Zur VO Pruefung kommt eine Auswahl aus den folgenden Fragen.

Jegliche Antworten stammen vom tuwel-test. Es sind keine eigenen Lösungsversuche

1 Definition von Konvergenz inhludiert.

Welche der folgenden Eigenschaften einer Folge a_n sind äquivalent zu " a_n ist konvergent" (in \mathbb{R})?

Dazu können Eigenschaften der Form "Q l R r" abgefragt werden, wobei es folgende Möglichkeiten gibt:

```
 \begin{array}{l} \mathbb{Q} & (\exists a \in \mathbb{R}) \, (\forall \varepsilon > 0) \, (\exists M) \, (\forall n > M), \\ (\exists a \in \mathbb{R}) \, (\forall \varepsilon \geq 0) \, (\exists M) \, (\forall n > M), \\ (\exists a \in \mathbb{R}) \, (\forall \varepsilon \neq 0) \, (\exists M) \, (\forall n > M), \\ (\exists a \in \mathbb{R}) \, (\forall \varepsilon \geq 0) \, (\exists M) \, (\forall n > M), \\ (\exists a \in \mathbb{R}) \, (\forall \varepsilon > 0) \, (\exists M) \, (\forall n > M), \\ (\exists a \in \mathbb{R}) \, (\forall \varepsilon > 0) \, (\exists M) \, (\forall n > M + 1), \\ (\exists a \in \mathbb{R}) \, (\exists M) \, (\forall \varepsilon > 0) \, (\forall n > M), \\ (\exists a \in \mathbb{R}) \, (\forall \varepsilon > 0) \, (\exists M) \, (\exists n > M), \\ (\exists a \in \mathbb{R}) \, (\forall \varepsilon > 0) \, (\exists M) \, (\exists n > M), \\ (\exists a = a_n), \\ (\exists a = a_n), \\ (\exists a \in \mathbb{R}), \\ (\exists a \in \mathbb{R}),
```

Ebenfalls gefragt werden können Cauchyfolgen-Varianten, d.h., "Q l R r" mit R und r wie oben, und:

```
Q \mid (\forall \varepsilon > 0) (\exists M) (\forall n, m > M) \checkmark (\forall \varepsilon > 0) (\forall M) (\exists n, m > M) \checkmark (\exists M) (\forall \varepsilon > 0) (\forall n, m > M) \checkmark
1 \mid |a_n - a_m|, \checkmark |a_m - a_n|, \checkmark |a_m - a_n|,
```

Beispiel: Q sei $(\exists a \in \mathbb{R})$ $(\forall \varepsilon > 0)$ $(\exists M)$ $(\forall n > M^2)$ und l sei $a_n - a$ und R sei > und r sei ε^2 ; dann ergibt sich die Frage:

Ist folgende Aussage äquivalent zu " a_n ist konvergent:" $(\exists a \in \mathbb{R}) (\forall \varepsilon > 0) (\exists M) (\forall n > M^2) a_n - a > \varepsilon^2$.

Formal sind das also 660 "verschiedene" Fragen.

Hinweise: Das sollte alles offensichtlich sein; beachte allerdings folgende möglicherweise überraschende Kombinationen:

...
$$(\forall \varepsilon \neq 0) \cdot \cdot \cdot < \varepsilon^2$$

... $(\forall n, m > M) ... a_n - a_m < \varepsilon$ (ohne Betrag-Striche!)

2 Logik

Welche der folgenden Aussagen sind allgemein gültig (d.h. für beliebige mathematische Aussagen φ , ψ , für beliebige Menge A)

Zur Erinnerung: $\varphi \to \psi$ heißt "wenn dann" bzw "impliziert"; \leftrightarrow heißt "gdw", \land heißt "und", \vee "oder" und \neg "nicht".

- (a) $\neg (\forall x \in A) \varphi(x)$ impliziert $(\exists x \notin A) \varphi(x)$.
- (b) $\neg (\forall x \in A) \varphi(x)$ impliziert $(\exists x \in A) \neg \varphi(x)$.
- (c) $\neg(\forall x \in A)\varphi(x)$ impliziert $(\forall x \notin A)\neg\varphi(x)$.
- (d) $\varphi \to \psi$ impliziert $\neg \varphi \to \neg \psi$.
- (e) $\varphi \to \psi$ impliziert $\neg \psi \to \neg \varphi$.
- (f) $\varphi \leftrightarrow \psi$ impliziert $\neg \varphi \leftrightarrow \neg \psi$.

Und dieselben Fragen nochmals für "gdw" statt "impliziert".

Antworten gleich bei impliziert & golw)
3 Ordnungen, Vollständigkeit

Welche der folgenden Aussagen gilt in \mathbb{N} , \mathbb{Z} , \mathbb{Q} und \mathbb{R} :

- (a) Jede nicht-leere Teilmenge hat ein Minimum. N.Z.Q.R
- (b) Jede nicht-leere Teilmenge hat ein Maximum. N.Z.Q.R
- (c) Jede beschränkte nicht-leere Teilmenge hat ein Minimum. N.Z.Q.R
- (d) Jede beschränkte nicht-leere Teilmenge hat ein Maximum. 🙌 🗷 🕰 🖟
- (e) Jede nicht-leere Teilmenge hat ein Infimum. N.Z.Q.R
- (f) Jede nicht-leere Teilmenge hat ein Supremum. N.Z.Q.R
- (g) Jede beschränkte nicht-leere Teilmenge hat ein Infimum. N.Z.Q.R
- (h) Jede beschränkte nicht-leere Teilmenge hat ein Supremum. N.Z.Q.R

4 Wachtumsraten

Ordne die folgenden Folgen nach Ihrer Wachstumsrate (\ll), wobei k>2 und $1<\ell<2$

(a) $\log n$

(e) n

(i) n^k

(b) $\sqrt[k]{n}$

(f) $n \log(n)$

(j) 2^n

(c) \sqrt{n}

(g) n^{ℓ}

(d) $\sqrt[l]{n}$

(h) n^2

(Allenfalls gefragt in der Form: Gilt $\log(n) \ll n^k$ etc, das sind dann 56 "verschiedene" Fragen.)

5 Arithmetik mit Limiten

Wir setzen voraus dass die Folge a_n konvergiert und die dazugehörige Reihe konvergiert, und dasselbe für b_n . Was gilt dann allgemein:

(a)
$$\lim_{n\to\infty} (a_n) + \lim_{n\to\infty} (b_n) = \lim_{n\to\infty} (a_n + b_n) \sqrt{a_n + b_n}$$

(b)
$$\lim_{n\to\infty} (a_n) \cdot \lim_{n\to\infty} (b_n) = \lim_{n\to\infty} (a_n \cdot b_n) \checkmark$$

(c)
$$\lim_{n\to\infty} (a_n) - \lim_{n\to\infty} (b_n) = \lim_{n\to\infty} (a_n - b_n) \checkmark$$

(d)
$$\sum_{n=1}^{\infty} |a_n|$$
 konvergiert X

(e)
$$a_n$$
 hat einen Häufungspunkt $\sqrt{}$

(f)
$$\sum_{n=1}^{\infty} (a_n) + \sum_{n=1}^{\infty} (b_n) = \sum_{n=1}^{\infty} (a_n + b_n) \checkmark$$

(g)
$$\sum_{n=1}^{\infty} (a_n) \cdot \sum_{n=1}^{\infty} (b_n) = \sum_{n=1}^{\infty} (a_n \cdot b_n)$$

(h)
$$\sum_{n=1}^{\infty} (a_n) - \sum_{n=1}^{\infty} (b_n) = \sum_{n=1}^{\infty} (a_n - b_n) \checkmark$$

6 Konvergenzkriterien

Sei a_n eine Folge. Was gilt allgemein: (Alternierend heißt dass a_n abwechselnd ≥ 0 und ≤ 0 ist.)

- (a) Wenn a_n beschränkt ist, dann konvergiert a_n . \mathbf{X}
- (b) Wenn a_n beschränkt ist, dann hat a_n einen Häufungspunkt.
- (c) Wenn a_n beschränkt und monoton ist, dann konvergiert a_n .
- (d) Wenn a_n beschränkt und monoton ist, dann hat a_n einen Häufungspunkt.
- (e) Wenn a_n einen Häufungspunkt hat, dann konvergiert a_n . X
- (f) Wenn a_n konvergiert, dann hat a_n einen Häufungspunkt. $\sqrt{}$
- (g) Wenn a_n genau einen Häufungspunkt hat, dann konvergiert a_n . $\boldsymbol{\mathsf{x}}$
- (h) Wenn a_n konvergiert, dann hat a_n genau einen Häufungspunkt. \checkmark

- (i) Wenn a_n konvergiert, dann konvergiert $\sum_{n=1}^{\infty} a_n$.
- (j) Wenn a_n eine Nullfolge ist, dann konvergiert $\sum_{n=1}^{\infty} a_n$.
- (k) Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, dann konvergiert a_n .
- (l) Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, dann is a_n eine Nullfolge.
- (m) Wenn $\sum_{n=1}^{\infty} |a_n|$ konvergiert, dann konvergiert $\sum_{n=1}^{\infty} a_n$.
- (n) Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, dann konvergiert $\sum_{n=1}^{\infty} |a_n|$.
- (o) Wenn a_n alternierend ist, dann konvergiert $\sum_{n=1}^{\infty} a_n$.
- (p) Wenn a_n alternierend und eine Nullfolge ist, dann konvergiert $\sum_{n=1}^{\infty} a_n$.
- (q) Wenn a_n alternierend ist und $|a_n|$ eine monotone Nullfolge, dann konvergiert $\sum_{n=1}^{\infty} a_n$.

7 Mehr Konvergenz

Angenommen $\sum_{n=1}^{\infty} a_n$ konvergiert. Was gilt dann allgemein:

- (a) $\sum_{n=1}^{\infty} |a_n|$ konvergiert. X
- (b) $\sum_{n=1}^{\infty} 100 \cdot a_n$ konvergiert.
- (c) $\sum_{n=1}^{\infty} \sqrt{n} \cdot a_n$ konvergiert. \mathbf{X}
- (d) $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{n}}$ konvergiert. \checkmark
- (e) $\sum_{n=1}^{\infty} (-1)^n a_n$ konvergiert. X

8 Mengenschreibweise

Welche der Folgenden Aussagen gilt: Dabei bezeichnen wir hier mit (a, b) etc reelle Intervalle, und $\langle a, b \rangle$ das geordnete Paar.

(a) $\langle 2, 3 \rangle = \langle 3, 2 \rangle \times$

(e) $[1,2) \cup (2,3) = [1,3) \times$

(b) $\{2,3\} = \{3,2\} \checkmark$

(f) $[1,2) \cup [2,3) = [1,3) \setminus \{2\}$

- (c) $[1,2) \cup [2,3) = [1,3) \checkmark$
- (g) $[1,2) \cup [2,3) = [1,3] \setminus \{2\} \chi$

(d) $[1,2) \cup [2,3) = [1,3] \times$

(h) $[1,2) \cup (2,3) = [1,3) \setminus \{2\} \checkmark$

9 Topologie metrischer Räume (dazu gibts alle Antworten in den Folien)

Welche der folgenden Aussagen gelten allgemein in jedem metrischen Raum (X, d):

- Ø ist offen. \checkmark
- X ist offen. \checkmark
- Die Vereinigung offener Mengen ist offen.
- \bullet Die Vereinigung endlich vieler offener Mengen ist offen. \checkmark
- Die Vereinigung zweier offener Mengen ist offen.
- Der Schnitt offener Mengen ist offen.
- Der Schnitt endlich vieler offener Mengen ist offen.
- Der Schnitt zweier offener Mengen ist offen.
- Der Ball $B_{\varepsilon}(x) = \{ y \in X : d(x,y) < \varepsilon \}$ ist offen.
- $\{y \in X : d(x,y) > \varepsilon\}$ ist offen.
- $\{y \in X : d(x,y) \le \varepsilon\}$ ist offen.
- $\{y \in X : d(x,y) \ge \varepsilon\}$ ist offen. X
- Ø ist abgeschlossen.
- X ist abgeschlossen.
- Die Vereinigung abgeschlossener Mengen ist abgeschlossen. 🗙
- Die Vereinigung endlich vieler abgeschlossener Mengen ist abgeschlossen.
- Die Vereinigung zweier abgeschlossener Mengen ist abgeschlossen.
- Der Schnitt abgeschlossener Mengen ist abgeschlossen.
- ullet Der Schnitt endlich vieler abgeschlossener Mengen ist abgeschlossen. \checkmark
- ullet Der Schnitt zweier abgeschlossener Mengen ist abgeschlossen. \checkmark
- Der Ball $B_{\varepsilon}(x) = \{y \in X : d(x,y) < \varepsilon\}$ ist abgeschlossen.
- $\{y \in X : d(x,y) > \varepsilon\}$ ist abgeschlossen. X
- $\{y \in X : d(x,y) \le \varepsilon\}$ ist abgeschlossen.
- $\{y \in X : d(x,y) \ge \varepsilon\}$ ist abgeschlossen.

10 De Morgan Regeln

Seien A, B und C_i (für $i \in I$) Teilmengen von X: Welche der folgenden Aussagen gilt für alle solche Mengen:

•
$$X \setminus \bigcup_{i \in I} (X \setminus C_i) = \bigcap_{i \in I} C_i$$

•
$$X \setminus \bigcup_{i \in I} (X \setminus C_i) = \bigcap_{i \in I} (X \setminus C_i) \times$$

•
$$X \setminus \bigcup_{i \in I} (X \setminus C_i) = \bigcup_{i \in I} C_i \times$$

•
$$\bigcup_{i \in I} (X \setminus C_i) = X \setminus \bigcap_{i \in I} C_i \checkmark$$
 • $X \setminus (A \cup B) = A \cap B \times$

•
$$X \setminus \bigcup_{i \in I} (X \setminus C_i) = X \setminus \bigcap_{i \in I} (X \setminus C_i) \mathbf{X}$$

•
$$X \setminus \bigcup_{i \in I} (X \setminus C_i) = X \setminus \bigcup_{i \in I} C_i \mathsf{X}$$

•
$$X \setminus \bigcap_{i \in I} (X \setminus C_i) = \bigcup_{i \in I} C_i \checkmark$$

•
$$X \setminus \bigcap_{i \in I} (X \setminus C_i) = \bigcup_{i \in I} (X \setminus C_i) \times$$

•
$$X \setminus \bigcap_{i \in I} (X \setminus C_i) = \bigcap_{i \in I} C_i \mathsf{X}$$

•
$$\bigcap_{i \in I} (X \setminus C_i) = X \setminus \bigcup_{i \in I} C_i \checkmark$$

•
$$X \setminus \bigcap_{i \in I} (X \setminus C_i) = X \setminus \bigcup_{i \in I} (X \setminus C_i) \times (X \setminus A) \cup (X \setminus B) = X \setminus (A \cap B)$$

•
$$X \setminus \bigcup_{i \in I} (X \setminus C_i) = \bigcap_{i \in I} C_i \checkmark$$
 • $X \setminus \bigcap_{i \in I} (X \setminus C_i) = X \setminus \bigcap_{i \in I} C_i \checkmark$

•
$$X \setminus \bigcup_{i \in I} (X \setminus C_i) = \bigcap_{i \in I} (X \setminus C_i) \times$$
 • $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B) \checkmark$

•
$$X \setminus \bigcup_{i \in I} (X \setminus C_i) = \bigcup_{i \in I} C_i \times$$
 • $X \setminus (A \cup B) = (X \setminus A) \cup (X \setminus B) \times$

•
$$X \setminus (A \cup B) = A \cap B \times$$

•
$$X \setminus \bigcup_{i \in I} (X \setminus C_i) = X \setminus \bigcap_{i \in I} (X \setminus C_i) \times X \setminus ((X \setminus A) \cup (X \setminus B)) = A \cap B \checkmark$$

•
$$X \setminus ((X \setminus A) \cup (X \setminus B)) = (X \setminus A) \cup (X \setminus B)$$

$$X \setminus ((X \setminus A) \cup (X \setminus B)) = A \cap \overline{B}$$

$$(X \setminus A) \cup (X \setminus B) = X \setminus (A \cap B) \checkmark$$

•
$$(X \setminus A) \cup (X \setminus B) = X \setminus ((X \setminus A) \cup (X \setminus B))$$

$$(X \setminus A) \cup (X \setminus B) = X \setminus (A \cap B)$$

11 Bild und Urbild

Sei $f: X \to Y$ und A, B Teilmengen von X und C, D von Y. Welche Aussagen gelten allgemein:

•
$$f''A \cup f''B = f''(A \cup B) \checkmark$$

•
$$f''A \cap f''B = f''(A \cap B)$$

•
$$f''(A) \setminus f''(B) = f''(A \setminus B) \mathsf{X}$$

•
$$f''A \cup f''B \subseteq f''(A \cup B)$$

•
$$f''A \cap f''B \subseteq f''(A \cap B) \times$$

•
$$f''(A) \setminus f''(B) \subseteq f''(A \setminus B) \checkmark$$

•
$$f''A \cup f''B \supseteq f''(A \cup B) \checkmark$$

•
$$f''A \cap f''B \supseteq f''(A \cap B) \checkmark$$

•
$$f''(A) \setminus f''(B) \supseteq f''(A \setminus B) \times$$

•
$$f^{-1}C \cup f^{-1}D = f^{-1}(C \cup D)$$

•
$$f^{-1}C \cap f^{-1}D = f^{-1}(C \cap D)$$

•
$$f^{-1}C \setminus f^{-1}D = f^{-1}(C \setminus D)$$

12 Exponentiation und Logarithmus

Welche der folgenden Aussagen gilt für alle x, y in \mathbb{R} und a, b in $\mathbb{R}^{>0}$:

$$\bullet \ e^{(x^y)} = e^{x \cdot y} \times$$

•
$$(e^x)^y = e^{x \cdot y}$$

$$\bullet \ e^{x \cdot y} = e^x \cdot e^y \mathbf{X}$$

$$\bullet \ e^{x \cdot y} = e^x + e^y \mathbf{X}$$

•
$$e^{x+y} = e^x \cdot e^y$$

•
$$a^x = e^{x \cdot \ln(a)} \checkmark$$

•
$$a^x = \ln(a) \cdot e^x$$

•
$$e^x = a^{x \cdot \ln(a)} \mathsf{X}$$

•
$$\ln_a(x) = \ln(x) \cdot \ln(a) \mathsf{X}$$

•
$$a^x = e^{x \cdot \ln(a)}$$
 • $\ln_a(x) = \frac{\ln(x)}{\ln(a)}$

•
$$e^{x \cdot y} = e^x \cdot e^y \mathbf{X}$$
 • $\ln_a(x) = \ln(x) + \ln(a) \mathbf{X}$

•
$$\ln(x \cdot y) = \ln(x) + \ln(y)$$

- $\ln(x \cdot y) = \ln(x) \cdot \ln(y) \times$
- $\ln(x)^r = \ln(r \cdot x)$
- $\ln(-x) = \frac{1}{\ln(x)}$
- $\ln(x+y) = \ln(x) +$ $\ln(x)^r = \ln(r) \cdot \ln(x) \times$ $\ln(-x) = -\ln(x) \times$ $\ln(\frac{1}{x}) = -\ln(x) \checkmark$
- $\ln(x+y) = \ln(x) \cdot \ln(y) \mathbf{X}$ $e^{-n} = \sqrt[n]{e} \mathbf{X}$

• $\ln(\frac{1}{x}) = \frac{1}{\ln(x)}$

- $\ln(x^r) = r \ln(x) \checkmark$
- $e^{\frac{1}{n}} = \sqrt[n]{e} \checkmark$

13 Beispiele für (Un)stetigkeit

An welchen Punkten ist $\underline{f}: \mathbb{R} \to \mathbb{R}$ stetig? An welchen $\underline{x \cdot f(x)}$?

- wenn x = 0R $\mathbb{R}\setminus\{0\}$
- wenn x = 0R sonst
- $f(x) = \begin{cases} 2022 \\ \frac{\sin(x)}{x} \end{cases}$ wenn x = 0ĺΚ R\{0}
- {0}

14 Eigenschaften stetiger Funktionen

Welche der folgenden Aussagen gelten für alle stetigen $f: A \to \mathbb{R}, A \subseteq \mathbb{R}$:

- f''A ist ein Intervall [c,d] mit $c \leq d$ in \mathbb{R} .
- Wenn A = [a, b], dann ist f''A ein Intervall [c, d] mit $c \leq d$ in \mathbb{R} .
- Wenn A = [a, b], dann ist $f''A \subseteq \mathbb{R}$ beschränkt.
- Wenn A = (a, b), dann ist $f''A \subseteq \mathbb{R}$ beschränkt.
- Wenn x < y < z in \mathbb{R} und x, z in f''A, dann ist $y \in f''A$.
- Wenn A = [a, b] and x < y < z in \mathbb{R} und x, z in f''A, dann ist $y \in f''A$.
- Wenn A = [a, b] und f injektiv, dann ist f streng monoton.
- Wenn f injektiv, dann ist f streng monoton. \times

15 Monotonie und Extrema

Welche der folgenden Aussagen gelten:

- Jede stetige Funktion ist differenzierbar. 🗙
- ullet Jede differenzierbare Funktion ist stetig. \checkmark
- Sei $f:[a,b] \to \mathbb{R}$ und $x_0 \in (a,b)$. Wenn f differenzierbar ist und bei x_0 ein lokales Extremum hat, dann ist $f'(x_0) = 0$.
- Sei $f:[a,b]\to\mathbb{R}$ und $x_0\in(a,b)$. Wenn f differenzierbar ist und $f'(x_0)=0$, dann hat f bei x_0 ein lokales Extremum hat. \times
- Sei $f:[a,b] \to \mathbb{R}$ und $x_0 \in (a,b)$. Wenn f' bei x_0 ein lokales Extremum hat, dann ist f bei x_0 differenzierbar und $f'(x_0) = 0$.
- Sei $f:[a,b]\to\mathbb{R}$ differenzierbar. Wenn f'(x)>0 für alle $x\in[a,b]$, dann ist f streng monoton steigend. \checkmark
- Sei $f:[a,b]\to\mathbb{R}$ differenzierbar. Dann ist f'(x)>0 für alle $x\in[a,b]$ genau dann wenn f streng monoton steigend ist. \times
- Sei $f:[a,b]\to\mathbb{R}$ differenzierbar. Wenn f streng monoton steigend ist, dann ist f'(x)>0 für alle $x\in[a,b]$.
- Sei $f:[a,b]\to\mathbb{R}$ differenzierbar. Wenn $f'(x)\geq 0$ für alle $x\in[a,b]$, dann ist f monoton steigend.
- Sei $f:[a,b]\to\mathbb{R}$ differenzierbar. Dann ist $f'(x)\geq 0$ für alle $x\in[a,b]$ genau dann wenn f monoton steigend ist. \checkmark
- Sei $f:[a,b]\to\mathbb{R}$ differenzierbar. Wenn f monoton steigend ist, dann ist $f'(x)\geq 0$ für alle $x\in[a,b]$.
- Sei $f:[a,b]\to\mathbb{R}$ monoton steigend. Dann ist f differenzierbar und $f'(x)\geq 0$ für alle $x\in [a,b]$.

16 Konkrete Funktionen

Sind die folgenden Funktionen $f:A\to\mathbb{R}$ (mit dem natürlichen Definitionsbereich A) injektiv, surjektiv, stetig, differenzierbar?

• $\frac{1}{x}$ isbld

• x^{-2023}

• $\ln(x)$ is block

• $\frac{1}{x^2}$ is block

• x^{-2022} is block

• $\ln(x^2)$ is block

• $\frac{1}{x^{2022}}$ is block

• x⁻² isbld

• $\ln(|x|)$ is block

• $\frac{1}{x^{2023}}$ is block

• x^{-1} is block

• $\ln(\frac{1}{x})$ is block

• e^x is block

• $\frac{1}{e^x}$ is block

• |x| isbld

• \sqrt{x} is block

• $\sqrt[3]{x}$ is block

• $\sqrt[2022]{x}$ isble

• $\sqrt[2023]{x}$ is

• $\sqrt{|x|}$ is bld

• $\sqrt[3]{|x|}$ is block

 \bullet $\sqrt[2022]{|x|}$ isba

• $\sqrt[2023]{|x|}$ is block

• $x^{\frac{1}{2}}$ is block

• $x^{\frac{1}{3}}$ is block

• $x^{\frac{1}{2022}}$ is block

• $x^{\frac{1}{2023}}$ is bid

• $|x|^{\frac{1}{2}}$ is block

 \bullet $|x|^{\frac{1}{3}}$ is black

• $|x|^{\frac{1}{2022}}$ is block

• $|x|^{\frac{1}{2023}}$ is b

• $\frac{1}{\sqrt{x}}$ is become

• $\frac{1}{\sqrt[3]{x}}$ is block

• $\frac{1}{202\sqrt[2]{x}}$ is become

• $\frac{1}{202\sqrt[3]{x}}$ isbld

• $\frac{1}{\sqrt{|x|}}$ isbloc

• $\frac{1}{\sqrt[3]{|x|}}$ is bld

• $\frac{1}{2022\sqrt{|x|}}$ is block

• $\frac{1}{202\sqrt[3]{|x|}}$ is block

• $r^{-\frac{1}{2}}$ is block

• $x^{-\frac{1}{3}}$ is block

• $x^{-\frac{1}{2022}}$ is block

• $x^{-\frac{1}{2023}}$ is bld

• $|x|^{-\frac{1}{2}}$ is block

• $|x|^{-\frac{1}{3}}$ is block

• $|x|^{-\frac{1}{2022}}$ is block

• $|x|^{-\frac{1}{2023}}$ is black

• $\sin(x)$ is bld

• $\sin(\cos(\sin(\cos(\sin(x)))))$ is block

• $\sin(|x|)$ is block

• $\cos(|x|)$ is bld

Hinweis: Differenzierbar heißt "auf dem gesamten Definitionsbereich differenzierbar." $\frac{1}{x}$ ist z.B. differenzierbar (0 ist ja nicht im Definitionsbereich). Dagegen sind die Wurzeln $\sqrt[n]{x}$ nicht differenzierbar (sie sind bei 0 definiert, aber nicht differenzierbar. Bei $x \neq 0$ sind sie natürlich schon differenzierbar). Achtung: $\sin(|x|)$ und $\cos(|x|)$ sind überall (auch bei 0) stetig. Sind sie bei 0 auch differenzierbar?

Chann sein, dass Souchen teilweise (alsch sind, da es Leicht ist, sich in der zeile zu verschauen)

(stetiqueit wurde wegen 15.2 aus der differenzierberkeit abgeleitet; bijektivität folgt aus injektivität und surjektivität (falls beide gelten); stetigkeit der Betragsfunktion folgt aus Aufgabe 13)

17 Limiten

Ist $\lim_{x\to x_0} f(x) = c$ für ein $c \in \mathbb{R} \cup \{+\infty, -\infty\}$, oder undefiniert? (Wenn definiert, gib c an.) Dabei wird $f: A \to \mathbb{R}$ angenommen für das natürliche A.

•
$$\lim_{x\to 0} \frac{\sin(x)}{x}$$

•
$$\lim_{x\to 0} \frac{1}{x}$$
 undely

•
$$\lim_{x\to 0} \frac{1}{x^2}$$

•
$$\lim_{x\to 0} -\frac{1}{x}$$
 under

•
$$\lim_{x\to 0} -\frac{1}{x^2}$$
 - 🛇

•
$$\lim_{x\to\infty} \frac{\sin(x)}{x}$$

•
$$\lim_{x\to\infty} \frac{\sin(x)}{x}$$

•
$$\lim_{x\to\infty} \frac{\sin(|x|)}{x^2}$$

•
$$\lim_{x\to\infty}\sin(x)$$
 under

•
$$\lim_{x\to\infty} e^x$$

•
$$\lim_{x\to\infty} e^{-x}$$

•
$$\lim_{x\to-\infty}e^x$$

$$\begin{array}{lll} \bullet & \lim_{x \to 0} \frac{1}{x} \, \text{undel} \\ \bullet & \lim_{x \to 0} \frac{1}{x^2} \, \text{undel} \\ \bullet & \lim_{x \to 0} \frac{1}{x^2} \, \text{undel} \\ \bullet & \lim_{x \to 0} -\frac{1}{x} \, \text{undel} \\ \bullet & \lim_{x \to 0} -\frac{1}{x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^x \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^x \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^x \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x} \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x} \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} \sin(x) \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} \sin(x) \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} \sin(x) \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} \sin(x) \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} \sin(x) \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} \sin(x) \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} \sin(x) \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} \sin(x) \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} \sin(x) \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} \sin(x) \, \text{undel} \\ \bullet & \lim_{x \to \infty} e^{-x^2} \, \text{undel} \\ \bullet & \lim_{x \to \infty} \sin(x) \, \text{undel} \\ \bullet & \lim_{x \to \infty}$$

•
$$\lim_{x\to\infty} x^2 e^{-x}$$

•
$$\lim_{x\to\infty} \frac{x}{\ln(x)}$$

$$\bullet$$
 $\lim_{x\to\infty}\frac{\ln(x)}{x}$

$$\bullet \ \lim_{x \to \infty} e^{-\frac{1}{x^2}} /$$

•
$$\lim_{x\to\infty} e^{-x^2}$$

•
$$\lim_{x\to 0} \frac{\ln(x)}{x}$$
 - ∞

•
$$\lim_{x\to 0} \frac{x}{\ln(x)}$$

Achtung: Der Definitionsbereich von $\frac{1}{x}$ und $\frac{1}{x^2}$ ist $\mathbb{R} \setminus \{0\}$ (und der von $\frac{\ln(x)}{x}$ etc nur $\mathbb{R}^{>0}$).

18 Partielle Ableitungen

Berechne $\frac{\partial^2 f}{\partial x \partial y}(0,0)$, wobei f(x,y) Summe und/oder Produkt und/oder Komposition ist aus: $x, y, \sin(x), \cos(x), e^x, \ln(x)$. Also z.B.

(a)
$$f(x,y) = \sin(x)\cos(y) - x^2y$$

(c)
$$f(x,y) = e^{xy^2} + \sin(\cos(x+y))$$

(b)
$$f(x,y) = y^2 \sin(x) + y \cos(y)$$

19 De l'Hospital (oder auch nicht)

Berechne $\lim_{x\to 0} \frac{f(x)}{g(x)}$, wobei f und g aus den folgenden Funktionen gewählt sind:

(a)
$$\cos(x) - 1$$

(b)
$$1 - \sin(x)$$

(c)
$$x + \sin(x)$$

(d)
$$x - \sin(x)$$

(e)
$$x + \cos(x)$$

(f)
$$\cos(x) - x$$

(g)
$$x \sin(x)$$

(h)
$$x\cos(x)$$

(i)
$$\sin(x)\cos(x)$$

(j)
$$\sin(x)e^x$$

(k)
$$\cos(x)e^x$$

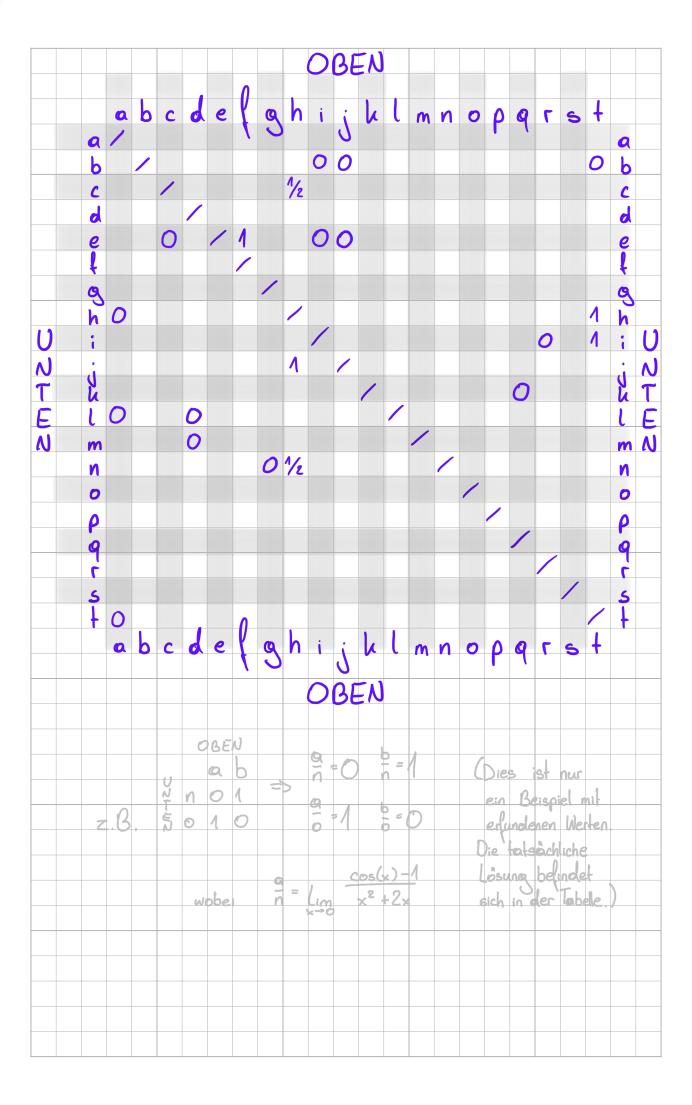
(1)
$$\cos(x) + e^x$$

(m)
$$e^x - \cos(x)$$

(n)
$$x^2 + 2x$$

(o)
$$x^3 + x$$

(p)
$$x^3 + 1$$



(q)
$$e^x - 1$$

(s)
$$e^x + 1$$

(r)
$$e^x - x - 1$$

(t)
$$xe^x$$

20 Konkav und Konvex 1

f(x) ist strikt konvex wenn $f(\theta x + (1-\theta)y) < \theta f(x) + (1-\theta)f(y)$ für alle $\theta \in [0, 1]$, konvex wenn \leq gilt, analog für (strikt) konkav. Welche der folgenden Aussagen gilt allgemein:

(a) Wenn f konkav ist, dann existiert f'' und $f''(x) \ge 0$ für alle x.

Vorzeichen Sind im tuweltest verliehrt herum (4 stall >)

(b) Wenn f konkav ist und f'' existiert, dann ist $f''(x) \ge 0$ für alle x.

(c) Wenn f'' existiert und $f''(x) \ge 0$ für alle x, dann ist f konkav.

(d) Wenn f strikt konkav ist, dann existiert f'' und $f''(x) \geq 0$ für alle x. X

(e) Wenn f strikt konkav ist und f'' existiert, dann ist f''(x) > 0 für alle x.

(f) Wenn f'' existiert und $f''(x) \ge 0$ für alle x, dann ist f strikt konkav. \checkmark

21 Konkav und Konvex 2

Ist die Funktionen f(x) auf ihrem natürlichen (oder dem explizit angegebenen) Definitionsbereich D strikt konvex, d.h. $f(\theta x + (1-\theta)y) < \theta f(x) + (1-\theta)f(y)$ für alle $\theta \in [0,1]$, oder ist sie konvex aber nicht strikt konvex (dh es gilt zumindest noch \leq), oder ist sie strikt konkav, oder konkav aber nicht strikt konkav, oder weder noch? Dabei kann f eine der folgenden Funktionen g, oder -g, sein:

(1)
$$\frac{1}{x}^3$$
 auf $D = (-\infty, 0)$

(m)
$$\frac{1}{r}^4$$
 auf $D=(-\infty,0)$ skh

(n)
$$e^x$$
 sky

(d)
$$x^3$$

(o)
$$e^{-x}$$
 SkV

(e)
$$x^4$$
 skv

(p)
$$\ln(x)$$
 suk

(f)
$$\frac{1}{x}$$
 auf $D = \mathbb{R}^{>0}$ **dv**

(q)
$$\sin(x)$$

(g)
$$\frac{1}{x}^2$$
 auf $D = \mathbb{R}^{>0}$ skv

(r)
$$\sin(x)$$
 auf $D = [0, 2\pi]$

(h)
$$\frac{1}{x}^3$$
 auf $D = \mathbb{R}^{>0}$ sky

(s)
$$\sin(x)$$
 auf $D = [0, \pi]$ skk

(i)
$$\frac{1}{x}^4$$
 auf $D = \mathbb{R}^{>0}$ **Sky**

(t)
$$\sin(x) \text{ auf } D = [-\pi, \pi] /$$

(j)
$$\frac{1}{r}$$
 auf $D = (-\infty, 0)$ skip

(u)
$$\sin(x)$$
 auf $D = [-\frac{\pi}{2}, \frac{\pi}{2}]$ /

(k)
$$\frac{1}{x}^2$$
 auf $D = (-\infty, 0)$

(v)
$$\cos(x)$$

(w)
$$\cos(x)$$
 auf $D = [0, 2\pi]$

(sky = strikt kv, ky = honvex, / = weder noch, hk = honkay, skh = strikt kh)

(x)
$$\cos(x)$$
 auf $D = [0, \pi]$

(z)
$$\cos(x)$$
 auf $D = [-\frac{\pi}{2}, \frac{\pi}{2}]$ slike

(y)
$$\cos(x)$$
 auf $D = [-\pi, \pi]$

22 Taylorreihen

Berechne die ersten drei Terme (d.h., für x^0 bis x^2) der Taylorreihe (um 0) von

(a)
$$\sin(\pi\cos(x))$$
 $O_{\bullet}O_{\bullet}$

(b)
$$\cos(\pi \sin(x))$$
 (c) $-\frac{\pi}{2}^{2}$

(c)
$$-\cos(\pi\cos(x))$$

(d)
$$\sin(\sin(x))$$

(e)
$$\sin(\pi e^{-x})$$

(f)
$$\cos(\pi e^x) - 1, 0, \frac{\kappa^2}{2}$$

(g)
$$\cos(\sin(x)) \bigwedge_{i=0}^{\infty} -\frac{1}{2}$$

(h)
$$\ln(1+\sin(x))$$
 0, 1, - 4

(i)
$$\ln(\cos(x))$$
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

(j)
$$\ln(1 + \pi \sin(x))$$

(k)
$$\sin(\ln(1+x))$$
 O 1 - 2

(1)
$$\cos(\ln(1+x)) / \cos(-\frac{1}{2})$$

23 Uneigentliche Integrale

Berechne: (Es ist auch $\pm \infty$ oder "undefiniert" möglich)

(a)
$$\int_0^\infty e^{-x} dx$$

(k)
$$\int_0^1 \frac{1}{x^3} dx$$

(b)
$$\int_0^\infty e^{-2x} dx \, \frac{1}{2}$$
 (g) $\int_1^\infty \frac{1}{\sqrt{x}} dx \, \sim$ (l) $\int_0^1 \frac{1}{\sqrt{x}} dx \, 2$

(g)
$$\int_1^\infty \frac{1}{\sqrt{x}} dx$$

(1)
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$
 2

(c)
$$\int_0^\infty 2^{-x} dx$$

(h)
$$\int_1^\infty \frac{1}{\sqrt[3]{x}} dx$$

(h)
$$\int_1^\infty \frac{1}{\sqrt[3]{x}} dx$$
 $\bullet \bullet$ (m) $\int_0^1 \frac{1}{\sqrt[3]{x}} dx$

(d)
$$\int_1^\infty \frac{1}{x} dx$$
 \sim

(i)
$$\int_0^1 \frac{1}{x} dx$$

(n)
$$\int_0^1 \ln(x) dx - 4$$

(j) $\int_{-\infty}^{\infty} x^4 dx$ ∞

(e)
$$\int_1^\infty \frac{1}{x^2} dx$$

(j)
$$\int_0^1 \frac{1}{x^2} dx$$

(o)
$$\int_0^\infty \sin(x)dx$$
 under

24 Uneigentliche Integrale

Welche der folgenden Integrale sind endlich; sind ∞ , oder sind undefiniert? (Genauer Wert muss nicht berechnet werden.)

(a)
$$\int_{-\infty}^{\infty} e^{-x^2} dx$$
 endlich (f) $\int_{0}^{\infty} x^4 dx$ \triangleright

(f)
$$\int_0^\infty x^4 dx$$

(b)
$$\int_{-\infty}^{\infty} e^x dx$$

(g)
$$\int_{-\infty}^{\infty} x dx$$
 undel.

(c)
$$\int_0^\infty x dx \sim$$

(h)
$$\int_{-\infty}^{\infty} x^2 dx$$
 under.

(d)
$$\int_0^\infty x^2 dx$$

(i)
$$\int_{-\infty}^{\infty} x^3 dx$$
 under

(1)
$$\int_0^\infty \frac{\sin(x)}{x} dx = \frac{1}{2} \frac{$$

(d)
$$\int_0^\infty x^2 dx$$
 (i) $\int_{-\infty}^\infty x^3 dx$ under (e) $\int_0^\infty x^3 dx$

(g)
$$\int_{-\infty}^{\infty} x dx$$
 under (k) $\int_{0}^{\infty} \sqrt{x} \sin(x) dx$ under (l) $\int_{-\infty}^{\infty} x^{2} dx$ under (l) $\int_{0}^{\infty} \frac{\sin(x)}{\sqrt{x}} dx$ endlich (aut wolfram alpha underniert)

25 Anfangswertprobleme

Welche der gegebenen Funktionen f(x) sind Lösungen des Anfangswertproblems $y' = 2\sqrt{|y|}, y(0) = 0$?

- (a) f(x) = 0
- (b) $f(x) = 1 \, \mathsf{X}$
- (c) $f(x) = x^2 X$
- (d) f(x) is x^2 für $x \ge 0$ und $-x^2$ für x < 0
- (e) f(x) is x^2 für x > 1 und $-x^2$ für x < -1 und 0 sonst.
- (f) f(x) is $(x-1)^2$ für x > 1 und $-(x+1)^2$ für x < -1 und 0 sonst.
- (g) f(x) is x^2 für x > 0 und $-(x+1)^2$ für x < -1 und 0 sonst.

Welche der gegebenen Funktionen f(x) sind Lösungen des Anfangswertproblems $y'=2\sqrt{|y|},\ y(1)=1?$

- (a) f(x) = 0 **X**
- (b) $f(x) = 1 \times$
- (c) $f(x) = x^2 \times$
- (d) f(x) is x^2 für $x \ge 0$ und $-x^2$ für x < 0
- (e) f(x) is x^2 für x > 1 und $-x^2$ für x < -1 und 0 sonst. \checkmark
- (f) f(x) is $(x-1)^2$ für x>1 und $-(x+1)^2$ für x<-1 und 0 sonst.
- (g) f(x) is x^2 für x > 0 und $-(x+1)^2$ für x < -1 und 0 sonst.

Welche der gegebenen Funktionen f(x) sind Lösungen des Anfangswertproblems $y'=\frac{3}{x}y+x^5$ (x>0), y(1)=1?

- (a) $x^3 \times$
- (b) $\frac{2}{3} + \frac{1}{3}x^6$
- (c) $x^3 + \frac{1}{3}x^6$
- (d) $\frac{2}{3}x^3 + \frac{1}{3}x^6$

Welche der gegebenen Funktionen f(x) sind Lösungen des Anfangswertproblems $xy'+2y=4x^2\ (x>0),\ y(1)=2?$

(a)
$$\frac{1}{x^2} + x^2$$

(b)
$$\frac{1}{x} + x$$
 X

(c)
$$\frac{1}{x^3} + x^3 \times$$

(d)
$$\frac{2}{x^2} + x^2 \times$$

26 Länge konkreter Kurven

Berechnen Sie die Länge der Kurve $\gamma:[0,1]\to\mathbb{R}^3$ gegeben durch

(a)
$$\gamma(t) = \begin{pmatrix} \cos(2t) \\ \sin(2t) \\ t \end{pmatrix}$$

(d)
$$\gamma(t) = \begin{pmatrix} \cos(2t) \\ \sin(2t) \\ 2t \end{pmatrix}$$

(a)
$$\gamma(t) = \begin{pmatrix} \cos(2t) \\ \sin(2t) \\ t \end{pmatrix}$$
 (d) $\gamma(t) = \begin{pmatrix} \cos(2t) \\ \sin(2t) \\ 2t \end{pmatrix}$ (f) $\gamma(t) = \begin{pmatrix} 2(1-x)^{\frac{3}{2}} \\ 2x^{\frac{3}{2}} \\ 6x \end{pmatrix}$

(b)
$$\gamma(t) = \begin{pmatrix} 2\cos(t) \\ 2\sin(t) \\ t \end{pmatrix}$$
 (e) $\gamma(t) = \begin{pmatrix} 2\cos(t) \\ 2\sin(t) \\ 2t \end{pmatrix}$ (g) $\gamma(t) = \begin{pmatrix} t^2 \\ 2t^2 \\ t^2 \end{pmatrix}$

(e)
$$\gamma(t) = \begin{pmatrix} 2\cos(t) \\ 2\sin(t) \\ 2t \end{pmatrix}$$

$$(c) \gamma(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \\ 2t \end{pmatrix}$$

27 Volumen

Berechnen Sie $\iint_R f(x,y) dA$ für $R = [0,1] \times [0,1]$ und das folgende f(x,y):

(a)
$$x^2y - xy^2$$

(e)
$$3x^2y^2 - x^2y^2$$

(i)
$$x - y^2 x = \frac{1}{5}$$

(b)
$$x^2 + y^2 = \frac{2}{3}$$

(f)
$$x^2 - xy^2$$

(j)
$$2x^2y^2 + \frac{1}{9}\frac{4}{3}$$

(c)
$$y^2 + 2xy^2$$

(g)
$$x^2 - x^2y$$

(k)
$$y^3x + \frac{1}{4}$$

(a)
$$x^2y - xy^2$$
 (b) $x^2 + y^2$ (c) $y^2 + 2xy^2$ (d) $x^2 + 2x^2y$ (e) $3x^2y^2 - x^2y$ (f) $x^2 - xy^2$ (g) $x^2 - x^2y$ (g) $x^2 - x^2y$ (h) $x^2y + xy^2$ (l) $x^3 + y^3x$

(h)
$$x^2y + xy^2$$

(1)
$$x^3 + y^3 x \frac{3}{6}$$

