
Exercises
Computer Aided Verification

Author René Schwaiger
Mail sanssecours@f-m.fm
Version 2
Date September 18, 2013

mailto:sanssecours@f-m.fm

Contents

1 Binary Decision Diagrams 3
1.1 Exercise 1 3

1.1.1 Solution 3
1.2 Exercise 2 7

1.2.1 Solution 7
1.3 Exercise 3 8

1.3.1 Solution 8

2 Temporal Logic 10
2.1 Exercise 4 10

2.1.1 Solution 10
2.2 Exercise 5 10

2.2.1 Solution 11
2.3 Exercise 6 11

2.3.1 Solution 11
2.4 Exercise 7 12

2.4.1 Solution 12

3 Bounded Model Checking 16
3.1 Exercise 8 16

3.1.1 Solution 16

4 Linear Temporal Logic 18
4.1 Exercise 9 18

4.1.1 Solution 18
4.2 Exercise 10 18

4.2.1 Solution 18

5 Symbolic Model Verifier 19
5.1 Exercise 11 19

5.1.1 Solution 19

1 Binary Decision Diagrams

1 · Binary Decision Diagrams

1.1 Exercise 1

Give a linear time algorithm for BDD isomorphism as defined on page 9.

1.1.1 Solution

#!/usr/bin/env python

coding=utf-8

Various code to create and operate on binary decision diagrams.

#

Version: 2

Date: 2013-07-12

Author: René Schwaiger (sanssecours@f-m.fm)

-- Classes --

class Terminal(object):

"""A terminal node of a BDD."""

def __init__(self, value=True):

"""Initialize a new terminal node.

Arguments:

value - The (binary) value of the terminal node (default: True)

"""

self.value = value

def __eq__(self, bdd_node):

"""Compare this terminal to an other BDD node.

Arguments:

bdd_node - The BDD node to compare this terminal against.

Exercises — Computer Aided Verification 3

1 Binary Decision Diagrams

Examples:

>>> terminal_true = Terminal()

>>> terminal_true == Terminal(True)

True

>>> terminal_true == Terminal(False)

False

"""

try:

Compare two terminals

return self.value == bdd_node.value

except AttributeError:

A terminal can never be equal to a non-terminal object

return False

class Node(object):

"""A node of a binary decision diagram."""

def __init__(self, low, high, variable):

"""Initialize a new BDD node.

Arguments:

low - The low child of the node.

high - The high child of the node.

variable - The variable represented by this node.

"""

self.low = low

self.high = high

self.variable = variable

def __eq__(self, node):

"""Compare this BBD nodes to an other BDD node.

Arguments:

node - The BDD node to compare this node against.

Exercises — Computer Aided Verification 4

1 Binary Decision Diagrams

Examples:

>>> terminal_false = Terminal(False)

>>> terminal_true = Terminal(True)

>>> node = Node(terminal_false, terminal_false, 'p')

>>> node2 = Node(node, terminal_true, 'p')

>>> node == node2

False

>>> node2 == Node(node, terminal_true, 'p')

True

"""

try:

return (self.variable == node.variable and

self.low == node.low and

self.high == node.high)

except AttributeError:

return False

class BDD(object):

"""Saves data contained in a binary decision diagram."""

def __init__(self, root):

"""Create a new BDD.

Arguments:

root - The root of the new BDD. This can be either a “normal” node

or a terminal node.

Examples:

>>> terminal_true = Terminal(True)

>>> bdd = BDD(terminal_true)

>>> BDD = Node(terminal_true, terminal_true, 'a')

"""

self.root = root

Exercises — Computer Aided Verification 5

1 Binary Decision Diagrams

def isomorphic(self, bdd):

"""Check if two BDDs are isomorphic or not.

Both BDDs for this function need to be fully reduced and have the same

ordering. Otherwise this function will return ``False`` although the

BDDs might in fact be isomorphic.

Arguments:

bdd - The BDD to compare this BDD against.

Examples:

>>> terminal_false = Terminal(False)

>>> terminal_true = Terminal(True)

>>> BDD(terminal_true).isomorphic(BDD(terminal_false))

False

>>> node_b1 = Node(terminal_false, terminal_false, 'b')

>>> node_b2 = Node(terminal_false, terminal_true, 'b')

>>> node_a1 = Node(node_b1, node_b2, 'a')

>>> BDD(node_a1).isomorphic(BDD(terminal_false))

False

>>> BDD(node_a1).isomorphic(BDD(node_a1))

True

>>> node_a2 = Node(node_b1,

... Node(terminal_true, terminal_true, 'b'),

... 'a')

>>> BDD(node_a1).isomorphic(BDD(node_a2))

False

"""

return self.root == bdd.root

if __name__ == '__main__':

Import and run doc-tests

import doctest

doctest.testmod()

Exercises — Computer Aided Verification 6

1 Binary Decision Diagrams

1.2 Exercise 2

Describe a size-efficient BDD for the relation “a ≥b” for n-bit integer num-
bers.

1.2.1 Solution

We already know that related variables should be close together in the
ordering. Therefore we place the bits of the same significance after each
other starting from the most significant bit of 𝑎. This leaves us with the
ROBDD shown in Figure 1.

an

bn

0

0

1

an-1

1

bn

1

0

0 1

bn-1bn-1

0 1

1 0

an-2

1 0

a0

b0

10

1 0

0

1

01

Figure 1: OBDD for the relation “a ≥ b”

Exercises — Computer Aided Verification 7

1 Binary Decision Diagrams

1.3 Exercise 3

Describe an algorithmwhich transforms aBDD into anequivalent boolean
formula.

1.3.1 Solution

The following code shows an algorithmwhich creates a boolean formula
in disjunctive normal form. The basic idea behind the code is to create
a conjunction of every variable visited on a path to a terminal node with
value “1”. We create the whole DNF-formula by joining the formulas for
these paths by disjunction.

#!/usr/bin/env python3

Support for generating formulas from a given BDD.

#

Version: 1

Date: 2013-07-13

Author: René Schwaiger (sanssecours@f-m.fm)

-- Imports --

from bdd import Node, Terminal # noqa

-- Functions --

def bdd_to_formula(node, previous_variables=None):

"""Convert a binary decision diagram to a boolean formula.

This function creates a formula in disjunctive normal form. For every path

to the terminal “1”, it creates a subformula, containing the variables of

this path.

previous_variables - A list containing the variables of the BDD nodes

already visited.

Examples:

Exercises — Computer Aided Verification 8

1 Binary Decision Diagrams

>>> terminal_false = Terminal(False)

>>> terminal_true = Terminal(True)

>>> node_a2 = Node(terminal_false, terminal_true, 'a2')

>>> node_b1_1 = Node(node_a2, terminal_false, 'b1')

>>> node_b1_2 = Node(terminal_false, node_a2, 'b1')

>>> node_a1 = Node(node_b1_1, node_b1_2, 'a1')

>>> bdd_to_formula(node_a1)

'(¬a1∧¬b1∧a2)∨(a1∧b1∧a2)'

"""

At the end of the path (terminal node)

if isinstance(node, Terminal):

return (['∧'.join(previous_variables)]

if previous_variables and node.value

else [str(node.value)])

We create a formula by joining the solutions from all paths by

disjunction

if not previous_variables:

formulas = bdd_to_formula(node.low, ['¬{}'.format(node.variable)])

formulas.extend(bdd_to_formula(node.high,

['{}'.format(node.variable)]))

Filter empty terms (terminal node and therefore formula is false)

formulas = [formula for formula in formulas

if not (formula.startswith(str(False)))]

solution = '∨'.join(['({})'.format(formula) for formula in formulas])

return solution

Extend the variables already visited with the current variable

variables_low = previous_variables + ['¬{}'.format(node.variable)]

variables_high = previous_variables + ['{}'.format(node.variable)]

formulas = bdd_to_formula(node.low, variables_low)

formulas.extend(bdd_to_formula(node.high, variables_high))

return formulas

if __name__ == '__main__':

Import and run doc-tests

import doctest

doctest.testmod()

Exercises — Computer Aided Verification 9

2 Temporal Logic

2 · Temporal Logic

2.1 Exercise 4

Prove the equivalence for 𝐀(𝑓𝐔𝑔) on page 16.

2.1.1 Solution

We need to prove that𝐀(𝑓𝐔𝑔) is equivalent to ¬𝐸(¬𝑔𝐔¬𝑓∧¬𝑔)∧¬𝐄𝐆¬𝑔.
We use the following equivalences:

(1) 𝐀𝑓 ⇔ ¬𝐄¬𝑓

(2) ¬(𝑓𝐔𝑔) ⇔ (𝐆¬𝑔 ∨ ¬𝑔𝐔¬𝑓 ∧ ¬𝑔) The formula above is true since for
𝑓 until 𝑔 to not hold:

(a) 𝑔 has to not hold at all (there exists no 𝑘 such that 𝜋𝑘 ⊧ 𝑔) or
(b) 𝑓might hold at first, while 𝑔 does not hold, but 𝑔 does not hold

after that (¬𝑔𝐔¬𝑓 ∧ ¬𝑔).

(3) 𝐄(𝑓 ∨ 𝑔) ⇔ 𝐄𝑓 ∨ 𝐄𝑔

(4) ¬(𝑓 ∨ 𝑔) ⇔ ¬𝑓 ∧ ¬𝑔

to deduct the following proof:

𝐀􏿴𝑓𝐔𝑔􏿷
(􏷠)
⇔ ¬𝐄¬ 􏿴𝑓𝐔𝑔􏿷
(􏷡)
⇔ ¬𝐄􏿴􏿴𝐆¬𝑔􏿷 ∨ 􏿴¬𝑔𝐔¬𝑓 ∧ ¬𝑔􏿷􏿷
(􏷢)
⇔ ¬􏿴𝐄𝐆¬𝑔 ∨ 𝐄 􏿴¬𝑔𝐔¬𝑓 ∧ ¬𝑔􏿷􏿷
(􏷣)
⇔ ¬𝐄𝐆¬𝑔 ∧ ¬𝐄 􏿴¬𝑔𝐔¬𝑓 ∧ ¬𝑔􏿷

2.2 Exercise 5

Show the following lemma: Let𝑀 and 𝑁 be two Kripke structures such
that the transition relation of𝑀 is a superset of the transition relation of
𝑁 . If an LTL property 𝑓 holds on𝑀, then 𝑓 also holds on 𝑁 .

Exercises — Computer Aided Verification 10

2 Temporal Logic

2.2.1 Solution

Let us assume that a certain LTL formula 𝐀𝑓 holds on𝑀. Since the tran-
sition relation of𝑀 is a superset of the transition relations of 𝑁 , there is
always the possibility to construct a Kripke structure equivalent to𝑀 by
extending𝑁 with additional transitions/states. Since a LTL formula quan-
tifies over all paths in a Kripke structure the set of all formulas which hold
on 𝑁 gets smaller when we extend 𝑁 . This means that the set of all LTL
formulas which hold on𝑁 is a superset of all the LTL formulas which hold
on𝑀. From this follows that, if a certain LTL formula𝐀𝑓 holds on𝑀, then
this formula also has to hold on 𝑁 .

2.3 Exercise 6

Show that 𝐀𝐅𝐆𝑝 is not logically equivalent to 𝐀𝐅𝐀𝐆𝑝.

2.3.1 Solution

To show that 𝐀𝐅𝐆𝑝 is not equivalent to 𝐀𝐅𝐀𝐆𝑝 we construct a Kripke
structure which contains a state where𝐀𝐅𝐆𝑝 holds but𝐀𝐅𝐀𝐆𝑝 does not.
Figure 2 shows this Kripke structure ([VHZ11]), where 𝑠􏷟 ⊧ 𝐀𝐅𝐆𝑝 holds,
but 𝑠􏷟 ⊧ 𝐀𝐅𝐀𝐆𝑝 does not.

p p

s0 s1 s2

Figure 2: Kripe Structure, where 𝑠􏷟 ⊧ 𝐀𝐅𝐆𝑝 holds, but 𝑠􏷟 ⊧ 𝐀𝐅𝐀𝐆𝑝 does
not hold

𝑠􏷟 ⊧ 𝐀𝐅(𝐆𝑝) This formula specifies that in all paths sometimes in the
future 𝑝will hold globally. This is true for the given Kripke
structure since we start in 𝑠􏷟 in which 𝑝 holds and either

• continue to stay in this state (𝑝 holds globally) or
• go to 𝑠􏷠 immediately followed by state 𝑠􏷡 (𝑝 holds
globally).

𝑠􏷟 ⊧ 𝐀𝐅(𝐀𝐆𝑝) The formula specifies that sometimes in the future for all
paths 𝐀𝐆𝑝 (for all paths 𝑝 must always be true) has to

Exercises — Computer Aided Verification 11

2 Temporal Logic

p

p

pp

p pp

Figure 3: Computation Tree for Figure 2

hold. This is not the case if we follow the path on the
left in the computation tree for the Kripke Structure (see
Figure 3) since there is always a path on the right where
𝑝 does not hold for every state.

2.4 Exercise 7

Describe a simple model checker for CTL over Kripke structures in pseu-
docode.

2.4.1 Solution

Clarke, Emerson and Sistla describe an algorithm to check CTL formulas
in their article “Automatic Verification of Finite-State Concurrent Systems
Using Temporal Logic Specifications” [CES86]. We use this algorithm to
check if a CTL formula holds in a certain state of a Kripke structure.

All CTL formulas can be modeled, according to Clarke et al, using the
following grammar:

𝑓 = 𝑝 | ¬𝑓 | 𝑓 ∧ 𝑓 | 𝐀𝐗𝑓 | 𝐄𝐗𝑓 | 𝐀[𝑓𝐔𝑓] | 𝐄[𝑓𝐔𝑓]
𝑝 … atomic proposition

At the beginning we need to divide the given CTL formula 𝑓 into its sub-
formulas. A parser can be used for this purpose.

Each state of the Kripke structure is already labeled by the atomic propo-
sitions holding in it. Therefore we start with formulas of length 2 (e.g.
𝐀𝐗𝑝, 𝑝􏷠∧𝑝􏷡), check in which state these formulas hold and label the states

Exercises — Computer Aided Verification 12

2 Temporal Logic

accordingly. After that we continue with subformulas of length 3, then
length 4 and so on, till we get to the length of the whole formula. After
that we just need to check if a certain state 𝑠 is labeled with the formula
𝑓 to test if 𝑠 ⊧ 𝑓 holds.

Partition the formula `f` into its subformulas

formulas = subformulas(f) ∪ f

Go trough all subformulas beginning with the shortest formulas

for formula_length = 2…length(f):

for formula in [formula for formula in formulas

if length(formula) == formula_length]:

label(formula)

Check if the CTL formula `f` holds in the given state

if f in formula(state):

return True

else:

return False

The function label(formula) needs to support all operands mentioned
in the grammar of CTL. We start with the code for ¬𝑓:

if formula.operator == '¬':

for state in kripke_structure.states:

e.g. f = ¬g ⇒ f.first_subformula = g

if not formula.first_subformula in state.labels:

state.labels.add(formula)

The code for 𝑓 ∧ 𝑔 looks quite similar:

if formula.operator == '∨':

for state in kripke_structure.states:

if formula.first_subformula in state.labels and

formula.second_subformula in state.labels:

state.labels.add(formula)

For formulas of the form 𝐀𝐗𝑓 we check if 𝑓 holds for every neighbor of
a certain state.

if formula.operator == 'AX':

for state in kripke_structure.states:

If the set of neighbours where the subformula does not hold is empty

Exercises — Computer Aided Verification 13

2 Temporal Logic

if not {neighbour for state.neighbours

if formula.first_subformula in neighbour.labels}:

state.labels.add(formula)

The operation needed to handle the operator 𝐄𝐗 are quite similar to the
ones needed for formulas of the form 𝐀𝐗𝑓. We need to check if 𝑓 holds
for one of the neighbours of each state.

if formula.operator == 'EX':

for state in kripke_structure.states:

If the set of neighbours where the subformula holds is not empty

if {neighbour for state.neighbours

if formula.first_subformula() in neighbour.labels}:

state.labels.add(formula)

For 𝐴[𝑓𝑈𝑔] we use the same methods as described by Clarke et al. We
start with a depth first search on the states. For every unmarked state we
call the procedure au(state, formula) .

if formula.operator == 'AU':

“Unmark” all states

marked = {state: false for state in kripke_structure.states}

for state in in kripke_structure.states:

if not marked[state]:

au(state, fomula)

In the procedure au(state, formula) we check if formula holds in the
given state. We need to examine 2 basic cases where A[𝑓U𝑔] holds:

1. The state is already labeled by formula 𝑔

2. The state is labeledby formula 𝑓 and for all successors (neighbours)
of the state A[𝑓U𝑔] is true

In all other cases 𝑠 ⊧ 𝐀[𝑓𝐔𝑔] is false.

def au(state, formula):

If the state is already marked and its labels contain the formula then

formula holds in `state`. Otherwise we have found a circle

where`formula.second_subformula` is `false` or we have found a

successor state where formula.first_subformula` is `false`. In both

cases the formula does not hold in `state`

if marked[state]:

Exercises — Computer Aided Verification 14

2 Temporal Logic

return True if formula in state.labels else False

Check if we can immediately answer the question if

A [formula.first_subformula U formula.second_subformula]

holds in `state`

if formula.second_subformula in state.labels:

labels.add(formula)

return True

if not formula.first_subformula in state.labels:

return False

For all successors excluding the current state

for successor in state.neighbours.difference({state}):

For some successors state, formula does not hold

if not au(successor, formula):

return False

For all successors state `formula` holds

return True

The last formula we need to check has the form 𝐄[𝑓𝐔𝑔]]. Like before,
we use the ideas laid out of by Clarke, Emerson, and Sistla. We start by
labeling every formula where 𝑔 holds and walk backwards by using the
inverse of the neighbor/successor relation.

if formula.operator == 'EU':

Collect all states where the second subformula holds

states_second_formula = [state

for state in kripke_structure.states

if formula.second_subformula in state.labels]

Label states and their predecessors where `formula.first_subformula`

holds

for state in second_subformula:

state.labels.add(formula)

For all predecessors excluding the current state

for predecessor in state.predecessors.difference({state}):

check_pred_eu(predecessor, formula)

def check_pred_eu(state, formula):

if formula.first_subformula in state.labels:

labels.add(formula)

for predecessor in state.predecessors.difference({state}):

check_pred(predecessor, formula)

Exercises — Computer Aided Verification 15

3 Bounded Model Checking

3 · Bounded Model Checking

3.1 Exercise 8

Find a translation of the 𝐔 operator to propositional logic in bounded
model checking.

3.1.1 Solution

We use the procedure described in the article “Symbolic Model Check-
ingwithout BDDs” [Bie+99] to translate formulas of the form 𝑓𝐔𝑔 to propo-
sitional logic.

Figure 4: Path without loop

s1 s1 sk

Figure 5: Path with “(k,l)-loop”

s1 s1 sksl

We need to distinguish between two cases. Either the path of the coun-
terexample contains a loop (see Figure 5) or it does not (see Figure 4).
For paths without a loop we define ⟦𝑓⟧𝑖𝑘 as the function which translates
the temporal formula 𝑓 to a propositional formula. 𝑘 is the bound used
by themodel checker and therefore describes the length of a counterex-
ample, while 𝑖 is the current position (state) in the counterexample. In
addition we define 𝑙⟦𝑓⟧𝑖𝑘 which does basically the same as ⟦𝑓⟧𝑖𝑘, only for
paths where there is a loop from state 𝑘 back to state 𝑙.

Path without loop Since there is no loop in the path we just need to
check if at some state 𝑠𝑗 the formula 𝑔, and in all
states before that, the formula 𝑓 holds. For every
possibility of 𝑗 we generate a subformula. We com-
bine these subformulas by conjunction:

⟦𝑓𝐔𝑔⟧𝑖𝑘 =
𝑘

􏾔
𝑗=𝑖

⎛
⎜
⎜
⎝
⟦𝑔⟧𝑗𝑘 ∧

𝑗−􏷠

􏾒
𝑛=𝑖
⟦𝑓⟧𝑛𝑘

⎞
⎟
⎟
⎠

Path with loop We now need to consider the additional possibil-
ity that 𝑓𝐔𝑔 holds on a path which starts at 𝑠𝑖, and

Exercises — Computer Aided Verification 16

3 Bounded Model Checking

continues over the loop to end at a state before 𝑠𝑖.

𝑙⟦𝑓𝐔𝑔⟧𝑖𝑘 =
𝑘

􏾔
𝑗=𝑖

⎛
⎜
⎜
⎝
𝑙⟦𝑔⟧

𝑗
𝑘 ∧

𝑗−􏷠

􏾒
𝑛=𝑖

𝑙⟦𝑓⟧𝑛𝑘
⎞
⎟
⎟
⎠
∨

𝑖−􏷠

􏾔
𝑗=𝑙

⎛
⎜
⎜
⎝
𝑙⟦𝑔⟧

𝑗
𝑘 ∧

𝑘

􏾒
𝑛=𝑖

𝑙⟦𝑓⟧𝑛𝑘 ∧
𝑗−􏷠

􏾒
𝑛=𝑘

𝑙⟦𝑓⟧𝑛𝑘
⎞
⎟
⎟
⎠

The translation of the rest of the temporal operators is listed in the article
mentioned before [Bie+99]. For the sake of completeness we also write
down the definitions here:

Translation of an LTL formula without a loop

⟦𝑝⟧𝑖𝑘 ∶= 𝑝(𝑠𝑖) ⟦¬𝑝⟧𝑖𝑘 ∶= ¬𝑝(𝑠𝑖)
⟦𝑓 ∧ 𝑔⟧𝑖𝑘 ∶= ⟦𝑓⟧𝑖𝑘 ∧ ⟦𝑔⟧𝑖𝑘 ⟦𝑓 ∨ 𝑔⟧𝑖𝑘 ∶= ⟦𝑓⟧𝑖𝑘 ∨ ⟦𝑔⟧𝑖𝑘

⟦𝐆𝑓⟧𝑖𝑘 ∶= 𝑓𝑎𝑙𝑠𝑒 ⟦𝐅𝑓⟧𝑖𝑘 ∶=
𝑘

􏾔
𝑗=𝑖
⟦𝑓⟧𝑗𝑘

⟦𝐗𝑓⟧𝑖𝑘 ∶= if 𝑖 < 𝑘 then ⟦𝑓⟧𝑖+􏷠𝑘 else 𝑓𝑎𝑙𝑠𝑒

Translation of an LTL formula with a loop

𝑙⟦𝑝⟧𝑖𝑘 ∶= 𝑝(𝑠𝑖) 𝑙⟦¬𝑝⟧𝑖𝑘 ∶= ¬𝑝(𝑠𝑖)
𝑙⟦𝑓 ∧ 𝑔⟧𝑖𝑘 ∶=𝑙 ⟦𝑓⟧𝑖𝑘 ∧ ⟦𝑔⟧𝑖𝑘 𝑙⟦𝑓 ∨ 𝑔⟧𝑖𝑘 ∶=𝑙 ⟦𝑓⟧𝑖𝑘 ∨ ⟦𝑔⟧𝑖𝑘

𝑙⟦𝐆𝑓⟧𝑖𝑘 ∶= 􏾒
𝑗=𝑚𝑖𝑛(𝑖,𝑙)𝑘

𝑙⟦𝑓⟧𝑖𝑘 𝑙⟦𝐅𝑓⟧𝑖𝑘 ∶=
𝑘

􏾔
𝑗=𝑚𝑖𝑛(𝑖,𝑙)

𝑙⟦𝑓⟧
𝑗
𝑘

𝑙⟦𝐗𝑓⟧𝑖𝑘 ∶=𝑙 ⟦𝑓⟧
𝑠𝑢𝑐𝑐(𝑖)
𝑘 𝑠𝑢𝑐𝑐(𝑖) ∶= 𝑙 if 𝑖 = 𝑘 else 𝑖 + 1

We also include additional formulas we can use to translate a certain
Kripke structure 𝑀, and the temporal formula 𝑓, here, to show how we
are able to process loops with propositional logic.

𝑙𝐿𝑘 = 𝑇(𝑠𝑘, 𝑠𝑙) 𝐿𝑘 =
𝑘

􏾔
𝑙=􏷟

𝑙𝐿𝑘

⟦𝑀, 𝑓⟧𝑘 ∶= ⟦𝑀⟧𝑘 ∧
⎛
⎜
⎜
⎝
􏿴¬𝐿𝑘 ∧ ⟦𝑓⟧􏷟𝑘􏿷 ∨

𝑘

􏾔
𝑙=􏷟
􏿴𝑙𝐿𝑘 ∧𝑙 ⟦𝑓⟧􏷟𝑘􏿷

⎞
⎟
⎟
⎠

Exercises — Computer Aided Verification 17

4 Linear Temporal Logic

4 · Linear Temporal Logic

4.1 Exercise 9

Show that all LTL properties have counterexamples which are either finite
paths or finite paths with a loop. Hint: Use the fact that LTL specifications
can be translated into Büchi automata.

4.1.1 Solution

One of the standard ways to check an LTL formula is to construct a Büchi
automaton for the negated LTL formula¬𝑓 and the given Kripke structure
𝑀. These two state machines accept the language ℒ(¬𝑓) respectively
ℒ(𝑀). We now construct a Kripke structure representing the intersec-
tion of the two languages. If the language acceptedby this statemachine
is empty then𝑀 ⊧ 𝑓 holds. On the other hand, if there exist infinitewords
accepted by the automaton, then these words are counterexamples for
𝑀 ⊧ 𝑓.

We now need to show that there exists either a finite path or a finite path
with a loop for the languageℒ(¬𝑓)∩ℒ (𝑀) if𝑀 ⊭ 𝑓 is true. We know that
if there exists a counter-example, then there has to be a path in the Büchi
automaton, where at least one acceptance state occurs infinitely often.
This means that this path has to contain a loop. This implies that there
has to be a finite counterexample for 𝑓, which includes a loop [Nor10].

4.2 Exercise 10

Give an LTL specification where the smallest counterexample is larger
than the number of states in the Kripke structure.

4.2.1 Solution

Since there is no restriction on how the Kripke structure should look, we
use the one shown in Figure 6.

Figure 6: Kripke structure for ex-
ercise 10

p p

s0 s1

We use the LTL specification 𝑠􏷟 ⊧
𝑋(𝑋¬𝑝). The smallest counterex-
ample for this formula is 𝑠􏷟, 𝑠􏷠, 𝑠􏷟.

Exercises — Computer Aided Verification 18

5 Symbolic Model Verifier

5 · Symbolic Model Verifier

5.1 Exercise 11

Show how you can use SMV to solve chess problems. “Given a chess
board, white has a winning strategy in 3 moves.” How do you describe
the board? What is the specification?

5.1.1 Solution

We specify a smaller version of the problem, where we have only two
chess pieces: a white rook and the black king. This has the advantage
that we always know which chess piece will be moved in the next turn by
either side.

To model which side has to move next, we specify the module shared
and define the variable next_move inside this module. This variable al-
ternates between the values BLACK and WHITE.

We also define the modules king and rook which define the possible
movements of these two chess pieces. Each piece contains two vari-
ables position_column and position_row, which specify the position of
the chess piece on the board.

In the mainmodulewe instantiate the sharedmodule (shared_variables)
and give a reference of this variable to the instance of the white rook
(white_rook) and the black king (black_king) we defined in the lines be-
fore. We also create the variables black_defeated and white_defeated
here, which tell us if one of the two sides has won. We use the variable
black_defeated in the LTL specification

¬ ((𝑋𝑋𝑋𝑋 ¬black_defeated) ∧ (𝑋𝑋𝑋𝑋𝑋 black_defeated)) ,
which states that there is no way that White is able to win in exactly 3
moves. If there is a counter-model to this specification, then we get a
strategy where White can win in 3 moves.

The following listing shows the full NuSMV code for the simplified chess
simulation.

-- Specify a simplified simulation of a chess game

--

Exercises — Computer Aided Verification 19

5 Symbolic Model Verifier

-- Version: 1

-- Date: 2013-09-17

-- Author: René Schwaiger (sanssecours@f-m.fm)

-- Modules --

MODULE shared

-- Define data shared by both Black and White.

VAR

-- Specifies which side has to make the next move

next_move : {BLACK, WHITE};

ASSIGN

-- White always begins the game

init(next_move) := WHITE;

next(next_move) := case

next_move = BLACK: WHITE;

TRUE: BLACK;

esac;

MODULE rook(the_color, initial_position_row, initial_position_column, shared)

-- Specify the rook chess figure.

FROZENVAR

color : {BLACK, WHITE};

VAR

position_row : 1..8;

position_column : 1..8;

ASSIGN

init(color) := the_color;

init(position_column) := initial_position_column;

init(position_row) := initial_position_row;

TRANS

case

shared.next_move = color:

-- A rook can either move vertically or horizontally

(next(position_column) = position_column &

next(position_row) != position_row) |

Exercises — Computer Aided Verification 20

5 Symbolic Model Verifier

(next(position_column) != position_column &

next(position_row) = position_row);

TRUE:

next(position_row) = position_row &

next(position_column) = position_column;

esac;

MODULE king(the_color, initial_position_row, initial_position_column, shared)

-- Specify the king chess figure.

FROZENVAR

color : {BLACK, WHITE};

VAR

position_row : 1..8;

position_column : 1..8;

ASSIGN

init(color) := the_color;

init(position_column) := initial_position_column;

init(position_row) := initial_position_row;

TRANS

case

shared.next_move = color:

-- A king may move one field in any direction

(next(position_column) = position_column - 1 &

next(position_row) = position_row - 1)

|

(next(position_column) = position_column &

next(position_row) = position_row + 1)

|

(next(position_column) = position_column + 1 &

next(position_row) = position_row + 1)

|

(next(position_column) = position_column + 1 &

next(position_row) = position_row)

|

(next(position_column) = position_column + 1 &

next(position_row) = position_row - 1)

|

(next(position_column) = position_column &

Exercises — Computer Aided Verification 21

5 Symbolic Model Verifier

next(position_row) = position_row - 1)

|

(next(position_column) = position_column - 1 &

next(position_row) = position_row - 1)

|

(next(position_column) = position_column - 1 &

next(position_row) = position_row);

TRUE:

next(position_column) = position_column &

next(position_row) = position_row;

esac;

-- Main ---

MODULE main

VAR

shared_variables : shared;

white_rook : rook(WHITE, 1, 1, shared_variables);

black_king : king(BLACK, 8, 8, shared_variables);

black_defeated : boolean;

white_defeated : boolean;

ASSIGN

init(black_defeated) := FALSE;

init(white_defeated) := FALSE;

next(black_defeated) :=

case

next(white_rook.position_column) = black_king.position_column &

next(white_rook.position_row) = black_king.position_row &

!white_defeated: TRUE;

TRUE: black_defeated;

esac;

next(white_defeated) :=

case

white_rook.position_column = next(black_king.position_column) &

white_rook.position_row = next(black_king.position_row) &

!black_defeated: TRUE;

TRUE: white_defeated;

esac;

LTLSPEC

-- White has a winning strategy in 3 moves

Exercises — Computer Aided Verification 22

5 Symbolic Model Verifier

-- X X X X X | W....White Moves

-- current move: W B W B W | B....Black Moves

! ((X X X X !black_defeated) & (X X X X X black_defeated));

We get the following counter model for our specification which we visu-
alized in Figure 7:

Trace Description: LTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-
white_rook.color = WHITE

black_king.color = BLACK

shared_variables.next_move = WHITE

white_rook.position_row = 1

white_rook.position_column = 1

black_king.position_row = 8

black_king.position_column = 8

black_defeated = FALSE

white_defeated = FALSE

-> State: 1.2 <-
shared_variables.next_move = BLACK

white_rook.position_row = 2

-> State: 1.3 <-
shared_variables.next_move = WHITE

black_king.position_column = 7

-> State: 1.4 <-
shared_variables.next_move = BLACK

white_rook.position_row = 8

-> State: 1.5 <-
shared_variables.next_move = WHITE

black_king.position_column = 6

-- Loop starts here

-> State: 1.6 <-
shared_variables.next_move = BLACK

white_rook.position_column = 6

black_defeated = TRUE

-> State: 1.7 <-
shared_variables.next_move = WHITE

black_king.position_column = 5

-> State: 1.8 <-

Exercises — Computer Aided Verification 23

References

shared_variables.next_move = BLACK

white_rook.position_column = 4

-> State: 1.9 <-
shared_variables.next_move = WHITE

black_king.position_column = 6

-> State: 1.10 <-
shared_variables.next_move = BLACK

white_rook.position_column = 6

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

87654321

1

2

3

4

5

6

7

8

Figure 7: A (rather unlikely) way for White to win in three moves

References

[Bie+99] Armin Biere et al. Symbolic model checking without BDDs.
Springer, 1999.

[CES86] EdmundM. Clarke, E Allen Emerson, and A Prasad Sistla. “Au-
tomatic verificationof finite-state concurrent systemsusing tem-
poral logic specifications”. In:ACMTransactions on Program-
ming Languages andSystems (TOPLAS)8.2 (1986), pp. 244–
263.

[Nor10] Michael Norrish. COMP6463: Temporal Logic and Model
Checkings. 2010. URL: http://www.nicta.com.au/__data/
assets/pdf_file/0005/19355/lecture6-ltletc.pdf.

[VHZ11] Univ. Prof. Helmut Veith, AndreasHolzer, andM.Sc.Dipl.-Math.
Florian Zuleger. Exercises on Formal Methods in Computer
Science. Jan. 2011.

Exercises — Computer Aided Verification 24

http://www.nicta.com.au/__data/assets/pdf_file/0005/19355/lecture6-ltletc.pdf
http://www.nicta.com.au/__data/assets/pdf_file/0005/19355/lecture6-ltletc.pdf

	Binary Decision Diagrams
	Exercise 1
	Solution

	Exercise 2
	Solution

	Exercise 3
	Solution

	Temporal Logic
	Exercise 4
	Solution

	Exercise 5
	Solution

	Exercise 6
	Solution

	Exercise 7
	Solution

	Bounded Model Checking
	Exercise 8
	Solution

	Linear Temporal Logic
	Exercise 9
	Solution

	Exercise 10
	Solution

	Symbolic Model Verifier
	Exercise 11
	Solution

