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D2-1 The Scheduling Task
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Overview - Scheduling

Sequencing graph

{ Scheduling J

<

Scheduled sequencing graph

e Unconstrained resources
L Goal:
* Resource constrained Minimize latency
Goal:
* Timing constrained Minimize number of operational units
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Problem Formulation

* Given:
e Sequencing graph unit: GS’U(VU’ Eu) V., = Vg eeny Uy C V.,
* x: Index of Source NOP node
* y:Index of Sink NOP node with y>x
* Execution delay of operations: . e
 Known and data independent D= {dz =Ly y}
* NOP have execution delay of zero.

 Wanted:

 Start time for each operation:
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Problem Formulation

e Scheduling is a function T:

. TV = LT T(v) =t
with ti >t +d; Vij:(vj,v;) € E,

* Constraints: Starting time of an operation must be at least as large as the starting time of all
predecessor operations plus their execution delay.

* Result: Scheduled sequence graph. Each node is marked with its starting time.

e Latency of an schedule:

A=t,—1
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Problem Formulation

e Example: DE-Solver

Three address code
C-Code section

Bl:
repeat { tl = 3*y;
t2 = dx*tl;
ul = u-3*x*u*dx-3*y*dx; £3 = u*dx;
yl = y+u*dx; td = 3%x;
x=x1l;u=ul;y=yl; £5 = t3*t4;
} until ( ) ; t6 = u-t5;
ul = te-t2;
t7 = u*dx;
yl= y+t7;
x=x1;
u=ul;
y=yl;
if goto Bl;
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Problem Formulation

 Example: DE-Solver

Three address code Data flow graph
Bl:

tl = 3*y;

t2 = dx*tl;

t3 = u*dx;

td = 3*x;

th = t3*t4;

te = u-tb5;

ul = te-t2;

t7 = u*dx;

yl= y+t7;

x=x1;

u=ul;

y=yl;

if goto Bl;
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Problem Formulation

* Example: DE-Solver

Data flow graph Sequencing graph unit
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Problem Formulation

* Example: DE-Solver

Sequencing graph unit Execution delays

di =1 dy =
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D2-2 As-soon-as-possible (ASAP) Schedule
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As-soon-as-possible (ASAP) Schedule Constraint

Schedule for unconstrained resources.

Goal: Minimal latency

Solution: Topological sorting of the sequencing graph.

ASAP start time for node v; :

T max 2 4+ d;
1 j:(’Uj,"Ui)EEu (j J)

* Quadratic complexity: O(|V]?)
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As-soon-as-possible (ASAP) Scheduling Algorithm

e Algorithm:
ASAP schedule (G s,u(V_u,E u)) {
Start time of node v[x]: t S[x]=1;
repeat {

Select node v[i], whose direct predecessors v[]] all
have been assigned a starting time.

Set start time for node v[i]:
t_Sli]=max(t_S[J]1+d[j]);
} until node v([y] has been assigned a starting time.
return (t S5);
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As-soon-as-possible (ASAP) Schedule Example

 Example: DE-Solver

Sequencing graph unit with ASAP schedule Starting times

ts =19 =t5 =12 =t =t7, =1

5=t 0 =, =2

tf — 3 Latency:
_ ¢S _
t58 = Resources:
4xMultipler, 2xALUs
S _
t12 —
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D2-2 As-late-as-possible (ALAP) Schedule
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As-late-as-possible (ALAP) schedule constraint

* Schedule with fixed latency (Timing constrained)

* Given Latency:

Af =ty —1 = Apas

e Goal: Find latest starting time for all operations such that maximal latency constraint is
met:

tr' = min  (t7 —d;)
Ji(vi,v;)EE,

* Same complexity as ASAP
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As-late-as-possible (ALAP) Scheduling Algorithm

e Algorithm:

ALAP schedule (G s,u(V,E),Lambda max) {

Start time for node v[y]: t L[y]=Lambda max+l
repeat {

Select node v[i], whose direct successors v[]] all
have been assigned a starting time.

Set start time for node v[i]:
t L{i]l=min(t L[Jj]-d[i])
} until node vI[x] has been assigned starting time

return (t L)
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As-late-as-possible (ALAP) Schedule

V1-0

 Example: DE-Solver

Sequencing graph unit with ALAP schedule

ACA

Given Latency:

AL =4
_ _ Resources:
Starting times 2xMultipler, 3xALUs

th =tl =t =1

th =tL =2
th=th =tk =itf=3

th =t — th —4

tf2:5
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D2-3 Mobility of Operations
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Mobility of Operations

e Given is upper constraint on latency:

A:ty_l < Ama:c

* ASAP Schedule: Minimal start times for operations

* ALAP Schedule: Maximal start times for operations

* Mobility of operations on time axis:

L t,LS,

/-’I’Z:t@ — Z.:.:U’...’y

V1-0 ACA 19



Mobility of Operations

* For operations with 1, = 0
* The starttimeis fixed: ¢; = tiL = tf
* Operations are located on critical path.
(Not the same as critical path in logic circuits)

* There is no schedule for latency constraint A < A,

possible, if 2 > Apap + 1

L
or, if ta: <1
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Mobility of Operations

* Example: DE-Solver

Operation i 1 2 3 4 5 6 7 8 9 10 11
ASAP 1 1 2 3 4 1 2 1 2
ALAP 1 1 2 3 4 2 3 3 4
Mobilitat s, 0 0 0 0 0 1 1 2 2
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D2-4 Hu’s Algorithm
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Hu‘s Algorithm

e Goal: Minimize latency
e Resource constraint: Maximal number of resources = a

* Requirements:

* Only one type of resource
* All execution delays =1

* Operations with larger execution delay can be split into several operations with execution delay=1.

* Properties:
* Linear Complexity: O(n)
* Greedy algorithm
* Optimal: Finds schedule with minimal latency.
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Hu‘s Algorithm

» Set of ready operations:
Uact = {vi | Vji(v, v)eB, tj +dj <taet}  Direct predecessors finished

* Label each node with length of longest path from this
node to the sink NOP node: ¢;

 Set of operations to start: Suc:
* Must be operations that are ready
* Must be less or equal number as available resources a
* The label &Y;should be maximal
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Hu‘s Algorithm

e Algorithm:

HU(G s,u(V,E),a) {

Label nodes vI[i] with max. path length alpha[i] to sink v[y]

Set start time for source node v[x]: t HU[x]=1
Set t act=l

repeat {

Select set of nodes S act, such that for v[i]

1. vI[i] i1s in U act

in S act:

2. alpha[i] of v[i] in S act 1is maximal

3. Number of elements in S act: [S|<=a
Set start time of all v[i] in S act: t HU[i]=t act
Set t act=t act+l

} until sink node v[y] was assigned a start time
return (t HU)
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Hu‘s Algorithm

 Example: DE-Solver

3 ALUs for all operations (+,-,*,<) 0. Label nodes
1. Iteration:

Sactz{vl’ V2, vé}

Start times:  ¢47% = ¢Hu = ¢Hv — 1
2. lteration:

Sact :{V3, V7, v8} 7 7 7

Start times: t3 U — t7 U — t8 U — 2
3. lteration:

Sact :{V4, V9’ VIO}

- . Hu _ 4Hu _ yHu __

Starttimes: {;“ =1t5" =t =3
4. |teration:

Sact :{V5, VI 1}

Start times: té{u = tﬁu =4
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D2-5 List Scheduling
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List Scheduling Priorities

* Resource Constrained (Goal: Minimize latency)
* Number of resources of type k: A
* Priority equals maximal sum of execution delays on paths to sink

Prio(v;) = maxv(zweHU d.,) with H, equals path from v; to sink

* Time constrained (Goal: Minimize resources)
* Maximal latency: A < A,,4s
» Slack of a node (distance to ALAP start time):
* Priority at timet,.; equals slack: s; =t~ — t,.

* Heuristic and greedy algorithm based on priorities

Prio(v;) = 8; = t¥ — taut
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List Scheduling Operation Sets

» Set of candidates ready to be executed on resource of type k:

v; of type kA

Vj:(vj,vz-)e g, tj+d;j <t,e Direct predecessors finished }

Uact,k — {U?l

» Set of running operations on resources of type k:

Tocts ={vi | vy of type k A t;+d; > taet}
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List Scheduling with Resource Constraint - Algorithm

* Algorithm for Resource constrained latency minimization

LIST L(G s,u(V,E),a) {
Set start time of source node v[x]: t LR[x]=1
t act=1
repeat {

foreach type of resource k=1,2,.. {
Find set of candidate operations U act[k]
Find set of running operations T act[k]
Select starting operations v[i] in S act[k] such that:
1. v[i] in U actl[k]
2. Priorities Prio(v[i]) maximal

3. Number of running and starting operations smaller than
resource number:|[S actl[k]| + |T act[k]]| <= alk]

Set start time of v[i] 1In S act[k]: t LR[i]=t act
}
t act=t act+l
} until sink node v([y] was assigned a start time
return (t LR)
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List Scheduling with Resource Constraint - Example

 Example DE-Solver
* Resource Constrained (2xMULT, 1xALU)

V1-0

1 Vg s <
e Vir
* Schedule: Priorities Prio(v,) ~N(';~‘v]2
It. | 2xMULT d=2 Cycles 1xALU d=1 Cycle Start time
Lact U osctymutt Tctmuie S et mult Uct,au Suctatu i 4
1 {ViV2 Ve Vs) {} v, vo) Vi) Vi) t=t,=t;)=1
2 {Ve Vs} {v,vo} {} \o \o 1;=2
Latency
3 {V3 V6 Vs) {} {V3, v} {} {} 13=15=3
4 s} g |0 0 0 A =
S {V7Vs) {J A (v 2% t=t;=1g=>
6 {} (V7 Vs i) {} {}
7 {} {} {} {5V} {vs) t5=7
8 8 8 0 v | v =8 |V
ACA
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List Scheduling with Resource Constraint — Example in TRP Plane

Resources
(Op. Units)
« Example: De-Solver >
Mult.2

* Resource Constrained (2xMULT,
1xALU)

e Possible Binding

Time
(Clock cycles)
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List Scheduling with Timing Constraint — Algorithm Part 1

e Algorithm: Timing constrained resource minimization — Part 1

LIST R(G s,u(V,E),Lambda max) {
Set Number of resources: alk]=1 for all k
t L = ALAP Schedule (G s,u(V,E), Lambda max)
if t L[x] < 1 then return(,No schedule possible")
Set start time of node v[x]: t LT[x]=1
t act=1
repeat {
foreach type of resource k {
Find set of candidate nodes U act[Kk]

Find set of running nodes T act[k]

[
Place all v[i] from U act[k] into S actl[k],
Set start time of v[1] in S actlk]: t LT[i]=t act

Compute slack s[i] = t L[i] - t act for v[i] in U act[k]
with slack s[1]=0

V1-0 ACA
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List Scheduling with Timing Constraint — Algorithm Part 2

e Algorithm: Timing constrained resource minimization — Part 2

if |S act[k]| + [T act[k]| > al[k] then {
Update alk]: alk] = [|S actl[k]| + |T actlk]|

}

if |S act[k]| + |T act[k]| < al[k] then {

{ Place nodes v[l] from U act[k] without S act[k]
into R actl[k],

until [S act[k]| + |T act[k]| + | R actl[k] |
no more nodes 1in U act[k]

Set start time of nodes v[l] in R actf[k]:
t LT[1l]=t act

}

t act=t act+l
} until sink node v[y] was assigned a start time
return (t LT);

Such that slack s[l] for v[l] in R act[k] minimal }

V1-0 ACA
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List Scheduling with Timing Constraint — Example

V1-0

Example: DE-Solver

e Resource minimization
e Timing constrained: Aar =T
ALAP times:
e Schedule:
eaule 3 x MULT und 2 x ALU

It. MULT d=2 Takte ALU d=1Takt

tact Uakt,mult Slack nct,mult Sact,mult Ract,mult amult Uact,alu Slack Sact,alu Ract,alu aalu ti
1 {Vvivy [s/7Ls=1sg {} {} {v;} L b | 81575 {} Vied | 1| 67871

Ve Vg} =2,5~4
2 {Vovevst| 570,51, | {v;} {v,} ) 2 1 vid | sisS { v | 1| =872
§g=3
3 {Vovst | 560,572 | {V,} {Ve! {} 2 {} () {} {} 1 t6=3
4 {Vivst | 570,571 | {vg} {vs} {} 2 {} () {} {} 1 t;=4
S {vavst | $70,s50 {vs} {v7Vs} {} 3 {} () { {} 1 1,=tg=5
6 {} () {v7Ve} {} {} 3 {vgd | 570 {v} {} 1 t,=6
7 {} () {} {} {} 3 ({vsvel| s5= | {vsver |} 2| t5=t,=1
59=0
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List Scheduling with Timing Constraint — TRP Plane

« Example: DE Solver Resources
. A — 7 > (Func. units)
max

ALU1 ALUZ2 Mult.1 Mult.2 | Mult.3

« Binding:

Filenno;
Time cCr BN

R
.
.

(Clock cycles) ) R Tone
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List Scheduling with Timing Constraint — Improved Version with Restart

* Improved Algorithm: Timing-constrained resource minimization

* Restart algorithms each time number of resources was increased, do not reset number of
resources to 1, but start with the last value.
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D2-6 Force Directed Scheduling
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Force-directed Scheduling - Introduction

* Heuristic based on a force-based model
* Timing constrained resource minimization
* Published: Paul & Knight, TCAD 1989
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Force-directed Scheduling — Distribution of Start Times

* Time frame of possible starting times for node v;:

T’i — [t?SAP téﬁlLAP]

with width of time frame equals
T+ 1

e Distribution for starting time of node v;at time ¢

1
{ pit1 Vit €T,
0 vtact QTz

Pi (tact) —

e Uniform distribution in the time frame.
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Force-directed Scheduling — Resource Demand

* Demand for resources of type k at clock cycle ¢t :

qk (tGCt) — Z{z’:opi ist von Typ k} Pi (taCt)

* Mean demand for resources of type k in the time frame T;:

1 tALAP
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Force-directed Schedule — Example Distribution of Starting Times

2
 Example: DE-Solver <
. e Vs Vg @VU 2,33
e Multipliers (k=MULT) cc3
* Execution delay =1 clock cycle 0.83
* Timing constraint: A, . =4 cca

Distribution for starting times

V1-0

V; V) V3 Vs i Vg
I; (L] [1,1] | [2.2] | [1,2] | [2,3] | [L.3] | | quunr(tec) {
p1) 1 | 1 | 0 [ 12| 0 | 13| 17/6=2,83
p2 | 0 | 0 | 1 | 12| 12| 13| 7/3=233
p3 | 0 | 0 | 0 | 0 | 12| 13| 56=083
p% | 0| 0| 0] 0] 0| O 0

ACA
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Force-directed Scheduling — Self Force

e Self force:

« Difference between demand of resource of type k in clock cycletact and mean demand for
resource of type k in the time frameZ; of the node.

. Ff(tact) > ( : In this clock cycle demand for this resource type is high. Push node v; away
from ¢+ by positive self force.

. F?;S(tact) < 0: In this clock cycle demand for this resource type is low. Pull node Vi nearto gt
by negative self force.
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Force-directed Scheduling — Self Force for Example

,25
R O LT 2,83

Example: DE-Solver 0,25 ®® CC2
° X . _ v c
V7 Yo vy 2,33
Ve cc3
T; [1,2] | | quurr(te) ca 0,83
pi1) 1/2 17/6 0
pA2) 1/2 7/3
— 1 _ 1 17 , 7\ _ 31
M1,6 = 771 (qmurr(1) + quurr(2)) = 27 * (5 +3) = 13
Fﬁs(z) = qmurr(2) — MMULT,6 = %4 — % — —% — _i

 Self force for clock cycle 1 positive because the demand for multipliers is high
and negative for clock cycle 2, because demand is lower.

V1-0 ACA 44



Force-directed Scheduling — Shift of Time Frames of Successors / Predecessors

* Selection of start time for node changes time frames for direct predecessor and successor
nodes.
* Node Yj is direct predecessor or successor of Vi,
 Start time for node?:; is selected to:
> New time frame and mobility for nodesv;: ©; = tqct

rn _ [TASAP JALAP ~ _ JALAP TASAP
T; = [tj tj ] Hij =t — tj

* > New mean demands for resources:

- : FALAP
Mk = 717 Zt;:E%ASAP Qk(tp)
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Force-directed Scheduling - Predecessor and successor forces

* Predecessor and successor forces:

FY N (taet) = ey —

* Change of mean demand for resources of type k for predecessor and successor forces.

. Fiv’-N(tact) ~ 0 By setting start time of node Vi to T4t the successor/predecessor node vican only
be scheaulea in clock cycles with higher demand for resources of type k. Pushv;away from Tt by
positive predecessor/successor force.

. F;’/;;N(tact) < 0 Other way around. Pull v;tot, ¢ by negative predecessor/successor force.

V1-0 ACA 46



Force-directed Scheduling - Predecessor and successor forces for Example

 Example 3: DE-Solver v,
* V7 isdirect successor of Vg T 1231 | qyunn(t) |
e For pi(2) 1/2 713
p3) | 1/2 5/6

te=1—Tr =T =[23] = F%(1) =0

te=2—Tr =[33] = fir =0 >Mymurrr = 135:0(3) = g
(gvurr(2) + quorr(3) = 5(3

* For

T =

_ 1
M7= Ty

N _ 5 _ 5 _
F6,7(2) = MmpuLrLr,r — MMULT,7 = § — 13 —

ACA .
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Force-directed Scheduling — Total Force

e Total force

F@T (tact) — FZ'S (tact) =+ Z F@IE (tact) + Z F@‘,/j (tact)
{j:(opi,op;)€E} {7:(opj,opi) €L}

* Sum of self force, predecessor forces and successor forces.

* To minimize resources select starting times with minimal force,
which should lead to minimal mean demand of resources of all
types for the schedule.
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Force-directed Scheduling - Example

* Example: DE-Solver

Higher than average demand for multipliers.

te = 1 !
T _ S __ 1N _ 1 1
Fg (1) =Fg (1) = Fg7(1) = g ‘H%— 1
Successor node is not influenced.
Lower than average demand for multipliers.
te = 2 \

FE(2) = F§(2) = F(2) = -1

Successor node is shifted to time frame with lower than average demand for
multipliers.

V1-0 ACA 49



Force-directed Scheduling Example

* Force will push v6 towards start time t6=2 because there is
less demand for MUL in CC2 and v7 is pushed to a later start
time where there is also less demand for MUL.
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Force-directed Scheduling - Algorithm

e Algorithm

FDS (G s,u(V,E),Lambda max) {

repeat ({
Compute time frame for all nodes
Compute distribution for starting time for all nodes and all mean demands
Compute total force for each node
Select node with minimal force and assign the starting time to it.

} until Starting time has been assigned to all nodes.

return (t-FDS)

V1-0
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Where we are

* HLS — Operations are scheduled to cycles

* We need to generate the RTL code for the accelerator

V1-0 ACA
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