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Key Munugement
Symmetric cryptography

e N communication parties require
N - (N —1)/2 secret keys to

communicate with each other
o Each party needs N — 1 keys that must be
shared in a secure way
o This process must be repeated every time
the key is refreshed
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Asymmetric cryptography

e N communication parties require N key
pairs to communicate with each other
o Every party needs their own key pair and
the public keys of the others
o Public keys can be distributed over
insecure channels (e.g., the Internet)
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Asymmetric Encryption
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Asymmetric Encryption

e Asymmetric encryption schemes use different keys for encryption and decryption
o The decryption key must not be derivable from the encryption key
o This holds even if the attacker possesses pairs of plaintext and corresponding ciphertexts
(known-plaintext attack)

e |f this condition holds, there is no reason to keep the encryption key secret
o Encryption key = public key
o Decryption key = private key
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Usage of an asymmetric encryption scheme

Alice

Publicly available folder
of public keys
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One-Way Functions in Asymmetric Schemes

® Asymmetric schemes use specific classes of one-way functions to satisfy the previously
mentioned constraint about keys

® Integer factorization
O  Given two large prime numbers, it is easy to compute their product

O Itis infeasible to compute the factorization of a number made of large primes
O  Security of RSA is based on the difficulty of integer factorization

® Discrete logarithms
O Itis easy to compute g* mod p from g, x,p
O Itis infeasible to compute x from g,p, g* mod p
O  Security of DSA, EIGamal, and the Diffie-Hellman protocol is based on this
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The RSA Algorithm
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Mathematical Background

e The Euler's totient function ¢ maps each integer n to the number of integers up to
n that are coprime to n (i.e., greatest common divisor is 1)
o Ifnisprime, ¢(n) =n-1
o If n = pq (with p, q different primes):
¢p(n)=pq —p-1)-@-D-1=pP-D(E—-1)

Euler's theorem

Let a, n be coprime, positive integers: then a®?™ = 1 (mod n)
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RSA

e Published in 1977 by R. Rivest, A. Shamir, L. Adleman
o Can be used for encryption, digital signatures and key management

e Let N be the modulus consisting of two large primes p, g
o Public key (e, N) where e is the public exponent
o Private key (d, N) where d is the private exponent

e Security depends on the size of p, q
o Primes are typically between 1024 and 2048 bits long (1024 bits ~ 103°9)
o The larger, the better (but also slower!)
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Key Generation

e Generate two large primes p, q
e Compute the modulus N = pgq

e Choose a public exponent e < N coprime to ¢(N)
o To speed-up encryption, e is typically a small number (e.g.,, 65537 = 216 + 1)

e The private exponent d is the modular inverse of e modulo ¢(N)

o If the inverse exists, ed = 1 (mod ¢(N))
o The extended Euclidean algorithm can be used for this purpose
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Generation of Large Prime Numbers
e Randomly generate an odd number of the desired bit length

e Test if small prime numbers (e.g,, those smaller than 1000) divide the generated
number

e |[terate the Miller-Rabin test on the generated number to ensure primality
o If the test says that the number is not prime, the answer is always correct
o If the test says that the number is prime, the answer might be wrong (probability < 1/4)
o Iterating the test r times reduces the probability of mistakes to 1/4"
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Encryption and Decryption (Textbook RSA)

e Letm < N be the plaintext and ¢ the corresponding ciphertext

Encryption Decryption

c = m€modN m= c*modN
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Correctness of RSA

For all positive, integer messages m < N, it holds that mé? = m (mod N)

mé% mod N

= mkeW+L mod N

= m(m¢(N))k mod N

Case gcd(m,
m(m¢(N))k mod N

R CYSEC

CYBERSECURITYCENTER

N)=1

m-1¥ mod N
m

By construction of d, for some k = 0

Laws of exponents

Euler's theorem
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Correctness of RSA

For all positive, integer messages m < N, it holds that mé? = m (mod N)

Case gcd(m,N) > 1

® Since m < N, either gcd(m,N) = p or gcd(m,N) = g
O We assume gcd(m, N) = p, the other case is similar
O  Since ged(m, q) = 1, we have m?@ mod q = 1 (Euler's theorem)

m®™) mod q

= mP@®*@ mod q Multiplicative property of ¢
= (m¢(Q))¢(p) mod g Laws of exponents

= 19® mod qg=1 Euler's theorem
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Correctness of RSA

For all positive, integer messages m < N, it holds that mé? = m (mod N)

Case gcd(m,N) > 1

1. Since we assumed gcd(m, N) = p, we have m = jp for some j > 0
2. Since m®*™) mod q = 1, we have (m®™)*mod g =1 foralla >0

m(m¢(N))k mod N

=m(wq + 1) mod N Property 2 above and definition of the modulo operation
= (wgqjp + m) mod N Property 1

= (WjN + m)mod N =m Definition of modulus
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Security of RSA

e Security of RSA depends on the difficulty to factorize the modulus N
o If the prime factors p, g are known, the private exponent d can be easily computed
o Factorization of “small” integers is available in public databases, e.qg., http://factordb.com

e The secrecy of the totient value ¢(N) is equally crucial
o If leaked, the primes can be recomputed by solving the following system of equations

{ N =pq
d(N)=@p—-1D(@—-1)
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http://factordb.com/

Issues of Textbook RSA for Encryption

e Determinism - If the same message is encrypted multiple times with the same
public key, the produced ciphertexts are the same

e Small messages and public exponents
o Given a ciphertext c = m® mod N, it holds that ¢ + kN = m® forsome k > 0
o When both m and e are small, m€ is not much larger than N
o The plaintext m can be reconstructed by brute-forcing the possible values of k and

computing the et root

m = Vc+ kN
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Padding Algorithms for RSA Encryption

e The plaintext m is extended with randomly generated components to bring it to
the size of the modulus N

o The padded plaintext is then encrypted as usual
o Usage of padding prevents both previous attacks

e Existing padding algorithms

o PKCS#1v. 1.5: simple, but vulnerabilities are known
o OEAP: recommended for new applications

Padding with PKCS#1v. 1.5
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Random byte sequence
without null bytes
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Digital Signatures
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The Need of Digital Signatures

e Message Authentication Codes provide data integrity and authenticity
o Can only be verified by the owners of the secret key
o Do not offer nonrepudiation, since both sender and receiver can compute a valid MAC

e Digital signatures are asymmetric schemes that provide data integrity,

authenticity, public verifiability and nonrepudiation
o The private key is used to compute the signature
o The public key is used to verify its validity
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Usage of an asymmetric encryption scheme

Sk

Alice
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Signing
Algorithm

Alice's private key
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of public keys

Introduction to Security // Asymmetric Cryptography

21



Textbook RSA for Digital Signatures

e Letm < N the message to be signed and s the corresponding signature

Signing Verification

s= m%®modN Check if s® mod N equals m
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Attacks against Textbook RSA for Digital Signatures

e Malleability of RSA can be used to generate valid signatures for new messages
starting from signatures of other messages

o Lets; =m¢modN and s, = m$ mod N two valid signatures
o s;-S;modN = (my -m,)% mod N is the signature of the message m, - m,

e |f the private key's owner is willing to sign only some of the attacker's messages,

arbitrary signatures can be computed
o Attacker wants to compute the signature of message m
o Asks for the signature s’ of message m’ = m - r¢ mod N (with 0 < r < N)
o Thesignatureof miss =s'-r ! mod N

SemodN=(s’e-r‘e)modN=m’-r‘emodN=m ¢ r®modN =m
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Further Issues with Textbook RSA

e 0Only messages smaller than the modulus N can be signed
o 0ne could split the message in multiple blocks and sign the individual parts

e Problems with the splitting approach
o Very slow (one modular power per block)
o Signature as long as the message

o Missing connection between the individual signatures
m Message blocks and the corresponding signature blocks could be swapped without problems (as
in ECB mode): no integrity!
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Hash Functions in Digital Signatures

e Sign the hash value of a message instead of the message itself
o Efficient for arbitrarily large messages: a single hash computation (fast) and a single
signing operation are required
o Signature depends on every bit of the original message (diffusion of the hash function)
o Collision resistance ensures that it is infeasible to find other messages for which the

signature is valid
Hash
function \

Sender's public key %53 /////’

Signature
verification
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Security of Hash-and-Sign

e Previous attacks based on malleability are prevented

o The product of the hash values of two messages is not related in any way to the product

of the messages

Finding a message for which the product is a valid signature would amount to breaking
the one-way property of the hash function

e Hash is usually padded before signature computation

o PKCS#1v. 1.5 (for signatures) and SSA are both considered secure

o Padding helps to detect if the signature has been tampered with
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Diffie-Hellman Protocol
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Diffie-Hellman Protocol

e Key exchange protocol that enables the generation of a secret shared between two

communicating parties over a public channel
o First practical, asymmetric scheme published in 1976 by W. Diffie and M. Hellman
o Based on the difficulty to compute discrete logarithms

e The two parties need to agree (also publicly) on two parameters p, g
o pis alarge prime number
o g is a primitive root modulo p
m {g"modp|1<k<p}={1,2..,p—1}
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Protocol Flow

ﬁ% Alice g Bob

Sample a random Sample a random
integer 1 < prvy, <p integer 1 < prvg <p
Compute Compute
pub, = gP""4A mod p pubg = gP""B mod p
pubB plle
Compute Compute
S = pub? " mod p S = pub? "Pmod p
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Problems with Specific Private Values

e |f Alice chooses prv, = 1, then pub, = g, which is publicly known
o The shared secret is S = pubg, which is known to an attacker (sent over the public
channel)

e |f Alice chooses prv, = p — 1, then pub, = 1 (Fermat's little theorem)
o The shared secret is § = 1, irrespective of the value prvg chosen by Bob

e The private value should be randomly selected from the set {2, ...,p — 2}
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Man-in-the-Middle Attack

% Alice

Sample a random
integer 1 < prv, <p

A

‘L'l‘ Attacker
JAENA|

|

Sample a random
integer 1 < prvg <p

The attacker can block all
messages between Alice and Bob

g Bob

l

Sample a random
integer 1 < prvg <p

Compute
pub, = gP"™"4 mod p

Compute
puby = gP""E mod p

|

Compute
pubg = gP""B mod p

Compute
Sup = pub? “Amod p
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Compute
Sip = pubzrvEmodp
Sgr = pubh "Fmod p

Compute
Sge = publ "Pmod p
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The attacker can block all

Man-i n‘thE'Mlddle AttGCk messages between Alice and Bob
g : g -
ice 0
‘ké‘ Attacker
Sample a random Sample a random Sample a random
integer 1 < prv, <p integer 1 < prvg <p integer 1 < prvg <p
Compute Compute
puby = gP"™"4 mod p pubg = gP""F mod p EYNIGIEIERGRNISI LIl 97’2 mod p

authentication!
Solution consists in the
usage of certificates
(next lecture)

Compute Compute
Sup = pub? “Amod p Sag = publ “Emod p
Sgr = pubh "Fmod p

Bompute
Sge = publ "Pmod p
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Setup of a Connection in Internet

Asymmetric

cryptography

Authentication and key exchange ooo 000

I_I < > —
| | oo 000

Data exchange sco 00D
Client Server

Symmetric

cryptography
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Thank You!
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