
D4 –High Level Synthesis (HLS) – I/O and Loop Optimizations

Advanced Computer Architecture

Daniel Mueller-Gritschneder



V1-0 ACA 2

D4-1 I/O Scheduling



• Data ist stored in Registers in the Interface (e.g. adressable via bus)

• Read/Write operations can be scheduled concurrently with zero delay

BusDataIN

Data path

HW Module Interface

Clk

D Q

En

Rin1

Clk

D Q

En

Rin2

…
…

BusDataO

BusAdr

BusCtrl

M
u

x,
1

IF FSM
Control Unit

ACA
V1-0 3

Register Interface



• Example: Read/Write operations scheduled implicitly.

Data path

HW Module Interface

Clk

D Q

En

Ra

Clk

D Q

En

Rb

a

b

c

C-Code section
int binomial(int a, int b) {

 int c=a+b;

         c=c*c;

 return c;

}

+



NOP

NOP

ACA
V1-0 4

Register Interface



• Array is stored in registers in the interface (e.g. adressable via bus)

• Read/Write operations can be scheduled concurrently with zero delay

• Example: 

BusDataIN

Data path

Clk

D Q

En

R1

Clk

D Q

En

R2

…

a[0]

a[1]

C-Code section
int acc(int a[4]) {

 int c1=  a[0]+a[1];

         int c2=  a[2]+a[3];

 int c=c1+c2;

 return c;

}

ACA
V1-0 5

Array Register Interface



• Array is stored in FIFO buffer in the interface (e.g. adressable via bus)

• Read/Write operations can be scheduled only sequencially with zero delay

• Stalls possible if FIFO is empty

• Example: 

BusDataIN
Data path

…

a[]

C-Code section
int acc(int a[4]) {

 int c1=  a[0]+a[1];

         int c2=  a[2]+a[3];

 int c=c1+c2;

 return c;

}

Clk

Full

In

WrEn

FIFO

ReadEn

Out

Empty

ACA
V1-0 6

Array FIFO Interface



SRAM buffers

• On chip buffers using SRAM cells (different from flip-flops)

• Single-port SRAM
• Only one port to read or write

• Dual-port SRAM
• Two ports to read or write

• Cannot read/write same location on both ports at same time

• True dual port SRAM: Can read same location on both ports, writes or read/write still needs to be abitrated

• Timing
• Return data either in same (zero delay)

or next clock cycle (pipelined)

ACA

Addr

W
Single port 
SRAM

R

Addr1

W1
Dual port 
SRAM

R1

Addr2

W2

R2

en

WR

en1

WR1

en2

WR2

V1-0 7



• Array is stored in RAM block in the interface (e.g. adressable via bus)

• Read/Write operations can be scheduled only one per cycle to diff. address

Data path

a[]

C-Code section
int acc(int a[4]) {

 int c1=  a[0]+a[2];

         int c2=  a[1]+a[3];

 int c=c1*c2;

 return c;

}

Addr1

W1
RAM R2

Addr2

ACA

+

NOP

NOP

Read a[0]

Read a[2]

Read a[1]

Read a[3]

+



V1-0 8

Input Array Memory Interface



• Array is stored in RAM block in the interface (e.g. adressable via bus)

• Dual-port: Read/Write operations (R1+W1/R2+W2) can be scheduled only one per cycle 
and port 1 and port 2 need different addresses

• True dual-port: Read operations (R1/R2) can read same address in parallel

Data path

in[]

R1W1Addr

R1

RAM

W2

R2W2Addr

R2 out[]W1

V1-0 ACA 9

Input/Output Array Memory Interface



• One RAM for input one RAM for output

• Switch/overlap between phases (ping pong scheme)

• All ports can be kept busy if read/writes from two different execution runs overlap
(high utilization of memory ports).

Addr1

R1

RAM1 W2

Addr2

R2

W1

M
u

x

Addr1

R1

RAM2 W2

Addr2

R2

W1

M
u

x

M
u

x

V1-0 ACA 10

Ping Pong Array Memory Interface

Addr1

R1

RAM1 W2

Addr2

R2

W1

M
u

x

Addr1

R1

RAM2 W2

Addr2

R2

W1

M
u

x

M
u

x



V1-0 ACA 11

D4-2 Control Flow and Loop Scheduling



Combining Schedules of SGUs

• Algorithms find schedule for a single sequencing graph unit 
(SGU).

• Hierarchy nodes (CALL, BR, LOOP) represent a SGU. 

• Schedule for complete sequencing graph is found by:
• Compute schedule for SGU on lowest level of hierarchy first.

• Extract execution time of hierarchy nodes from latency of schedule of 
their corresponding SGUs. 

• Schedule top level SGU with hierarchy node.

• Shift start time of schedule of lower level SGU to start time of 
corresponding hierarchy node.

• Schedule can be data dependent or independent.

ACA
V1-0 12



• Usually only support for data-independent schedule

• CALL node: Execution time equals to latency of schedule of 
corresponding SGU in the lower hierarchy.

• BR node (branch): Execution time equals to maximal latency of all 
corresponding SGUs in the lower hierarchy.

• LOOP node:
• Requirement: Fixed number of loop iterations

• Execution delay equals latency of SGU of lower hierarchy times number of loop 
iterations.

ACA
V1-0 13

Execution time of hierarchy nodes



• Example: Goertzel algorithm

B1: s_prev1 := 0.0

s_prev2 := 0.0

i:=0

t1 := 6.28 

f := t1 * freq

param f

t2 := call cos,1

coeff:=2.0*t2

B2: t3:= coeff * s_prev1

t4:= x[i] 

t5 := t4 - s_prev2

s := t3 + t5 

s_prev2 := s_prev1 

s_prev1 := s

i:=i+1

if i < 64 goto B2 

B3: t6:= s_prev1 * s_prev1

t7:= s_prev2 * s_prev2

t8:= s_prev1 * s_prev2

t9:= t8 * coeff

t10:= t6+t7

power:= t10 – t9

return power

ACA

NOP

<

NOP

Loop



 

 +

−


−

+

+

NOP

NOP

SGU2



SGU1

return

read x

= ==

CALL

=

=

SGU3

V1-0 14

Execution time of hierarchy nodes



Execution time of hierarchy nodes 

• Example: Goertzel-Algorithm 
• ASAP Schedule

• Operation delays:
• 0 clock cycles for := 

(Both := merged to allow scheduling in 
same cycles)

• 1 clock cycles for  -,+,incr,>,read

• 2 clock cycles for  *

• Latency ΛSGU3=3 CC 2

CC 3

CC 1

CC 4

ACA

<


−

+

+

NOP

NOP

read x

=

=

V1-0 15



Execution time of hierarchy nodes

• Example: Goertzel algorithm 
• ASAP Algorithm

• Execution delays:
• 0 cycles for :=

• 1 cycle for  -,+,incr,>

• 2 cycle for *

• CALL node:

• 1 cycle for cos 

• Lookup table

• LOOP node:

• 64 loop iterations

• ΛSGU3=3

• 3*64=192 cycles 

CC 1-2

CC 3

CC 6-CC197

CC198-CC199

CC200-CC201

CC 202

CC 203

ACA

NOP

NOP

Loop



 

 +

−



return

= ==

CALL

CC 4-5

V1-0 16



C-Code section
void loopex(int* a,int* b) 

{

    for (int i=0;i<20;i++) 

 b[i]=a[i]*a[i]+a[i];

}

Three-address code
loopex:

i:=0

B1:t1:=a[i]

   t2:=t1*t1

   t3:=t1+t2   

   b[i]:=t3

   i=i+1

   if (i<20) goto B1

ACA

• Example:



NOP

NOP

Read a[]

+



+

Write b[]

LOOP

NOP

NOP

:=

V1-0 17

Scheduling Do-all Loops



Three-address code
loopex:

i:=0

B1:t1:=a[i]

   t2:=t1*t1

   t3:=t1+t2   

   b[i]:=t3

   i=i+1

   if (i<20) goto B1

ACA

• Apply tree-height reduction (THR)

LOOP

NOP

NOP

:=

Three-address code with THR
loopex:

i:=0

B1:t1:=i  //THR

   t2:=a[t1]

   t3:=t2*t2

   t4:=t2+t3   

   b[t1]:=t4

   i=i+1

   if (i<20) goto B1



NOP

NOP

Read a[]

+

+

Write b[]

=

V1-0 18

Scheduling Do-all Loops



• Loop iterations scheduled after each other

• 4 cycles*20=80 cycles

Three-address code
i:=0

B1:t1:=i  //THR

   t2:=a[t1]

   t3:=t2*t2

   t4:=t2+t3   

   b[t1]:=t4

   i=i+1

   if (i<20) goto B1

CC1

CC2

CC3

CC4

ACA

CC5

CC6



NOP

NOP

Read a

+

+

Write b

Iteration 1

=

CC7

CC8

CC9



NOP

NOP

Read a

+

+

Write b

Iteration 2

=

V1-0 19

Sequential Loop Schedule



C-Code section
void loopex(int a[20],int b[20]) 

{ 

 b[0]=a[0]*a[0]+a[0];

 b[1]=a[1]*a[1]+a[0];

 …

 b[19]=a[19]*a[19]+a[19];

}

• Loop iterator and condition removed: Full parallism

• Requires many resources.

• Scheduling with known methods.

• 4 cycles

Three-address code
   t1:=a[0]

   t2:=t1*t1

   t3:=t1+t2   

   b[0]:=t3

   t4:=a[1]

   t5:=t4*t4

   …



NOP

NOP

Read a[]

+

Write b[]



Read a[]

+

Write b[]



Read a[]

+

Write b[]

…

ACA
V1-0 20

Full Loop Unrolling



• Unroll factor = 2

• Two loop iterations scheduled in parallel

• 5 cycles * 10 = 50 cycles

Three-address code
i:=0

B1:t1:=i    //THR

   t2:=i+1  //THR

   t3:=a[t1]

   t4:=t3*t3

   t5:=t4+t3   

   b[t1]:=t5

   t6:=a[t2]

   t7:=t6*t6

   t8:=t7+t6   

   b[t2]:=t8

   i=i+2

   if (i<20) goto B1

ACA



NOP

NOP

Read a

+

+

Write b

Iteration 1

=

+



Read a

+

Write b

CC1

CC2

CC3

CC4

CC5

CC6

CC7

CC8



NOP

Read a

+

+

Iteration 1

=

+



Read a

V1-0 21

Partial Unrolled Loops



• Execution of loop iteration starts before last loop iteration ended

• Initialization Interval Tp is delay between start of iterations

• For loop pipelining Tp< ΛSGU,LOOP

• Start time of nodes for different iterations k,k+1:    ti
(k+1) = ti

(k)+Tp

• Latency of Loop Node: dLoop = Tp
. #iterations + (ΛSGU,LOOP - Tp )

• Example:

ACA

It.1CC1

CC2

CC3

CC4

CC6

CC5

It.2
It.3

It.4
It.5

CC7

CC8

It.6

Initialization Interval Tp=1 Ramp-up phase

Ramp-down phase

V1-0 22

Loop Pipelining



• Loop iterations scheduled with Tp=1

• 1 cycle * 20 + 4 cycles – 1 cycle = 23 cycles

Three-address code
i:=0

B1:t1:=i  //THR

   t2:=a[t1]

   t3:=t2*t2

   t4:=t2+t3   

   b[t1]:=t4

   i=i+1

   if (i<20) goto B1

CC1

CC2

CC3



NOP

NOP

Read a

+

+

Write b

Iteration 1

=

CC4



NOP

Read a

+

+

Iteration 2

=



NOP

Read a

+

Iteration 3

=

ACA
V1-0 23

Pipelined Loop Schedule



ACA

• Loop-carried dependencies: Data dependencies between loop iterations

• Example: Goertzel Algorithmus

B2: t3:= coeff * s_prev1

t4:= x[i] 

t5 := t4 - s_prev2

s := t3 + t5 

s_prev2 := s_prev1

s_prev1 := s

i:=i+1

if i < 64 goto B2 

<


−

+

+

NOP

NOP

read x

=

=

Iteration X

<


−

+

+

NOP

NOP

read x

=

=

Iteration X+1

Loop-carried dependencies

V1-0 24

Scheduling Do-accross Loops



ACA

• Gs(Vs,Es)

• Es={ek=(vi,vj): i,j=K…S}

• Edge weight: 𝛿 𝑒𝑘 = 𝛿 𝑣𝑖 , 𝑣𝑗 = 𝑤𝑘 𝛿: 𝐸𝑠 → ℤ∗ = {0,1,2. . }

• wK: Number of iterations the loop-carried dependency crosses

• wK=0: Dep. In same iteratinos (as in standard SGU)

• SGU not an directed acyclic graph (DAG) anymore

• Example: Goertzel Algorithmus

<


−

+

+

NOP

NOP

read x

=

=

B2: t3:= coeff * s_prev1

t4:= x[i] 

t5 := t4 - s_prev2

s := t3 + t5 

s_prev2 := s_prev1

s_prev1 := s

i:=i+1

if i < 64 goto B2 

1
1

1
All others 0

1

V1-0 25

SGU with Loop-Carried Dependencies



ACA

• Loop carry-dependencies lead to additional constraints

• Example: Goertzel Algorithmus

<


−

+

+

NOP

NOP

read x

=

=

1
1

1
All others 0

For ek=(vi,vj) with wk>0:   𝑡𝑗
(𝑙+𝑤𝑘) ≥ 𝑡𝑖

𝑙
+ 𝑑𝑖

Operation j in iteration (l+wk) may only start after 
operation i in iteration (l) finished.

v0

v1

v2
v3

v4
v5

v6
v7 v8

v9

v10

𝑡2
(𝑙+1)

≥ 𝑡9
𝑙
+ 𝑑9

𝑡5
(𝑙+1)

≥ 𝑡6
𝑙
+ 𝑑6

𝑡6
(𝑙+1)

≥ 𝑡9
𝑙
+ 𝑑9

1

𝑡1
(𝑙+1)

≥ 𝑡4
𝑙
+ 𝑑4

V1-0 26

Constraints for Loop-Carried Dependencies



ACA

• Constraints for pipelining

• Example: Goertzel Algorithmus

<


−

+

+

NOP

NOP

read x

=

=

1
1

1

All others 0

For ek=(vi,vj) with wk>0:   𝑡𝑗
(𝑙+𝑤𝑘) ≥ 𝑡𝑖

𝑙
+ 𝑑𝑖

v0

v1

v2
v3

v4
v5

v6
v7 v8

v9

v10

𝑡2
(𝑙)

+ 𝑇𝑝 ≥ 𝑡9
𝑙
+ 𝑑9

𝑡5
(𝑙)

+ 𝑇𝑝 ≥ 𝑡6
𝑙
+ 𝑑6

𝑡6
(𝑙)

+ 𝑇𝑝 ≥ 𝑡9
𝑙
+ 𝑑9

For pipelining:                 𝑡𝑗
(𝑙+𝑤𝑘) = 𝑡𝑗

𝑙
+ 𝑤𝑘 ∙ 𝑇𝑝

Constraint for loop-carry dep:   𝑡𝑗
𝑙
+ 𝑤𝑘 ∙ 𝑇𝑝 ≥ 𝑡𝑖

𝑙
+ 𝑑𝑖

1

𝑡1
(𝑙)

+ 𝑇𝑝 ≥ 𝑡4
𝑙
+ 𝑑4

V1-0 27

Pipelining do-across loops



ACA

<

 −

+

+

NOP

NOP

read x

=

=

1

1

1

v0

v1
v2 v3

v4v5

v6 v7
v8

v9

v10

𝑡2
(𝑙)

+ 𝑇𝑝 ≥ 𝑡9
𝑙
+ 𝑑9

𝑡5
(𝑙)

+ 𝑇𝑝 ≥ 𝑡6
𝑙
+ 𝑑6

𝑡6
(𝑙)

+ 𝑇𝑝 ≥ 𝑡9
𝑙
+ 𝑑9

• Example: Scheduled Loop of Goertzel Algorithmus

t2=t4=t5=2

t6=t9=3
Assignment with zero

execution time d6=d9=0

ALAP Schedule

2 + 𝑇𝑝 ≥ 4

2 + 𝑇𝑝 ≥ 3

3 + 𝑇𝑝 ≥ 4

Pipelining with Tp=2 
possible

Scheduling needs to find solution fulfilling all constraints and possible 
also resource constraints. List scheduling not possible due to cycles!
SOLUTION: Scheduling with Integer Linear Programming (ILP)

1

𝑡1
(𝑙)

+ 𝑇𝑝 ≥ 𝑡4
𝑙
+ 𝑑4

1 + 𝑇𝑝 ≥ 3

t9=4

𝑇𝑝 ≥ 2

𝑇𝑝 ≥ 2

V1-0 28

Pipelining do-across loops



C-Code section
void loopex(int a[20],int b[20]) 

{

    for (int i=0;i<20;i++) 

 b[i]=a[i]*a[i]+a[i];

}

• Loop iterator can be implemented as counter (Operation: Acc)

• Loop condition can be implemented as comparator (Operation: >)

Three-address code
i:=0

B1:t1:=a[i]

   t2:=t1*t1

   t3:=t1+t2   

   b[i]:=t3

   i=i+1

   if (i<20) goto B1

Counter i >

M
u

x,
1

Reset En Result

a[0]

a[19]

a[1]
a[i]

b[i]

Clk

ACA
V1-0 29

Loop Implementation with Counter



C-Code section (Unroll factor 2)
void loopex(int a[20],int b[20]) 

{

  for (int i=0;i<20;i=+2) {   

    b[i]=a[i]*a[i]+a[i];

    b[i+1]= a[i+1]*a[i+1]+a[i+1];

  }

}

• Doubling of interfaces for loop unrolling with factor 2

Counter i >

M
u

x,
1

Reset En Result

a[0]

a[18]

a[2] a[i]

b[i]

b[i+1]

M
u

x,
1

a[1]

a[19]

a[3] a[i+1]

Clk

ACA

Three-address code
i:=0

B1:t1:=i

   t2:=i+1

   t3:=a[t1]

   t4:=t3*t3

   t5:=t4+t3   

   b[t1]:=t5

   t6:=a[t2]

   t7:=t6*t6

   t8:=t7+t6   

   b[t2]:=t8

   i=i+1

   if (i<20) goto B1

V1-0 30

Loop Implementation with Counter


	Folie 1
	Folie 2
	Folie 3: Register Interface
	Folie 4: Register Interface
	Folie 5: Array Register Interface
	Folie 6: Array FIFO Interface
	Folie 7: SRAM buffers
	Folie 8: Input Array Memory Interface
	Folie 9: Input/Output Array Memory Interface
	Folie 10: Ping Pong Array Memory Interface
	Folie 11
	Folie 12: Combining Schedules of SGUs
	Folie 13: Execution time of hierarchy nodes
	Folie 14: Execution time of hierarchy nodes
	Folie 15: Execution time of hierarchy nodes 
	Folie 16: Execution time of hierarchy nodes
	Folie 17: Scheduling Do-all Loops
	Folie 18: Scheduling Do-all Loops
	Folie 19: Sequential Loop Schedule
	Folie 20: Full Loop Unrolling
	Folie 21: Partial Unrolled Loops
	Folie 22: Loop Pipelining
	Folie 23: Pipelined Loop Schedule
	Folie 24: Scheduling Do-accross Loops
	Folie 25: SGU with Loop-Carried Dependencies
	Folie 26: Constraints for Loop-Carried Dependencies
	Folie 27: Pipelining do-across loops
	Folie 28: Pipelining do-across loops
	Folie 29: Loop Implementation with Counter
	Folie 30: Loop Implementation with Counter

