
D2 –High Level Synthesis (HLS) – Scheduling Algorithms

Advanced Computer Architecture

Daniel Mueller-Gritschneder

V1-0 ACA 2

D2-1 The Scheduling Task

Overview - Scheduling

Sequencing graph

Scheduled sequencing graph

Scheduling

• Unconstrained resources

• Resource constrained

• Timing constrained

Goal:
Minimize latency

Goal:
Minimize number of operational units

ACA
V1-0 3

Problem Formulation

• Given:
• Sequencing graph unit:

• x: Index of Source NOP node

• y: Index of Sink NOP node with y>x

• Execution delay of operations:
• Known and data independent

• NOP have execution delay of zero.

• Wanted:
• Start time for each operation:

ACA
V1-0 4

Problem Formulation

• Scheduling is a function :

 with

• Constraints: Starting time of an operation must be at least as large as the starting time of all
predecessor operations plus their execution delay.

• Result: Scheduled sequence graph. Each node is marked with its starting time.

• Latency of an schedule:

ACA
V1-0 5

Problem Formulation

• Example: DE-Solver

C-Code section

repeat {

 x1 = x+dx;

 u1 = u–3*x*u*dx–3*y*dx;

 y1 = y+u*dx;

 x=x1;u=u1;y=y1;

} until (x1 < a);

Three address code

B1: x1 = x+dx;

 t1 = 3*y;

 t2 = dx*t1;

 t3 = u*dx;

 t4 = 3*x;

 t5 = t3*t4;

 t6 = u-t5;

 u1 = t6-t2;

 t7 = u*dx;

 y1= y+t7;

 x=x1;

 u=u1;

 y=y1;

 if x1 >= a goto B1;

ACA
V1-0 6

Problem Formulation

• Example: DE-Solver

 

  + 

+

−

−

3 3ux ydx dxxdxu

x1

a

u

cy1

u1

t1

Three address code

B1: x1 = x+dx;

 t1 = 3*y;

 t2 = dx*t1;

 t3 = u*dx;

 t4 = 3*x;

 t5 = t3*t4;

 t6 = u-t5;

 u1 = t6-t2;

 t7 = u*dx;

 y1= y+t7;

 x=x1;

 u=u1;

 y=y1;

 if x1 >= a goto B1;

t2

t3t4

t5

t6

t7

Data flow graph

ACA
V1-0 7

Problem Formulation

 

  + 

+

−

−

NOP

NOP

• Example: DE-Solver

 

  + 

+

−

−

3 3ux ydx dxxdxu

x1

a

u

cy1

u1

t1

t2

t3t4

t5

t6

t7

Data flow graph Sequencing graph unit

ACA
V1-0 8

Problem Formulation

• Example: DE-Solver

Sequencing graph unit

 

  + 

+

−

−

NOP

NOP

Execution delays

ACA
V1-0 9

V1-0 ACA 10

D2-2 As-soon-as-possible (ASAP) Schedule

As-soon-as-possible (ASAP) Schedule Constraint

• Schedule for unconstrained resources.

• Goal: Minimal latency

• Solution: Topological sorting of the sequencing graph.

• ASAP start time for node :

• Quadratic complexity:

ACA
V1-0 11

As-soon-as-possible (ASAP) Scheduling Algorithm

• Algorithm:

ASAP_schedule(G_s,u(V_u,E_u)) {

Start time of node v[x]: t_S[x]=1;

repeat {

Select node v[i], whose direct predecessors v[j] all

have been assigned a starting time.

Set start time for node v[i]:

 t_S[i]=max(t_S[j]+d[j]);

} until node v[y] has been assigned a starting time.

return (t_S);

}

ACA
V1-0 12

As-soon-as-possible (ASAP) Schedule Example

• Example: DE-Solver

Sequencing graph unit with ASAP schedule Starting times

 

  + 

+

−

−

NOP

NOP

CC1

CC2

CC3

CC4

CC5

Latency:

Resources:
4xMultipler, 2xALUs

ACA
V1-0 13

V1-0 ACA 14

D2-2 As-late-as-possible (ALAP) Schedule

As-late-as-possible (ALAP) schedule constraint

• Schedule with fixed latency (Timing constrained)

• Given Latency:

• Goal: Find latest starting time for all operations such that maximal latency constraint is
met:

• Same complexity as ASAP

ACA
V1-0 15

As-late-as-possible (ALAP) Scheduling Algorithm

• Algorithm:

ALAP_schedule(G_s,u(V,E),Lambda_max) {

Start time for node v[y]: t_L[y]=Lambda_max+1

repeat {

Select node v[i], whose direct successors v[j] all

have been assigned a starting time.

Set start time for node v[i]:

 t_L[i]=min(t_L[j]-d[i])

} until node v[x] has been assigned starting time

return (t_L)

}

ACA
V1-0 16

As-late-as-possible (ALAP) Schedule

• Example: DE-Solver

Sequencing graph unit with ALAP schedule Starting times













+ 

+−

−

NOP

NOP

CC1

CC2

CC3

CC4

CC5

Given Latency:

Resources:
2xMultipler, 3xALUs

ACA
V1-0 17

V1-0 ACA 18

D2-3 Mobility of Operations

Mobility of Operations

• Given is upper constraint on latency:

• ASAP Schedule: Minimal start times for operations

• ALAP Schedule: Maximal start times for operations

• Mobility of operations on time axis:

ACA
V1-0 19

Mobility of Operations

• For operations with
• The start time is fixed:

• Operations are located on critical path.

 (Not the same as critical path in logic circuits)

• There is no schedule for latency constraint

 possible, if

 or, if

ACA
V1-0 20

Mobility of Operations













+ 

+−

−

NOP

NOP

 

  + 

+

−

−

NOP

NOP

CC1

CC2

CC3

CC4

CC5

Operation i 1 2 3 4 5 6 7 8 9 10 11

ASAP 1 1 2 3 4 1 2 1 2 1 2

ALAP 1 1 2 3 4 2 3 3 4 3 4

Mobilität μi 0 0 0 0 0 1 1 2 2 2 2

ASAP ALAP

• Example: DE-Solver

ACA
V1-0 21

V1-0 ACA 22

D2-4 Hu’s Algorithm

Hu‘s Algorithm

• Goal: Minimize latency

• Resource constraint: Maximal number of resources = a

• Requirements:
• Only one type of resource

• All execution delays = 1

• Operations with larger execution delay can be split into several operations with execution delay=1.

• Properties:
• Linear Complexity:

• Greedy algorithm

• Optimal: Finds schedule with minimal latency.

ACA
V1-0 23

Hu‘s Algorithm

• Set of ready operations:

• Label each node with length of longest path from this
node to the sink NOP node:

• Set of operations to start:
• Must be operations that are ready

• Must be less or equal number as available resources a

• The label should be maximal

ACA
V1-0 24

• Algorithm:
HU(G_s,u(V,E),a) {

Label nodes v[i] with max. path length alpha[i] to sink v[y]

Set start time for source node v[x]: t_HU[x]=1

Set t_act=1

repeat {

Select set of nodes S_act, such that for v[i] in S_act:

1. v[i] is in U_act

2. alpha[i] of v[i] in S_act is maximal

3. Number of elements in S_act: |S|<=a

Set start time of all v[i] in S_act: t_HU[i]=t_act

Set t_act=t_act+1

} until sink node v[y] was assigned a start time

return (t_HU)

}

Hu‘s Algorithm

ACA
V1-0 25

Hu‘s Algorithm

3 ALUs for all operations (+,-,*,<) 0. Label nodes

1. Iteration:

 Sact={v1, v2, v6}

 Start times:

2. Iteration:

 Sact ={v3, v7, v8}

 Start times:

3. Iteration:

 Sact ={v4, v9, v10}

 Start times:

4. Iteration:

 Sact ={v5, v11}

 Start times:

1

2

2

3

4

4
3

1

2

1

2

• Example: DE-Solver

 

  + 

+

−

−

NOP

NOP

ACA
V1-0 26

V1-0 ACA 27

D2-5 List Scheduling

• Resource Constrained (Goal: Minimize latency)
• Number of resources of type k:
• Priority equals maximal sum of execution delays on paths to sink

• Time constrained (Goal: Minimize resources)
• Maximal latency:
• Slack of a node (distance to ALAP start time):
• Priority at time equals slack:

• Heuristic and greedy algorithm based on priorities

List Scheduling Priorities

ACA
V1-0 28

List Scheduling Operation Sets

• Set of candidates ready to be executed on resource of type k:

• Set of running operations on resources of type k:

ACA
V1-0 29

List Scheduling with Resource Constraint - Algorithm

• Algorithm for Resource constrained latency minimization
LIST_L(G_s,u(V,E),a) {

Set start time of source node v[x]: t_LR[x]=1

t_act=1

repeat {

 foreach type of resource k=1,2,… {

 Find set of candidate operations U_act[k]

 Find set of running operations T_act[k]

 Select starting operations v[i] in S_act[k] such that:

 1. v[i] in U_act[k]

 2. Priorities Prio(v[i]) maximal

3. Number of running and starting operations smaller than

resource number:|S_act[k]| + |T_act[k]| <= a[k]

 Set start time of v[i] in S_act[k]: t_LR[i]=t_act

}

t_act=t_act+1

} until sink node v[y] was assigned a start time

return (t_LR)

ACA
V1-0 30

• Example DE-Solver

• Resource Constrained (2xMULT, 1xALU)

• Schedule:

List Scheduling with Resource Constraint - Example

 




+ 

+

−

−

NOP

NOP

v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v0

v12

1

2
3

4

6 6 5

1

3

1

2

It. 2xMULT d=2 Cycles 1xALU d=1 Cycle Start time

tact Uakt,mult Tact,mult Sact,mult Uact,alu Sact,alu ti

1 {v1,v2,v6,v8} {} {v1,v2} {v10} {v10} t1=t2=t10=1

2 {v6,v8} {v1,v2} {} {v11} {v11} t11=2

3 {v3,v6,v8} {} {v3,v6} {} {} t3=t6=3

4 {v8} {v3,v6} {} {} {}

5 {v7,v8} {} {v7,v8} {v4} {v4} t4=t7=t8=5

6 {} {v7,v8} {} {} {}

7 {} {} {} {v5,v9} {v5} t5=7

8 {} {} {} {v9} {v9} t9=8

Priorities Prio(vi)

Latency

ACA
V1-0 31

CC 1

CC 4

CC 3

CC 2

ALU Mult.1 Mult.2

Time

(Clock cycles)

Resources

(Op. Units)

CC 5

CC 6

CC 7

CC 8

NOP

 v1
 v2

 v3

− v4

− v5

 v6

 v7
 v8

+ v9

+ v10

 v11

v0

NOP v12

• Example: De-Solver

• Resource Constrained (2xMULT,
1xALU)

• Possible Binding

ACA
V1-0 32

List Scheduling with Resource Constraint – Example in TRP Plane

• Algorithm: Timing constrained resource minimization – Part 1

LIST_R(G_s,u(V,E),Lambda_max) {

Set Number of resources: a[k]=1 for all k

t_L = ALAP_Schedule(G_s,u(V,E),Lambda_max)

if t_L[x] < 1 then return(„No schedule possible“)

Set start time of node v[x]: t_LT[x]=1

t_act=1

repeat {

 foreach type of resource k {

Find set of candidate nodes U_act[k]

Find set of running nodes T_act[k]

Compute slack s[i] = t_L[i] – t_act for v[i] in U_act[k]

Place all v[i] from U_act[k] into S_act[k], with slack s[i]=0

Set start time of v[i] in S_act[k]: t_LT[i]=t_act

...

ACA
V1-0 33

List Scheduling with Timing Constraint – Algorithm Part 1

• Algorithm: Timing constrained resource minimization – Part 2

 if |S_act[k]| + |T_act[k]| > a[k] then {

 Update a[k]: a[k] = |S_act[k]| + |T_act[k]|

 }

 if |S_act[k]| + |T_act[k]| < a[k] then {

 { Place nodes v[l] from U_act[k] without S_act[k]

 into R_act[k],

Such that slack s[l] for v[l] in R_act[k] minimal }

until |S_act[k]| + |T_act[k]| + | R_act[k] | = a[k] or

 no more nodes in U_act[k]

 Set start time of nodes v[l] in R_act[k]:

 t_LT[l]=t_act

 }

}

t_act=t_act+1

} until sink node v[y] was assigned a start time

return (t_LT);

 }

ACA
V1-0 34

List Scheduling with Timing Constraint – Algorithm Part 2

• Example: DE-Solver

• Resource minimization

• Timing constrained:

• Schedule:

 




+ 

+

−

−

NOP

NOP

v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v0

v12

7

6
5

4

2 2 3

7

5

7

6

ALAP times:

3 x MULT und 2 x ALU

ACA

It. MULT d=2 Takte ALU d=1Takt

tact Uakt,mult Slack Tact,mult Sact,mult Ract,mult amult Uact,alu Slack Sact,alu Ract,alu aalu ti

1 {v1,v2,

v6,v8}

s1=1,s2=1,s6

=2,s8=4

{} {} {v1} 1 {v10} s10=5 {} {v10} 1 t1=t10=1

2 {v2,v6,v8} s2=0, s6=1,

s8=3

{v1} {v2} {} 2 {v11} s11=5 {} {v11} 1 t2=t11=2

3 {v6,v8} s6=0, s8=2 {v2} {v6} {} 2 {} () {} {} 1 t6=3

4 {v3,v8} s3=0, s8=1 {v6} {v3} {} 2 {} () {} {} 1 t3=4

5 {v7,v8} s7=0, s8=0 {v3} {v7,v8} {} 3 {} () {} {} 1 t7=t8=5

6 {} () {v7,v8} {} {} 3 {v4} s4=0 {v4} {} 1 t4=6

7 {} () {} {} {} 3 {v5,v9} s5=

s9=0

{v5,v9} {} 2 t5=t9=7

V1-0 35

List Scheduling with Timing Constraint – Example

CC 1

CC 4

CC 3

CC 2

ALU 1 Mult.1 Mult.3

Time

(Clock cycles)

Resources

(Func. units)

CC 5

CC 6

CC 7

NOP

 v1

 v2

 v3

− v4

− v5

 v6


v7

 v8

+ v9

+ v10

 v11

v0

NOP v12

Mult.2ALU 2

• Example: DE Solver

•

• Binding:

ACA
V1-0 36

List Scheduling with Timing Constraint – TRP Plane

List Scheduling with Timing Constraint – Improved Version with Restart

• Improved Algorithm: Timing-constrained resource minimization

• Restart algorithms each time number of resources was increased, do not reset number of
resources to 1, but start with the last value.

ACA
V1-0 37

V1-0 ACA 38

D2-6 Force Directed Scheduling

Force-directed Scheduling - Introduction

• Heuristic based on a force-based model

• Timing constrained resource minimization

• Published: Paul & Knight, TCAD 1989

ACA
V1-0 39

Force-directed Scheduling – Distribution of Start Times

• Time frame of possible starting times for node :

with width of time frame equals

• Distribution for starting time of node at time

• Uniform distribution in the time frame.

ACA
V1-0 40

Force-directed Scheduling – Resource Demand

• Demand for resources of type k at clock cycle :

• Mean demand for resources of type k in the time frame :

ACA
V1-0 41

• Example: DE-Solver

• Multipliers (k=MULT)

• Execution delay = 1 clock cycle

• Timing constraint: max = 

 

  + 

+

−

−

v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

Distribution for starting times

v1 v2 v3 v6 v7 v8

Ti [1,1] [1,1] [2,2] [1,2] [2,3] [1,3] ↓ qMULT(tact) ↓

pi(1) 1 1 0 1/2 0 1/3 17/6=2,83

pi(2) 0 0 1 1/2 1/2 1/3 7/3=2,33

pi(3) 0 0 0 0 1/2 1/3 5/6=0,83

pi(4) 0 0 0 0 0 0 0

ACA

2,83

2,33

0,83

0

CC1

CC2

CC3

CC4

V1-0 42

Force-directed Schedule – Example Distribution of Starting Times

Force-directed Scheduling – Self Force

• Self force:

• Difference between demand of resource of type k in clock cycle and mean demand for
resource of type k in the time frame of the node.

• : In this clock cycle demand for this resource type is high. Push node away
from by positive self force.

• : In this clock cycle demand for this resource type is low. Pull node near to
by negative self force.

ACA
V1-0 43

• Example: DE-Solver

• Self force for clock cycle 1 positive because the demand for multipliers is high
and negative for clock cycle 2, because demand is lower.

v6

Ti [1,2] ↓ qMULT(tact) ↓

pi(1) 1/2 17/6

pi(2) 1/2 7/3

ACA

 

  + 

+

−

−

v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

2,83

2,33

0,83

0

CC1

CC2

CC3

CC4

0,25

-0,25

V1-0 44

Force-directed Scheduling – Self Force for Example

Force-directed Scheduling – Shift of Time Frames of Successors / Predecessors

• Selection of start time for node changes time frames for direct predecessor and successor
nodes.
• Node is direct predecessor or successor of .

• Start time for node is selected to:

• > New time frame and mobility for nodes :

• > New mean demands for resources:

ACA
V1-0 45

Force-directed Scheduling - Predecessor and successor forces

• Predecessor and successor forces:

• Change of mean demand for resources of type k for predecessor and successor forces.

• : By setting start time of node to the successor/predecessor node can only
be scheduled in clock cycles with higher demand for resources of type k. Push away from by
positive predecessor/successor force.

• : Other way around. Pull to by negative predecessor/successor force.

ACA
V1-0 46

• Example 3: DE-Solver
• is direct successor of

• For

• For

v7

Ti [2,3] ↓ qMULT(tact) ↓

pi(2) 1/2 7/3

pi(3) 1/2 5/6

ACA
V1-0 47

Force-directed Scheduling - Predecessor and successor forces for Example

Force-directed Scheduling – Total Force

• Total force

• Sum of self force, predecessor forces and successor forces.

• To minimize resources select starting times with minimal force,
which should lead to minimal mean demand of resources of all
types for the schedule.

ACA
V1-0 48

Force-directed Scheduling - Example

• Example: DE-Solver
Higher than average demand for multipliers.

Successor node is not influenced.

Lower than average demand for multipliers.

Successor node is shifted to time frame with lower than average demand for
multipliers.

ACA
V1-0 49

Force-directed Scheduling Example

• Force will push v6 towards start time t6=2 because there is
less demand for MUL in CC2 and v7 is pushed to a later start
time where there is also less demand for MUL.

ACA

 

  + 

+

−

−

v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

2,83

2,33

0,83

0

CC1

CC2

CC3

CC4

0,25

-0,25

-0,75

V1-0 50

Force-directed Scheduling - Algorithm

• Algorithm

FDS(G_s,u(V,E),Lambda_max) {

repeat {

 Compute time frame for all nodes

 Compute distribution for starting time for all nodes and all mean demands

 Compute total force for each node

 Select node with minimal force and assign the starting time to it.

} until Starting time has been assigned to all nodes.

return (t-FDS)

}

ACA
V1-0 51

Summary

Where we are

• HLS – Operations are scheduled to cycles

• We need to generate the RTL code for the accelerator

V1-0 ACA

	Folie 1
	Folie 2
	Folie 3: Overview - Scheduling
	Folie 4: Problem Formulation
	Folie 5: Problem Formulation
	Folie 6: Problem Formulation
	Folie 7: Problem Formulation
	Folie 8: Problem Formulation
	Folie 9: Problem Formulation
	Folie 10
	Folie 11: As-soon-as-possible (ASAP) Schedule Constraint
	Folie 12: As-soon-as-possible (ASAP) Scheduling Algorithm
	Folie 13: As-soon-as-possible (ASAP) Schedule Example
	Folie 14
	Folie 15: As-late-as-possible (ALAP) schedule constraint
	Folie 16: As-late-as-possible (ALAP) Scheduling Algorithm
	Folie 17: As-late-as-possible (ALAP) Schedule
	Folie 18
	Folie 19: Mobility of Operations
	Folie 20: Mobility of Operations
	Folie 21: Mobility of Operations
	Folie 22
	Folie 23: Hu‘s Algorithm
	Folie 24: Hu‘s Algorithm
	Folie 25: Hu‘s Algorithm
	Folie 26: Hu‘s Algorithm
	Folie 27
	Folie 28: List Scheduling Priorities
	Folie 29: List Scheduling Operation Sets
	Folie 30: List Scheduling with Resource Constraint - Algorithm
	Folie 31: List Scheduling with Resource Constraint - Example
	Folie 32: List Scheduling with Resource Constraint – Example in TRP Plane
	Folie 33: List Scheduling with Timing Constraint – Algorithm Part 1
	Folie 34: List Scheduling with Timing Constraint – Algorithm Part 2
	Folie 35: List Scheduling with Timing Constraint – Example
	Folie 36: List Scheduling with Timing Constraint – TRP Plane
	Folie 37: List Scheduling with Timing Constraint – Improved Version with Restart
	Folie 38
	Folie 39: Force-directed Scheduling - Introduction
	Folie 40: Force-directed Scheduling – Distribution of Start Times
	Folie 41: Force-directed Scheduling – Resource Demand
	Folie 42: Force-directed Schedule – Example Distribution of Starting Times
	Folie 43: Force-directed Scheduling – Self Force
	Folie 44: Force-directed Scheduling – Self Force for Example
	Folie 45: Force-directed Scheduling – Shift of Time Frames of Successors / Predecessors
	Folie 46: Force-directed Scheduling - Predecessor and successor forces
	Folie 47: Force-directed Scheduling - Predecessor and successor forces for Example
	Folie 48: Force-directed Scheduling – Total Force
	Folie 49: Force-directed Scheduling - Example
	Folie 50: Force-directed Scheduling Example
	Folie 51: Force-directed Scheduling - Algorithm
	Folie 52: Summary
	Folie 53: Where we are

