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D4-1 I/O Scheduling



• Data ist stored in Registers in the Interface (e.g. adressable via bus)

• Read/Write operations can be scheduled concurrently with zero delay
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Register Interface



• Example: Read/Write operations scheduled implicitly.
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C-Code section
int binomial(int a, int b) {

 int c=a+b;

         c=c*c;

 return c;

}
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Register Interface



• Array is stored in registers in the interface (e.g. adressable via bus)

• Read/Write operations can be scheduled concurrently with zero delay

• Example: 

BusDataIN

Data path
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C-Code section
int acc(int a[4]) {

 int c1=  a[0]+a[1];

         int c2=  a[2]+a[3];

 int c=c1+c2;

 return c;

}
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Array Register Interface



• Array is stored in FIFO buffer in the interface (e.g. adressable via bus)

• Read/Write operations can be scheduled only sequencially with zero delay

• Stalls possible if FIFO is empty

• Example: 

BusDataIN
Data path

…

a[]

C-Code section
int acc(int a[4]) {

 int c1=  a[0]+a[1];

         int c2=  a[2]+a[3];

 int c=c1+c2;

 return c;

}
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Array FIFO Interface



SRAM buffers

• On chip buffers using SRAM cells (different from flip-flops)

• Single-port SRAM
• Only one port to read or write

• Dual-port SRAM
• Two ports to read or write

• Cannot read/write same location on both ports at same time

• True dual port SRAM: Can read same location on both ports, writes or read/write still needs to be abitrated

• Timing
• Return data either in same (zero delay)

or next clock cycle (pipelined)
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• Array is stored in RAM block in the interface (e.g. adressable via bus)

• Read/Write operations can be scheduled only one per cycle to diff. address

Data path

a[]

C-Code section
int acc(int a[4]) {

 int c1=  a[0]+a[2];

         int c2=  a[1]+a[3];

 int c=c1*c2;

 return c;

}
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Input Array Memory Interface



• Array is stored in RAM block in the interface (e.g. adressable via bus)

• Dual-port: Read/Write operations (R1+W1/R2+W2) can be scheduled only one per cycle 
and port 1 and port 2 need different addresses

• True dual-port: Read operations (R1/R2) can read same address in parallel

Data path
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Input/Output Array Memory Interface



• One RAM for input one RAM for output

• Switch/overlap between phases (ping pong scheme)

• All ports can be kept busy if read/writes from two different execution runs overlap
(high utilization of memory ports).
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Ping Pong Array Memory Interface
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D4-2 Control Flow and Loop Scheduling



Combining Schedules of SGUs

• Algorithms find schedule for a single sequencing graph unit 
(SGU).

• Hierarchy nodes (CALL, BR, LOOP) represent a SGU. 

• Schedule for complete sequencing graph is found by:
• Compute schedule for SGU on lowest level of hierarchy first.

• Extract execution time of hierarchy nodes from latency of schedule of 
their corresponding SGUs. 

• Schedule top level SGU with hierarchy node.

• Shift start time of schedule of lower level SGU to start time of 
corresponding hierarchy node.

• Schedule can be data dependent or independent.
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• Usually only support for data-independent schedule

• CALL node: Execution time equals to latency of schedule of 
corresponding SGU in the lower hierarchy.

• BR node (branch): Execution time equals to maximal latency of all 
corresponding SGUs in the lower hierarchy.

• LOOP node:
• Requirement: Fixed number of loop iterations

• Execution delay equals latency of SGU of lower hierarchy times number of loop 
iterations.

ACA
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Execution time of hierarchy nodes



• Example: Goertzel algorithm

B1: s_prev1 := 0.0

s_prev2 := 0.0

i:=0

t1 := 6.28 

f := t1 * freq

param f

t2 := call cos,1

coeff:=2.0*t2

B2: t3:= coeff * s_prev1

t4:= x[i] 

t5 := t4 - s_prev2

s := t3 + t5 

s_prev2 := s_prev1 

s_prev1 := s

i:=i+1

if i < 64 goto B2 

B3: t6:= s_prev1 * s_prev1

t7:= s_prev2 * s_prev2

t8:= s_prev1 * s_prev2

t9:= t8 * coeff

t10:= t6+t7

power:= t10 – t9

return power
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Execution time of hierarchy nodes



Execution time of hierarchy nodes 

• Example: Goertzel-Algorithm 
• ASAP Schedule

• Operation delays:
• 0 clock cycles for := 

(Both := merged to allow scheduling in 
same cycles)

• 1 clock cycles for  -,+,incr,>,read

• 2 clock cycles for  *

• Latency ΛSGU3=3 CC 2

CC 3

CC 1

CC 4
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Execution time of hierarchy nodes

• Example: Goertzel algorithm 
• ASAP Algorithm

• Execution delays:
• 0 cycles for :=

• 1 cycle for  -,+,incr,>

• 2 cycle for *

• CALL node:

• 1 cycle for cos 

• Lookup table

• LOOP node:

• 64 loop iterations

• ΛSGU3=3

• 3*64=192 cycles 

CC 1-2

CC 3

CC 6-CC197

CC198-CC199

CC200-CC201

CC 202

CC 203

ACA

NOP

NOP

Loop



 

 +

−



return

= ==

CALL

CC 4-5

V1-0 16



C-Code section
void loopex(int* a,int* b) 

{

    for (int i=0;i<20;i++) 

 b[i]=a[i]*a[i]+a[i];

}

Three-address code
loopex:

i:=0

B1:t1:=a[i]

   t2:=t1*t1

   t3:=t1+t2   

   b[i]:=t3

   i=i+1

   if (i<20) goto B1
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• Example:
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Scheduling Do-all Loops



Three-address code
loopex:

i:=0

B1:t1:=a[i]

   t2:=t1*t1

   t3:=t1+t2   

   b[i]:=t3

   i=i+1

   if (i<20) goto B1

ACA

• Apply tree-height reduction (THR)

LOOP

NOP

NOP

:=

Three-address code with THR
loopex:

i:=0

B1:t1:=i  //THR

   t2:=a[t1]

   t3:=t2*t2

   t4:=t2+t3   

   b[t1]:=t4

   i=i+1

   if (i<20) goto B1



NOP

NOP

Read a[]

+

+

Write b[]

=
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Scheduling Do-all Loops



• Loop iterations scheduled after each other

• 4 cycles*20=80 cycles

Three-address code
i:=0

B1:t1:=i  //THR

   t2:=a[t1]

   t3:=t2*t2

   t4:=t2+t3   

   b[t1]:=t4

   i=i+1

   if (i<20) goto B1
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Sequential Loop Schedule



C-Code section
void loopex(int a[20],int b[20]) 

{ 

 b[0]=a[0]*a[0]+a[0];

 b[1]=a[1]*a[1]+a[0];

 …

 b[19]=a[19]*a[19]+a[19];

}

• Loop iterator and condition removed: Full parallism

• Requires many resources.

• Scheduling with known methods.

• 4 cycles

Three-address code
   t1:=a[0]

   t2:=t1*t1

   t3:=t1+t2   

   b[0]:=t3

   t4:=a[1]

   t5:=t4*t4

   …



NOP

NOP

Read a[]

+

Write b[]



Read a[]

+

Write b[]



Read a[]

+

Write b[]

…
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Full Loop Unrolling



• Unroll factor = 2

• Two loop iterations scheduled in parallel

• 5 cycles * 10 = 50 cycles

Three-address code
i:=0

B1:t1:=i    //THR

   t2:=i+1  //THR

   t3:=a[t1]

   t4:=t3*t3

   t5:=t4+t3   

   b[t1]:=t5

   t6:=a[t2]

   t7:=t6*t6

   t8:=t7+t6   

   b[t2]:=t8

   i=i+2

   if (i<20) goto B1
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Partial Unrolled Loops



• Execution of loop iteration starts before last loop iteration ended

• Initialization Interval Tp is delay between start of iterations

• For loop pipelining Tp< ΛSGU,LOOP

• Start time of nodes for different iterations k,k+1:    ti
(k+1) = ti

(k)+Tp

• Latency of Loop Node: dLoop = Tp
. #iterations + (ΛSGU,LOOP - Tp )

• Example:
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Loop Pipelining



• Loop iterations scheduled with Tp=1

• 1 cycle * 20 + 4 cycles – 1 cycle = 23 cycles

Three-address code
i:=0

B1:t1:=i  //THR

   t2:=a[t1]

   t3:=t2*t2

   t4:=t2+t3   

   b[t1]:=t4

   i=i+1

   if (i<20) goto B1
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=
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Pipelined Loop Schedule



ACA

• Loop-carried dependencies: Data dependencies between loop iterations

• Example: Goertzel Algorithmus

B2: t3:= coeff * s_prev1

t4:= x[i] 

t5 := t4 - s_prev2

s := t3 + t5 

s_prev2 := s_prev1

s_prev1 := s

i:=i+1

if i < 64 goto B2 
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
−

+

+

NOP

NOP

read x

=

=

Iteration X

<


−

+

+

NOP

NOP

read x

=

=

Iteration X+1

Loop-carried dependencies
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Scheduling Do-accross Loops



ACA

• Gs(Vs,Es)

• Es={ek=(vi,vj): i,j=K…S}

• Edge weight: 𝛿 𝑒𝑘 = 𝛿 𝑣𝑖 , 𝑣𝑗 = 𝑤𝑘 𝛿: 𝐸𝑠 → ℤ∗ = {0,1,2. . }

• wK: Number of iterations the loop-carried dependency crosses

• wK=0: Dep. In same iteratinos (as in standard SGU)

• SGU not an directed acyclic graph (DAG) anymore

• Example: Goertzel Algorithmus
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
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+

+

NOP

NOP

read x

=

=

B2: t3:= coeff * s_prev1

t4:= x[i] 

t5 := t4 - s_prev2

s := t3 + t5 

s_prev2 := s_prev1

s_prev1 := s

i:=i+1

if i < 64 goto B2 

1
1

1
All others 0

1
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SGU with Loop-Carried Dependencies



ACA

• Loop carry-dependencies lead to additional constraints

• Example: Goertzel Algorithmus

<


−

+

+

NOP

NOP

read x

=

=

1
1

1
All others 0

For ek=(vi,vj) with wk>0:   𝑡𝑗
(𝑙+𝑤𝑘) ≥ 𝑡𝑖

𝑙
+ 𝑑𝑖

Operation j in iteration (l+wk) may only start after 
operation i in iteration (l) finished.
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v10
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(𝑙+1)

≥ 𝑡9
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+ 𝑑9
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(𝑙+1)

≥ 𝑡6
𝑙
+ 𝑑6

𝑡6
(𝑙+1)

≥ 𝑡9
𝑙
+ 𝑑9

1

𝑡1
(𝑙+1)

≥ 𝑡4
𝑙
+ 𝑑4

V1-0 26

Constraints for Loop-Carried Dependencies



ACA

• Constraints for pipelining

• Example: Goertzel Algorithmus
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NOP
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read x
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For ek=(vi,vj) with wk>0:   𝑡𝑗
(𝑙+𝑤𝑘) ≥ 𝑡𝑖

𝑙
+ 𝑑𝑖

v0

v1

v2
v3

v4
v5
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𝑡2
(𝑙)
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𝑙
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+ 𝑇𝑝 ≥ 𝑡6
𝑙
+ 𝑑6

𝑡6
(𝑙)

+ 𝑇𝑝 ≥ 𝑡9
𝑙
+ 𝑑9

For pipelining:                 𝑡𝑗
(𝑙+𝑤𝑘) = 𝑡𝑗

𝑙
+ 𝑤𝑘 ∙ 𝑇𝑝

Constraint for loop-carry dep:   𝑡𝑗
𝑙
+ 𝑤𝑘 ∙ 𝑇𝑝 ≥ 𝑡𝑖

𝑙
+ 𝑑𝑖

1
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(𝑙)
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𝑙
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Pipelining do-across loops



ACA
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(𝑙)

+ 𝑇𝑝 ≥ 𝑡9
𝑙
+ 𝑑9

𝑡5
(𝑙)

+ 𝑇𝑝 ≥ 𝑡6
𝑙
+ 𝑑6

𝑡6
(𝑙)

+ 𝑇𝑝 ≥ 𝑡9
𝑙
+ 𝑑9

• Example: Scheduled Loop of Goertzel Algorithmus

t2=t4=t5=2

t6=t9=3
Assignment with zero

execution time d6=d9=0

ALAP Schedule

2 + 𝑇𝑝 ≥ 4

2 + 𝑇𝑝 ≥ 3

3 + 𝑇𝑝 ≥ 4

Pipelining with Tp=2 
possible

Scheduling needs to find solution fulfilling all constraints and possible 
also resource constraints. List scheduling not possible due to cycles!
SOLUTION: Scheduling with Integer Linear Programming (ILP)

1

𝑡1
(𝑙)

+ 𝑇𝑝 ≥ 𝑡4
𝑙
+ 𝑑4

1 + 𝑇𝑝 ≥ 3

t9=4

𝑇𝑝 ≥ 2

𝑇𝑝 ≥ 2
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Pipelining do-across loops



C-Code section
void loopex(int a[20],int b[20]) 

{

    for (int i=0;i<20;i++) 

 b[i]=a[i]*a[i]+a[i];

}

• Loop iterator can be implemented as counter (Operation: Acc)

• Loop condition can be implemented as comparator (Operation: >)

Three-address code
i:=0

B1:t1:=a[i]

   t2:=t1*t1

   t3:=t1+t2   

   b[i]:=t3

   i=i+1

   if (i<20) goto B1

Counter i >

M
u

x,
1

Reset En Result

a[0]

a[19]

a[1]
a[i]

b[i]

Clk

ACA
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Loop Implementation with Counter



C-Code section (Unroll factor 2)
void loopex(int a[20],int b[20]) 

{

  for (int i=0;i<20;i=+2) {   

    b[i]=a[i]*a[i]+a[i];

    b[i+1]= a[i+1]*a[i+1]+a[i+1];

  }

}

• Doubling of interfaces for loop unrolling with factor 2

Counter i >

M
u

x,
1

Reset En Result

a[0]

a[18]

a[2] a[i]

b[i]

b[i+1]

M
u

x,
1

a[1]

a[19]

a[3] a[i+1]

Clk

ACA

Three-address code
i:=0

B1:t1:=i

   t2:=i+1

   t3:=a[t1]

   t4:=t3*t3

   t5:=t4+t3   

   b[t1]:=t5

   t6:=a[t2]

   t7:=t6*t6

   t8:=t7+t6   

   b[t2]:=t8

   i=i+1

   if (i<20) goto B1
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Loop Implementation with Counter
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