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D2-1 The Scheduling Task



Overview - Scheduling

Sequencing graph

Scheduled sequencing graph

Scheduling

• Unconstrained resources

• Resource constrained

• Timing constrained

Goal:
Minimize latency

Goal:
Minimize number of operational units
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Problem Formulation

• Given:
• Sequencing graph unit:

• x: Index of Source NOP node

• y: Index of Sink NOP node with y>x

• Execution delay of operations:
• Known and data independent

• NOP have execution delay of zero.

• Wanted:
• Start time for each operation:   
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Problem Formulation

• Scheduling is a function      :

            with 

• Constraints: Starting time of an operation must be at least as large as the starting time of all 
predecessor operations plus their execution delay. 

• Result: Scheduled sequence graph. Each node is marked with its starting time.

• Latency of an schedule: 
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Problem Formulation

• Example: DE-Solver  

C-Code section

repeat {

 x1 = x+dx;

 u1 = u–3*x*u*dx–3*y*dx;

 y1 = y+u*dx;

 x=x1;u=u1;y=y1; 

} until (x1 < a); 

Three address code

B1: x1 = x+dx;

    t1 = 3*y;

    t2 = dx*t1;

    t3 = u*dx;

    t4 = 3*x;

    t5 = t3*t4;

    t6 = u-t5;

    u1 = t6-t2;

    t7 = u*dx;

    y1=  y+t7;

    x=x1;

    u=u1;

    y=y1;

    if x1 >= a goto B1;
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Problem Formulation

• Example: DE-Solver  
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u

cy1

u1

t1

Three address code

B1: x1 = x+dx;

    t1 = 3*y;

    t2 = dx*t1;

    t3 = u*dx;

    t4 = 3*x;

    t5 = t3*t4;

    t6 = u-t5;

    u1 = t6-t2;

    t7 = u*dx;

    y1=  y+t7;

    x=x1;

    u=u1;

    y=y1;

    if x1 >= a goto B1;

t2

t3t4

t5

t6

t7

Data flow graph
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Problem Formulation
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• Example: DE-Solver  
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Problem Formulation

• Example: DE-Solver  

Sequencing graph unit
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Execution delays
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D2-2 As-soon-as-possible (ASAP) Schedule 



As-soon-as-possible (ASAP) Schedule Constraint

• Schedule for unconstrained resources.

• Goal: Minimal latency 

• Solution: Topological sorting of the sequencing graph.

• ASAP start time for node      : 

• Quadratic complexity: 
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As-soon-as-possible (ASAP) Scheduling Algorithm

• Algorithm:

ASAP_schedule(G_s,u(V_u,E_u)) {

Start time of node v[x]: t_S[x]=1; 

repeat {

Select node v[i], whose direct predecessors v[j] all 

have been assigned a starting time.

Set start time for node v[i]: 

 t_S[i]=max(t_S[j]+d[j]);

} until node v[y] has been assigned a starting time. 

return (t_S);

}     
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As-soon-as-possible (ASAP) Schedule Example

• Example: DE-Solver  

Sequencing graph unit with ASAP schedule Starting times
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CC1

CC2

CC3

CC4

CC5

Latency:

Resources:
4xMultipler, 2xALUs
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D2-2 As-late-as-possible (ALAP) Schedule 



As-late-as-possible (ALAP) schedule constraint

• Schedule with fixed latency (Timing constrained)

• Given Latency:

• Goal: Find latest starting time for all operations such that maximal latency constraint is 
met:

• Same complexity as ASAP
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As-late-as-possible (ALAP) Scheduling Algorithm

• Algorithm:

ALAP_schedule(G_s,u(V,E),Lambda_max) {

Start time for node v[y]: t_L[y]=Lambda_max+1 

repeat {

Select node v[i], whose direct successors v[j] all 

have been assigned a starting time.

Set start time for node v[i]: 

 t_L[i]=min(t_L[j]-d[i])

} until node v[x] has been assigned starting time

return (t_L)

}     
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As-late-as-possible (ALAP) Schedule

• Example: DE-Solver  

Sequencing graph unit with ALAP schedule Starting times
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Given Latency:

Resources:
2xMultipler, 3xALUs
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D2-3 Mobility of Operations



Mobility of Operations

• Given is upper constraint on latency:

• ASAP Schedule: Minimal start times for operations 

• ALAP Schedule: Maximal start times for operations

• Mobility of operations on time axis:
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Mobility of Operations

• For operations with
• The start time is fixed:

• Operations are located on critical path.

 (Not the same as critical path in logic circuits) 

• There is no schedule for latency constraint

 

 possible, if

 or, if
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Mobility of Operations
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Operation i 1 2 3 4 5 6 7 8 9 10 11

ASAP 1 1 2 3 4 1 2 1 2 1 2

ALAP 1 1 2 3 4 2 3 3 4 3 4

Mobilität μi 0 0 0 0 0 1 1 2 2 2 2

ASAP ALAP

• Example: DE-Solver  
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D2-4 Hu’s Algorithm



Hu‘s Algorithm

• Goal: Minimize latency

• Resource constraint: Maximal number of resources = a

• Requirements:
• Only one type of resource

• All execution delays = 1

• Operations with larger execution delay can be split into several operations with execution delay=1.

• Properties:
• Linear Complexity: 

• Greedy algorithm 

• Optimal: Finds schedule with minimal latency.
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Hu‘s Algorithm

• Set of ready operations:

• Label each node with length of longest path from this 
node to the sink NOP node: 

• Set of operations to start:
• Must be operations that are ready

• Must be less or equal number as available resources a

• The label       should be maximal 
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• Algorithm:
HU(G_s,u(V,E),a) {

Label nodes v[i] with max. path length alpha[i] to sink v[y]

Set start time for source node v[x]: t_HU[x]=1

Set t_act=1

repeat {

Select set of nodes S_act, such that for v[i] in S_act:

1. v[i] is in U_act

2. alpha[i] of v[i] in S_act is maximal

3. Number of elements in S_act: |S|<=a

Set start time of all v[i] in S_act: t_HU[i]=t_act

Set t_act=t_act+1

} until sink node v[y] was assigned a start time

return (t_HU)

}     

Hu‘s Algorithm
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Hu‘s Algorithm

3 ALUs for all operations (+,-,*,<) 0.   Label nodes

1. Iteration:

 Sact={v1, v2, v6}

 Start times:

2. Iteration:

  Sact ={v3, v7, v8}

  Start times:

3. Iteration:

  Sact ={v4, v9, v10}

  Start times:

4. Iteration:

  Sact ={v5, v11}

  Start times:

1

2

2

3

4

4
3

1

2

1

2

• Example: DE-Solver  
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D2-5 List Scheduling



• Resource Constrained (Goal: Minimize latency) 
• Number of resources of type k:
• Priority equals maximal sum of execution delays on paths to sink 

• Time constrained (Goal: Minimize resources)
• Maximal latency: 
• Slack of a node (distance to ALAP start time):  
• Priority at time        equals slack:  

• Heuristic and greedy algorithm based on priorities

 

List Scheduling Priorities
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List Scheduling Operation Sets

• Set of candidates ready to be executed on resource of type k:

• Set of running operations on resources of type k:
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List Scheduling with Resource Constraint - Algorithm

• Algorithm for Resource constrained latency minimization
LIST_L(G_s,u(V,E),a) {

Set start time of source node v[x]: t_LR[x]=1

t_act=1

repeat {

 foreach type of resource k=1,2,… {

 Find set of candidate operations U_act[k]

 Find set of running operations T_act[k]

  Select starting operations v[i] in S_act[k] such that:

    1. v[i] in U_act[k] 

   2. Priorities Prio(v[i]) maximal

3. Number of running and starting operations smaller than 

resource number:|S_act[k]| + |T_act[k]| <= a[k] 

  Set start time of v[i] in S_act[k]: t_LR[i]=t_act

}

t_act=t_act+1

} until sink node v[y] was assigned a start time

return (t_LR)
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• Example DE-Solver

• Resource Constrained (2xMULT, 1xALU)

• Schedule:

List Scheduling with Resource Constraint - Example

 
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It. 2xMULT d=2 Cycles 1xALU d=1 Cycle Start time

tact Uakt,mult Tact,mult Sact,mult Uact,alu Sact,alu ti

1 {v1,v2,v6,v8} {} {v1,v2} {v10} {v10} t1=t2=t10=1

2 {v6,v8} {v1,v2} {} {v11} {v11} t11=2

3 {v3,v6,v8} {} {v3,v6} {} {} t3=t6=3

4 {v8} {v3,v6} {} {} {}

5 {v7,v8} {} {v7,v8} {v4} {v4} t4=t7=t8=5

6 {} {v7,v8} {} {} {}

7 {} {} {} {v5,v9} {v5} t5=7

8 {} {} {} {v9} {v9} t9=8

Priorities Prio(vi)

Latency
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CC 1

CC 4

CC 3

CC 2

ALU Mult.1 Mult.2

Time

(Clock cycles)

Resources

(Op. Units)

CC 5

CC 6

CC 7

CC 8

NOP

 v1
 v2

 v3

− v4

− v5

 v6

 v7
 v8

+ v9

+ v10

 v11

v0

NOP v12

• Example: De-Solver

• Resource Constrained (2xMULT, 
1xALU)

• Possible Binding
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List Scheduling with Resource Constraint – Example in TRP Plane



• Algorithm: Timing constrained resource minimization – Part 1

LIST_R(G_s,u(V,E),Lambda_max) {

Set Number of resources: a[k]=1 for all k

t_L = ALAP_Schedule(G_s,u(V,E),Lambda_max) 

if t_L[x] < 1 then return(„No schedule possible“)

Set start time of node v[x]: t_LT[x]=1

t_act=1

repeat {

 foreach type of resource k {

Find set of candidate nodes U_act[k]

Find set of running nodes T_act[k] 

Compute slack s[i] = t_L[i] – t_act for v[i] in U_act[k]

Place all v[i] from U_act[k] into S_act[k], with slack s[i]=0 

Set start time of v[i] in S_act[k]: t_LT[i]=t_act

...
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List Scheduling with Timing Constraint – Algorithm Part 1



• Algorithm: Timing constrained resource minimization – Part 2

          if |S_act[k]| + |T_act[k]| > a[k] then {

            Update a[k]: a[k] = |S_act[k]| + |T_act[k]|

  } 

  if |S_act[k]| + |T_act[k]| < a[k] then {   

     { Place nodes v[l] from U_act[k] without S_act[k] 

 into R_act[k], 

Such that slack s[l] for v[l] in R_act[k] minimal } 

until |S_act[k]| + |T_act[k]| +  | R_act[k] | = a[k] or 

 no more nodes in U_act[k]

     Set start time of nodes v[l] in R_act[k]: 

 t_LT[l]=t_act

  }

}

t_act=t_act+1

} until sink node v[y] was assigned a start time

return (t_LT);

 }
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List Scheduling with Timing Constraint – Algorithm Part 2



• Example: DE-Solver

• Resource minimization

• Timing constrained:

• Schedule:
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ALAP times:

3 x MULT und 2 x ALU
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It. MULT d=2 Takte ALU d=1Takt

tact Uakt,mult Slack Tact,mult Sact,mult Ract,mult amult Uact,alu Slack Sact,alu Ract,alu aalu ti

1 {v1,v2,

v6,v8}

s1=1,s2=1,s6

=2,s8=4

{} {} {v1} 1 {v10} s10=5 {} {v10} 1 t1=t10=1

2 {v2,v6,v8} s2=0, s6=1,

s8=3

{v1} {v2} {} 2 {v11} s11=5 {} {v11} 1 t2=t11=2

3 {v6,v8} s6=0, s8=2 {v2} {v6} {} 2 {} ( ) {} {} 1 t6=3

4 {v3,v8} s3=0, s8=1 {v6} {v3} {} 2 {} ( ) {} {} 1 t3=4

5 {v7,v8} s7=0, s8=0 {v3} {v7,v8} {} 3 {} ( ) {} {} 1 t7=t8=5

6 {} ( ) {v7,v8} {} {} 3 {v4} s4=0 {v4} {} 1 t4=6

7 {} ( ) {} {} {} 3 {v5,v9} s5=

s9=0

{v5,v9} {} 2 t5=t9=7
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List Scheduling with Timing Constraint – Example



CC 1

CC 4

CC 3

CC 2

ALU 1 Mult.1 Mult.3

Time

(Clock cycles)

Resources 

(Func. units)

CC 5

CC 6

CC 7

NOP

 v1

 v2

 v3

− v4

− v5

 v6


v7

 v8

+ v9

+ v10

 v11

v0

NOP v12

Mult.2ALU 2

• Example: DE Solver

•  

• Binding:
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List Scheduling with Timing Constraint – TRP Plane



List Scheduling with Timing Constraint – Improved Version with Restart

• Improved Algorithm: Timing-constrained resource minimization

• Restart algorithms each time number of resources was increased, do not reset number of 
resources to 1, but start with the last value.
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D2-6 Force Directed Scheduling



Force-directed Scheduling - Introduction

• Heuristic based on a force-based model

• Timing constrained resource minimization

• Published: Paul & Knight, TCAD 1989
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Force-directed Scheduling – Distribution of Start Times

• Time frame of possible starting times for node     :

with width of time frame equals

• Distribution for starting time of node     at time

• Uniform distribution in the time frame. 
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Force-directed Scheduling – Resource Demand

• Demand for resources of type k at clock cycle         :

• Mean demand for resources of type k in the time frame     : 
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• Example: DE-Solver

• Multipliers (k=MULT) 

• Execution delay = 1 clock cycle

• Timing constraint: max = 

 
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v1 v2
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v4

v5
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v7

v8

v9

v10

v11

Distribution for starting times

v1 v2 v3 v6 v7 v8

Ti [1,1] [1,1] [2,2] [1,2] [2,3] [1,3] ↓ qMULT(tact) ↓

pi(1) 1 1 0 1/2 0 1/3 17/6=2,83

pi(2) 0 0 1 1/2 1/2 1/3 7/3=2,33

pi(3) 0 0 0 0 1/2 1/3 5/6=0,83

pi(4) 0 0 0 0 0 0 0

ACA
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Force-directed Schedule – Example Distribution of Starting Times



Force-directed Scheduling – Self Force

• Self force:

• Difference between demand of resource of type k in clock cycle          and mean demand for 
resource of type k in the time frame     of the node.

•                          : In this clock cycle demand for this resource type is high. Push node      away 
from          by positive self force.

•                         : In this clock cycle demand for this resource type is low. Pull node      near to        
by negative self force.
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• Example: DE-Solver

• Self force for clock cycle 1 positive because the demand for multipliers is high 
and negative for clock cycle 2, because demand is lower.

v6

Ti [1,2] ↓ qMULT(tact) ↓

pi(1) 1/2 17/6

pi(2) 1/2 7/3

ACA

 

  + 

+

−

−

v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

2,83

2,33

0,83

0

CC1

CC2

CC3

CC4

0,25

-0,25

V1-0 44

Force-directed Scheduling – Self Force for Example



Force-directed Scheduling – Shift of Time Frames of Successors / Predecessors

• Selection of start time for node changes time frames for direct predecessor and successor 
nodes. 
• Node       is direct predecessor or successor of     . 

• Start time for node     is selected to: 

• > New time frame and mobility for nodes     :

• > New mean demands for resources: 
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Force-directed Scheduling - Predecessor and successor forces

• Predecessor and successor forces:

• Change of mean demand for resources of type k for predecessor and successor forces.

•                        :       By setting start time of node      to          the successor/predecessor node     can only 
be scheduled in clock cycles with higher demand for resources of type k. Push    away from          by 
positive predecessor/successor force.

•                         :   Other way around. Pull     to          by negative predecessor/successor force.
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• Example 3: DE-Solver
•        is direct successor of

• For 

• For 

v7

Ti [2,3] ↓ qMULT(tact) ↓

pi(2) 1/2 7/3

pi(3) 1/2 5/6
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Force-directed Scheduling - Predecessor and successor forces for Example



Force-directed Scheduling – Total Force

• Total force

• Sum of self force, predecessor forces and successor forces.

• To minimize resources select starting times with minimal force, 
which should lead to minimal mean demand of resources of all 
types for the schedule. 
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Force-directed Scheduling - Example

• Example: DE-Solver
Higher than average  demand for multipliers.

Successor node is not influenced.

Lower than average demand for multipliers.

Successor node is shifted to time frame with lower than average demand for 
multipliers.
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Force-directed Scheduling Example

• Force will push v6 towards start time t6=2 because there is
less demand for MUL in CC2 and v7 is pushed to a later start
time where there is also less demand for MUL. 

ACA
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Force-directed Scheduling - Algorithm

• Algorithm

FDS(G_s,u(V,E),Lambda_max) {

repeat {

 Compute time frame for all nodes

 Compute distribution for starting time for all nodes and all mean demands

 Compute total force for each node

 Select node with minimal force and assign the starting time to it.

} until Starting time has been assigned to all nodes.

return (t-FDS)

}     
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Summary



Where we are

• HLS – Operations are scheduled to cycles

• We need to generate the RTL code for the accelerator

V1-0 ACA
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