Makroökonomische Vertiefung
 WS22

N.F. Meizer

Contents

1 Introduction 2
2 One-Period Real Macroeconomic Model 3
3 T-Period Real Macroeconomic Model 5
4 Ramsey-Cass-Koopmans Model 7
5 Real Business Cycle Model 11
6 Basic New Keynesian Model 15

1 Introduction

Macroeconomists...

- empirically describe the aggregate economy.
- theoretically explain the determination of production, prices, employment, exchange rates, etc.
- quantitatively evaluate economic policies.

1.1 Trend versus Cycle

Macroeconomic time series are often decomposed into two components:

- trend component: long-term growth
- cyclical component: fluctuations around trend (business cycles)

1.2 HP-Filter

$$
\begin{gathered}
y_{t}=g_{t}+c_{t} \\
\min _{\left(g_{t}\right)_{t=1}^{T}} \underbrace{\sum_{t=1}^{T}\left(y_{t}-g_{t}\right)^{2}}_{\text {cyclical fluctuation }}+\lambda \cdot \underbrace{\sum_{t=2}^{T-1}\left(\left(g_{t+1}-g_{t}\right)-\left(g_{t}-g_{t-1}\right)\right)^{2}}_{\text {change in growth trend }}
\end{gathered}
$$

The parameter λ smoothes the trend:

- $\lambda=0 \Rightarrow g_{t}=y_{t}$ (no cyclical fluctuations)
- $\lambda \rightarrow \infty \Rightarrow g_{t+1}-g_{t}=g_{t}-g_{t-1}$ (linear trend)

2 One-Period Real Macroeconomic Model

2.1 Assumptions

representative rousehold

- Life-time utility function $u(C, l)$ describes the preferences over consumption C and leisure l :

$$
\begin{aligned}
u_{C}(\cdot) & >0 & u_{C C}(\cdot) & <0 \\
u_{l}(\cdot) & >0 & u_{l l}(\cdot) & <0
\end{aligned}
$$

- Time constraint: $l+N^{S}=h$, where N^{S} is labour supply and h is the available time.
- Flow budget constraint: $C \leq w N^{S}+r K^{S}$, where N^{S} and K^{S} are labour and capital supplied by the household. The household takes the wage w and the interest rate r as given.

representative firm

- The final good Y at given total factor productivity A is produced with $Y=A F\left(K^{d}, N^{d}\right)$, where $F(\cdot)$ is a Neoclassical production function combining capital K^{d} and N^{d}.

2.2 Representative Household: utility maximation

$$
\begin{array}{rl}
\max _{C, l, K^{S}} & u(C, l) \\
\text { s.t. } \quad & C \leq w(h-l)+r K^{S} \\
& C \geq 0, l \in[0 ; h], K^{S} \in\left[0 ; K_{0}\right] \\
\Rightarrow \quad \mathcal{L}\left(\lambda, C, l, K^{S}\right) & =u(C, l)+\lambda \cdot\left(w(h-l)+r K^{S}-C\right)
\end{array}
$$

The relevant FOCs for an optimum are:
I. $\frac{\partial \mathcal{L}(\cdot)}{\partial C} \stackrel{!}{=} 0 \Rightarrow u_{C}(\cdot)=\lambda$
II. $\frac{\partial \mathcal{L}(\cdot)}{\partial l} \stackrel{!}{=} 0 \Rightarrow u_{l}(\cdot)=\lambda w$
III. $\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda} \stackrel{!}{=} 0 \Rightarrow C=w(h-l)+r K^{S}$

Solutions can be characterised by:

$$
\begin{aligned}
\mathrm{MRS}_{l, C} & \equiv \frac{u_{l}(\cdot)}{u_{C}(\cdot)}=w \\
C & =w(h-l)+r K^{S}
\end{aligned}
$$

For given (w, r) and endowment $K_{0}, \mathbf{2}$ equations can be solved for $\mathbf{2}$ unknowns, (C, l).

2.3 Representative Firm: profit maximisation

$$
\max _{N^{d}, K^{d}} \Pi^{F}\left(N^{d}, K^{d}\right)=A F\left(N^{d}, K^{d}\right)-w N^{d}-r K^{d}
$$

The FOCs for an optimum are:
I. $\frac{\partial \Pi^{F}(\cdot)}{\partial K^{d}} \stackrel{!}{=} 0 \quad \Rightarrow \quad A F_{K}(\cdot)=r$
II. $\frac{\partial \Pi^{F}(\cdot)}{\partial N^{d}} \stackrel{!}{=} 0 \Rightarrow A F_{N}(\cdot)=w$

2.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households maximise utility and firms maximise profit. \Rightarrow The decision of households and firms are consistent with each other, therefore all markets are clear:
- Good market clearing: $C=Y$
- Labour market clearing: $N^{d}=N^{S}$
- Capital market clearing: $K^{d}=K^{S}$

The system can be reduced to:

$$
\begin{aligned}
\frac{u_{l}(C, l)}{u_{C}(C, l)} & =A F_{N}(K, h-l) \\
C & =A F_{N}(K, h-l)(h-l)+A F_{K}(K, h-l) K \\
C & =A F(K, h-l)
\end{aligned}
$$

3 T-Period Real Macroeconomic Model

3.1 Assumptions

representative household

- Life-time utility function $U\left(\left(C_{t}, l_{t}\right)_{t=0}^{T}\right)$ describes the preferences over consumption C_{t} and leisure l_{t} and is time-separable:

$$
U(\cdot)=\sum_{t=0}^{T} \beta^{t} u\left(C_{t}, l_{t}\right)
$$

- $\beta \in(0,1)$ is the household's discount factor.
- Time constraint: $l_{t}+N_{t}=h, \quad \forall t$
- Household's initial capital endowment is $K_{0}>0$.
- Net investment in the capital stock via savings, $S_{t}=I_{t}$:
$K_{t+1}-K_{t}=I_{t}-\delta K_{t}, \quad \forall t$, where $\delta \in[0 ; 1]$ is the rate of depreciation and I_{t} is gross investment.
- Flow budget constraint: $C_{t}+I_{t} \leq w_{t} N_{t}+r_{t} K_{t}, \quad \forall t$

representative firm

- The final good Y at given total factor productivity A is produced with $Y=A F\left(K^{d}, N^{d}\right)$, where $F(\cdot)$ is a Neoclassical production function combining capital K^{d} and N^{d}.

3.2 Representative Household: utility maximisation

$$
\begin{aligned}
& \max _{\left(C_{t}, l_{t}, I_{t} T_{t=0}^{T}\right.} \sum_{t=0}^{T} \beta^{t} u\left(C_{t}, l_{t}\right) \\
& \text { s.t. } C_{t}+I_{t} \leq w_{t}\left(h-l_{t}\right)+r_{t} K_{t} \\
& K_{t+1}=(1-\delta) K_{t}+I_{t} \\
& C_{t} \geq 0, l_{t} \in[0 ; h], K_{t+1} \geq 0 \\
& \Rightarrow \mathcal{L}=\sum_{t+1}^{T} \beta^{t} u\left(C_{t}, l_{t}\right)+\lambda_{t}\left(w_{t}\left(h-l_{t}\right)+\left(1-\delta+r_{t}\right) K_{t}-C_{t}-K_{t+1}\right)
\end{aligned}
$$

The relevant FCOs are:
I. $\frac{\partial \mathcal{L}(\cdot)}{\partial C_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad \beta^{t} u_{C}\left(C_{t}, l_{t}\right)=\lambda_{t}, \quad \forall t$
II. $\frac{\partial \mathcal{L}(\cdot)}{\partial l_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad \beta^{t} u_{l}\left(C_{t}, l_{t}\right)=\lambda_{t} w, \quad \forall t$
III. $\frac{\partial \mathcal{L}(\cdot)}{\partial K_{t+1}} \stackrel{!}{=} 0 \quad \Rightarrow \quad\left(1-\delta+r_{t+1}\right) \lambda_{t+1}=\lambda_{t}, \quad \forall t \in[0 ; T-1]$
IV. $\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad K_{t+1}=w_{t}\left(h-l_{t}\right)-C_{t}+\left(1-\delta+r_{t}\right) K_{t}, \quad \forall t$

Solutions can be characterised by:

$$
\begin{aligned}
\operatorname{MRS}_{l t}, C_{t} & \equiv \frac{u_{l}\left(C_{t}, l_{t}\right)}{u_{C}\left(C_{t}, l_{t}\right)}=w_{t} & & \forall t \\
\operatorname{MRS}_{C_{t}, C_{t+1}} & \equiv \frac{u_{C}\left(C_{t}, l_{t}\right)}{\beta u_{C}\left(C_{t+1}, l_{t+1}\right)}=1-\delta+r_{t+1} & & \forall t \in[0 ; T-1] \\
K_{t+1} & =w_{t}\left(h-l_{t}\right)+\left(1-\delta+r_{t}\right) K_{t}-C_{t} & & \forall t
\end{aligned}
$$

3.3 Representative Firm: profit maximisation

$$
\max _{N_{t}, K_{t}} \Pi^{F}\left(N_{t}, K_{t}\right)=A F\left(N_{t}, K_{t}\right)-w_{t} N_{t}-r_{t} K_{t}
$$

The FOCs for an optimum are:
I. $\frac{\partial \Pi^{F}(\cdot)}{\partial K_{t}} \stackrel{!}{=} 0 \Rightarrow A F_{K}(\cdot)=r_{t}$
II. $\frac{\partial \Pi^{F}(\cdot)}{\partial N_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad A F_{N}(\cdot)=w_{t}$

3.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households maximise utility and firms maximise profit. \Rightarrow The decision of households and firms are consistent with each other, therefore all markets are clear.

The system can be reduced to a system of $\mathbf{3 T}+\mathbf{2}$ nonlinear equations and $\mathbf{3 T}+\mathbf{2}$ unknowns (endogenous variables):

$$
\begin{aligned}
\frac{u_{l}\left(C_{t}, l_{t}\right)}{u_{C}\left(C_{t}, l_{t}\right)} & =A_{t} F_{N}\left(K_{t}, h-l_{t}\right) \\
\frac{u_{C}\left(C_{t}, l_{t}\right)}{\beta u_{C}\left(C_{t+1}, l_{t+1}\right)} & =1-\delta+A F_{K}\left(K_{t+1}, h-l_{t+1}\right) \\
K_{t+1} & =A F\left(K_{t}, h-l_{t}\right)-C_{t}+(1-\delta) K_{t}
\end{aligned}
$$

4 Ramsey-Cass-Koopmans Model

4.1 Assumptions

representative household

- The representative household grows at rate $n \geq 0$:

$$
N_{t+1}=(1+n) N_{t}, \quad \forall t, \quad N_{0}=1
$$

- Life-time utility function $U\left(\left(c_{t}\right)_{t=0}^{\infty}\right)$ describes preferences over consumption c_{t} :

$$
U(\cdot)=N_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t} u\left(c_{t}\right) \quad c_{t} \equiv \frac{C_{t}}{N_{t}}
$$

- $T \rightarrow \infty$ can be justified since the representative household is a family, where altruistic parents care about their offspring (dynasty).
- The instantenious utility function is isoelastic:

$$
u\left(c_{t}\right)= \begin{cases}\frac{c_{t}^{1-\sigma}-1}{1-\sigma} & \sigma \neq 1 \\ \ln \left(c_{t}\right) & \text { otherwise }\end{cases}
$$

- σ measures relative risk aversion: $\sigma(c) \equiv-\frac{u_{c c} \times c}{u_{c}(c)}$
- Household's initial capital endowment is $K_{0}>0$.
- Net investment in the capital stock via savings, $S_{t}=I_{t}$:
$K_{t+1}-K_{t}=I_{t}-\delta K_{t}, \quad \forall t$
- Flow budget constraint: $C_{t}+I_{t} \leq w_{t} N_{t}+r_{t} K_{t}, \quad \forall t$

representative firm

- A_{t} is interpreted as an exogenous labour-augmenting technology, $g \geq 0$ being the rate of technological progress: $A_{t+1}=(1+g) A_{t}, \quad \forall t, \quad A_{0}=1$

$$
\begin{array}{ll}
y_{t}=F\left(k_{t}, A_{t}\right) & y_{t} \equiv Y_{t} / N_{t} \\
\tilde{y}_{t}=F\left(\tilde{k}_{t}, 1\right)=f\left(\tilde{k}_{t}\right) & \tilde{y}_{t} \equiv Y_{t} /\left(A_{t} N_{t}\right) \\
& \Rightarrow F_{K}\left(K_{t}, A_{t} N_{t}\right)=F_{k}\left(k_{t}, A_{t}\right)=f_{\tilde{k}}\left(\tilde{k}_{t}\right)
\end{array}
$$

4.2 Representative Household: utility maximisation

$$
\begin{aligned}
\max _{\left(c_{t}, i_{t}\right)_{t=0}^{\infty}} & N_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t} u\left(c_{t}\right) \\
\text { s.t. } & c_{t}+i_{t}
\end{aligned} \leq w_{t}+r_{t} k_{t} .
$$

The relevant FCOs are:
I. $\frac{\partial \mathcal{L}(\cdot)}{\partial c_{t}} \stackrel{!}{=} 0 \Rightarrow \beta^{t}(1+n)^{t} u_{C}\left(C_{t}, l_{t}\right)=\lambda_{t}$
II. $\frac{\partial \mathcal{L}(\cdot)}{\partial k_{t+1}} \stackrel{!}{=} 0 \quad \Rightarrow \quad\left(1-\delta+r_{t+1}\right) \lambda_{t+1}=(1+n) \lambda_{t}$
III. $\frac{\partial \mathcal{L}(\cdot)}{\partial \lambda_{t}} \stackrel{!}{=} 0 \Rightarrow(1+n) k_{t+1}=w_{t}-c_{t}+\left(1-\delta+r_{t}\right) k_{t}$

Optimal behaviour requires the transversality condition to hold:

$$
\lim _{T \rightarrow \infty} \beta^{T}(1+n)^{T+1} \lambda_{T} k_{T+1}=0
$$

Solutions can be characterised by:

$$
\begin{aligned}
\operatorname{MRS}_{c_{t}, c_{t+1}} & \equiv \frac{u_{c}\left(c_{t}\right)}{\beta u_{c}\left(c_{t+1}\right)}=1-\delta+r_{t+1} \\
k_{t+1}(1+n) & =w_{t}+\left(1-\delta+r_{t}\right) k_{t}-c_{t}
\end{aligned}
$$

4.3 Representative Firm: profit maximisation

$$
\max _{N_{t}, K_{t}} \Pi^{F}\left(N_{t}, K_{t}\right)=F\left(K_{t}, A_{t} N_{t}\right)-w_{t} N_{t}-r_{t} K_{t}
$$

The FOCs for an optimum are:
I. $\frac{\partial \Pi^{F}(\cdot)}{\partial K_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad F_{K}(\cdot)=r_{t}$
II. $\frac{\partial \Pi^{F}(\cdot)}{\partial N_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \quad F_{N}(\cdot)=w_{t}$

4.4 Competitive Equilibrium

- Every market participant is a price-taker.
- Households maximise utility and firms maximise profit. \Rightarrow The decision of households and firms are consistent with each other, therefore all markets are clear.

The system can be reduced to:

$$
\begin{aligned}
\frac{u_{c}\left(c_{t}\right)}{\beta u_{c}\left(c_{t+1}\right)} & =1-\delta+F_{k}\left(k_{t+1}, A_{t+1}\right) \\
k_{t+1}(1+n) & =F\left(k_{t}, A_{t}\right)+\left(1-\delta+r_{t}\right) k_{t}-c_{t}
\end{aligned}
$$

It is helpful, to define the composite parameter $(1+z) \equiv(1+g)(1+n)$. With the isolelastic utility function and by normalising by A_{t} :

$$
\begin{aligned}
\frac{\tilde{c}_{t+1}}{\tilde{c}_{t}} & =\frac{\beta^{1 / \sigma}\left((1-\delta)+f_{\tilde{k}}\left(\tilde{k}_{t+1}\right)\right)^{1 / \sigma}}{1+g} \\
\tilde{k}_{t+1}-\tilde{k}_{t} & =\frac{f\left(\tilde{k}_{t}\right)-\tilde{c}_{t}}{1+z}-\frac{(z+\delta) \tilde{k}_{t}}{1+z}
\end{aligned}
$$

4.5 Steady State

Steady-state quilibrium with population growth and technological progress is an equilibrium path with $\tilde{k}_{t}=\tilde{k}^{s s}$, therefore $\Delta \tilde{k}_{t}=0, \Delta \tilde{c}_{t}=0$ and $\Delta \tilde{y}_{t}=0$.

- A steady state equilibrium is a fixed point of a dynamic system.
- No growth in per effective labour variables implies sustained growth in per capita and aggregate variable if $g>0$.
$\Delta \tilde{c}_{t}=0$ determines $\tilde{k}^{s s}:$

$$
f_{\tilde{k}}\left(\tilde{k}^{s s}\right)-\delta=\beta^{-1}(1+g)^{\sigma}-1
$$

$\Delta \tilde{k}_{t}=0$ and $\tilde{k}^{s s}$ determine $\tilde{c}^{s s}$:

$$
\tilde{c}^{s s}=f\left(\tilde{k}^{s s}\right)-(z+\delta) \tilde{k}^{s s}
$$

4.6 Log-linearised Equilibrium Conditions

assumptions: $u\left(c_{t}\right)=\ln \left(c_{t}\right), f\left(\tilde{k}_{t}\right)=\tilde{k}_{t}^{\alpha}, \sigma=1$

$$
\begin{aligned}
& \Rightarrow \tilde{c}_{t+1}=\frac{\beta\left(1-\delta+\alpha \tilde{k}_{t+1}^{\alpha-1}\right)}{1+g} \tilde{c}_{t} \\
& \Rightarrow \tilde{k}_{t+1}=\frac{1-\delta}{1+z} \tilde{k}_{t}+\frac{\tilde{k}_{t}^{\alpha}-\tilde{c}_{t}}{1+z}
\end{aligned}
$$

Euler equation

$$
\begin{aligned}
\quad \tilde{c}_{t+1} & \approx \tilde{c}^{s s}+\left.\frac{\partial \tilde{c}_{t+1}}{\partial \tilde{c}^{s s}}\right|_{\tilde{k}_{t+1}=\tilde{k}^{s s}} \tilde{c}^{s s}\left(\tilde{c}_{t}-\tilde{c}^{s s}\right)+\left.\frac{\partial \tilde{c}_{t+1}}{\partial \tilde{k}^{s s}}\right|_{\tilde{k}_{t+1}=\tilde{c}^{s s}}\left(\tilde{k}_{t+1}-\tilde{k}^{s s}\right) \\
\frac{\tilde{c}_{t+1}-\tilde{c}_{t}}{\tilde{c}_{t}} & =\hat{\tilde{c}}_{t+1}=b_{c k} \hat{\tilde{k}}_{t+1}+b_{c c} \hat{\tilde{c}}_{t}
\end{aligned}
$$

capital accumulation

$$
\begin{aligned}
\tilde{k}_{t+1} & \approx \tilde{k}^{s s}+\left.\frac{\partial \tilde{k}_{t+1}}{\partial \tilde{k}^{s s}}\right|_{\substack{\tilde{c}_{t}=\tilde{c}^{s s} \\
\tilde{k}_{t}=\tilde{k}^{s s}}}\left(\tilde{k}_{t}-\tilde{k}^{s s}\right)+\left.\frac{\partial \tilde{k}_{t+1}}{\partial \tilde{c}^{s s}}\right|_{\substack{\tilde{c}_{t} t \tilde{\tau}^{s s} \\
\tilde{k}_{t}=\tilde{k}^{s s}}}\left(\tilde{c}_{t}-\tilde{c}^{s s}\right) \\
\frac{\tilde{k}_{t+1}-\tilde{k}_{t}}{\tilde{k}_{t}} & =\hat{\tilde{k}}_{t+1}=b_{k k} \hat{\tilde{k}}_{t}+b_{k c} \hat{\tilde{c}}_{t}
\end{aligned}
$$

4.7 Equilibrium Dynamics

$$
\binom{\hat{\tilde{k}}_{t+1}}{\hat{c}_{t+1}}=\left(\begin{array}{cc}
b_{k k} & b_{k c} \\
b_{c k} b_{k k} & b_{c c}+b_{c k} b_{k c}
\end{array}\right)\binom{\hat{\tilde{k}}_{t}}{\hat{\tilde{c}}_{t}}
$$

repeated substitution

RLOM guess
verification

5 Real Business Cycle Model

5.1 Assumptions

rational expectations

- E_{t} denotes the rational expectations operator - agents form expectations in time t about realisations of future random variables (utility, consumption, total factor productivity, etc.):
- using all available information in time t including the structure of the underlying model, summarised in their information set in time t, \mathcal{I}_{t}
- considering this as their dominant strategy
- The expectation operator for random variable X_{t+1} is defined as:

$$
E_{t} X_{t+1} \equiv E\left(X_{t+1} \mid \mathcal{I}_{t}\right)
$$

- In t the realisation of the variable in t is known:

$$
E_{t} X_{t}=X_{t}
$$

representative household

- Life-time utility function $U\left(\left(C_{t}, N_{t}\right)_{t=0}^{\infty}\right)$ describes preferences over consumption C_{t} and labour N_{t} :

$$
U(\cdot)=\sum_{t=0}^{\infty} \beta^{t}\left(\ln \left(C_{t}\right)-\zeta N_{t}\right)
$$

- Household's initial capital endowment is $K_{-1}>0$.
- Net investment in the capital stock via savings, $S_{t}=I_{t}$: $K_{t}=(1-\delta) K_{t-1}+I_{t}$
- Feasibility constraint: $C_{t}+I_{t} \leq Y_{t}$
- Flow budget constraint: $C_{t}+I_{t} \leq w_{t} N_{t}+r_{t} K_{t}$

representative firm

- Final good Y_{t} is produced with the Cobb-Douglas production function: $Y_{t}=A_{t} K_{t-1}^{\alpha} N_{t}^{1-\alpha}$
- Through $\varepsilon_{t}^{a} \sim \mathcal{N}\left(0, \sigma_{a}^{1}\right)$ exogenous shocks in total factor productivity can be modelled:

$$
A_{t}=A_{s s}^{1-\rho_{a}} A_{t-1}^{\rho_{a}} \exp \left(\varepsilon_{t}^{a}\right)
$$

5.2 Social planner: utility maximation

$$
\begin{array}{cc}
\max _{\left(C_{t}, N_{t}, K_{t}, I_{t}\right)_{t=0}^{\infty}} & E_{0} \sum_{t=0}^{\infty} \beta^{t}\left(\ln \left(C_{t}\right)-\zeta N_{t}\right) \\
\text { s.t. } & C_{t}+I_{t} \leq Y_{t} \\
K_{t}=(1-\delta) K_{t-1}+I_{t} \\
\Rightarrow \mathcal{L}=E_{0} \sum_{t=0}^{\infty} \beta^{t}\left(\ln \left(C_{t}\right)-\zeta N_{t}\right)+\lambda_{t}\left(A_{t} K_{t-1}^{\alpha} N_{t}^{1-\alpha}+(1-\delta) K_{t-1}-K_{t}-C_{t}\right)
\end{array}
$$

The FOCs for an optimum are:
I. $\frac{\partial \mathcal{L}(\cdot)}{\partial C_{t}} \stackrel{!}{=} 0 \Rightarrow \beta^{t} C_{t}^{-1}=\lambda_{t}$
II. $\frac{\partial \mathcal{L}(\cdot)}{\partial N_{t}} \stackrel{!}{=} 0 \quad \Rightarrow \beta^{t} \zeta=\lambda_{t}(1-\alpha) A_{t} K_{t-1}^{\alpha} N_{t}^{-\alpha}$
III. $\frac{\partial \mathcal{L}(\cdot)}{\partial K_{t}} \stackrel{!}{=} 0 \Rightarrow \lambda_{t+1} E_{t}\left[\alpha A_{t+1} K_{t}^{\alpha-1} N_{t+1}^{1-\alpha}+(1-\delta)\right]=\lambda_{t}$

5.3 Competitive Equilibrium

The FOCs can be simplified to a system of six equations and six unknowns (the real rate is was defined ex post):

$$
\begin{array}{rlrl}
\text { Euler equation: } & & 1 & =\beta E_{t}\left[\frac{C_{t}}{C_{t+1}} R_{t+1}\right] \\
& \text { labour/leisure: } & \zeta C_{t} & =(1-\alpha) \frac{Y_{t}}{N_{t}} \\
\text { production: } & Y_{t} & =A_{t} K_{t-1}^{\alpha} N_{t}^{1-\alpha} \\
\mathrm{TFP} & A_{t} & =A_{s s}^{1-\rho_{a}} A_{t-1}^{\rho_{a}} e^{\varepsilon_{t}^{a}} \\
\text { real return: } & R_{t} & \equiv \alpha \frac{Y_{t}}{K_{t-1}}+(1-\delta) \\
\text { feasibility: } & C_{t}+K_{t} & =Y_{t}+(1-\delta) K_{t-1}
\end{array}
$$

5.4 Steady State

Supposing that all variables are constant: $\forall t: X_{t}=X^{s s} . K^{s s} / Y^{s s}, Y^{s s} / N^{s s}, C^{s s}, N^{s s}$ and $R^{s s}$ can be expressed as functions of structural parameters scaled by $A^{s s}$.

- The Euler equation becomes: $R^{s s}=\beta^{-1}$
- The real return equation yields:

$$
\frac{Y^{s s}}{K^{s s}}=\frac{R^{s s}-1+\delta}{\alpha} \Leftrightarrow \frac{K^{s s}}{Y^{s s}}=\frac{\alpha}{\beta^{-1}-1+\delta}
$$

- The TFP equation trivially implies: $A^{s s}=A^{s s}$
- The production function yields:

$$
\frac{Y^{s s}}{N^{s s}}=A_{s s}^{1 /(1-\alpha)}\left(\frac{Y^{s s}}{K^{s s}}\right)^{\alpha /(1-\alpha)}=A_{s s}^{1 /(1-\alpha)}\left(\frac{\alpha}{\beta^{-1}-1+\delta}\right)^{\alpha /(1-\alpha)}
$$

- The labour/leisure trade-off can be solved for:

$$
C^{s s}=\frac{1-\alpha}{\zeta} \cdot \frac{Y^{s s}}{N^{s s}}=\frac{1-\alpha}{\zeta} \cdot\left(A_{s s}^{1 /(1-\alpha)}\left(\frac{\alpha}{\beta^{-1}-1+\delta}\right)^{\alpha /(1-\alpha)}\right)
$$

- Feasibility results in:

$$
N^{s s}=C^{s s}\left(\left(1-\delta \frac{K^{s s}}{Y^{s s}}\right) \frac{Y^{s s}}{N^{s s}}\right)^{-1}
$$

5.5 Log-linearised Equilibrium Conditions

The model dynamics in the neighbourhood of the steady state can be analysed with a linear approximation. The variable x_{t} denotes the logarithmic deviation of random variable X_{t} from its steady state $X^{s s}$:

$$
x_{t} \equiv \ln \left(X_{t}\right)-\ln \left(X^{s s}\right)
$$

\Rightarrow Using $e^{X} \approx(1+X), 100 \times x_{t}$ ist the percentage deviation of X_{t} from its steady state:

$$
\frac{X_{t}-X^{s s}}{X^{s s}} \approx \frac{X^{s s}\left(1+x_{t}\right)-X^{s s}}{X^{s s}}=x_{t}
$$

The log-linearised system becomes:

$$
\begin{array}{rlrl}
\text { Euler equation: } & & 0 & =E_{t}\left[c_{t}-c_{t+1}+r_{t+1}\right] \\
\text { labour/leisure: } & & c_{t} & =y_{t}-n_{t} \\
\text { production: } & & y_{t} & =a_{t}+\alpha k_{t-1}+(1-\alpha) n_{t} \\
\mathrm{TFP}: & a_{t} & =\rho_{a} a_{t-1}+\varepsilon_{t}^{a} \\
\text { real return: } & & R^{s s} r_{t}=\alpha \frac{Y^{s s}}{K^{s s}}\left(y_{t}-k_{t-1}\right) \\
\text { feasibility: } & C^{s s} c_{t}=Y^{s s} y_{t}+(1-\delta) K^{s s} k_{t-1}-K^{s s} k_{t}
\end{array}
$$

5.6 Equilibrium Dynamics

repeated substitution

- Labour/leisure trade off, production function, real return and Euler equation yield

$$
E_{t}\left[c_{t}-b_{1} c_{t+1}+b_{2} a_{t+1}\right]=0
$$

- Feasability constraint, production function and labor/leisure trade off yield

$$
E_{t}\left[b_{3} c_{t}+b_{4} k_{t}-b_{5} a_{t}-b_{6} k_{t-1}\right]=0
$$

RLOM guess

$$
\begin{aligned}
k_{t} & =\mu_{k k} k_{t-1}+\mu_{k a} a_{t} \\
c_{t} & =\mu_{c k} k_{t-1}+\mu_{c a} a_{t}
\end{aligned}
$$

verification

6 Basic New Keynesian Model

6.1 Assumptions

monopolistic competition

- Firms set prices and charge a markup over marginal costs.
- Markup depends on the elasticity of substitution between a continuum of differentiated goods.
\Rightarrow This marketpower is one source of inefficiency.

price rigidity

- Firms adjust prices in any given period only with probability θ.
- If shocks hit the economy, they can adjust quantities immediately.
\Rightarrow This creates price dispersion, another source of inefficiency.

representative household

- Each household owns a non-tradable asset - an equal share in the portfolio of producers, which pays nominal dividend: $\int_{0}^{1} D_{t}(i) d i$
- C_{t} is an index which aggregates all goods produced and consumed in the economy. The goods are indexed by $i \in[0 ; 1], \varepsilon_{p}>1$ being the price elasticity of demand.

$$
C_{t} \equiv\left(\int_{0}^{1} C_{t}(i)^{\frac{\varepsilon_{p}-1}{\varepsilon_{p}}} d i\right)^{\frac{\varepsilon_{p}}{\varepsilon_{p}-1}}
$$

- Instantaneous utility is given by:

$$
U\left(C_{t}, N_{t}, Z_{t}\right)= \begin{cases}\left(\frac{C_{t}^{1-\sigma}-1}{1-\sigma}-\frac{N_{t}^{1+\phi}}{1+\phi}\right) Z_{t} & \sigma \neq 1 \\ \left(\ln \left(C_{t}\right)-\frac{N_{t}^{1+\phi}}{1+\phi}\right) Z_{t} & \text { otherwise }\end{cases}
$$

Z_{t} being an exogenous preference shifter, which only affects inter-temporal decision.

- N_{t} are hours worked and W_{t} is the nominal wage.
- B_{t} is a riskless nominal one-period discount bond purchased in period t at price Q_{t}. At maturity in $t+1$ it pays one unit of money. The gross yield on the bond is $1 / Q_{t}$ - therefore the nominal interest rate is defined as $i_{t} \equiv \ln \left(1 / Q_{t}\right)$.
- Inter-temporal household solvency can be ensured by imposing the no-Ponzi condition:

$$
\lim _{T \rightarrow \infty} E_{t}\left[\Lambda_{t, T} \frac{B_{T}}{P_{T}}\right] \geq 0
$$

representative firm

- Continuum of firms indexed by $i \in[0 ; 1]$.
- Each firm i operates with identical technology:

$$
\left.Y_{t}(i)=A_{t} N_{t}(i)^{1-\alpha}, \quad \alpha \in\right] 0 ; 1[
$$

- Firms hire $N_{t}(i)$ on a perfectly competitive labour market.
- Each firm i chooses $Y_{t}(i), N_{t}(i), P_{t}^{*}(i)$ to maximise profits, which equal dividens: $D_{t}(i) \equiv P_{t}^{*}(i) Y_{t}(i)-W_{t} N_{t}(i)$

6.2 Representative Household

 expenditure minimisation$$
\begin{aligned}
& \min _{C_{t}(i)} \int_{0}^{1} P_{t}(i) C_{t}(i) d i \quad \text { s.t. } \quad C_{t} \equiv\left(\int_{0}^{1} C_{t}(i)^{\frac{\varepsilon_{p}-1}{\varepsilon_{p}}} d i\right)^{\frac{\varepsilon_{p}}{\varepsilon_{p}-1}} \\
\Rightarrow & \mathcal{L}=\int_{0}^{1} P_{t}(i) C_{t}(i) d i+\lambda_{t}\left(C_{t}-\left(\int_{0}^{1} C_{t}(i)^{\frac{\varepsilon_{p}-1}{\varepsilon_{p}}} d i\right)^{\frac{\varepsilon_{p}}{\varepsilon_{p}-1}}\right)
\end{aligned}
$$

The implied FOC $\forall i$ is:

$$
\begin{aligned}
\frac{\partial \mathcal{L}(\cdot)}{\partial C_{t}(i)} \stackrel{!}{=} 0 \Rightarrow P_{t}(i) & =\lambda_{t} \frac{\varepsilon_{p}}{\varepsilon_{p}-1}\left(\int_{0}^{1} C_{t}(i)^{\frac{\varepsilon_{p}-1}{\varepsilon_{p}}} d i\right)^{\frac{\varepsilon_{p}}{\varepsilon_{p}-1}-1} \frac{\varepsilon_{p}-1}{\varepsilon_{p}} C_{t}(i)^{-\frac{1}{\varepsilon_{p}}} \\
& =\lambda_{t} C_{t}^{\frac{1}{\varepsilon_{p}}} C_{t}(i)^{-\frac{1}{\varepsilon_{p}}}
\end{aligned}
$$

For any two goods $i \neq j$ it follows that:

$$
C_{t}(i)=C_{t}(j)\left(\frac{P_{t}(i)}{P_{t}(j)}\right)^{-\varepsilon_{p}}
$$

\Rightarrow The optimal demand for godd i relative to any good $j \neq i$ is a declining function of its relative price.
λ_{t} can be interpreted as the aggregate price index P_{t} - the marginal cost of an additional unit of the basket C_{t} :

$$
\begin{aligned}
C_{t} & =\left(\int_{0}^{1} C_{t}(i)^{\frac{\varepsilon_{p}-1}{\varepsilon_{p}}} d i\right)^{\frac{\varepsilon_{p}}{\varepsilon_{p}-1}}=\left(\int_{0}^{1}\left(C_{t}(j)\left(\frac{P_{t}(i)}{P_{t}(j)}\right)^{-\varepsilon_{p}}\right)^{\frac{\varepsilon_{p}-1}{\varepsilon_{p}}} d i\right)^{\frac{\varepsilon_{p}}{\varepsilon_{p}-1}} \\
& =C_{t}(j) P_{t}(j)^{\varepsilon_{p}}\left(\int_{0}^{1} P_{t}(i)^{1-\varepsilon_{p}} d i\right)^{\frac{\varepsilon_{p}}{\varepsilon_{p}-1}} \\
\lambda_{t} & =\left(\frac{C_{t}(j)}{C_{t}}\right)^{\frac{1}{\varepsilon_{p}}} P_{t}(j)=\left(\int_{0}^{1} P_{t}(i)^{1-\varepsilon_{p}} d i\right)^{\frac{1}{1-\varepsilon_{p}}} \equiv P_{t}
\end{aligned}
$$

The household's total consumption expenditure results in:

$$
\begin{aligned}
\int_{0}^{1} P_{t}(i) C_{t}(i) d i & =\int_{0}^{1} P_{t}(i)\left(\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon_{p}} C_{t}\right) d i=P_{t}^{\varepsilon_{p}} C_{t} \int_{0}^{1} P_{t}(i)^{1-\varepsilon_{p}} d i \\
& =P_{t}^{\varepsilon_{p}} C_{t} \int_{0}^{1} P_{t}^{1-\varepsilon_{p}} d i=C_{t} P_{t}
\end{aligned}
$$

Optimal demand for good i relative to the aggregate price level is:

$$
C_{t}(i)=\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon_{p}} C_{t}
$$

utility maximisation

$$
\begin{aligned}
\max _{\left(C_{t}, N_{t}, B_{t} / P_{t}\right)_{t=0}^{\infty}} & E_{0} \sum_{t=0}^{\infty} \beta^{t} U\left(C_{t}, N_{t}, Z_{t}\right) \\
\text { s.t. } & P_{t} C_{t}+Q_{t} B_{t} \leq B_{t-1}+W_{t} N_{t}+D_{t}
\end{aligned}
$$

The household's optimality conditions can be rearranged to yield

$$
\begin{aligned}
\beta Q_{t} & =E_{t}\left[\left(\frac{C_{t+1}}{C_{t}}\right)^{-\sigma} \frac{Z_{t+1}}{Z_{t}} \frac{P_{t}}{P_{t+1}}\right] \\
C_{t}^{\sigma} N_{t}^{\phi} & =\frac{W_{t}}{P_{t}}
\end{aligned}
$$

6.3 Representative Firm: profit maximisation

flexible prices

$$
\begin{array}{rc}
\max _{Y_{t}(i), N_{t}(i), P_{t}^{*}(i)} & P_{t}^{*}(i) Y_{t}(i)-W_{t} N_{t}(i) \\
\text { s.t. } & Y_{t}(i)=A_{t} N_{t}(i)^{1-\alpha} \\
Y_{t}(i)=\left(\frac{P_{t}^{*}(i)}{P_{t}}\right)^{-\varepsilon_{p}} C_{t} \\
0 \leq Y_{t}(i), N_{t}(i), P_{t}^{*}(i) \\
\Rightarrow \mathcal{L}=P_{t}^{*}(i) A_{t} N_{t}(i)^{1-\alpha}-W_{t} N_{t}(i) \\
+\Psi_{t}(i)\left(A_{t} N_{t}(i)^{1-\alpha}-Y_{t}(i)\right) \\
+\xi_{t}(i)\left(\left(\frac{P_{t}^{*}(i)}{P_{t}}\right)^{-\varepsilon_{p}} C_{t}-Y_{t}(i)\right)
\end{array}
$$

The FOCs are
I. $\frac{\partial \mathcal{L}(\cdot)}{\partial Y_{t}(i)} \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \xi_{t}(i)=P_{t}^{*}(i)-\Psi_{t}(i)$
II. $\frac{\partial \mathcal{L}(\cdot)}{\partial N_{t}(i)} \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \Psi_{t}(i)=\frac{W_{t}}{(1-\alpha) A_{t} N_{t}(i)^{-\alpha}}=\frac{W_{t}}{M P N_{t}(i)}$
III. $\frac{\partial \mathcal{L}(\cdot)}{\partial P_{t}^{*}(i)} \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \xi_{t}(i)=P_{t}^{*}(i) \varepsilon_{p}$

Combining (I.) \& (II.) yields

$$
\frac{P_{t}^{*}(i)}{\Psi_{t}(i)}=\frac{\varepsilon_{p}}{\varepsilon_{p}-1} \equiv \mathcal{M}_{p}
$$

sticky prices

$$
\sum_{k=0}^{\infty} \theta_{p}^{k} E_{t}\left[\frac{\Lambda_{t, t+k} Y_{t+k \mid t}(i)}{P_{t+k}}\left(P_{t}^{*}(i)-\mathcal{M}_{p} \Psi_{t+k \mid t}(i)\right)\right]=0
$$

6.4 Equilibrium

6.5 Steady State

Linearisation

6.6 Monetary Policy

6.7 Equilibrium Dynamics

6.8 Model Analysis

monetary policy shock
discount rate shock
technology shock

