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Key Management

Symmetric cryptography

● ! communication parties require
" # (" − &)/) secret keys to 
communicate with each other
○ Each party needs ! − 1 keys that must be 

shared in a secure way
○ This process must be repeated every time

the key is refreshed

Asymmetric cryptography

● ! communication parties require " key 
pairs to communicate with each other
○ Every party needs their own key pair and 

the public keys of the others
○ Public keys can be distributed over 

insecure channels (e.g., the Internet)

2



Introduction to Security // Asymmetric Cryptography

Asymmetric Encryption
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Asymmetric Encryption

● Asymmetric encryption schemes use different keys for encryption and decryption
○ The decryption key must not be derivable from the encryption key
○ This holds even if the attacker possesses pairs of plaintext and corresponding ciphertexts 

(known-plaintext attack)

● If this condition holds, there is no reason to keep the encryption key secret
○ Encryption key = public key
○ Decryption key = private key
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Usage of an asymmetric encryption scheme
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One-Way Functions in Asymmetric Schemes

● Asymmetric schemes use specific classes of one-way functions to satisfy the previously 
mentioned constraint about keys

● Integer factorization
○ Given two large prime numbers, it is easy to compute their product
○ It is infeasible to compute the factorization of a number made of large primes
○ Security of RSA is based on the difficulty of integer factorization

● Discrete logarithms
○ It is easy to compute $! mod ( from $, *, (
○ It is infeasible to compute * from $, (, $! mod (
○ Security of DSA, ElGamal, and the Diffie-Hellman protocol is based on this

6



Introduction to Security // Asymmetric Cryptography

The RSA Algorithm
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Mathematical Background

● The Euler’s totient function ! maps each integer " to the number of integers up to 
" that are coprime to " (i.e., greatest common divisor is 1)
○ If * is prime, + * = * − 1
○ If * = ./ (with ., / different primes):

+ * = ./ − . − 1 − / − 1 − 1 = (. − 1)(/ − 1)
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Euler’s theorem
Let #, " be coprime, positive integers: then #!(#) ≡ 1 (mod ")
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RSA

● Published in 1977 by R. Rivest, A. Shamir, L. Adleman
○ Can be used for encryption, digital signatures and key management

● Let + be the modulus consisting of two large primes ,, .
○ Public key 1, ! where 1 is the public exponent
○ Private key (2, !) where 2 is the private exponent

● Security depends on the size of ,, .
○ Primes are typically between 1024 and 2048 bits long (1024 bits ≈ 10!"")
○ The larger, the better (but also slower!)
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Key Generation

● Generate two large primes ,, .

● Compute the modulus + = ,.

● Choose a public exponent 0 < + coprime to !(+)
○ To speed-up encryption, 1 is typically a small number (e.g., 65537 = 2#$ + 1)

● The private exponent 2 is the modular inverse of 0 modulo !(+)
○ If the inverse exists, 12 ≡ 1 (mod + ! )
○ The extended Euclidean algorithm can be used for this purpose
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Generation of Large Prime Numbers

● Randomly generate an odd number of the desired bit length

● Test if small prime numbers (e.g., those smaller than 1000) divide the generated 
number

● Iterate the Miller-Rabin test on the generated number to ensure primality
○ If the test says that the number is not prime, the answer is always correct
○ If the test says that the number is prime, the answer might be wrong (probability < 1/4)
○ Iterating the test ? times reduces the probability of mistakes to &/@%
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Encryption and Decryption (Textbook RSA)

● Let 3 < + be the plaintext and 4 the corresponding ciphertext
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! = #! mod ' # = !" mod '
Encryption Decryption
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Correctness of RSA
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For all positive, integer messages 3 < +, it holds that 3%& ≡ 3 (352 +)

A&' mod !
= A() * +#mod !
= A A) * ( mod !

By construction of +, for some , ≥ 0
Laws of exponents

Case gcd A,! = 1
A A) * ( mod !
= A # 1( mod !
= A

Euler’s theorem
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Correctness of RSA

14

For all positive, integer messages 3 < +, it holds that 3%& ≡ 3 (352 +)

Case gcd A,! > 1
● Since / < !, either gcd /,! = ( or gcd /,! = 4

○ We assume gcd /,1 = 3, the other case is similar
○ Since gcd /, 4 = 1, we have /!(#) mod 4 = 1 (Euler’s theorem)

/" # mod 4
= /"(%)"(') mod 4
= (/" ' )"(%) mod 4
= 1"(%) mod 4 = 1

Multiplicative property of 8
Laws of exponents

Euler’s theorem
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Correctness of RSA
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For all positive, integer messages 3 < +, it holds that 3%& ≡ 3 (352 +)

Case gcd A,! > 1
1. Since we assumed gcd /,! = (, we have / = 7( for some 7 ≥ 0
2. Since /" # mod 4 = 1, we have (/" # )( mod 4 = 1 for all 8 ≥ 0

/ /" # ) mod !
= / 94 + 1 mod !
= (947( + /) mod !
= (97! +/) mod ! = /

Property 2 above and definition of the modulo operation
Property 1
Definition of modulus
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Security of RSA

● Security of RSA depends on the difficulty to factorize the modulus +
○ If the prime factors ., / are known, the private exponent 2 can be easily computed
○ Factorization of “small” integers is available in public databases, e.g., http://factordb.com

● The secrecy of the totient value ! + is equally crucial
○ If leaked, the primes can be recomputed by solving the following system of equations
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E ! = ./
+ ! = (. − 1)(/ − 1)

http://factordb.com/
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Issues of Textbook RSA for Encryption

● Determinism – If the same message is encrypted multiple times with the same 
public key, the produced ciphertexts are the same

● Small messages and public exponents
○ Given a ciphertext F = A& mod !, it holds that F + G! = A& for some G ≥ 0
○ When both A and 1 are small, A& is not much larger than !
○ The plaintext A can be reconstructed by brute-forcing the possible values of G and 

computing the 1th root

A = * F + G!
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Padding Algorithms for RSA Encryption

● The plaintext 3 is extended with randomly generated components to bring it to 
the size of the modulus +
○ The padded plaintext is then encrypted as usual
○ Usage of padding prevents both previous attacks

● Existing padding algorithms
○ PKCS#1 v. 1.5: simple, but vulnerabilities are known
○ OEAP: recommended for new applications
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00 02 PS          00 /Padding with PKCS#1 v. 1.5

Random byte sequence 
without null bytes
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Digital Signatures
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The Need of Digital Signatures

● Message Authentication Codes provide data integrity and authenticity
○ Can only be verified by the owners of the secret key
○ Do not offer nonrepudiation, since both sender and receiver can compute a valid MAC

● Digital signatures are asymmetric schemes that provide data integrity, 
authenticity, public verifiability and nonrepudiation
○ The private key is used to compute the signature
○ The public key is used to verify its validity
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Usage of an asymmetric encryption scheme
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Textbook RSA for Digital Signatures

● Let 3 < + the message to be signed and 6 the corresponding signature

22

( = #" mod '
Signing Verification

Check if (! mod ' equals #
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Attacks against Textbook RSA for Digital Signatures

● Malleability of RSA can be used to generate valid signatures for new messages 
starting from signatures of other messages
○ Let I# = A#' mod ! and I9 = A9' mod ! two valid signatures
○ I# # I9mod ! = A# # A9 ' mod ! is the signature of the message A# # A9

● If the private key’s owner is willing to sign only some of the attacker’s messages, 
arbitrary signatures can be computed
○ Attacker wants to compute the signature of message A
○ Asks for the signature I′ of message A: = A # ?& mod ! (with 0 < ? < !)
○ The signature of A is I = I: # ?;#mod !
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I& AL2 ! = I:& # ?;& AL2 ! = A: # ?;& AL2 ! = A # ?& # ?;& AL2 ! = A
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Further Issues with Textbook RSA

● Only messages smaller than the modulus + can be signed
○ One could split the message in multiple blocks and sign the individual parts

● Problems with the splitting approach
○ Very slow (one modular power per block)
○ Signature as long as the message
○ Missing connection between the individual signatures

■ Message blocks and the corresponding signature blocks could be swapped without problems (as 
in ECB mode): no integrity!
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Hash Functions in Digital Signatures

● Sign the hash value of a message instead of the message itself
○ Efficient for arbitrarily large messages: a single hash computation (fast) and a single 

signing operation are required
○ Signature depends on every bit of the original message (diffusion of the hash function)
○ Collision resistance ensures that it is infeasible to find other messages for which the 

signature is valid

25
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Security of Hash-and-Sign

● Previous attacks based on malleability are prevented
○ The product of the hash values of two messages is not related in any way to the product 

of the messages
○ Finding a message for which the product is a valid signature would amount to breaking 

the one-way property of the hash function

● Hash is usually padded before signature computation
○ PKCS#1 v. 1.5 (for signatures) and SSA are both considered secure
○ Padding helps to detect if the signature has been tampered with
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Diffie-Hellman Protocol
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Diffie-Hellman Protocol

● Key exchange protocol that enables the generation of a secret shared between two 
communicating parties over a public channel
○ First practical, asymmetric scheme published in 1976 by W. Diffie and M. Hellman
○ Based on the difficulty to compute discrete logarithms

● The two parties need to agree (also publicly) on two parameters ,, 7
○ . is a large prime number
○ M is a primitive root modulo N

■ $) mod ( 1 ≤ , < (} = {1, 2, … , ( − 1}
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Protocol Flow
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Problems with Specific Private Values

● If Alice chooses ,89' = 1, then ,:;' = 7, which is publicly known
○ The shared secret is O = .PQ<, which is known to an attacker (sent over the public 

channel)

● If Alice chooses ,89' = , − 1, then ,:;' = 1 (Fermat’s little theorem)
○ The shared secret is O = 1, irrespective of the value .?R< chosen by Bob

● The private value should be randomly selected from the set {2, … , , − 2}
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Man-in-the-Middle Attack
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Man-in-the-Middle Attack
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Alice Bob

Sample a random 
integer 1 ≤ (@A+ < (
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(BC+ = $%-.! mod (

Compute 
(BC, = $%-." mod (

Compute 
D+/ = (BC/%-.!mod (

Compute 
D,/ = (BC/%-."mod (

(BC+ (BC,

Sample a random 
integer 1 ≤ (@A/ < (

Compute 
(BC/ = $%-.# mod (

Compute 
D+/ = (BC+%-.#mod (
D,/ = (BC,%-.#mod (

Attacker

(BC/(BC/

The attacker can block all 
messages between Alice and Bob

Attack due to missing 
authentication! 

Solution consists in the 
usage of certificates

(next lecture)



Introduction to Security // Asymmetric Cryptography

Setup of a Connection in Internet
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Client Server

Authentication and key exchange

Data exchange

Asymmetric 
cryptography

Symmetric 
cryptography
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Thank You!
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