Folie 4: Register Interface
	Folie 5: Array Register Interface
	Folie 6: Array FIFO Interface
	Folie 7: SRAM buffers
	Folie 8: Input Array Memory Interface
	Folie 9: Input/Output Array Memory Interface
	Folie 10: Ping Pong Array Memory Interface
	Folie 11
	Folie 12: Combining Schedules of SGUs
	Folie 13: Execution time of hierarchy nodes
	Folie 14: Execution time of hierarchy nodes
	Folie 15: Execution time of hierarchy nodes
	Folie 16: Execution time of hierarchy nodes
	Folie 17: Scheduling Do-all Loops
	Folie 18: Scheduling Do-all Loops
	Folie 19: Sequential Loop Schedule
	Folie 20: Full Loop Unrolling
	Folie 21: Partial Unrolled Loops
	Folie 22: Loop Pipelining
	Folie 23: Pipelined Loop Schedule
	Folie 24: Scheduling Do-accross Loops
	Folie 25: SGU with Loop-Carried Dependencies
	Folie 26: Constraints for Loop-Carried Dependencies
	Folie 27: Pipelining do-across loops
	Folie 28: Pipelining do-across loops
	Folie 29: Loop Implementation with Counter
	Folie 30: Loop Implementation with Counter

