2021W Geometry for Computer Science

Exercise sheet A

Exercise 1. Given n points P_{1}, \ldots, P_{n} in affine space, prove that any affine combination of P_{1}, \ldots, P_{n} is well-defined, i.e., it does not depend on the choice of origin.

Exercise 2. Consider the following conic sections:

$$
\begin{aligned}
& \mathcal{Q}_{1}: x^{2}+y^{2}+2(x-y)=0, \\
& \mathcal{Q}_{2}: x^{2}+y^{2}-2 x y-\sqrt{2}(x+y)=0 .
\end{aligned}
$$

Are \mathcal{Q}_{1} and \mathcal{Q}_{1} affine equivalent? Motivate your answer.

Exercise 3. Consider the matrix

$$
\mathbb{A}=\left(\begin{array}{ccc}
1 & 2 & 5 / 2 \\
2 & 4 & -1 / 2 \\
5 / 2 & -1 / 2 & 4
\end{array}\right)
$$

1. Determine the affine type of the associated conic section \mathcal{Q}.
2. What are the hyperplane coordinates of the tangent plane of \mathcal{Q} at $p \in \mathcal{Q}$?

Exercise 4. Consider the line in three-dimensional space that passes from x and is parallel to the unit vector v. Show that the distance between such line and a point $p \in \mathbb{R}^{3}$ can be computed by

$$
d=\|(p-x) \times v\| .
$$

Exercise 5. Show that the affine map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
\binom{x_{1}}{x_{2}} \mapsto\left(\begin{array}{cc}
8 / 5 & -6 / 5 \\
3 / 10 & 2 / 5
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{1}{1}
$$

has no fixed point. (A fixed point of F is a point $x \in \mathbb{R}^{2}$ such that $F(x)=x$.)

