Makroökonomische Vertiefung ^{WS22}

N.F. Meizer

Contents

1	Introduction	2
2	One-Period Real Macroeconomic Model	3
3	T-Period Real Macroeconomic Model	5
4	Ramsey-Cass-Koopmans Model	7
5	Real Business Cycle Model	11
6	Basic New Keynesian Model	15

1 Introduction

Macroeconomists...

- empirically **describe** the aggregate economy.
- theoretically **explain** the determination of production, prices, employment, exchange rates, etc.
- quantitatively **evaluate** economic policies.

1.1 Trend versus Cycle

Macroeconomic time series are often decomposed into two components:

- trend component: long-term growth
- cyclical component: fluctuations around trend (business cycles)

1.2 HP-Filter

$$y_t = g_t + c_t$$

$$\min_{(g_t)_{t=1}^T} \sum_{\substack{t=1 \\ \text{cyclical fluctuation}}}^T (y_t - g_t)^2 + \lambda \cdot \underbrace{\sum_{t=2}^{T-1} ((g_{t+1} - g_t) - (g_t - g_{t-1}))^2}_{\text{change in growth trend}}$$

The parameter λ smoothes the trend:

- $\lambda = 0 \Rightarrow g_t = y_t$ (no cyclical fluctuations)
- $\lambda \to \infty \Rightarrow g_{t+1} g_t = g_t g_{t-1}$ (linear trend)

2 One-Period Real Macroeconomic Model

2.1 Assumptions

representative rousehold

• Life-time utility function u(C, l) describes the preferences over consumption C and leisure l:

$$u_C(\cdot) > 0 \quad u_{CC}(\cdot) < 0$$
$$u_l(\cdot) > 0 \quad u_{ll}(\cdot) < 0$$

- Time constraint: $l + N^S = h$, where N^S is labour supply and h is the available time.
- Flow budget constraint: $C \leq wN^S + rK^S$, where N^S and K^S are labour and capital supplied by the household. The household takes the wage w and the interest rate r as given.

representative firm

• The final good Y at given total factor productivity A is produced with $Y = AF(K^d, N^d)$, where $F(\cdot)$ is a Neoclassical production function combining capital K^d and N^d .

2.2 Representative Household: utility maximation

$$\max_{C,l,K^S} u(C,l)$$
s.t. $C \le w(h-l) + rK^S$
 $C \ge 0, \ l \in [0;h], \ K^S \in [0;K_0]$

$$\Rightarrow \mathcal{L}(\lambda,C,l,K^S) = u(C,l) + \lambda \cdot (w(h-l) + rK^S - C)$$
COCs for an optimum are:

The relevant FOCs for an optimum are:

I. $\frac{\partial \mathcal{L}(\cdot)}{\partial C} \stackrel{!}{=} 0 \implies u_C(\cdot) = \lambda$ II. $\frac{\partial \mathcal{L}(\cdot)}{\partial l} \stackrel{!}{=} 0 \implies u_l(\cdot) = \lambda w$

III.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda} \stackrel{!}{=} 0 \implies C = w(h-l) + rK^S$$

Solutions can be characterised by:

$$MRS_{l,C} \equiv \frac{u_l(\cdot)}{u_C(\cdot)} = w$$
$$C = w(h-l) + rK^S$$

For given (w, r) and endowment K_0 , 2 equations can be solved for 2 unknowns, (C, l).

2.3 Representative Firm: profit maximisation

$$\max_{N^d, K^d} \Pi^F \left(N^d, K^d \right) = AF \left(N^d, K^d \right) - wN^d - rK^d$$

The FOCs for an optimum are:

I.
$$\frac{\partial \Pi^F(\cdot)}{\partial K^d} \stackrel{!}{=} 0 \implies AF_K(\cdot) = r$$

II.
$$\frac{\partial \Pi^F(\cdot)}{\partial N^d} \stackrel{!}{=} 0 \quad \Rightarrow \quad AF_N(\cdot) = w$$

2.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households **maximise utility** and firms **maximise profit**. ⇒ The decision of households and firms are consistent with each other, therefore all markets are clear:
 - Good market clearing: C = Y
 - Labour market clearing: $N^d = N^S$
 - Capital market clearing: $K^d = K^S$

The system can be reduced to:

$$\frac{u_l(C,l)}{u_C(C,l)} = AF_N(K,h-l)$$

$$C = AF_N(K,h-l)(h-l) + AF_K(K,h-l)K$$

$$C = AF(K,h-l)$$

3 T-Period Real Macroeconomic Model

3.1 Assumptions

representative household

• Life-time utility function $U((C_t, l_t)_{t=0}^T)$ describes the preferences over consumption C_t and leisure l_t and is time-separable:

$$U(\cdot) = \sum_{t=0}^{T} \beta^{t} u(C_t, l_t)$$

- $\beta \in (0, 1)$ is the household's discount factor.
- Time constraint: $l_t + N_t = h$, $\forall t$
- Household's initial capital endowment is $K_0 > 0$.
- Net investment in the capital stock via savings, $S_t = I_t$: $K_{t+1} - K_t = I_t - \delta K_t$, $\forall t$, where $\delta \in [0; 1]$ is the rate of depreciation and I_t is gross investment.
- Flow budget constraint: $C_t + I_t \leq w_t N_t + r_t K_t$, $\forall t$

representative firm

• The final good Y at given total factor productivity A is produced with $Y = AF(K^d, N^d)$, where $F(\cdot)$ is a Neoclassical production function combining capital K^d and N^d .

3.2 Representative Household: utility maximisation

$$\max_{\substack{(C_t, l_t, I_t)_{t=0}^T \\ \text{s.t.}}} \sum_{t=0}^T \beta^t u(C_t, l_t)$$

s.t. $C_t + I_t \le w_t (h - l_t) + r_t K_t$
 $K_{t+1} = (1 - \delta) K_t + I_t$
 $C_t \ge 0, \ l_t \in [0; h], \ K_{t+1} \ge 0$

$$\Rightarrow \mathcal{L} = \sum_{t+1}^{T} \beta^t u(C_t, l_t) + \lambda_t \left(w_t(h - l_t) + (1 - \delta + r_t) K_t - C_t - K_{t+1} \right)$$

The relevant FCOs are:

I. $\frac{\partial \mathcal{L}(\cdot)}{\partial C_t} \stackrel{!}{=} 0 \quad \Rightarrow \quad \beta^t u_C(C_t, l_t) = \lambda_t, \quad \forall t$

II. $\frac{\partial \mathcal{L}(\cdot)}{\partial l_t} \stackrel{!}{=} 0 \implies \beta^t u_l(C_t, l_t) = \lambda_t w, \quad \forall t$ III. $\frac{\partial \mathcal{L}(\cdot)}{\partial K_{t+1}} \stackrel{!}{=} 0 \implies (1 - \delta + r_{t+1})\lambda_{t+1} = \lambda_t, \quad \forall t \in [0; T - 1]$ IV. $\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda_t} \stackrel{!}{=} 0 \implies K_{t+1} = w_t(h - l_t) - C_t + (1 - \delta + r_t)K_t, \quad \forall t$

Solutions can be characterised by:

$$MRS_{l_{t},C_{t}} \equiv \frac{u_{l}(C_{t}, l_{t})}{u_{C}(C_{t}, l_{t})} = w_{t} \qquad \forall t$$

$$MRS_{C_{t},C_{t+1}} \equiv \frac{u_{C}(C_{t}, l_{t})}{\beta u_{C}(C_{t+1}, l_{t+1})} = 1 - \delta + r_{t+1} \qquad \forall t \in [0; T-1]$$

$$K_{t+1} = w_{t}(h - l_{t}) + (1 - \delta + r_{t})K_{t} - C_{t} \qquad \forall t$$

3.3 Representative Firm: profit maximisation

$$\max_{N_t, K_t} \Pi^F(N_t, K_t) = AF(N_t, K_t) - w_t N_t - r_t K_t$$

The FOCs for an optimum are:

- I. $\frac{\partial \Pi^F(\cdot)}{\partial K_t} \stackrel{!}{=} 0 \implies AF_K(\cdot) = r_t$
- II. $\frac{\partial \Pi^F(\cdot)}{\partial N_t} \stackrel{!}{=} 0 \implies AF_N(\cdot) = w_t$

3.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households **maximise utility** and firms **maximise profit**. ⇒ The decision of households and firms are consistent with each other, therefore all markets are clear.

The system can be reduced to a system of 3T + 2 nonlinear equations and 3T + 2 unknowns (endogenous variables):

$$\frac{u_l(C_t, l_t)}{u_C(C_t, l_t)} = A_t F_N(K_t, h - l_t)$$
$$\frac{u_C(C_t, l_t)}{\beta u_C(C_{t+1}, l_{t+1})} = 1 - \delta + AF_K(K_{t+1}, h - l_{t+1})$$
$$K_{t+1} = AF(K_t, h - l_t) - C_t + (1 - \delta)K_t$$

4 Ramsey-Cass-Koopmans Model

4.1 Assumptions

representative household

- The representative household grows at rate $n \ge 0$: $N_{t+1} = (1+n)N_t, \quad \forall t, \quad N_0 = 1$
- Life-time utility function $U((c_t)_{t=0}^{\infty})$ describes preferences over consumption c_t :

$$U(\cdot) = N_0 \sum_{t=0}^{\infty} \beta^t (1+n)^t u(c_t) \qquad c_t \equiv \frac{C_t}{N_t}$$

- $T \to \infty$ can be justified since the representative household is a family, where altruistic parents care about their offspring (dynasty).
- The *instantenious utility function* is isoelastic:

$$u(c_t) = \begin{cases} \frac{c_t^{1-\sigma} - 1}{1-\sigma} & \sigma \neq 1\\ \ln(c_t) & \text{otherwise} \end{cases}$$

- σ measures relative risk aversion: $\sigma(c) \equiv -\frac{u_{cc} \times c}{u_c(c)}$
- Household's initial capital endowment is $K_0 > 0$.
- Net investment in the capital stock via savings, $S_t = I_t$: $K_{t+1} - K_t = I_t - \delta K_t$, $\forall t$
- Flow budget constraint: $C_t + I_t \leq w_t N_t + r_t K_t$, $\forall t$

representative firm

• A_t is interpreted as an exogenous labour-augmenting technology, $g \ge 0$ being the rate of technological progress: $A_{t+1} = (1+g)A_t$, $\forall t$, $A_0 = 1$

$$y_t = F(k_t, A_t) \qquad y_t \equiv Y_t/N_t$$
$$\tilde{y}_t = F\left(\tilde{k}_t, 1\right) = f\left(\tilde{k}_t\right) \qquad \tilde{y}_t \equiv Y_t/(A_tN_t)$$
$$\Rightarrow F_K(K_t, A_tN_t) = F_k(k_t, A_t) = f_{\tilde{k}}\left(\tilde{k}_t\right)$$

4.2 Representative Household: utility maximisation

$$\max_{\substack{(c_t,i_t)_{t=0}^{\infty}\\ \text{s.t.}}} N_0 \sum_{t=0}^{\infty} \beta^t (1+n)^t u(c_t)$$
$$s.t. \qquad c_t + i_t \le w_t + r_t k_t$$
$$(1+n)k_{t+1} = (1-\delta)k_t + i_t$$
$$\Rightarrow \mathcal{L} = \sum_{t=0}^{\infty} \beta^t (1+n)^t u(c_t) + \lambda_t \left(w_t + (1-\delta+r_t)k_t - c_t - (1+n)k_{t+1} \right)$$

The relevant FCOs are:

I. $\frac{\partial \mathcal{L}(\cdot)}{\partial c_t} \stackrel{!}{=} 0 \implies \beta^t (1+n)^t u_C(C_t, l_t) = \lambda_t$ II. $\frac{\partial \mathcal{L}(\cdot)}{\partial k_{t+1}} \stackrel{!}{=} 0 \implies (1-\delta+r_{t+1})\lambda_{t+1} = (1+n)\lambda_t$ III. $\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda_t} \stackrel{!}{=} 0 \implies (1+n)k_{t+1} = w_t - c_t + (1-\delta+r_t)k_t$

Optimal behaviour requires the *transversality condition* to hold:

$$\lim_{T \to \infty} \beta^T (1+n)^{T+1} \lambda_T k_{T+1} = 0$$

Solutions can be characterised by:

$$MRS_{c_t, c_{t+1}} \equiv \frac{u_c(c_t)}{\beta u_c(c_{t+1})} = 1 - \delta + r_{t+1}$$
$$k_{t+1}(1+n) = w_t + (1 - \delta + r_t)k_t - c_t$$

4.3 Representative Firm: profit maximisation

$$\max_{N_t,K_t} \Pi^F(N_t,K_t) = F(K_t,A_tN_t) - w_tN_t - r_tK_t$$

The FOCs for an optimum are:

I.
$$\frac{\partial \Pi^F(\cdot)}{\partial K_t} \stackrel{!}{=} 0 \quad \Rightarrow \quad F_K(\cdot) = r_t$$

II. $\frac{\partial \Pi^F(\cdot)}{\partial N_t} \stackrel{!}{=} 0 \quad \Rightarrow \quad F_N(\cdot) = w_t$

4.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households **maximise utility** and firms **maximise profit**. ⇒ The decision of households and firms are consistent with each other, therefore all markets are clear.

The system can be reduced to:

$$\frac{u_c(c_t)}{\beta u_c(c_{t+1})} = 1 - \delta + F_k(k_{t+1}, A_{t+1})$$
$$k_{t+1}(1+n) = F(k_t, A_t) + (1 - \delta + r_t)k_t - c_t$$

It is helpful, to define the composite parameter $(1 + z) \equiv (1 + g)(1 + n)$. With the isolelastic utility function and by normalising by A_t :

$$\frac{\tilde{c}_{t+1}}{\tilde{c}_t} = \frac{\beta^{1/\sigma} \left((1-\delta) + f_{\tilde{k}} \left(\tilde{k}_{t+1} \right) \right)^{1/\sigma}}{1+g}$$
$$\tilde{k}_{t+1} - \tilde{k}_t = \frac{f\left(\tilde{k}_t \right) - \tilde{c}_t}{1+z} - \frac{(z+\delta)\tilde{k}_t}{1+z}$$

4.5 Steady State

Steady-state quilibrium with population growth and technological progress is an equilibrium path with $\tilde{k}_t = \tilde{k}^{ss}$, therefore $\Delta \tilde{k}_t = 0$, $\Delta \tilde{c}_t = 0$ and $\Delta \tilde{y}_t = 0$.

- A steady state equilibrium is a fixed point of a dynamic system.
- No growth in per effective labour variables implies sustained growth in per capita and aggregate variable if g > 0.

 $\Delta \tilde{c}_t = 0$ determines \tilde{k}^{ss} :

$$f_{\tilde{k}}\left(\tilde{k}^{ss}\right) - \delta = \beta^{-1}(1+g)^{\sigma} - 1$$

 $\Delta \tilde{k}_t = 0$ and \tilde{k}^{ss} determine \tilde{c}^{ss} :

$$\tilde{c}^{ss} = f\left(\tilde{k}^{ss}\right) - (z+\delta)\tilde{k}^{ss}$$

4.6 Log-linearised Equilibrium Conditions

assumptions: $u(c_t) = \ln(c_t), f\left(\tilde{k}_t\right) = \tilde{k}_t^{\alpha}, \sigma = 1$ $\Rightarrow \tilde{c}_{t+1} = \frac{\beta\left(1 - \delta + \alpha \tilde{k}_{t+1}^{\alpha-1}\right)}{1 + g} \tilde{c}_t$ $1 - \delta = \tilde{k}_t^{\alpha} - \tilde{c}_t$

$$\Rightarrow \tilde{k}_{t+1} = \frac{1-\delta}{1+z}\tilde{k}_t + \frac{\tilde{k}_t^{\alpha} - \tilde{c}_t}{1+z}$$

Euler equation

$$\tilde{c}_{t+1} \approx \tilde{c}^{ss} + \left. \frac{\partial \tilde{c}_{t+1}}{\partial \tilde{c}^{ss}} \right|_{\tilde{k}_{t+1} = \tilde{k}^{ss}} (\tilde{c}_t - \tilde{c}^{ss}) + \left. \frac{\partial \tilde{c}_{t+1}}{\partial \tilde{k}^{ss}} \right|_{\tilde{k}_{t+1} = \tilde{k}^{ss}} (\tilde{k}_{t+1} - \tilde{k}^{ss})$$

$$\frac{\tilde{c}_{t+1} - \tilde{c}_t}{\tilde{c}_t} = \hat{c}_{t+1} = b_{ck} \hat{\tilde{k}}_{t+1} + b_{cc} \hat{\tilde{c}}_t$$

capital accumulation

$$\begin{split} \tilde{k}_{t+1} &\approx \tilde{k}^{ss} + \frac{\partial \tilde{k}_{t+1}}{\partial \tilde{k}^{ss}} \bigg|_{\substack{\tilde{c}_t = \tilde{c}^{ss} \\ \tilde{k}_t = \tilde{k}^{ss}}} \left(\tilde{k}_t - \tilde{k}^{ss} \right) + \frac{\partial \tilde{k}_{t+1}}{\partial \tilde{c}^{ss}} \bigg|_{\substack{\tilde{c}_t = \tilde{c}^{ss} \\ \tilde{k}_t = \tilde{k}^{ss}}} (\tilde{c}_t - \tilde{c}^{ss}) \\ \frac{\tilde{k}_{t+1} - \tilde{k}_t}{\tilde{k}_t} &= \hat{k}_{t+1} = b_{kk} \hat{k}_t + b_{kc} \hat{c}_t \end{split}$$

4.7 Equilibrium Dynamics

$$\begin{pmatrix} \hat{\tilde{k}}_{t+1} \\ \hat{\tilde{c}}_{t+1} \end{pmatrix} = \begin{pmatrix} b_{kk} & b_{kc} \\ b_{ck}b_{kk} & b_{cc} + b_{ck}b_{kc} \end{pmatrix} \begin{pmatrix} \hat{\tilde{k}}_t \\ \hat{\tilde{c}}_t \end{pmatrix}$$

repeated substitution

RLOM guess

verification

5 Real Business Cycle Model

5.1 Assumptions

rational expectations

- E_t denotes the **rational expectations operator** agents form expectations in time t about realisations of future random variables (utility, consumption, total factor productivity, etc.):
 - using all available information in time t including the structure of the underlying model, summarised in their **information set** in time t, \mathcal{I}_t
 - considering this as their **dominant strategy**
- The expectation operator for random variable X_{t+1} is defined as:

$$E_t X_{t+1} \equiv E(X_{t+1} \mid \mathcal{I}_t)$$

• In t the realisation of the variable in t is known:

$$E_t X_t = X_t$$

representative household

• Life-time utility function $U((C_t, N_t)_{t=0}^{\infty})$ describes preferences over consumption C_t and labour N_t :

$$U(\cdot) = \sum_{t=0}^{\infty} \beta^t \left(\ln(C_t) - \zeta N_t \right)$$

- Household's initial capital endowment is $K_{-1} > 0$.
- Net investment in the capital stock via savings, $S_t = I_t$: $K_t = (1 - \delta)K_{t-1} + I_t$
- Feasibility constraint: $C_t + I_t \leq Y_t$
- Flow budget constraint: $C_t + I_t \leq w_t N_t + r_t K_t$

representative firm

- Final good Y_t is produced with the Cobb-Douglas production function: $Y_t = A_t K^\alpha_{t-1} N_t^{1-\alpha}$
- Through $\varepsilon_t^a \sim \mathcal{N}(0, \sigma_a^1)$ exogenous shocks in total factor productivity can be modelled:

$$A_t = A_{ss}^{1-\rho_a} A_{t-1}^{\rho_a} \exp(\varepsilon_t^a)$$

5.2 Social planner: utility maximation

$$\max_{\substack{(C_t, N_t, K_t, I_t)_{t=0}^{\infty}\\ \text{s.t.}}} E_0 \sum_{t=0}^{\infty} \beta^t \left(\ln(C_t) - \zeta N_t \right)$$

s.t. $C_t + I_t \leq Y_t$
 $K_t = (1 - \delta) K_{t-1} + I_t$

$$\Rightarrow \mathcal{L} = E_0 \sum_{t=0}^{\infty} \beta^t \left(\ln(C_t) - \zeta N_t \right) + \lambda_t \left(A_t K_{t-1}^{\alpha} N_t^{1-\alpha} + (1-\delta) K_{t-1} - K_t - C_t \right)$$

The FOCs for an optimum are:

I.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial C_t} \stackrel{!}{=} 0 \implies \beta^t C_t^{-1} = \lambda_t$$

II. $\frac{\partial \mathcal{L}(\cdot)}{\partial N_t} \stackrel{!}{=} 0 \implies \beta^t \zeta = \lambda_t (1 - \alpha) A_t K_{t-1}^{\alpha} N_t^{-\alpha}$
III. $\frac{\partial \mathcal{L}(\cdot)}{\partial K_t} \stackrel{!}{=} 0 \implies \lambda_{t+1} E_t \left[\alpha A_{t+1} K_t^{\alpha - 1} N_{t+1}^{1 - \alpha} + (1 - \delta) \right] = \lambda_t$

5.3 Competitive Equilibrium

The FOCs can be simplified to a system of six equations and six unknowns (the real rate is was defined ex post):

Euler equation:	$1 = \beta E_t \left[\frac{C_t}{C_{t+1}} R_{t+1} \right]$
labour/leisure:	$\zeta C_t = (1 - \alpha) \frac{Y_t}{N_t}$
production:	$Y_t = A_t K_{t-1}^{\alpha} N_t^{1-\alpha}$
TFP:	$A_t = A_{ss}^{1-\rho_a} A_{t-1}^{\rho_a} e^{\varepsilon_t^a}$
real return:	$R_t \equiv \alpha \frac{Y_t}{K_{t-1}} + (1 - \delta)$
feasibility:	$C_t + K_t = Y_t + (1 - \delta)K_{t-1}$

5.4 Steady State

Supposing that all variables are constant: $\forall t : X_t = X^{ss}$. K^{ss}/Y^{ss} , Y^{ss}/N^{ss} , C^{ss} , N^{ss} and R^{ss} can be expressed as functions of structural parameters scaled by A^{ss} .

• The Euler equation becomes: $R^{ss} = \beta^{-1}$

• The real return equation yields:

$$\frac{Y^{ss}}{K^{ss}} = \frac{R^{ss} - 1 + \delta}{\alpha} \Leftrightarrow \frac{K^{ss}}{Y^{ss}} = \frac{\alpha}{\beta^{-1} - 1 + \delta}$$

- The TFP equation trivially implies: $A^{ss} = A^{ss}$
- The production function yields:

$$\frac{Y^{ss}}{N^{ss}} = A_{ss}^{1/(1-\alpha)} \left(\frac{Y^{ss}}{K^{ss}}\right)^{\alpha/(1-\alpha)} = A_{ss}^{1/(1-\alpha)} \left(\frac{\alpha}{\beta^{-1}-1+\delta}\right)^{\alpha/(1-\alpha)}$$

• The labour/leisure trade-off can be solved for:

$$C^{ss} = \frac{1-\alpha}{\zeta} \cdot \frac{Y^{ss}}{N^{ss}} = \frac{1-\alpha}{\zeta} \cdot \left(A_{ss}^{1/(1-\alpha)} \left(\frac{\alpha}{\beta^{-1}-1+\delta}\right)^{\alpha/(1-\alpha)}\right)$$

• Feasibility results in:

$$N^{ss} = C^{ss} \left(\left(1 - \delta \frac{K^{ss}}{Y^{ss}} \right) \frac{Y^{ss}}{N^{ss}} \right)^{-1}$$

5.5 Log-linearised Equilibrium Conditions

The model dynamics in the neighbourhood of the steady state can be analysed with a **linear approximation**. The variable x_t denotes the logarithmic deviation of random variable X_t from its steady state X^{ss} :

$$x_t \equiv \ln(X_t) - \ln(X^{ss})$$

 \Rightarrow Using $e^X \approx (1 + X)$, $100 \times x_t$ ist the percentage deviation of X_t from its steady state:

$$\frac{X_t - X^{ss}}{X^{ss}} \approx \frac{X^{ss}(1 + x_t) - X^{ss}}{X^{ss}} = x_t$$

The log-linearised system becomes:

$$\begin{array}{lll} \mbox{Euler equation:} & 0 = E_t [c_t - c_{t+1} + r_{t+1}] \\ \mbox{labour/leisure:} & c_t = y_t - n_t \\ \mbox{production:} & y_t = a_t + \alpha k_{t-1} + (1 - \alpha) n_t \\ \mbox{TFP:} & a_t = \rho_a a_{t-1} + \varepsilon_t^a \\ \mbox{real return:} & R^{ss} r_t = \alpha \frac{Y^{ss}}{K^{ss}} (y_t - k_{t-1}) \\ \mbox{feasibility:} & C^{ss} c_t = Y^{ss} y_t + (1 - \delta) K^{ss} k_{t-1} - K^{ss} k_t \end{array}$$

5.6 Equilibrium Dynamics

repeated substitution

• Labour/leisure trade off, production function, real return and Euler equation yield

$$E_t[c_t - b_1c_{t+1} + b_2a_{t+1}] = 0$$

• Feasability constraint, production function and labor/leisure trade off yield

$$E_t[b_3c_t + b_4k_t - b_5a_t - b_6k_{t-1}] = 0$$

RLOM guess

$$k_t = \mu_{kk}k_{t-1} + \mu_{ka}a_t$$
$$c_t = \mu_{ck}k_{t-1} + \mu_{ca}a_t$$

verification

6 Basic New Keynesian Model

6.1 Assumptions

monopolistic competition

- Firms set prices and charge a markup over marginal costs.
- Markup depends on the elasticity of substitution between a continuum of differentiated goods.
- \Rightarrow This **marketpower** is one source of inefficiency.

price rigidity

- Firms adjust prices in any given period only with probability θ .
- If shocks hit the economy, they can adjust quantities immediately.

 \Rightarrow This creates **price dispersion**, another source of inefficiency.

representative household

- Each household owns a **non-tradable** asset an equal share in the portfolio of producers, which pays nominal dividend: $\int_0^1 D_t(i) di$
- C_t is an index which aggregates all goods produced and consumed in the economy. The goods are indexed by $i \in [0; 1]$, $\varepsilon_p > 1$ being the price elasticity of demand.

$$C_t \equiv \left(\int_0^1 C_t(i)^{\frac{\varepsilon_p - 1}{\varepsilon_p}} di\right)^{\frac{\varepsilon_p}{\varepsilon_p - 1}}$$

• Instantaneous utility is given by:

$$U(C_t, N_t, Z_t) = \begin{cases} \left(\frac{C_t^{1-\sigma} - 1}{1-\sigma} - \frac{N_t^{1+\phi}}{1+\phi}\right) Z_t & \sigma \neq 1\\ \left(\ln(C_t) - \frac{N_t^{1+\phi}}{1+\phi}\right) Z_t & \text{otherwise} \end{cases}$$

 Z_t being an exogenous preference shifter, which only affects inter-temporal decision.

- N_t are hours worked and W_t is the nominal wage.
- B_t is a riskless nominal one-period discount bond purchased in period t at price Q_t . At maturity in t + 1 it pays one unit of money. The gross yield on the bond is $1/Q_t$ therefore the nominal interest rate is defined as $i_t \equiv \ln(1/Q_t)$.

• Inter-temporal household solvency can be ensured by imposing the no-Ponzi condition:

$$\lim_{T \to \infty} E_t \left[\Lambda_{t,T} \frac{B_T}{P_T} \right] \ge 0$$

representative firm

- Continuum of firms indexed by $i \in [0; 1]$.
- Each firm *i* operates with identical technology:

$$Y_t(i) = A_t N_t(i)^{1-\alpha}, \quad \alpha \in]0;1[$$

- Firms hire $N_t(i)$ on a **perfectly competitive** labour market.
- Each firm *i* chooses $Y_t(i), N_t(i), P_t^*(i)$ to maximise profits, which equal dividens: $D_t(i) \equiv P_t^*(i)Y_t(i) - W_tN_t(i)$

6.2 Representative Household

expenditure minimisation

$$\min_{C_t(i)} \int_0^1 P_t(i) C_t(i) \, di \quad s.t. \quad C_t \equiv \left(\int_0^1 C_t(i)^{\frac{\varepsilon_p - 1}{\varepsilon_p}} \, di \right)^{\frac{\varepsilon_p}{\varepsilon_p - 1}}$$
$$\Rightarrow \mathcal{L} = \int_0^1 P_t(i) C_t(i) \, di + \lambda_t \left(C_t - \left(\int_0^1 C_t(i)^{\frac{\varepsilon_p - 1}{\varepsilon_p}} \, di \right)^{\frac{\varepsilon_p}{\varepsilon_p - 1}} \right)$$

The implied FOC $\forall i$ is:

$$\frac{\partial \mathcal{L}(\cdot)}{\partial C_t(i)} \stackrel{!}{=} 0 \quad \Rightarrow \quad P_t(i) = \lambda_t \frac{\varepsilon_p}{\varepsilon_p - 1} \left(\int_0^1 C_t(i)^{\frac{\varepsilon_p - 1}{\varepsilon_p}} di \right)^{\frac{\varepsilon_p}{\varepsilon_p - 1} - 1} \frac{\varepsilon_p - 1}{\varepsilon_p} C_t(i)^{-\frac{1}{\varepsilon_p}} = \lambda_t C_t^{\frac{1}{\varepsilon_p}} C_t(i)^{-\frac{1}{\varepsilon_p}}$$

For any two goods $i \neq j$ it follows that:

$$C_t(i) = C_t(j) \left(\frac{P_t(i)}{P_t(j)}\right)^{-\varepsilon_p}$$

 \Rightarrow The optimal demand for godd *i* relative to any good $j \neq i$ is a declining function of its relative price.

 λ_t can be interpreted as the aggregate price index P_t - the marginal cost of an additional unit of the basket C_t :

$$C_t = \left(\int_0^1 C_t(i)^{\frac{\varepsilon_p - 1}{\varepsilon_p}} di\right)^{\frac{\varepsilon_p}{\varepsilon_p - 1}} = \left(\int_0^1 \left(C_t(j)\left(\frac{P_t(i)}{P_t(j)}\right)^{-\varepsilon_p}\right)^{\frac{\varepsilon_p - 1}{\varepsilon_p}} di\right)^{\frac{\varepsilon_p}{\varepsilon_p - 1}}$$
$$= C_t(j)P_t(j)^{\varepsilon_p} \left(\int_0^1 P_t(i)^{1 - \varepsilon_p} di\right)^{\frac{\varepsilon_p}{\varepsilon_p - 1}}$$
$$\lambda_t = \left(\frac{C_t(j)}{C_t}\right)^{\frac{1}{\varepsilon_p}} P_t(j) = \left(\int_0^1 P_t(i)^{1 - \varepsilon_p} di\right)^{\frac{1}{1 - \varepsilon_p}} \equiv P_t$$

The household's total **consumption expenditure** results in:

$$\int_0^1 P_t(i)C_t(i)\,di = \int_0^1 P_t(i)\left(\left(\frac{P_t(i)}{P_t}\right)^{-\varepsilon_p}C_t\right)di = P_t^{\varepsilon_p}C_t\int_0^1 P_t(i)^{1-\varepsilon_p}\,di$$
$$= P_t^{\varepsilon_p}C_t\int_0^1 P_t^{1-\varepsilon_p}\,di = C_tP_t$$

Optimal demand for good i relative to the aggregate price level is:

$$C_t(i) = \left(\frac{P_t(i)}{P_t}\right)^{-\varepsilon_p} C_t$$

utility maximisation

$$\max_{\substack{\left(C_t, N_t, B_t/P_t\right)_{t=0}^{\infty}\\ \text{s.t.}}} \quad E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, N_t, Z_t)$$
$$R_t C_t + Q_t B_t \le B_{t-1} + W_t N_t + D_t$$

The household's optimality conditions can be rearranged to yield

$$\begin{split} \beta Q_t &= E_t \Bigg[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{Z_{t+1}}{Z_t} \frac{P_t}{P_{t+1}} \Bigg] \\ C_t^{\sigma} N_t^{\phi} &= \frac{W_t}{P_t} \end{split}$$

6.3 Representative Firm: profit maximisation

flexible prices

$$\max_{Y_t(i),N_t(i),P_t^*(i)} P_t^*(i)Y_t(i) - W_t N_t(i)$$

s.t.
$$Y_t(i) = A_t N_t(i)^{1-\alpha}$$
$$Y_t(i) = \left(\frac{P_t^*(i)}{P_t}\right)^{-\varepsilon_p} C_t$$
$$0 \le Y_t(i), N_t(i), P_t^*(i)$$
$$\Rightarrow \mathcal{L} = P_t^*(i)A_t N_t(i)^{1-\alpha} - W_t N_t(i)$$

$$\Rightarrow \mathcal{L} = P_t^*(i) A_t N_t(i)^{1-\alpha} - W_t N_t(i) + \Psi_t(i) \left(A_t N_t(i)^{1-\alpha} - Y_t(i) \right) + \xi_t(i) \left(\left(\frac{P_t^*(i)}{P_t} \right)^{-\varepsilon_p} C_t - Y_t(i) \right)$$

The FOCs are

I.
$$\frac{\partial \mathcal{L}(\cdot)}{\partial Y_t(i)} \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \xi_t(i) = P_t^*(i) - \Psi_t(i)$$

II. $\frac{\partial \mathcal{L}(\cdot)}{\partial N_t(i)} \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \Psi_t(i) = \frac{W_t}{(1-\alpha)A_tN_t(i)^{-\alpha}} = \frac{W_t}{\text{MPN}_t(i)}$
III. $\frac{\partial \mathcal{L}(\cdot)}{\partial P_t^*(i)} \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \xi_t(i) = P_t^*(i)\varepsilon_p$

Combining (I.) & (II.) yields

$$\frac{P_t^*(i)}{\Psi_t(i)} = \frac{\varepsilon_p}{\varepsilon_p - 1} \equiv \mathcal{M}_p$$

sticky prices

$$\sum_{k=0}^{\infty} \theta_p^k E_t \left[\frac{\Lambda_{t,t+k} Y_{t+k|t}(i)}{P_{t+k}} \left(P_t^*(i) - \mathcal{M}_p \Psi_{t+k|t}(i) \right) \right] = 0$$

6.4 Equilibrium

6.5 Steady State

Linearisation

6.6 Monetary Policy

6.7 Equilibrium Dynamics

6.8 Model Analysis

monetary policy shock

discount rate shock

technology shock