
Introduction to Security // Binary Analysis

Introduction to Security (192.019)

Security & Privacy Research Unit (192-06)
https://secpriv.wien

Memory Corruption Attacks and Defenses:
Background

Pedro Bernardo, Mauro Tempesta

Introduction to Security // Binary Analysis

Memory-Safety Issues are Still Dominant

~70% of the vulnerabilities addressed through a security update each year continue to
be memory safety issues

2
https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL

Root cause trends of vulnerabilities

Introduction to Security // Binary Analysis

Heartbleed

● Buffer over-read vulnerability in the widely-used
OpenSSL cryptographic library

● Cause: missing bounds check before a memory
copy operation that uses non-sanitized user input
as the length parameter

● This vulnerability allows anyone on the Internet to
read the memory of the systems protected by
vulnerable versions of OpenSSL, including:

○ Private keys, decrypted packets (in memory), etc.

3

Introduction to Security // Binary Analysis

● Buffer overflow in TP-Link router firmware

● Character limit checked in the user interface

● But, an attacker can still inspect and modify network requests,
adding more characters

● This vulnerability allows for remote takeover of the router

TP-Link httpd vulnerability (2019)

4
https://securityintelligence.com/buffer-overflow-vulnerability-in-tp-link-routers-can-allow-remote-attackers-to-take-control/

Introduction to Security // Binary Analysis 5

Background: C Programming

Introduction to Security // Binary Analysis

Communicating with Computers

● Computers do not understand human languages
● At the lowest level, computers only understand sequences of

numbers that represent operational codes (opcodes for short)
● It would be very difficult for humans to write programs in terms of

opcodes
● Therefore, programming languages were invented to make it easier

for humans to write computer programs

6

Program(Source Code) Machine Code
translated to

Introduction to Security // Binary Analysis

C Programming Language
● Introduced by Dennis Ritchie between 1972 and 1973 at

Bell Labs to write Unix utilities, and later the Unix kernel

● Compiled, low-level systems language
○ Provides fine-grained control over the machine
○ Fast: low-overhead compilation

● Statically typed and imperative

● Widely used in operating systems, device drivers and
embedded programming

7

Introduction to Security // Binary Analysis

C Programming

#include <stdio.h>

int main(int argc, char *argv[]){

printf("Hello World!\n");

return 0;

}

8

Statements end
with a semicolon

stdio.h defines the C
standard library’s
related to I/O operations
(e.g., printf)

printf outputs its first
argument to standard
output (stdout)

Introduction to Security // Binary Analysis

C Programming

#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[]){
char buffer[10] = {0};

printf("What is your name?\n");

read(0, buffer, 9);

printf("Hello %s\n", buffer);

return 0;
}

9

create a local array called
buffer that is the size of
10 characters

read 9 characters from
stdin (file descriptor 0) to
the buffer

write the output of buffer to
stdout using printf

Introduction to Security // Binary Analysis

C Programming

Just works!

10

Introduction to Security // Binary Analysis

C Programming

#include <stdio.h>
int main(int argc, char *argv[]){

char buffer[10] = {0};

printf("What is your name?\n");

read(0, buffer, 100);

printf("Hello %s\n", buffer);

return 0;
}

11

but… what happens if we
read more than the size of
buffer?

Introduction to Security // Binary Analysis

C Programming

12

C is not memory-safe!
We will understand why the program crashes later.

Segmentation fault? The
program tried to access an
inaccessible memory location

Introduction to Security // Binary Analysis

C Programming - Scopes

● The scope of a variable is the part of the program where it is accessible
● There are two types of scope: Global Scope and Local Scope:

13

● Variables in the global scope are
accessible everywhere

● Variables declared in the global
scope are called global variables

Global Scope
● Variables declared in the local scope are

called local variables
● Local variables are visible in the block

where they are declared, and in nested
blocks

● Local variables take precedence over
global variables with the same name

Local Scope

Introduction to Security // Binary Analysis

C Programming - Scopes and Stack Frames

14

const int global_var = 1;

void func_b(){
int b1 = 1;
printf("%d\n", b1);
return;

}

void func_a(){
int a1 = 1337;
func_b();
return;

}

int main(int argc, char* argv[]){
int m1 = 20;
int m2 = 10;
func_a();
return 0;

m1 and m2 are local
variables, so they are in
main’s stack frame.

A function can access variables that are
either global, or in its own stack frame.

These variables are “in scope”

m1, m2main

Stack Scope

m1, m2,
global_var

Introduction to Security // Binary Analysis

C Programming - Scopes and Stack Frames

15

const int global_var = 1;

void func_b(){
int b1 = 1;
printf("%d\n", b1);
return;

}

void func_a(){
int a1 = 1337;
func_b();
return;

}

int main(int argc, char* argv[]){
int m1 = 20;
int m2 = 10;
func_a();
return 0;

a1a a1, global_var

m1, m2main

Stack Scope

m1, m2,
global_var

global_var stays in scope,
but m1 and m2 are no
longer accessible by name

Introduction to Security // Binary Analysis

C Programming - Scopes and Stack Frames

16

const int global_var = 1;

void func_b(){
int b1 = 1;
printf("%d\n", b1);
return;

}

void func_a(){
int a1 = 1337;
func_b();
return;

}

int main(int argc, char* argv[]){
int m1 = 20;
int m2 = 10;
func_a();
return 0;

a1a a1, global_var

m1, m2main

Stack Scope

m1, m2,
global_var

b1b b1, global_var

Introduction to Security // Binary Analysis

C Programming - Scopes and Stack Frames

17

const int global_var = 1;

void func_b(){
int b1 = 1;
printf("%d\n", b1);
return;

}

void func_a(){
int a1 = 1337;
func_b();
return;

}

int main(int argc, char* argv[]){
int m1 = 20;
int m2 = 10;
func_a();
return 0;

After returning from a function, its stack
frame is destroyed and its local variables are

discarded

a1a a1, global_var

m1, m2main

Stack Scope

m1, m2,
global_var

Introduction to Security // Binary Analysis

C Programming - Scopes and Stack Frames

18

const int global_var = 1;

void func_b(){
int b1 = 1;
printf("%d\n", b1);
return;

}

void func_a(){
int a1 = 1337;
func_b();
return;

}

int main(int argc, char* argv[]){
int m1 = 20;
int m2 = 10;
func_a();
return 0;

m1, m2main

Stack Scope

m1, m2,
global_var

After returning from a function, its stack
frame is destroyed and its local variables are

discarded

Introduction to Security // Binary Analysis

C Programming - Pointers

19

● A pointer is a data type that stores (points to) a memory address

● Pointers can be used to manipulate the data at the address they point to

0x10 0x20 … 0x7000 … …

0x7000 0x7008 0x7010 0x7018 0x7020 0x7028

Memory

x y p_x
p_x is a pointer to x

Introduction to Security // Binary Analysis

C Programming - Pointers

20

0x10 0x20 0x7000 0x10

0x7000 0x7004 0x7008 0x7010

Memory

a b p_a

int main(int argc, char* argv[]){
int a = 0x10; (1)
int b = 0x20;

int* p_a = &a;(2)

int y = *p_a; (3)
}

y

(1) Integer named a is set to 0x10

(2) Integer pointer named p_a is
set to the address of a

(3) Integer named y is set to the value at
the address pointed to by p_a (y = 0x10)

<type>*
declares a
pointer of
type type

* is the dereference operator, and it is used to
access the value at the address pointed to by
a pointer (aka, dereferencing a pointer)

& is the address
of operator

Generally, in 64-bit architectures, int
is 32 bits long, but all pointers are 64
bits. The specifics are dictated by the
compiler.

Introduction to Security // Binary Analysis

C Programming - Pointer Arithmetic

21

● Arithmetic operations on pointers
depend on the pointer type (size)

● Pointers can be:

○ incremented/decremented

○ added/subtracted with integers

○ subtracted/compared with other
pointers of the same type

0x10 0x20 0x7000

0x7000 0x7004 0x7008

Memory

a p_a

Example: Increment

0x10 0x20 0x7004

0x7000 0x7004 0x7008
Memory

a p_ab

b

p_a++

Introduction to Security // Binary Analysis

C Programming - Pointer Arithmetic

22

Value

0x7100

0x7100

Subtraction (w/ pointer)
-0x7000

0x100

0x40

Addition +4

0x7104

0x7110

0x7100 0x20 0x7120

Increment

0x7101

0x7104

0x7108

(1 byte) char ptr

(4 bytes) int ptr

(8 bytes) long ptr

Intuition (using int pointers):
● increment: the address of the next integer in memory
● addition w/ x : the address of the integer at distance x
● subtraction by pointer x : the distance (in the size of integers) between

the integer pointed to and the integer at address x

Introduction to Security // Binary Analysis

C Programming - Pointers

23

struct Book {
int fontsize;
char title[64];
char content[1024];

};
void update_font(struct Book *book, int size){

book->fontsize = size;
}
void print_book(struct Book *book){

printf("Title: %s\n%s",
book->title, book->content);

}
int main(int argc, char* argv[]){

struct Book LotR = { /* init book */ };
printf("Fontsize: %d\n", LotR.fontsize);
update_font(&LotR, 12);

}

● Pointers allow us to access variables that are
not in scope by passing references around
instead of copying the entire content
(+ performance)

● Pointers give us fine-grained control over
memory (byte-indexed)

● Pointers allow us to manage memory
dynamically (more about this later…)

-> is the arrow operator, which is syntactic
sugar for (*book).title

Introduction to Security // Binary Analysis

C Programming - Arrays

24

● Fixed size collection of values of the same type

● Declared and initialized as: int array[6] = {1, 2, 5, 7, 11, 13};

● Array elements elements can be accessed by index:
○ array[0] is 1
○ array[3] is 7

● The value of array is the address of the first element (e.g., 0x7000)
○ Can be thought of as a pointer to the first element

1 2 5 7 11 13

0x7000 0x7004 0x7008 0x700c 0x7010 0x7014array =

0 1 2 3 4 5

Introduction to Security // Binary Analysis

C Programming - Strings

25

● Strings are arrays of characters terminated by a null character, aka, the string
terminator (‘\0’)

● char str[9] = “introsec”; or optionally char str[] = “introsec”;

● Like with arrays, characters can by accessed and modifed by index:
○ str[0] is ‘i’
○ str[3] is ‘r’

‘i’ ‘n’ ‘t’ … ‘c’ ‘\0’

0x7000 0x7001 0x7002 … 0x7008 0x7009str =

0 1 2 … 8 9

Introduction to Security // Binary Analysis

C Programming - String Functions

26

The C Standard Library (libc) provides a number of utility functions to interact with strings
● char* strcat(char* dest, const char* src)

○ concatenates the string src to the string dest and returns a pointer to dest
● int strlen(const char* str)

○ returns the length of the string str (number of chars up the first null byte excluded)
● int strcmp(const char* fst, const char* snd)

○ returns 0 if the strings are equal, a number <0 if fst smaller than snd, >0 otherwise
● char* strcpy(char* dest, const char* src)

○ copies the string src into dest and returns a pointer to dest

Functions like strcpy and strcat do not perform length checks on the strings, making them unsafe.
Instead, use the n alternatives of these functions, which take an extra argument (n) that control how
many bytes are written (or read): strncpy, strncat, etc.

Introduction to Security // Binary Analysis

C Programming - I/O Functions

27

● int getc(FILE* stream) :
○ get a character from stream (stdin for standard input)

● char* gets(char* str)
○ reads characters into str from stdin until a newline (‘\n’) is found
○ gets does not check the length of the string, making it unsafe. NEVER USE GETS!

● char* fgets(char* str, int n, FILE* stream)
○ reads n-1 characters into str from stream or until a newline (‘\n’) is found

● int printf(const char* format, …)
○ builds the format string based on the format specifiers and the remaining

arguments, and prints it to stdout. Returns the number of characters written
○ %d int, %x hex, %s string, %f float, %c character, %p pointer, etc.

● many more…

Introduction to Security // Binary Analysis

C Programming - Dynamic Memory

28

Arrays are fixed size, but what if I don’t know how much memory I need at compile time?
The C standard library (libc) provides functions for dynamic memory management:

● void* malloc(size_t size) : allocates memory (size) and returns a pointer to it

● void free(void* ptr) : deallocates memory previously allocated by
malloc/calloc/realloc

● void* calloc(size_t nitems, size_t size)
○ allocates memory (size*nitems) and returns a pointer to it
○ tip: initializes the requested memory with 0s

● void* realloc(void* ptr, size_t size) : attempts to resize (size) the memory chunk
pointed to by ptr

Introduction to Security // Binary Analysis

Arrays are fixed size, but what if I don’t know how much memory I need at compile time?
The C standard library (libc) provides functions for dynamic memory management:

● void* malloc(size_t size) : allocates memory (size) and returns a pointer to it

● void free(void* ptr) : deallocates memory previously allocated by
malloc/calloc/realloc

● void* calloc(size_t nitems, size_t size)
○ allocates memory (size*nitems) and returns a pointer to it
○ tip: initializes the requested memory with 0s

● void* realloc(void* ptr, size_t size) : attempts to resize (size) the memory chunk
pointed to by ptr

C Programming - Dynamic Memory

29

This dynamic memory is stored on the Heap, a
memory segment managed by the libc

specifically for memory requested at runtime.

Introduction to Security // Binary Analysis

Lifecycle of a compiled language (C/C++)

30

Operating System
(Loader)

Instructions (Code)
Executed

pre-executable runtime

Source
Code

Compiler

Object
Code

Linker Executable
File

Libraries Libraries

Introduction to Security // Binary Analysis

Compilation

A preprocessed source code is translated into machine or object code

gcc –c hello.c

hello.o

31

hello.c

Introduction to Security // Binary Analysis

Linking
● In the last phase (multiple) object files are

combined in a single executable
● In the generated file, references (links) to the

used library are added

Two approaches can be used in the linking phase

Static Link

● Binaries are self-contained and do not depend
on any external libraries

Dynamic Link

● Binaries rely on system libraries that are
loaded when needed

gcc –o hello hello.o

hello.o hello

32

System
Libraries

Introduction to Security // Binary Analysis 33

x86-64 Assembly Crash
Course

Introduction to Security // Binary Analysis

Translation of C/C++ to Assembly

34

mov rax, var1
cmp rax, 0xBAADF00D
jne block2

block1:
first code block
jmp end

block2:
second code block

*Assembly language is an abstraction of machine code that is more readable

Introduction to Security // Binary Analysis

Assembly Language Instructions

● An assembly instruction has two components: operation and operand
● An instruction can have 0-3 operands
● Operands can be:

○ A register
○ A memory location
○ An immediate value

● For example: mov rax, 0x6754
○ Operation is mov
○ Operands are register RAX (register) and 0x6754 (immediate value)

35

Introduction to Security // Binary Analysis

Computer Architecture and Assembly Language
● Assembly instruction depends on computer architecture

○ Intel vs. AMD
○ 64-bit vs 32-bit

Intel Syntax:
command <destination>, <source>

Example
mov rax, 5

more readable and explicit

AT&T Syntax:
command <source>, <destination>

Example
mov $5, %rax

default of GNU tools

36

see http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Introduction to Security // Binary Analysis

Types of Assembly Instruction (Operation)
Instructions typically fall into one of three categories:

Data manipulation: Instructions in this category
include arithmetic (ADD, SUB), boolean (AND, OR,
XOR), bit manipulation (SHR,SHL) commands

Data transfer: Instructions in this category include
PUSH/POP, MOV and XCHG

Branching and conditionals: The third category
consists of branching and conditional instructions,
JMP, CALL, CMP, TEST

37

Introduction to Security // Binary Analysis

Intel Instruction Manual
mov <dst>, <src>

moves the <src> value to <dst>

add <dst>, <src>

adds the value in <src> to <dst>

sub <dst>, <src>

subtracts the value in <src> from <dst>

and <dst>, <src>

performs a logical AND between <src> and
<dst>, placing the result in <dst>

push <target>

pushes the value in <target> to the stack

pop <target>

pops a value from the stack into <target>

cmp <dst>, <src>

compares <src> with <dst>. This is done by
subtracting <src> from <dst> and updating
flags that can be checked by subsequent
conditional operations

38

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Introduction to Security // Binary Analysis

Intel Instruction Manual
call <address>

calls the function at <address>. Before
jumping to the function, the address of the
next instruction is pushed to the stack in
order to be able to return

ret

pops the return address and returns control
to it

leave

restores the stack frame (rsp←rbp and old
rbp is popped)

jle <target>

jumps to the address in <target> if the
previously compared <src> was less than or
equal to <dst>. The test is done on the flags
set by cmp

jge <target>

jumps to the address in <target> if the
previously compared <src> was greater than
or equal to <dst>. The test is done on the
flags set by cmp

39

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Introduction to Security // Binary Analysis

Intel Instruction Manual
jmp <target>

jumps to the address in <target>. Copies
target address into the RIP/EIP register

lea <dst>, <src>

stands for “load effective address”: loads the
address of <src> into <dst>

int <value>

generates software interrupt<value>. This is
commonly used to invoke system calls

nop

no-operation, does nothing

NOTE multiple nops directly after each other are
called a nop-slide or a nop-sled

40

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Introduction to Security // Binary Analysis

General Purpose Registers

x86-64 architecture uses the following general-purpose registers to hold code and data
● RAX: Used for addition, multiplication, and return values
● RBX/RDX: Used for various operations
● RCX: Used as a counter
● RBP: Used to reference arguments and local variables
● RSP: Points to the last item on a stack
● RSI/RDI: Used by memory transfer instructions

x86 32-bit equivalent of these registers are EAX, EBX/EDX, ECX, EBP, ESP and ESI/EDI

*Registers are on chip memory locations used to track the state of computation

41

Introduction to Security // Binary Analysis

Special Purpose Registers

Special-use registers hold flags and track program execution

● RIP points to the next instruction to execute
● EFLAG bits represent the outcome of computations, and they control certain CPU

operation (conditional jumps, e.g., jge)
○ ZF - zero flag, when result is zero
○ CF - carry flag, result too large
○ SF - sign flag, result is negative

● Segment registers include
○ CS: Code segment
○ DS: Data segment
○ SS: Stack segment

42

Introduction to Security // Binary Analysis

Registers: In a nutshell

EAX
AH AL

EBX
BH BL

ECX
CH CL

EDX
DH DL

ESI

EDI

ESP

EBP

RAX

RBX

RCX

RDX

RSI

RDI

RSP

RBP

R8D

R15D

R8W R8B

R15W R15B

8 bits 8 bits16 bits32 bits

R8

R15
64 bits

General-purpose registers

64bit-only
General-purpose registers

Stack pointer

Base pointer

src and dst
Indexes (arrays,
string copying and
parameters)

RIP: Instruction pointer, points to
the next instruction

(R/E)FLAGS: status flags
ZF - zero flag, when result is zero
CF - carry flag, result too large
SF - sign flag, result is negative

43

DX

CX

BX

AX

Introduction to Security // Binary Analysis

Addressing modes
● Computer instructions need to be told where to read data from and write data to
● These instructions are communicated by specifying different types of operands
● The different ways of specifying where to read and write data are collectively called

operand addressing modes

44

Memory indirect

mov [rax], rbx

moves the content of rbx

into the memory location

in rax.

[rax] : refers to the

content rax that stores

the address of the

destination

Memory Direct

mov rax, [0x1234]

move value at address

0x1234 into rax

Register direct

mov rax, rbx

moves the content of rbx

into rax

Immediate

mov rax, 3

move the value 3 into rax

Introduction to Security // Binary Analysis

Byte Ordering

● A byte consists of 8 bits
● A collection of bytes form a word
● Convention of ordering a byte in a word from left to right or right to left is called

byte ordering
● Example: Variable x has a 4-byte value 0x0123a675

Big Endian: When machines store bytes ordered from most significant byte to least
significant

Little Endian: Some machines store bytes ordered from least significant byte to the most
significant

45

01 23 a6 75

75 a6 23 01

Introduction to Security // Binary Analysis

Example fragment : Little-endian representation

46

Address Machine Code Assembly Rendition

8058345: 5b pop rbx

8058346: 48 81 c3 fe ca 00 00 add rbx, 0xcafe

805834c: 48 83 f8 28 00 00 00 cmp rax, 0x28

0xcafe -> Pad to 32 bits ->0x0000cafe -> Split into bytes -> 00 00 ca fe
-> Reverse it -> fe ca 00 00

Introduction to Security // Binary Analysis 47

Stack and Calling
Convention

Introduction to Security // Binary Analysis

Understanding the Stack
● The stack is a section in memory used to store saved registers, local

variables and function arguments
● Grows towards lower memory addresses → pushed values have lower

addresses
● PUSH adds an element, and POP removes one
● When a function is called, a stack frame is set up

○ RBP/EBP contains the address of the base of the current stack frame
○ RSP/ESP contains the address of the top element of the stack

● RBP/EBP (a.k.a. "base pointer (bp) or stack frame pointer (sfp)")
serves as a constant reference

● RSP/ESP changes with instructions like PUSH, POP, CALL, LEAVE, RET

Stack follows Last In, First Out (LIFO)

48

var1

var0

sfp

ret

Introduction to Security // Binary Analysis

Understanding Function Calls
● A function is a group of instructions that performs a specific task (for example,

read/write files, send network data, log keystrokes)
● A function has three basic components:

○ Input (values passed in)
○ Body (code to perform the task)
○ Return (value passed back)

● Calling a function involves a jump to another memory location
● After the function is done, execution continues at the instruction after the

original function call

49

int somefunc(int a, int b, int c){
int d;
d = a + b + c;
return d;

}

Introduction to Security // Binary Analysis

Understanding Call Stacks

● Function format: return = function(arg0, arg1,..)
● Before calling a function

○ Store function arguments on the registers (RDI, RSI, RDX, RCX, R8, R9), up to 6 arguments
○ The remaining arguments are stored on the stack (first argument in the lower address)
○ Save the return pointer on stack (The address of the next instruction after the function

call)
○ Transfer control to the function

● When returning from a function:
○ Set up a return value (typically RAX)
○ Clean up the stack and restore registers
○ Transfer control to the saved return pointer

50

Introduction to Security // Binary Analysis

Call Stacks: In a nutshell

51

var0, d

<sfp>

<ret>

RBP - value (local variable)

RBP
(Stays the same)

low memory
address 0x00

High memory
address 0x4000

rbp-8

rbp

rbp+8

RSP
(becomes smaller)

long somefunc(long a, long b, long c) {
long d;
d = a + b + c;
return d;

}

arg0, aRDI

arg1, b

arg2, c

RSI

RDX d (= a+b+c)RAX

Introduction to Security // Binary Analysis

func(10); mov rdi, 10

 call func /* push next inst. addr */

 /* jmp func */

...

Stack
RSP

Function calls (64bit)

52

…

…

…

RDI

RSI

RDX

…RAX

Introduction to Security // Binary Analysis

func(10); mov rdi, 10

 call func /* push next inst. addr */

 /* jmp func */

...

Stack
RSP

Function calls (64bit)

53

…

10

…

RDI

RSI

RDX

…RAX

Introduction to Security // Binary Analysis

func(10); mov rdi, 10

 call func /* push next inst. addr */

 /* jmp func */

Function calls (64bit)

RSP
<return address>

54

...…

10

…

RDI

RSI

RDX

…RAX

Introduction to Security // Binary Analysis

Function calls (64bit) - Prologue

long func (long x) { push rbp

 long a = 0; mov rbp, rsp

 long b = x; sub rsp, 16

 ... mov QWORD PTR [rbp - 8], 0

} mov rax, rdi

 mov QWORD PTR [rbp - 16], rax

 ...

...

RSP
< return address >

55

…

10

…

RDI

RSI

RDX

…RAX

Introduction to Security // Binary Analysis

Function calls (64bit) - Prologue

RSP

...
< return address >

 sfp

56

…

10

…

RDI

RSI

RDX

…RAX

long func (long x) { push rbp

 long a = 0; mov rbp, rsp

 long b = x; sub rsp, 16

 ... mov QWORD PTR [rbp - 8], 0

} mov rax, rdi

 mov QWORD PTR [rbp - 16], rax

 ...

Introduction to Security // Binary Analysis

RBP

57

Function calls (64bit) - Prologue

RSP

...
< return address >

 sfp

…

10

…

RDI

RSI

RDX

…RAX

long func (long x) { push rbp

 long a = 0; mov rbp, rsp

 long b = x; sub rsp, 16

 ... mov QWORD PTR [rbp - 8], 0

} mov rax, rdi

 mov QWORD PTR [rbp - 16], rax

 ...

Introduction to Security // Binary Analysis

Function calls (64bit) - Prologue

RBP

RSP

...
< return address >

sfp

58

…

10

…

RDI

RSI

RDX

…RAX

long func (long x) { push rbp

 long a = 0; mov rbp, rsp

 long b = x; sub rsp, 16

 ... mov QWORD PTR [rbp - 8], 0

} mov rax, rdi

 mov QWORD PTR [rbp - 16], rax

 ...

Introduction to Security // Binary Analysis

Function calls (64bit)

RBP

RSP

...
< return address >

sfp

0

10
RBP - 16

RBP - 8

59

…

10

…

RDI

RSI

RDX

10RAX

long func (long x) { push rbp

 long a = 0; mov rbp, rsp

 long b = x; sub rsp, 16

 ... mov QWORD PTR [rbp - 8], 0

} mov rax, rdi

 mov QWORD PTR [rbp - 16], rax

 ...

Introduction to Security // Binary Analysis

Function calls (64bit) - Epilogue

long func (long x) { …
 long a = 0; mov rsp, rbp

 long b = x; pop rbp

 ... ret

}

60

…

10

…

RDI

RSI

RDX

10RAX

RBP

RSP

...
< return address >

sfp

0

10

Introduction to Security // Binary Analysis

Function calls (64bit) - Epilogue

61

long func (long x) { …
 long a = 0; mov rsp, rbp

 long b = x; pop rbp

 ... ret

}

…

10

…

RDI

RSI

RDX

10RAX

RBPRSP

...
< return address >

sfp

0

10

Introduction to Security // Binary Analysis

Function calls (64bit) - Epilogue

62

long func (long x) { …
 long a = 0; mov rsp, rbp

 long b = x; pop rbp

 ... ret

}

…

10

…

RDI

RSI

RDX

10RAX

RSP

...
< return address >

sfp

0

10

Introduction to Security // Binary Analysis

Function calls (64bit) - Epilogue

long func (long x) { …
 long a = 0; mov rsp, rbp

 long b = x; pop rbp /* or leave */

 ... ret

}

63

…

10

…

RDI

RSI

RDX

10RAX

RSP

...
< return address >

sfp

0

10

Introduction to Security // Binary Analysis

Function calls (64bit) - Epilogue

64

long func (long x) { …
 long a = 0; mov rsp, rbp

 long b = x; pop rbp /* or leave */

 ... ret

}

…

10

…

RDI

RSI

RDX

10RAX

RSP ...
< return address >

sfp

0

10

Introduction to Security // Binary Analysis

Function calls (64bit)

func(10); mov rdi, 10

 call func /* push next inst. addr */

 ... /* jmp func */

65

…

10

…

RDI

RSI

RDX

10RAX

...
< return address >

sfp

0

10

RSP

Introduction to Security // Binary Analysis 66

ELF File Format

Introduction to Security // Binary Analysis

ELF object file format
The Executable and Linkable Format (ELF) is a common file format for object files,
originally developed and published by UNIX System Laboratories.

There are three types of object files

● Relocatable file containing code and data that can be linked with other object files to
create an executable or a shared object file

● Executable files holding a program suitable for execution
● Shared object files that can be

○ linked with other relocatable and shared object files to obtain another object file
○ used by a dynamic linker together with other executable files and object files to create a

process image

*Object files are binary representation of files intended to execute directly on a processor.

67

Introduction to Security // Binary Analysis

ELF: File Structure

Any ELF file is composed of

● ELF header describing the file content
● Program header table providing informations on how to create a

process image
● sequence of Sections containing what is needed for linking

(instructions, data, symbol table, relocation information, …)
● Section header table with a description of previous sections

ELF header

Program header table

Section 1

Section 2

Section n

Section header table

68

Introduction to Security // Binary Analysis

ELF: Relevant Sections

.text contains the executable instructions of a program

.bss contains uninitialised data that contribute to the program’s memory
image

.data contain initialized data that contribute to the program’s memory image

.rodata is similar to .data, but refers to read only data

.symtab contains the program’s symbol table

.plt Procedure Linkage Table (PLT) with information necessary for calling
functions from shared libraries

.got Global Offset Table (GOT) holds information used by the PLT to resolve
the addresses of shared library functions dynamically (at runtime)

69

Introduction to Security // Binary Analysis 70

Binary Analysis

Introduction to Security // Binary Analysis

Gathering Information from Binary Files

Several tools are available to extract information from an ELF file

● objdump Displays information about object files
● readelf Displays information about ELF files
● strings Displays strings and printable characters in a file
● file Determines file type and displays some general info
● ldd Displays shared object dependencies

These tools can be used to gather information from binaries without executing them:
they statically inspect the structure of the file

71

Introduction to Security // Binary Analysis

Static vs. Dynamic Analysis
Programs can be analysed in two ways

● Static analysis
by inspecting the assembly we try to
understand the program logic (tools can infer
the program control flow effectively)

● Dynamic analysis
the program is run with debuggers (on virtual
or real processors) to observe its dynamic
behaviour (for example, malware executed in
sandboxes)

Usually the two techniques complement each other

Several dynamic analysis tools are available

● gdb The GNU project debugger

● strace Trace system calls and signals

● ltrace Trace library calls

72

see https://wizardzines.com/zines/strace/

https://wizardzines.com/zines/strace/

Introduction to Security // Binary Analysis

Disassembly
$ objdump -M intel -d {{path_to_your_binary}}

0804843b <main>:

 804843b: 8d 4c 24 04 lea ecx,[esp+0x4]

 804843f: 83 e4 f0 and esp,0xfffffff0

 8048442: ff 71 fc push DWORD PTR [ecx-0x4]

 8048445: 55 push ebp

 ...

Addresses
(may be relative /
relocatable addresses)

The actual machine code
as bytes. Note that
commands may have
different lengths

Assembly in Intel Syntax

73

see https://tldr.ostera.io/objdump

https://tldr.ostera.io/objdump

Introduction to Security // Binary Analysis

Example Time!

Example binaries are located at on the testbed server under ‘/exercises/password_manager’

With everything you know so far, you can answer these questions without executing the
program itself:

● Is it a 32 bit or 64 bit executable?
● What libraries are linked?
● What is the address of the main function?
● What are the most likely messages it will print when you execute the program?

74

Introduction to Security // Binary Analysis

Static Analysis

75

file

ldd

64-bit binary

Introduction to Security // Binary Analysis

Static Analysis

76

readelf

address of
main

Introduction to Security // Binary Analysis

Static Analysis

strings

You can try different parameters,
for example, with -n 2, we can
set the minimum string length to two

77

From the result of strings,
the program likely asks for a
password and checks if it is
correct.

Introduction to Security // Binary Analysis

Disassembly

Given a binary file, we can use a disassembler to extract info about the executed code

● This can be done with objdump:

objdump -M intel -ds ./password_manager > pm.s

Here we ask objdump to produce the assembly code (-d) and display sections (-s)
in Intel syntax (-M intel) and put the result in the file pm.s

78

Introduction to Security // Binary Analysis

Disassembly

Scrolling through the main function disassembly
in we see calls to <strcmp@plt>, and
<puts@plt>

We also find four jump instructions:

● jne 40119e <main+0x68>

● jnz 4011af <main+0x79>

● 2 x jmp 4011be <main+0x88>

79

…

Introduction to Security // Binary Analysis

Strace

Traces system calls

strace ./password_manager

In this case, it is not that useful.

But, now we know that we need to
supply the password as an argument

80

Introduction to Security // Binary Analysis

Ltrace

Traces library calls

ltrace ./password_manager asdf

81

There is the right password :)

Introduction to Security // Binary Analysis

Debugging - GDB Cheat Sheet
Gdb is the GNU DeBugger. Gdb executes commands, like a terminal:

● help - displays the build-in help if you want to know more
● quit - exits gdb. the most important, best when you were successful!
● run - runs the loaded program as if you did from the command line
● break <where> - sets a breakpoint at an address.

○ When the execution reaches the address where the breakpoint was set, execution is frozen and you can
interact with gdb again

● continue - resumes execution
● info <what> - displays information, most commonly about registers or the stack frame

○ info register
○ info frame

● x/<nuf> <what> - print memory. n=how many, u=unit, f=format character
○ x/1gx $rax -> print the 1 double word as a hexadecimal from the address pointed to by rax

82

Introduction to Security // Binary Analysis

● disassemble <func> - disassembles the argument (<func>) function

● print (p) - prints the value of an expression

● set - to change settings of gdb or set values inside the program memory
○ set disassembly-flavor intel - output the disassembly code in Intel syntax

● nexti (ni) - step over the next instruction

● stepi (si) - step into the next instruction (follows function calls)

Debugging - GDB Cheat Sheet

83

Introduction to Security // Binary Analysis

Debugging - GDB Demo

● We will use pwndbg(1), a GDB plugin designed to help in reverse engineering and exploit
development

● All the GDB commands work with pwndbg, but it offers extra useful commands and a nicer user
experience

● Features:
○ context - summarizes the current execution context (registers, stack, code)

○ disassembly - displays extract memory targets and condition codes

○ telescope - displays memory dumps and recursively dereferences pointers

○ search - searches for bytes, strings, integers values or pointers in the memory space

84

(1) https://github.com/pwndbg/pwndbg

Introduction to Security // Binary Analysis

Debugging - GDB Demo

Let us continue with debugging and the password_manager_v2 binary

● Load the binary into the debugger with:

gdb ./password_manager_v2

After a header you are presented with a prompt, like the terminal

85

Note:
1. On testbed, you might need to set a local variable with the locale for pwndbg to work. Run it like this:

$ C_CTYPE=C.UTF-8 gdb </path/to/binary>
2. To enable pwndbg, add this line to the .gdbinit file in your home directory:

“source /opt/pwndbg/gdbinit.py”

Introduction to Security // Binary Analysis

Debugging - GDB Demo

86

GDB can also disassemble.
Let’s disassemble main!

There is a constant being saved
on the stack
[rbp-0x23] = “wizkccgybn\0”

string input read by scanf is
being saved at [rbp-0x40]

Introduction to Security // Binary Analysis

Debugging - GDB Demo

87

Later, [rbp-0x40] is
compared to [rbp-0x23]
with strcmp

● [rbp-0x40] - stores our input

● [rbp-0x23] - stores the
comparison target. Is this the
password we want?

Introduction to Security // Binary Analysis

Debugging - GDB Demo

88

after scanf

at strcmp

run and provide a
password

our input at
[rbp-0x40]

Let’s set some breakpoints!

1st breakpoint hit
(after strcmp)

Introduction to Security // Binary Analysis

After stepping through a few instructions (with ni) we reach the following code:

1. call to strlen on [rbp-0x40] which is our input
2. comparison with [rbp-0x18], currently set to 0
3. jb instruction, that jumps back to main+78 if rbp[0x18] < strlen([rbp-0x40])

Debugging - GDB Demo

89

1

2
3

Looks like a for loop

Introduction to Security // Binary Analysis

Debugging - GDB Demo

90

[rbp-0x18] is also used
to index our input
string. Must be the
iterator! Let’s call it i

0xa is added to input[i]
in a local variable [rbp-0x14]
(let’s call it current) and
then compared with 0x7a
(‘z’ character) if current <= ‘z’, then we

go to main+105 where the
input[i] is set to
current

Introduction to Security // Binary Analysis

Debugging - GDB Demo

91

i is incremented and the
if guard is executed
again. The loop body is
repeated until we reach
the end of our input.

However, if current is bigger than
0x7a, it will be subtracted by 0x1a
instead (at <main+101>). The for loop
appears to be implementing a rotate
right operation by 10.

Introduction to Security // Binary Analysis

Debugging - GDB Demo

92

If we continue until the last
breakpoint (at strcmp), we can
see our input shifted by 10 is
being compared to
“wizkccbgybn”

If we perform the reverse operation
(rotate left), on the target string, we
should obtain the correct password!

Introduction to Security // Binary Analysis

Debugging - GDB Demo

93

Rotating “wizkccbgybn” 10 charcaters to the left, we obtain the string “mypassword”.
Let’s try it!

IT WORKS!

Introduction to Security // Binary Analysis

Debugging - GDB Demo

94

It is also possible to bypass the check using gdb, by
setting the value of the rax register to 0 after the call to
strcmp, since strcmp returns 0 if the strings are equal.

Introduction to Security // Binary Analysis

Other resources

● LiveOverflow great YouTube videos about different security topics

● pwntools exploit development library

● Ghidra reverse engineering tool

● CyberChef encoding, encryption, etc.

● checksec check properties like PIE, or canaries

● Vagrant easy to use VM

● Online Assembler quick and easy reference for assembly

● And many more, try out what suits you best!

95

https://www.youtube.com/c/LiveOverflow
http://docs.pwntools.com/en/stable/
https://ghidra-sre.org/
https://gchq.github.io/CyberChef/
https://github.com/slimm609/checksec.sh
https://www.vagrantup.com/
https://defuse.ca/online-x86-assembler.htm

