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1 Block A

« Chip Production
» Sand — Silicon Ingot — Wafer — Lithography
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Figure 1.1: Standard Cell (NAND)
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Five-stage Pipeline - Stages

» Stages:

Instuction Fetch

(IF)

Execute Memory Stage Writeback
(23] (MmS) (WB)

l

Instruction Regist
Memory egister
File [ Data

Memory

114 ]

i Extend I—‘

L__J

07.04.2025 Computer Systems 18
Figure 1.4: Five-stage Pipeline

« Moore’s Law
» the number of transistors on chips doubles every two years
» = double the computational power on the same area
+ Semiconductor Challenges
» transistor density is coming close the the size of atoms
» quantum effects start interfering
» N2 dimension
-2mm=2-10"%m
Al4has 14 angstrom (= 1,4 nm)
- atomic radius of silver = 1, 72 angstrom
» Power: “Dennard Scaling”, hard to bring power to and heat from the chips
» Memory bandwidth cannot keep up with processor performance

v

« In-order pipeline *  Multi-cycle * Superscalar, Reorder-Buffer (ROB)
* Five Stages * 4-stage * Register Renaming
+ Scalar pipeline: CPI >= 1 * Load-Store Unit (LSU)

(i I8 o o ol "
BP R
) " " 1B o [
* Branch Predictor (BP) muoy  WB B
* Branch Target buffer (BTB)
Lsu
Y * Instruction Issue Buffer (IB) «  Very Large Instruction Word (VLIW)
IF m * Out-of-order (000)

*  Multi-cycle
* 4-stage BP
IF muL/ov - WB

BP
AU MEM
IF WB
MUL/DIV

mu/ov - WB
Lsu

Lsu

Figure 1.5: Processor Pipelines
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Block A
* Multi Threading  Vector Processing Unit (VPU)
BTB
BP BTB
RS R BP
IF 1B E )
B IF
mur/oiv - WB
R VPU
1B fo)
RS B
VsSLu

Figure 1.6: Multi-Threading and VPUs
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2 Block B

2.1 RISC-V ISA and Compiler Basics

+ Instruction Interface
» program is a list of instructions
» a instruction is a 16/32/64 bit value
- single command
» the program counter (pc) points to current position in the program
« Data Interface
» Load Instruction
- puts value on the address bus
- receives a value on the rdata bus
» Store Instruction
- puts address on the address bus
- puts value on the wdata bus
« Instruction Memory
» used with pc to get the instructions to execute
« Data Memory
» address is supplied
» returns/gets the data value
« Register File Memory
» some values are not stored in a memory but in a bank of registers
» usually one or more register is read and usually one is written within one instruction
» register address is small (4-5 bit), typically 16 or 32 values are stored
» realized with a small SRAM with two read ports and one write port

Processor
AR1 Reg_ister DR1
File
AR2 DR2
AW
|-‘ bW
Instruction Memory Interface Data Memory Interface
rsl rs2  rd Value reg_rsl reg_rs2
Data
PC Memory
n DAddr addr
Instruction data_o
Memory Processor Logic Wdata data_in
addr data Instr ctrl_in ctrl_o —I
Crtl
Rdata

Figure 2.1: Register File inside a Processor

2.1.1 RISC-V Instruction Set Architecture

» Instruction Set Architecture (ISA) defines:
» processor state organizations (registers)

» what instructions a processor executes
- how it is encoded in machine code
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- how assembly looks like

» some behavior of the processor (exceptions, ...)
« a cross-compiler can generate the assembly code for a different processor (as it’s running on)
 Microarchitecture

» processor model describes ISA, number of pipeline stages, ...
« Why RISC-V?

» open ISA

» invented by UC Berkley

» more and more SoCs are becoming available

» has 32 registers

Register | ABI Name Description Saver
X0 Zero hard-wired zero -
x1 ra return address caller
x2 sp stack pointer callee
x3 gp global pointer -
x4 tp thread pointer -

x5-7 t0-2 temporaries caller
x8 s0, fp safed register, frame pointer | callee
X9 sl saved register callee
x10-11 a0-1 function arguments caller
x12-17 a2-7 function arguments caller
x18-27 s2-11 saved registers callee
x28-31 t3-6 temporaries caller

Table 2.1: RISC-V Register Names

« Application Binary Interface (ABI)

» specified rules for register usage
- passing arguments and results for function calls
» callee-saved: called function has to restore modified values in these registers
» caller-saved: called function can modify these and has not to restore them
» assigns aliases for registers x0-x31 (see Table 2.1)

Instruction Primary use rd rsl rs2 Immediate

Format

R-type register-regis- | destination first source second source
ter, ALU in-
structions

I-type ALU immedi- | destination first source value displace-
ate, Load base register ment

S-type Store, Compare base  register | data source to | displacement
and Branch first source store  second | offset

source

U-type Jump and Link, | register  desti- | target address target address
Jump and Link [ nation for re-|for jump and for jump and
Register turn pc link register link

Table 2.2: RISC-V Instruction Formats

« 32-bit Instructions
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v

Integer Register-Register Instructions (R-type)
— Runs an arithmetic or logical operation on registers
— Both operands are values in registers

v

Integer Register-Intermediate Instructions (I-type)
- Second operand is a immediate (constant) value
- Immediate is encoded in the machine code
— there is no SUBI, use addition with negative immediate
» Control Transfer Instructions
- Unconditional jumps
- Conditional Branches
» Load Store Instructions
- Move data between memory and registers
— Load-store Architecture: Operations on registers only
» Examples
- ADD al, a2, a3
« regs[al] = regs[a2] + regs[a3]
- SUB al, a2, a3
« regs[al] = regs[a2] - regs[a3]
- Move is a pseudo instruction
« actually implemented as a ADDI al, a2, @
+ Control Transfer Instructions - Jumps
» Unconditional Jump (pc relative)
- J 8= pc =pc + (8 << 1)
- Jis a pseudo instruction: JAL zero, 8
» Unconditional Jump and Link (pc relative)
— JAL ra, 8= regs[ral = pc + 4; pc = pc + (8 << 1)
— this is used for function calls, where we want to return to the main control flow later
» Unconditional Jump and Link Register (register with offset)
— JALR rd, rsl, imm = pc = (regs[rsl] + imm) & ~1; regs[rd] = pc+4
- RET is a pseudo instruction: JAR zero, ra, 0
 Control Transfer Instructions — Branches
» BEQ al, a2, loop start = if (reg[al] == reg[a2]) pc = loop start else nothing
» further branch instructions
- not equal: BNE
— less than: BLT
less than (unsigned): BLTU
- greater or equal than: BGE
- greater or equal than (unsigned): BGEU
« Load Store Instructions
» Load Word (4 byte): LW al, 80(a2)
— = reg[al] = mem[80 + regl[a2]]
» Store Word (4 byte): SW al, 80(a2)
- = mem[80 + reg[a2]] = reg[all
» also options with halfword (lh/sh) and byte (1b/sb) (with sign extension)
» to avoid sign extension of halfword and byte loads: lhu, lbu
« Integer Multiplication Instructions (M-Extension)
» multiplying two 32 bit values can result in a 64 bit value
» (signed) Only the lower 32 bit: MUL rdl, rsl, rs2
» (signed) Only the higher 32 bit: MULH rdh, rsl1, rs2
» unsigned-unsigned version: MULU and MULHU
» unsigned-signed version: MLSU and MULHSU

10/1
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« Integer Divison Instructions (M-Extension)
» (signed) Divison: DIV rdl, rsl, rs2
» (signed) Remainder: REM rdh, rsl, rs2
» unsigned-unsigned version: DIVU and REMU
» unsigned-signed version: DIVSU and REMSU

Compilation C-code:

vall=vall+4;

C/C++ Source
Makefile and Headers
(*.c, *.cpp, *.h)

e || N

[ compiter }—vbi Assembler
Y

Obiec( Files (*.0) \\\\\
| Assembly-code:

e oo T e ADDI x10,x10,4

|Assembly Source | |Linker Command
Files (*.asm,*.s) File (*.Ink)

Shared Object Executable File

File (*.50, *.dll) R 4|t \\ Machine code:

0x00450513

37

Figure 2.2: Compilation with different stages of code representation

Program (C, C++)
s
] Abstract Syntax Tree (AST)
%- '
£
: L towes
o
g
: e
-‘g Intermediate Representation (IR) Code
(%]
v
Assembler Code

Figure 2.3: Compiler Frontend and Backend

Lexical Analysis (Scanning)
» reads stream of characters and groups them in meaningful sequences (lexemes)
Syntax Analysis (Parsing)

» reads token stream and outputs the syntax tree
+ Semantical Analysis
» reads abstract syntax tree and checks against semantics of programming language
» adds type casts
« Intermediate Representation (IR)
» Three Address Code
- maximal 3 addresses per operation

- examples:
e X = y Op ZWithOpE{+,_a*7/,/\)&$"'}
e X =Y

11/131
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« goto Bx
« if x relop y goto Bx
» withrelop € {=,<, >, <, >, #, ...}

Three address code

C-Code section

Bl:

repeat {

= u-3*x*u*dx-3*y*dx;
y = ytu*dx;
x=x1;u=ul;y=yl;

} until ( )

tl
t2
t3
t4
t5

yrdx;
3*tl;
u*dx;
X*t3;
3*t4;
t6 u-t5;
ul t6-t2;

T : u*rax;

yl = y+t7;
x:=x1;

u:=ul;

y:=yl;

if goto B1;

Figure 2.4: Example Code

« Static Single Assignment (SSA)
» all assignments are to variables with distinct names

» ®-Operator chooses the assigned value for recombination of two values

Normal Code | SSA Code if (a>b) goto
p$l := a-b
p := atb p$l := a+b goto B2
g :=p-c |Q :i=psl-c Bl: p$2 := a+b
p:= g*d p$2 := g*d B2: p$3 :=

Bl

Phi(p$l, p$2)

Table 2.3: Normal Code vs. SSA Listing 2.1: Phi Operator

« LLVM Intermediate Representation

» CLANG is the frontend

» LLVM has many targets

» IR
— in SSA
- evolves with LLVM, but minor changes
— variables are marked with %
- has datatypes

2.2 Static Code Analysis

2.2.1 Control and Data Flow Analysis

+ Basic Block
» maximal sequence of instructions with
1. no jump target labels (except at the first line)
- cannot jump into a basic block
2. no jump (execpt last “return” instruction)
- cannot jump out of a basic block
» single-entry, single-exit, straight-line code segment
« Control Flow Graph (CFG)
» G.(V,E)
»nodesV ={B; :i=1,...,ng}
— are basic blocks of the algoritm
» edges E = {(Bi,Bj) ti, g =1, ...,nB}
- branches, cycles

12/1
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» Data Flow Graph (DFQG) is a directed acyclic graph
— describe data dependencies in a basic block
- Nodes: operations in block
- Edges: Data dependencies between operations
» paths in DFG describe concurrent operations, that may be executed in parallel

Bl: s_prevl :=
s_prev2 :=
i:=0

tl := 2*%3.14

f := tl * freq
param f

t2 := call cos,1
coeff:=2.0*t2

© Example 1: Goertzel Algorithm (IR Code) o

B2: t3:
td:
t5 := td4d - s_prev2

l N s := t3 + t5
B
—

coeff * s _prevl
x[1i]

2 s_prev2 := s_prevl
s_prevl := s
ir=i+l

if i < 64 goto B2

B3 B3: t6:= s_prevl * s_prevl
s_prev2 * s prev2
s_prevl * s _prev2
t8 * coeff

t1l0:= t6+t7

power:= tl1l0 - t9
return power

ot
-
{1 A

Figure 2.5: Example of Basic Blocks

power = (s_prevl*s prevl) + (s_prev2*s_prev2) - (s_prevl*s_prev2*coeff);
return power;

s_prevl s_prev2 coeff
Three address code:

B3: t6:=s prevl * s prevl
t7:=s prev2 * s prev2
t8:=s prevl * s prev2
£9:=t8 * coeff
t10:=t6+t7
power:=t10 - t9
return power

Figure 2.6: Inside a Basic Block with Three Address Code

2.2.2 Code Optimization

+ Techniques, mostly executed only on one single basic block

» common subexpression elimination
- two instructions execute same operation on the same operands (can be easily seen in SSA)
- one operation can be replaced by a copy statement

» dead code elimination
- can be identified with CFG (leads to nowhere)

» arithmetic identities
— remove stuff likea +0,b-1,¢/1, ¢ - b

» strength reduction
- replace operation with equivalent operations that is cheaper to execute in hardware
—r- 2=kl

» constant folding (propagation)
- calculate constant expressions at compile time: 2 -5 + 6 = 16

» tree height reduction
- increase possible concurrency by avoiding data dependencies

13/1
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- better for multi-issue processors, multi-threading

e:=d+ (c-a*b) 8 b e:=(d+c)-a*b i b c d
tl:=a * b tl:=a * b
t2:= ¢ - tl c t2:=d + ¢
e:=d + t2 e:= t2 - tl
d
No parallel Parallel
execution due execution of e
Itiplicati

to data . mutip "?‘f on Tree height = 2.
dependencies. e and addition

possible.

Tree height = 3.

Figure 2.7: Tree Height Reduction

+ Global Code Optimization Techniques
» considering more than one basic block
» global common subexpression elimination
» global dead code elimination
» code motion
- move statements out of the loop, if their value is independent from loop iteration
» induction variable reduction
- induction variables change by constant value in each iteration of loop
— apply strength reduction and common subexpression elimination on induction variables
» loop unrolling
- loop classification
« do-all loops: no data dependencies between loop iterations
« do-across loops: exists possible data dependencies between loop iterations
- execute serveral loop iterations in one single iteration of optimized loop
— unroll factor. number of non-optimized loop iterations executed in one iteration of optimized loop

2.2.3 Live Variable Analysis

« Dataflow Analysis
» determines dataflow values at each point in the program
» values before IR statement: s, : IN[s,]
» values after IR statement: s, : OUT]s,]
» each IR statement applies a transfer function on the dataflow values:
- forward flow analysis: OUT|[s,] = f, ,(IN[s;])
— backward flow analysis: IN[s,] = f, ;,(OUTs;])
- transfer function of a basic block is the composition of the transfer functions of all statements
+ Controlflow Constraints
» within one basic block, the dataflow values after an IR statement are the same as before the next statement
» between basic blocks:
— forward flow problem: values at the entry to the basic block are the union of the values at the end of
all predecessors
— backward flow problem: values at the end of the basic block are the union of the values at the entry of
all its successors
+ Variable Liveliness Analysis
» variables at entry to basic block B,: IN[B, ]
» variables at end of basic block B,: OUT|[B, ]
» set of defined variables: DEF[B, ]
» set of used variables: USE[B, ]

O8]
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» Conditions for Live Variable Analysis
1. is a backward flow analysis
2. transfer function: IN[B, | = USE[B,] U (OUT[B,] — DEF[B,])
3. control flow constraints: OUT[B,] = |J s, IN[S,]

- S, are successor basic blocks of B,
4. boundary condition: INJEND] = {}
+ Why is variable lifetime important?

» compiler does not need to assign registers to all variables during their full lifetime
- can be spilled (moved in the stack)

» number of needed registers depends on numver of variables which are live at a certain point in the
program

» registers can be reused in case that the lifetime of variables does not overlap

15/1
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3 Block C

3.1 Scalar Pipeline and Branch Prediction

3.1.1 In-order Scalar Processor Pipeline

SLLI a2,al,2 SLL

SLLI a2,al,2 | 53 [ sa | s5 |
ADD t1,t0,t2 | s3 [ sa | s5 |
LW a0,0(a3) n nnﬂ

PCsIcE :é T Zeor |
CLK cLK CLK
()| e Mesguee g —
C‘[’J"'_;"' ResultSrcD ;o ResultSreE ResultSroM:o
i 5
T Memweted MemWrtot| ° MemWriteM
JumpD JumpE
o BranchD BranchE
i ALUContoiD, ALUGonolzo
42 functs
” ALUSTD ALUSTE
funet?s [ msren.
oLk CLK
CLK ||
. WES RDIE srcaE
per[Mece| , ro I e Y RD1 B i
N bt ALUResultht ReadDptaw! ﬁ
Instruction uanl RD2 RD2E > sk
ry H—o
——] A3 i = 1
wos Register WitdDat WiteDatah
File
pCD |
wH—
Re1D Re1E
Re2D Rs2
1 RaD o] Rat | Raw
4 L— ExtimmD Extipmed
s Extend
popstr | | of PePseD) PCPSIE PCPIusaM
i LS L LI Pepusaw
PCTarghte
Resultw
wlw
E1E]
o w g
5 S |2 E] HK
» | |& T 2f &
[ Hazard Unit J
V1-1 ACA 7

Figure 3.2: Five State In-order Scalar Processor Pipeline
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Five-stage Pipeline - Stages

* Stages:

Instuction Fetch

(IF)

Execute Memory Stage
(EX) (MS)

!
!

e | Instruction
Memory

DI . —
Register
File [ Data
Memory

i Extend I—'

114

L__J [

Vi-1 ACA 9

Figure 3.3: Pipeline split up into Stages

Stages and Subcomputations

Instruction Fetch (IF)

» fetch next instruction, next Program Counter (PC)
Instruction Decode (ID)

» DI: decode instruction

» RF: read operands

» Extend: sign extend immediate, sign extend and shift or LUL, AUIPC, BX

Execute (EX)

» Arithemtic Logic Unit (ALU): compare result, compute address, comparison (branch taken/not taken),
compute JR branch target address

» ADD: compute branch target address
Memory Stage (MS)

» read/write data memory

Write Back (WB)

» write result

data hazards can be effectively mitigated using a forward path

» named “forward path”but the signal buses go back in the pipeline
RET is a pseudo-instruction

» RET — JR ra — JALR x0, ra, 0

the Harris Pipeline does not support to load a register value into PC
» another bus needed for implementing the JR instruction

3.1.2 Data Hazards

due to forward path: possible data hazard after loading with penalty of 1 clock cycle
Read after Write (RAW)
» one instructions reads operand that is written as result of previous instructions

compiler can often move instructions to avoid RAW data hazards after loads
» program order must not change

17/1
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3.1.3 Control Hazards

« control hazards arise from instructions that change the PC
» when the flow of instructions addresses is not sequential
- unconditional branches (jal, jalr)
- conditional branches (beg, bne, ...)
- exceptions
« possible approaches
» stall: impacts Cycles per Instructions (CPI)

» move decision point as early in the pipeline as possible (extra hardware)

» predict and hope for the best [,

» delay decision (requires compiler support)
« control hazards occur less frequently than data hazards

» but they cannot be solved as effectively as data hazards with forwarding
« branches determine flow of control

» fetching next instruction depends on branch outcome

» PC is either (PC +4) or (PC + imm « 1)
« Stall on Branch

» conservative approach: wait until branch outcome determined before fetching next instruction
« Reducing Branch Delay

» move branch decision to ID stage

» reduce cost of the taken branch

» target address adder in ID

» branch penalty: only one clock cycle

cc1 cc2 cc3 Ccc4 CC5 CcCe
- BRI E

PC=PC+8<<1=40 + 16 =56

cc7 CcC8 Ccco CC10

a4
48

52 Branch
taken

56 Ll: N
] - Iy - [

Figure 3.4: Move Branch Decision to ID Stage

3.1.4 Static Branch Prediction

« longer pipelines cannot determine branch outcome early
» this means branch penalty becomes unacceptable
+ Simple Static Branch Prediction Schemes
» always not taken
» always taken
« Always Not Taken
» Correct Prediction
— penalty: 0 Clock Cycles (CC)
» Incorrect Prediction

- penalty: 2 CC
— flush instructions from pipeline
o Always Taken
» Correct Prediction

18/1
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- branch target address is computed in the EX stage
- Branch Target Buffer (BTB) stores the Branch Target Address (BTA) for a certain branch (see Figure 3.5)
- content addressable memory

— lookup via PC
— BTB has entry
« BTA via BTB
« penalty: 0 CC
» Incorrect Prediction
— penalty: 2 CC (just as with Always not taken)
— flush instructions from pipeline
« Statistics
» typical statistics: 60% to 70% branches are taken
» always not taken: 62% mispredictions
» always taken: 38% mispredictions
» Backward Taken, Forward Not Taken (BTFNT)
— forward branches not taken: ~ 10% mispredictions
— backward branches taken: ~ 20% mispredictions

CPI=1+4+b-p-m

b... relative number of branch instructions

p... cycle penalty for mispredictions

m... misprediction rate

* Lookup via PC Branch in EX
Branch Target Buffer (BTB)
pC Branch Instruction Address (BIA) | Branch Target Address (BTA) BIA
Lookup Update
: BTA

Valid BTB Entry (1), Speculative taken
No Valid BTB Entry (0) BTA

Figure 3.5: Branch Target Buffer (BTB)

3.1.5 Dynamic Branch Prediction

In longer pipelines, branch penalty is more significant

« Branch Prediction Buffer (aka. Branch History Table (BHT))
» stores last outcome (taken, not taken)
» check table, expect the same outcome
» start fetching from fall-through (not taken) or target (taken)
» in case of misprediction, flush pipeline and flip prediction

For example in a loop the taken branch is way more common than not taken (just last iteration)

« Single-Bit/1-Bit/Last-Time Predictor
» indicates which direction the branch went last time it executed
» PNT: Predict NT (bit=0): fetch the instruction from PC+4

19/1
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» PT: Predict T (bit=1): get target address from the BTB
» see Figure 3.6

Not Taken Taken
Taken

Not Taken
Figure 3.6: Single-Bit Predictor

« Global Predictor
» one single Branch History Entry for all branches

« Local Predictor
» one entry for each BTB entry

. 2-Bit Predictor
» prediction does not change on a single misprediction
» PNST: Strongly Not Taken (00), PWNT: Weakly Not Taken (01)
» PWT: Weakly Taken (10), PST: Strongly Taken (11)
» see Figure 3.7
» a prediction must be wrong twice (consecutively) before the prediction is changed

Not Taken Taken
Taken

Not Taken Not Taken Not Taken
Figure 3.7: 2-Bit Predictor

3.1.6 A Look at a Real Processor - CVA6

This is not relevant for the
exam

3.1.7 A Look at a Real Processor - ESP32-C3

This is not relevant for the
exam

3.1.8 A Look at a Real Processor - Trap Handling

This is not relevant for the
exam
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3.2 From Scalar to Superscalar

3.2.1 Multi-Cycle Operations

Pipelined Functional Unit (FU)

« complex computations require deep circuit logic

« critical paths limits the design’s frequency

- same is as processor design: break FU into stages and integrate registers (pipeline)
« latency is the number of pipeline stages

« initialization interval: delay between start of two computations

Stage Stage
sl s2

Latency = 2 Cycles
* Example: 2-stage Multiplier Initialization Interval = 1 Cycle

Cyclel Cycle2 Cycle3 Cycled

MUL a0,a0,t0 MUL(s1) | MUL(s2)

MUL al,al,tl [ MuL(s1) | muL(s2)

MUL a2,a2,t2 MUL(sl) Ilmlﬁl
Initialization
Interval Latency

Figure 3.8: Example: 2-stage Multiplier

Serial FU
« often complex operations such as divisions can be computed by iterative algorithms
+ the number of iterations often depends on the input values

» can be implemented on a serial FU

* Example: Serial Divider
Latency = 1-64 Cycles

Initialization Interval = Latency

1-64 clock cycles

Latency
DIV a0,a0,t0 2 DIV DIV

Figure 3.9: Example: Serial Divider

Multi-cycle Functional Units are integrated into the EX Stage

F ded F ded i i
orwarde orwarde Forwarc{ing also sometimes called simplified lllustration Style for
from MS from WB ,bypass . N
Multiplexing
"
] EX/MS —
f / _,l EX/MS
- N -
M M uL '—0 Result M UL >
U
X, A — — L
Res
M
u —|
Rsl %
M
Rs2 u —| —
| X,
M \A—— Stor
U Al Store
3 Value —

l

Valu
Extended Immediate BTA
pC 9 BTA: Branch L—»
i < Target Address )

Figure 3.10: Example: for Multiplier in EX Stage
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BTA_’
BIATS BTB [ TBTA
TBTA L Forwarding
—
JRBTA —» r 1771 M M
L] Be L)
o —H HEERH T APl
PCp4 —
. . [ M
BTA: Branch Target Address M ZE.BTA
PCp4: PC+4 ™ JRBTA
JRBTA: Register-defined T
branch target address
TBTA: Taken-BTA from
Branch Target Buffer (BTB) A A 1 A Al

PCp BIA

Figure 3.11: Example: Multiplier in Full Pipeline

Forwarding

v ¥
iil
|
LE_‘
l

LSU

A

ACA |

Figure 3.12: Example: with second Address Adder (AC) -> simple Load/Store Unit

Execution Scheme: Four-Stage In-Order Scalar Pipeline

* The EX stage has an execution scheme defined by the processor control path

* Version 1: Static In-order Scheduling
» Allow only one single instruction in the EX stage
» Data hazards: Operands are forwarded by previous instruction

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle10 Cycle11l

oo 1,01,z [N T
PR - Wl o | oo |

T
ADDI t1,t1,4 dependencies stall n stall stall

Data hazard tlis forwarded
After load

EX still busy and EX

Stalls backpropagate in stage still

pipeline busy

V1-0 ACA 16
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Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs

 Version 2: Static In-order Scheduling exploiting Pipelined FUs
> Allow only one single instruction in EX stage

> Except for: Pipelined MUL can use Initialization Interval for two consecutive MUL
(still need to check for RAW dependency between the MUL)

Cycle 1 Cycle2 Cycle3 Cycle4d  Cycle5 Cycle 6 Cycle 7 Cycle8 Cycle9 Cycle 10

aop a1, c1,c2 |G | Aw | ws |

ADDI t1,tl,4 “ stall stall mm

V1-0 ACA 17

3.2.2 Load/Store Optimizations

Memory System

* The memory for more complex
processors usually uses caches to

allow for fast accesses N
>

* Memory latency depends
whether the data is found in the
cache (cache hit/miss)

TfT

BTA

 Also instructions are loaded from
caches, so also instruction fetch
may require several cycles on an
instruction cache miss.

J

Srmmvres
|

A—u

Instruction Cache Data Cache

Interconnect + Memory System (L2 Cache, Main Memory)

V1-0 ACA 19

Instruction Cache Misses

« causes several cycles of delay for instruction fetch (IF)
» depending on speed to catch fresh instruction block from memory

« instructions are usually reloaded to cache in blocks (cache line size)
» so that usually there are several cahce hits after a cache miss

« advanced caches pre-fetch the next block before the cache miss happens
» to hide cache refill latencies

Load Cache Miss

« data cache misses lead to extra cycles for loads as the data needs to get fetched from another memory
» (e.g. Level 2 Cache, Main Memory, ...)

+ due to this the pipeline has to be stalled

Non-blocking Loads
+ load access are far longer times in flight due to cache misses
+ most interconnects/caches allow overlap mulitple memory accesses

Example: cache observes both addresses for load accesses and may need to reload cache lines for both accesses
when both miss

@

23/131



Block C Advanced Computer Architecture (191.019)

Data Cache Misses
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Ld t2,0(al) | | ac_ | omem | omem | ovem | omem | we |
ADD t1,t1,t2 | | stall 7 stall stall P v | we |

No data cache miss, but we
need to wait for first cache
access to finish.

Figure 3.16: Example with non-blocking loads

Store Cache Miss
« depending on Store Policy
» additional latencies for store possible when a dirty cache line needs to be replaced (first needs to be
written back, before new line can be loaded)
+ Write Through Data Cache
» long store latency because the data is written not only to cache but also main memory

Buffers
« a buffer can store several values
« FIFO (first in, first out)
» buffer values can only be read in the same order they are written to
« Reorder Buffer
» can look up and read any value in the buffer
o Store Buffer
» not needed to wait until a store write is complete
» Store Unit (SU) with Store Buffer
- put store address and data to store buffer (aka “Posted Stores”)
— store buffer performs memory store access independently from pipeline
- only stall pipeline for stores when store buffer is full
» Load Unit (LU)
- need to first look whether address is in store buffer then in cache
- or need to wait until Store Buffer is empty

3.2.3 Challenges for Exploiting Instruction Level Parallelism

Challenges for Exploiting Instruction Level Parallelism: Structural Hazards

« Start instructions in EX stage when FUs are available?
* Challenge: Structural Hazards, e.g. in WB Stage

Cyclel Cycle2 Cycle 3 Cycle4 Cycle5 Cycle 6 Cycle7 Cycle8 Cycle9 Cycle 10

LW t1,0(a3) “ m W8 Two WB in same cycle!
ADDI a3,a3,4 “ m WB WB collision!

L——1 Structural Hazard!

V1-0 ACA 32

« instructions can overtake each other due to different FU latencies
» requires consideration of instruction dependencies during pipelined execution to preserve program order

@
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3.2.4 Instruction Dependencies

« Read after Write (RAW)
» result of one instruction is needed as input for

another instruction
 Write after Read (WAR)
» a value is used (read) and then updated (write)
— the write is not allowed to overtake the read
 Write after Write (WAW)
» a value is written and then written again
» the second write may not overtake the first update

» often created when registers are reused

LI t0,0
LI t3,4
vec add for:

Example for RAW:
XOR al,a2,a4
ADD a3,al,t1

Example for WAR:
SW al,0(a2)

/ WAR
ADDI a2,a3,4

Example for WAW:

LW a1,0(a2)
/ WAW
Ll al,a3,4

—

LW t1,0(a0)

LW t2,0(al)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDIl al,al,4

ADDI a2,a2,4

ADDI t0,10,1

BLTU t0,t3,vec_add_for

Figure 3.18: Examples RAW, WAR, WAW

Figure 3.19: Mark all RAW, WAR, WAW

LW t1,0(a0) LW t1,0(a0)
W t2,0(al) RAW LW t2,0(al)
RAW
RAW
SW £1,0(a2) o SW t1,0(a2)
oot wos04 |
ADDI al,al,4 ADDI al,al,4 e
ADDI a2,a2,4 ADDI a2,a2,4 .

[apDI t0,t0,1 |

RAW

[BLTU 0,3 ,vec_add_for |

Figure 3.20: Marked RAW

[apDI to,t0,1 |

[BLTU t0,t3,vec_add_for |

Figure 3.21: Marked WAR
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[apDI to,t0,1 |

[BLTU 0,t3,vec_add_for |

Figure 3.22: Marked WAW
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Challenges with Interleaving Instruction Executing in EX Stage
1. consider RAW, WAR and WAW
2. structural hazards must be avoided (e.g. FU is already busy)

3. some instructions can cause exceptions (e.g. memory fault)

3.2.5 Out-of-Order (000, O3) Pipeline

» first implementation of Scoreboard in 1964

« to use out-of-order execution, the ID pipeline stage has to be split into two stages
1. Issue: decode instructions, check for structural hazards
2. Read Operands: wait until no data hazard

« in a dynamically scheduled pipeline all instructions pass through the issue stage in order (in-order issue)
but they can be stalled or bypass each other in the second stage (read operands) and thus enter EX stage
out-of-order

Steps in Out-of-Order Execution (Scheme 1*)

e 1. Issue
» Functional unit is free

» No other active instruction has the same destination register
(guarantee that WAW hazards cannot be present)

» If a structural or WAW hazard exists, then the instruction issue stalls, and no further instructions will issue
until these hazards are cleared.
* 2. Read operands

» When source operands are available, the scoreboard tells the functional unit to proceed to read the operands from the
registers and begin execution.

» The scoreboard resolves RAW hazards dynamically in this step, and instructions may be sent into execution out of order.

¢ 3. Execution

> The functional unit begins execution upon receiving operands. When the result is ready, it notifies the scoreboard that it
has completed execution.

e 4. Write result

» Once the scoreboard is aware that the functional unit has completed execution, the scoreboard checks for WAR hazards
and stalls the completing instruction, if necessary.

-- *Computer Architecture A Quantitative Approach — 5t Ed. Section C7

V1-0 ACA 46

Figure 3.23: 00O Execution Scheme 1

Steps in Out-of-Order Execution (Simpler Scheme 2**)

|
—) q
Complete

Issue Read Operands
(Dispatch)  and Execute
* Issue Buffer (IB) holds multiple instructions waiting to issue.

* Instruction Decode (ID) adds next instruction to IB if
* there is space in IB and
« the instruction does not have a WAR or WAW dependency with any instruction in IB.

* Instruction Issue (IS) can issue any instruction in IB whose
* RAW hazards are satisfied to all previous instructions in 1B
* FU is available.

* Note: With writeback (WB) we delete the instruction from the IB, this may enable
more instructions to issue as RAW dependencies are resolved.

-- **Inspired by MIT course, Daniel Sanchez -
http.//csg.csail.mit.edu/6.823520/Lectures/L09.pdf

V1-0 ACA 47

Figure 3.24: OoO Execution Scheme 2
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Example 000 Processor: Scoreboard Integration

Example four-stage pipeline with

¢ IBsize 4 and Scoreboard (ScB)

e 4 ports to issue instructions from
buffer (4 ROs)

e 4 ports for write back (WB)

YWY

Forwarding

liE;
|

@
>

AT

No structural hazards in RO/WB
This is costly, we will later see that A
the ports are under-utilized

-> limit ports in HW and limit issue m
or stall for structural hazards LA

V1-0 ACA 49

LIl
?

11
w

Figure 3.25: 000 Execution Scoreboard Integration

Terminology

:

>Scalar (CPI >=1)  In-order

> Some stages can be multi-
issue, e.g. four WB ports

N | we
¢ In-order/000 can be

different for every stage. + In-order + 000

»But: 000 usually means
instructions are scheduled
000 in EX stage.

V1-0 ACA 70

Figure 3.26: Terminology

3.2.6 Register Renaming

+ WAW and WAR limit further reordering

» no real dependencies (— artificially added because of limitation of registers)
« register limited by ISA
« compiler optimizations limited

Approach: Register Renaming

« rename to microarchitecture register names
» more microarchitecture registers than logical ISA registers
» entirely eliminates WAR and WAW hazards
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SW t1,0(a2) SW t1,0(a2)
WAR

ADDI a2,a2,4 ADDI p2,a2,4

Figure 3.27: Use microarchitecture names

Example: Register Renaming removes WAW, RAW stalls

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

il e (v
LW x13,0 (x7) “
DIV x17,x13,x12 “ ?mmm 10 instructions
4 cycles ramp-up (5-stage pipeline)
ADDI x18,x12,28 “ Total 16 cycles -4 cycles = 12 cycles
MUL x19,x12,x18 “ mm -
MUL x20,%17,x14 [ | B B EaEaEa
ADD x10,%20, %13 n B B B 1
SW x10,0 (x11) I B 1B EN s
IH p1,4(x8) “ mm
ADDI X13,pl,4 n 1B mm

We do not have to stall IF and IS on WAW and WAR, but RAW still makes instruction wait in IB for operands.
In this example the LW stores to x10 and we use an extra physical register p1 to replace x10.
Removes WAW dependency to the store.

V1-0 ACA 74

Figure 3.28: Example of Register Renaming

3.2.7 Simple Superscalar Processor

Simple Superscalar (Scoreboard) — Dual Instruction Fetch and Decode

Instruction fetch can
fetch two instructions at once Scoreboard (ScB)
Ideal IPC=2

Forwarding

[l
|

W W
>""]

‘E
[

11
T
|

V1-0 ACA 76

Figure 3.29: Dual Instruction Fetch and Decode
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Simple Superscalar (Scoreboard) — Dual Instruction Fetch and Decode — Example

Cycle 1 2 3 a4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

o sz [ I T
wasen MRS o (O NNCNED
4 cycles ramp-up (5-stage pipeline)

ADDI x18,x12,28 n 1B Total 16 cycles -4 cycles = 12 cycles
MUL x19,x12,x18 n stall stall mm

MUL x20,x17,x14 “ stall stall  stall B B E3EZaEa -

ADD x10,%20,%13 “ B 1B B | Aw | ws |

SW x10,0 (x11) & e st B B El s

i p1,4(x8) [ | | w [ w | ws|

ADDI X13,p1,4 “ B B | Aw | ws |

Fetching more instructions assures the issue buffer is always filled.
BUT: Instruction Level Parallelism can limit instructions executing in parallel
We will later see: We need to optimize code for superscalar pipeline to see benefit!

V1-0 ACA 77

Figure 3.30: Dual Instruction Fetch and Decode - Example

3.2.8 Reorder Buffer (ROB)

« some instructions can cause exceptions

» memory fault

» before entering exception handling all previous instructions should have committed

» no instruction after the one that caused the exception should have committed

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

swei,020 |G Pl s B B MSA
SW t2,0(al) “ | Ac | B FAULT

LI would have committed before we observe the
memory store fault exception (imprecise exception)

Figure 3.31: Pipelines and Exceptions

Implementing Precise Exceptions in OoO Pipelines

« all correct before should have committed, no of the following has committed
« scoreboard approach did not support precise exceptions
« different approach:

» Reorder Buffer sorts all WB commits and makes sure store buffer only sends committed stores to memory
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Reorder Buffer (ROB)

* Reorder buffer: Orders the WBs and commits them in-order
* Also assures stores are committed in order with WBs (needed for precise exceptions)

| o | we BN o |

¢ In-order * 000 * In-order
) ) Eemee——) ——)
Issue Read Operands Complete Commit
(Dispatch)  and Execute (Retire)
Finish
V1-0 ACA 81

Figure 3.32: Reorder Buffer (ROB)

Simple Superscalar (Scoreboard) — Dual Instruction Fetch and Decode with ROB

Instruction fetch can

fetch two instructions at once | Scoreboard (ScB)
Ideal IPC=2 i
ROB to reorder the write backs T
l _ L Forwarding
A 2 L 2
; S
< o
= o
Ol A
= >
1 — 5.
e —
Scoreboard, IB and ROB A— :E— —
can be implemented as one joint data
buffer in the hardware m
V1-0 ACA 82

Figure 3.33: Dual Instruction Fetch and Decode with ROB

Simple Superscalar (Scoreboard) — Dual Instruction Fetch and Decode with ROB — Example

Cycle 1 2 3 a4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

el - S - I
LW x13,0(x7) “ B m

5 cycles ramp-up (6-stage pipeline)
RODT x18,x12,28 n 18 o8 - Total 17 cycles -5 cycles = 12 cycles
MUL x19,x12,%18 n stall  stall MuL (SN co

MUL x20,x17,x14 “ stall stall stall B B 3 m -

ADD x10,x20,x13 [ | B B B | aw [we ] co |
SW x10,0 (x11) n stall  stall 1B 1B m
S [ | mm
aw [we | co |

ADDI X13,pl,4 “ 1B

As we fetch more than one instruction we need more than one commit ports (but if exeption only commit the
ones before the instruction causing execption)

Store must also commit in order (SC: store commit)
WSB: indicates write back to ROB buffer

V1-0 ACA 83

Figure 3.34: Dual Instruction Fetch and Decode with ROB - Example
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3.2.9 A Look at a Real Processor - CVA6

This is not relevant for the
exam

3.3 Multi-Issue Multi-Threading

3.3.1 Increasing Processors’ Performance

+ recap: superscalar processor reach CPI = 1

« performance is defined as

1 Instructions 1 _ IPC-Freq

Freq

1

Performance =

+ IC ... Instruction Count
+ CPI ... Cycles per Instruction
» IPC... Instructions per Cycle

« superpipelining aims at increasing performance via frequency
« superscalar, VLIW aims at increasing performance via IPC
- compiler optimizations can improve instruction count and IPC

IC Cycle ' Cycle Time IC T IC-CPI runtime

Superpipelining and Multi-Issue

* Scalar five-stage pipeline
SLLI a2,al,2
ADD t1,t0,t2
SLLI a5,a4,2

LW a0,0(a3)
* Superpipelining concept: Multi-Issue concept:
SLLI a2,al,2 .. ll SLLI a2,al,2 n mmm

ROl N s [

SLLI a5,a4,2

ADD t1,t0,t2
SLLI a5,a4,2

LW 20,0 (a3) LW a0,0(a3)

* Superpipelining aims at higher clock frequency by increasing number of pipeline stages!

* Multi-Issue processors enable CPI < 1 (IPC > 1) by fetching, decoding and executing multiple instructions in parallel

V1-0 ACA

Figure 3.35: Superpipelining and Multi-Issue

3.3.2 Superpipelining

« aims to reduce cycle time (increase clock frequency)

« deep pipelining or superpipelining: having more stages than a given baseline (e.g. five-stage pipeline)

» pipeline stages do not need to be split evenly

31/1

O8]

1



Block C — Multi-Issue Multi-Threading Advanced Computer Architecture (191.019)

Example: MIPS R4000

¢ IF — First half of instruction fetch;

» Example MIPS R4000 Pipeline* c Is— Secohd half gf instruction fetch,
. L . complete instruction cache access.
* Cache access time most critical in the design « RF — Instruction decode and register

 Eight stages (registers not shown -> lines for cycle boundaries)  fetch

* EX — Execution, which includes
effective address calculation, ALU
operation, and branch-target
computation and condition evaluation.

* DF — Data fetch, first half of data cache
access.

¢ DS — Second half of data fetch,
completion of data cache access.

¢ TC — Tag check, to determine whether
the data cache access hit.

* WB — Write-back

*_-- diagram according to Computer Architecture A Quantitative Approach — Section C6

V1-0 ACA

Figure 3.36: Example: MIPS R4000

« instruction dependencies have higher penalties (due to deeper pipeline)
» branch decision later available — prediction even more important as more instructions must be flushed
— in MIPS R4000: 3 cycles branch penalty
» forwarding can’t remove all stall cycles for RAW dependencies
- Load-use delay: 3 cycles

Limits of Superpipelining
« number of stages in Desktop: 12-20 stages
« number of stages in embedded cpus: 1-20 stages

3.3.3 Multi-Issue

Static Multiple Issue Dynamic Multiple Issue

. at compile time « during execution

« compiler groups instructions to be issued together « CPU examines instruction stream and chooses in-
in a bundle structions to issue each cycle

« sorts them into “issue slots” + compiler can help by reordering instructions

 compiler detects and avoids hazards + CPUresolves hazards using advanced techniques at

runtime
Specualtion

+ guess what to do with an instruction
» start operation as soon as possible
» check wether guess was right
- if so, complte the operation
— if not, roll-back and to the right thing
« common to static and dynamic multiple issue
+ examples
» Speculate on branch outcome
- execute instructions after branch, roll back if different path is taken
» Speculate on store
- precedes load does not refer to same address
- can execute load instruction before the store instruction
« roll back if the store writes the same address the load reads from

Compiler or Hardware Speculation
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« compiler can reorder instructions
» e.g. move load before branch
» insert “fix-up instructions” to recover from incorrect guess
+ hardware can look ahead for instructions to execute
» buffers results until it determines they are actually needed
» flush buffers on incorrect speculation

3.3.4 Very Long Instruction Word (VLIW) Static Multi-Issue

Static Multiple Issue

« compiler groups instructions into issue packets (aka bundles)
» group of instructions that can be issued on a single cycle
» determined by pipeline resources required

« specified multiple concurrent operations
» = Very Long Instruction Word (VLIW)

Scheduling Static Multiple Issue
« compiler must remove some/all hazards
» reorder instructions into issue packets
» no dependencies within a packet
» but if pipeline is known, all WAR dependencies are allowed if read operand happens for all instructions
in a packet before write back
- WAW and RAW must be still avoided inside a packet
« all dependencies between packets must be considered in the pipeline
» pad with nop if necessary

Example: Pipeline with Static Dual Issue

* We fetch and decode two instructions: One instructions is executed on slot 1 the other on
slot 2 (Each way can execute certain instruction types)

Forwarding
Slot 1
H—+—|
R | S ALU
N 2 BTA
N Branch Comp.
'D
|
<
e
Slot 2
- >

Figure 3.37: Example: Pipeline with Static Dual Issue

Hazards in the Dual-Issue RISC-V
+ more instructions executing in parallel
« RAW data hazard
» forwarding avoided stalls with single-issue
» now can’t use ALU result in Load/Store Unit in same packet
+ Dependencies are handled as follows without register renaming:
» RAW hazards are handled by the scoreboard. The instruction can be issued when all previous instructions
with RAW dependency are at least in their finish state (last cycle of execute), hence, values are ready to
be forwarded or available in the register file.

@
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» WAR hazards are resolved by the scoreboard. The instruction can be issued when all previous instructions
with WAR dependency are at least in their RO state (cycle before execute).
» WAW hazards are resolved by a ROB. Instructions can only be committed one cycle after all previous
instructions with WAW dependency committed.
 Load-Use hazard
» still one cycle use latency, but now two instructions

Dependency Analysis

Loop: 1w x31, 0(x20) # x3l=array element
add x31, x31, x21 # add scalar in x21
sw  x31, 0(x20) # store result
addi x20, x20, -4 # decrement pointer
blt =x22, x20, Loop # branch if x22 < x20

RAW RAW
[blt x22, =20,

‘Loop: le %31, 0(x20) ‘ RAW ‘Loop: le %31, 0(x20) %
‘add %31, %31, x21 } (Waw) v{addi %20, %20, -4 }A‘WAR
! ol ! ! RAWHWAW)
raw | WAR
[sw =31, 0(x20) | e ladd =31, =31, x21 }A RAW
[addi x20, x20, -4 }A [sw  x31, a@x20) |
;

‘blt x22, %20, Loop

Compiler can reorder instructions, but needs to adopt the offset of the sw

Figure 3.38: Dependency Analysis

Compiler Optimizations
+ Loop Unrolling
» replicate loop body to expose more parallelism (reduce loop-control overhead)
» use different registers per replication
- compiler applies register renaming to eliminate all data dependencies that are not true data depen-
dencies
» avoid loop-carried anti-dependencies
— store followed by a load of the same register
- aka name dependencies - reuse of a register name
» Unroll Factor: number of loop body replications
» Fully Unrolled: unroll factor is equal to number of iterations

Limits of VLIW
« branches and lables break sequential instruction execution
+ hard to find sufficient instruction level parallelism in single Basic Block (BB)

+ Compiler Optimizations

» loop unrolling

» function inlining

» SW pipelining: schedule instructions from different iterations together

» trace scheduling & superblocks: schedule beyond basic block boundaries
« code size increases (due to loop unrolling, function inlining, ...)

binary compatibility: if microarchitecture changes, VLIW code may not be compatible anymore

3.3.5 Superscalar Dynamic Multi-Issue

« exploits Instruction Level Parallelism

« in-order: in order issue but pipeline selects issues bundles
« out-of-order: dynamically scheduled

« Phases of Instruction Execution:
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Fetch

Decode

Rename
Dispatch

Issue

Execute
Complete
Commit (Retire)

e A A ol D

Archetype of a 000 Superscalar Pipeline

* According to Shen & Lipasti : Modern Processor Design (2005), Fig. 4.20.

IF/ID Buffer Dispatch Buffer —

In-order

V1-0

Reservation Stations

Reorder Buffer
(ROB) Store Buffer

Retire

Dispatch Complete

Out-of-order
Issue Finish

In-order

ACA

Figure 3.39: Archetype of OoO Superscalar Pipeline

Superscalar vs. VLIW

superscalar requires more complex hardware for instruction scheduling

issue buffers for 00O execution

complicated multiplexing between instruction issue structure & FU
dependence checking logic between parallel instructions

functional unit hazard checking

VLIW requires a complex compiler and higher code size

superscalars can execute pipeline-dependent code more efficiently

Simple Superscalar (Scoreboard) — Dual Fetch, Decode and Issue with ROB

Wide instruction fetch can
fetch two instructions at once

Ideal IPC =2
L Forwarding
: jﬂ:%— ;
B o]
: o
N
_.E»BTA
Change HW:
¢ Increase number of IB/scoreboard slots to 8 :E— —
¢ Reduce the number of RO ports to 2
¢ and Commit (CO) ports to 2 m
e Structural hazard can cause extra cycles

. v1\oNith register renaming

Scoreboard (ScB)

ACA

Figure 3.40: Simple Superscalar

35/1

O8]

1



Block C — Multi-Issue Multi-Threading

Simple Superscalar (Scoreboard) — Dual Instruction Fetch, Decode and Issue — Example

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14

addi x20,x20,-16

! Renaming to avoid WAR and
WAW hazards is omitted here,
but it is assumed no stalls on
WAR and WAW!

1w x28, 0(x20)

1w x29,12 (x20) “ B

add x28,x28,x21 n B B
1w x30,8 (x20)

add x29,x29,x21 1B 1B 14 instructions

12-5=
7 cycles

1w x31,4(x20)
add x30,x30,x21 1B
sw x28,16(x20)
add x31,x31,x21
sw x29,12(x20)

sw x30,8(x20)

sw x31,4(x20)
blt x22,x20, Loop

#instr

n IB+RO+EX 0 0 2 4 5 7 8 8 8 5 3 1
V1-0 ACA

Figure 3.41: Simple Superscalar - Example

Instruction Scheduling for Superscalar

* The process of mapping a series of instructions into execution resources

* Decides when and where an instruction is executed

Advanced Computer Architecture (191.019)

l

X

/ /
8

Dependence
graph

1,2,3,4 can execute on FU1
5,6 can execute on FU 2

L~

Derived from CA course of Mikko Lipasti-University of Wisconsin

V1-0

ACA

Figure 3.42: Instruction Scheduling for Superscalar

Instruction Scheduling via Selection and Wakeup

« A set of wakeup and select operations

« Wakeup

» Broadcasts the tags of parent instructions selected

» Dependent instruction gets matching tags, determines if source operands are ready

» Resolves RAW data dependencies
« Select

» Picks instructions to issue among a pool of ready instructions

» Resolves resource conflicts
» Issue bandwidth

» Limited number of functional units / memory ports
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Instruction Scheduling via Selection and Wakeup - Example

* Wakeup and Selection Example:
FU1 Ready to Issue Select and
Wakeup
1 1 Select 1
Wakeup 2,3,4
| 2,34 Select 2
| Wakeup 5

3 % 345 Select 4,5
Wakeup -

~

4 B 3 Select 3
Wakeup 6

5 6 Select 6

Figure 3.43: Instruction Scheduling via Selection and Wakeup - Example

3.3.6 Hardware Multi-Threading

+ Thread
» has state and a current program counter
» shares the address space of a single process, allowing a thread to easily access data of other threads
within the same process.
« Multithreading
» multiple threads share a processor without requiring an intervening process switch.
» The ability to switch between threads rapidly is what enables multithreading to be used to hide pipeline
and memory latencies.
» Exploiting Thread-Level Parallelsim (TLP) to improve uniprocessor throughput (IPC)

Thread-Level Parallelsim (TLP)

« Multithreading (MT) targets to exploit thread-level parallelism (TLP)

« MT allows multiple threads to share the FUs of a single processor

« MT does not duplicate the entire processor, duplicating only private state, such as the registers and PC.

« A more general method to exploit TLP is to use a multi-core processor that can execute multiple indepen-
dent threads in parallel.

« Many recent compute platforms incorporate multi-core processors, for which each single core additionally
provides multithreading support.

Fine-Grained vs. Coarse-Grained MT
« Fine-grained multithreading
» switches between threads on each clock cycle,
» execution of instructions from multiple threads to be interleaved. (often round-robin skipping stalled
threads)
» Advantage: hide the throughput losses that arise from both short and long stalls because instructions
from other threads can be executed when one thread stalls, even if the stall is only for a few cycles.
» Disadvantage: slows down the execution of an individual thread because a thread that is ready to execute
without stalls will be delayed by instructions from other threads.
. Coarse-grained multithreading
» switches threads only on costly stalls, such as level two or three cache misses.
» Advantage: less likely to slow down the execution of any one thread
» Disadvantage: it is limited in its ability to overcome throughput losses, especially from shorter stalls.

Simultaneous Multithreading (SMT)

« dynamically scheduled (O0O) processors already have many of the hardware mechanisms needed to
support SMT

+ Multithreading can be built on top of an out-of-order processor by adding

@
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» separate PCs and register files, and
» the capability for instructions from multiple threads to commit.
« Instructions from different threads can be issued in same cycle.

Patterns for Types of Multithreading (MT)

Coarse-grained MT Fine-grained MT Simultaneous MT (SMT)
Cycle |ALU |[MUL | DIV | LU/SU AU |MUL DIV |LU/SU
i+1
i+2
i+3
i+4
i+5
i+6
i+7
i+8
i+9
i+10

Time i+11

V1-0 ACA

Figure 3.44: Patterns for Types of Multithreading

3.3.7 A Look at Real Processors - A15 & BOOM

This is not relevant for the
exam

3.4 Caches and Memory

Introduction

« Computer performance

Processor
* depends on: Roaiot
egister
* Processor performance AR1 ngle DR1
* Memory system performance AR2 bR2
AW
Processor / Memory Interface:
bW
r Data Memory Interface
. rs1 rs2  rd Value reg_fsl reg_rs2
Instruction Memory Interface €] £ Data
pC Memory
- DAddr addr
Instruction data o
Memory Processor Logic Wdata data_in
Instr in ctrl_o
addr data crtl ctrl_in '—l
Rdata
VL1 ACA 5

Figure 3.45: Introduction to Caches

« in previous chapters it was assumed that memory access takes 1 clock cycles
» this hasn’t been true since 1980s

« Memory System Challenges
» make memory system appear as fast as processor
» use hierarchy of memories
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» ideal memory
- fast
- cheap
- large

Memory Hierarchy

3'/ oLk Processor Chip

L

CPU H Cache

Technology |Price /GB | Access Time (ns) Bandwidth (GB/s)

A
SRAM $100 02-3 100+
Cache

Main

Memory Hard

Disk

2 DRAM $3 10- 50 30
& Main Memory
v
SSD $0.10 20,000 0.05-3
HDD $0.03 5,000,000 0.001-0.1
Virtual Memory

\4

Capacity

Figure 3.46: Memory Hierarchy

Locality
+ exploit locality to make memory fast
« temporal locality
» locality of time
» if data used recently, likely to use it again soon
. spatial locality
» locality of space
» if data used recently, likely to use nearby data soon

3.4.1 Memory Performance

« Hit: data found in that level of memory hierarchy

+ Miss: data not found

+ Average memory access time (AMAT): average time for processor to acces data
# hits # misses

Hit Rate = = 1— Miss Rate Miss Rate = = 1 — Hit Rate
# memory accesses # memory accesses

AMAT = teache T MR ache [tMM + MRMM(tVM)]

“ Example

A Program has 2000 loads and stores
+ 1250 of these data values in cache
« rest supplied by other levels of memory hierarchy

What are the hit and miss rates?
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1250
Hit Rate = —— = 0.62
it Rate 200 0.625

750
i = — = .
Miss Rate 2000 0.375

“» Example

+ Suppose processor has 2 levels of hierarchy: cache and main memory

o 1 = 1 cycle, typg = 100 cycles

cache

What is the AMAT of the example 1?

AMAT = tcache + MRcache [tMM + MRMM(tVM)]

MRy = 0 because it has all the data

AMAT =t e + MR ohe (Baing) = [1 + 0.375 - 100] cycles = 38.5 cycles

3.4.2 Caches

« highest level in memory hierarchy

« fast (typically &~ 1 cycle access time)

« ideally supplies most data to processor

« usually holds most recently accessed data

Main
Memory

Figure 3.47: Structure of Cache and CPU

Cache Design Principles
+ what data is held in the cache?
» ideally, cache anticipates needed data and puts it in cache
» but impossible to predict future
- use past to predict the future (temporal and spatial locality)
+ how is data found?
» cache organized into S sets
» each memory address maps to exactly one set
» caches categorized by # of blocks in a set:
- direct mapped: 1 block per set
— N-way set associative: N blocks per set
— fully associative: all cache blocks in 1 set
« what data is replaced?

Cache Terminology
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« Capacity C
» number of data bytes in cache
+ Block Size B
» bytes of data brought into cache at once
» Degree of associativity N
» number of blocks in a set
« Number of sets S
» each memory address maps to exactly one cache set
» S=2

3.4.3 Direct-Mapped Caches

Direct-Mapped Cache

Address
11..11111100 mem [OxFF...FC]
11...11111000 mem [OxFF...F8]
11..11110100
11...11110000
11..11101100
11...11101000
11...11100100
11...11100000

00...00100100 Ha
00...00100000 mem [0x00..20]
00...00011100 mem [0x00..1C]
00...00011000 mem[0x00...18]
00...00010100
00...00010000
00...00001100
00...00001000
00...00000100
00...00000000

Set Number
7 (111)
6 (110)
5(101)
4 (100)
3(011)
2(010)
1(001)
0 (000)

2% Word Main Memory 23 Word Cache

Vi1l ACA 22

Figure 3.48: Direct-Mapped Cache

Direct-Mapped Cache Hardware

Byte

Memory Tag Set Offset
Address - m

V Tag Data

8-entry x
(1+27+32)-bit
SRAM
R 27 32
Hit Data

V1.1 ACA

Figure 3.49: Direct-Mapped Cache Hardware

41/ 131

O8]



Block C — Caches and Memory Advanced Computer Architecture (191.019)

Direct-Mapped Cache Performance - Compulsory Misses

Byte
Memory Tag Set Offset
Address 0000 m
V Tag Data
0 Set7 (111)
0 Set 6 (110)
# RISC-V assembly code 0 Set5 (101)
addi s0, zero, 5 0 Set 4 (100)
. ’ 1] 00..00 | memio0..0cl_| Set 3 (011)
addi sl, zero, 0 1] 00..00 | memioxc0..08] | Set 2 (010)
LOOP: beq s0, zero, DONE 1| 00..00 | mem[ox00..04] [ Set1 (001)
1w s2, 4(sl) 0 Set 0 (000)
1w s3, 12(sl)
1w s4, 8(sl) . 3 .
addi s0, s0, -1 Miss Rate _1—5_20/0
3 LOOP .
DONE : Temporal Locality

Compulsory Misses

Figure 3.50: Direct-Mapped Cache Performance - Compulsory Misses

« compulsory misses are misses if the cache is empty, so it has to get the data from the memory

Direct-Mapped Cache Performance - Conflict Miss

Byte
Tag Set Offset

Memory
V Tag Data
0 Set 7 (111)
0 Set 6 (110)
0 Set 5 (101)
# RISC-V assembly code 0 Set 4 (100)
addi s0, zero, 5 0 Set 3 (011)
. 0 Set 2 (010)
addi sl, zero, 0 1| 00...00 | MeM[OX00..041"1 Set 1 (001)
LOOP: beg s0, zero, DONE 0 j " | set 0 (000)
1w s2, Ox4(sl)
1w s4, 0x24(sl) 10
addi s0, s0, -1 Miss Rate =E=100%
i LOOP
DONE : Conflict Misses

V11 ACA 25

Figure 3.51: Direct-Mapped Cache Performance - Conflict Misses

42 /1

O8]

1



Block C — Caches and Memory Advanced Computer Architecture (191.019)

3.4.4 Associative Caches

N-Way Set Associative Cache

Byte
Memory Tag Set Offset

Address [ _100] Way 1 Way 0
1T
V Tag Data V Tag Data

32 ‘ /I/ZB 32

Hit

Hit Data

Figure 3.52: N-Way Set Associative Cache

+ N-Way set associative cache reduce reduce conflict misses but are more expensive to build

3.4.5 Spatial Locality

« caches with larger block size, use the spatial locality better, because they load more neighbour data

Cache Organization Recap

Organization Number of Ways (IN) | Number of Sets (S)
Direct Mapped 1 B
N-Way Set Associative 1<N<B %
Fully Associative B 1

Table 3.4: Cache Organization Recap

3.4.6 Cache Replacement Policy

» compulsory: first time data accessed
« capacity: cache too small to hold all data of interest
« conflict: data of interest maps to same location in cache which is currently used
« Miss penalty: time it takes to retrieve a block from lower level of hierarchy
« if cache is full: program access data X and evicts data Y
» capacity miss if access Y again
« how to choose Yto minimize chance of needing it again?
» Least recently used (LRU) replacement

Multilevel Caches

« larger caches have lower miss rates, longer access times
« expand memory hierarchy to multiple levels of caches

« Level 1: small and fast (e.g. 16 KB, 1 cycle)

« Level 2: larger and slower (e.g. 256 KB, 2-6 cycles)

« (most modern PCs have L1, L2 and L3 cache)

3.4.7 Cache Miss/Hit Strategy
Hit & Miss on reading/load
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+ load hit: valid bit is set and tag maches = data is found in cache
« load miss: data is not found in cache, pipeline needs to be stalled, slower memory must deliver the data

Hit & Mis on writing/store
- write hit
» write-through
« updates the cache and the main memory immediately
/& simple
/& data consistency with main memory guaranteed
F frequent access to the main memory
& loss of performance
» copy-back (aka write-back)
« refresh the cache and mark the block as dirty
- only update the main memory later when the block is removed from cache
/& write hit is much faster
/& less frequent accesses to the main memory
F data inconsistency with the main memory
& read miss is slower (due to copy-back)
» write- buffer

for data consistency and fast write operations

new value is entered in the cache and second fast cache

processor can continue with further processing

if buffer is full, processor must wait
« write miss
» write-around
- ignore the cache and write directly to memory
- mostly in combination with Write-Through
» fetch-on-write
- replace the current content of the cache and update the tag
- if block size > 1, load the remaining data belonging to the block from the main memory after
- read access to the main memory and the write hit depending on the strategy
- most frequently used method

3.5 Vector Processors

+ System-on-Chip (SoC)s are often multi-core systems
« general-purpose SoC may have many replicates of general-purpose processors (e.g. many ARM or standard
RISC-V cores)

« to improve energy-efficiency many SoC use specialized cores (heterogeneity)

Types of Specialized Cores
« Vector Processors
» introduced in the 70s (Cray)
» got new attention recently especially due to machine learning workloads
+ GPUs
» were initially introduced for redering graphics in real time (video games)
» General Purpose GPU (GP-GPU): programming language such as CUDO from NVIDIA allowed to use
GPUs for other computations beside rendering
« HW Accelerators
» processing cores that are specialized for a certain task (with very limited programmability)
» usually faster and more energy efficient than software running on programmable core
» different types:
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- deep learning: Tensor Processing Units / Neural Processing Units

- security: encryption and decryption

— Video En/Decoders

« Application-specific Instruction Set Processors (ASIPs)

» between general-purpose programmable cores and accelerators

» some programmability but tailored towards a certain application
» example: Audio/Video Digital Signal Processors (DSPs)

3.5.1 Flynn’s Taxonomy

Single Instruction stream,
Single Data stream (SISD)

VLIW

Multiple Instruction stream,
Single Data stream (MISD)

Systolic Arrays

Single Instruction stream,
Multiple Data stream (SIMD)

Vector

Packed SIMD GPUs

(Multi-threaded
Multiple Instruction stream, SIMD)
Multiple Data stream (MIMD)

Multi-Threaded

Multi-Core

Figure 3.53: Classification of Computing Cores

3.5.2 Vector Units

Vector Instruction Sets

« one instruction operates on several data values (SIMD)

« the data values are independent

« operation use the same type of functional unit for all data

« data values are store in separate registers
« data values are aranged in uniform structure (vector)

+ load/store access
» a continuous range of memory
» use a regular pattern (strided access)

« one instruction stream for parallel pipelines (so called lanes)

Functional Units (FUs) for Vector Arithmetic

v1l=[v1[0] v1[1] v1[2]... v1[n]]

e.g. Multiplier: v3[i] = vi[i]*v2[i]

FUs exist for different data types
(integer, floating point)

Initialization Interval usually = 1
* R:Read Operands
¢ O: Operation

Input and Output are an array (vector)

FUs operate on one element of vector

FUs often use deep pipeline for high frequency

Six-stage Pipelined FU
Latency =6

¢ W: Write Result

Clock Cycle 1 2 3 4 5 6

Figure 3.54: FU for Vector Arithmetic
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Example — Timing for Single Vector Instruction

vmul.vv v3, vl, v2

* Execution on Vector Unit

« with four lanes (LO-L3) > Ramp-up time

* FUs with 4 stages ClockCycle 1 2 3 4 5 6
* Vector size is 12 w | R |O0| o0 |W |0
| R |o|o|w|wu
* Lanes are used in pipelined fashion L2 | RJOJO W2
(no dependencies between elements) 3 [ R | © | O | W ]v3[3
Lo R (o] o W | v3[4]
L1 R o o W | v3[5]
* Full result is ready after 6 cycles 2 | R[o|o]|w/ve
* 4 cycles ramp-up to fill the pipeline B[RO0 W IwD
w | R |[o|o|w|ws
L1 R o o W | v3[9]
L2 R o o W | v3[10]
13 R | o o |w/[wi1

ACA 13

Figure 3.55: Example - Timing for Single Vector Instruction

Example — Timing for Sequence of Vector Instructions

vmul.vv v3, vl, v2
* Full result only ready after last

. . . vadd.vv v5, v3, v4
cycle of vector instruction Dead time
R

Clock Cycle 1 5 6 7 8 9 10 11 12
. . . MUL —
* An instruction using the result unit
needs to wait until completed E

= === Jo|o|o|o |N

* Causes a dead time (also called
recovery time) — delay until next vector
instruction can start down pipeline

B B O O P P P P P P P P PO
ofelefo ool |||z |

olelele e |22 ]2

=== =

ADD
Unit

=== = fo|o]e|o

B3 O S N P P O P P S P Y
ofofofofofofe]e |z |=]2]=

ofofole || |2 |=

=== [=

ACA

Figure 3.56: Example - Timing for Sequence of Vector Instruction

Vector Chaining
« vector version of forwarding paths
» results are forwarded element-wise to next FU via chaining

46 /1

O8]

1



Block C — Vector Processors Advanced Computer Architecture (191.019)

Example — Timing for Sequence of Vector Instructions with Chaining and Interleaving

vmul.vv v3, vl, v2

vadd.vv v5, v3, v4

Interleaving can overlap
independent vector instructions vmul.vv v8, v6, v7
as soon as FUs become available 1 2 3 4 5 g 7 vadd.vv vi0, v8, v9

MUL w
Unit =
* Example: 2
vmul.vv v3, vl, v2 o w
vadd.vv v5, v3, v4 .
vmul.vv v8, v6, v7 . - . .
vadd.vv v1l0, v8, v9 . > : B o o "
MUL ADD
R Stage Unit
busy for w
3 cycles =

=== =

ACA

17

Figure 3.57: Example - Timing for Sequence Vector with Chaining and Interleaving

3.5.3 The RISC-V Vector Instruction Set

« RISC-V “V” Vector Extension
» standard extension for the RISC-V ISA
« memory-register vector instructions (operations on registers)
« vector and vector element sizes are configurable (vectors can be longer than one vector register)
« Control Status Register (CSR): specialized register to save configuration and status of processor

Programming Model
« vector register and vector length

» 32 vector data registers (v0 - v31) each VLEN bits long
vector length register VL

v

- defines on how many elements will the next vector operation be executed

vector type register VLTYPE

- used to define vector length via parameter SEW (selected element width) and LMUL
- used to define tail and mask policy via vta and vma

vector byte length VLENB

- read-only, holds value VLEN/8

— used to define vector register length VLEN (fixed)

vector length register VL

v

v

v

- read-only, can be updated by the vset{i}vl{i} instructions
- used to define on how many elements will the next vector operations be executed

T _ VLEN
- vlis limited by VLMAX = LMUL - ¢

v

vector start vstart
- used to define the index of first element to be executed by a vecto r instruction
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RISC-V Vector Programming Model - Vector Layouts

* Example vector register data layouts

‘element index ‘element index
t=2 m. H =2 -_
>
SEW 32b|(5 SEW=64bits
VLEN=128bits ——» <«——— VLEN=128bits ——»
vl=7 vi=3
VLMAX=8 ———— VMAXt ——————————————————>

* vlis limited by VLMAX=LMUL * VLEN / SEW
 Tail : the elements past the vector length vi; not affected by the current operation

* Two tail policies: undisturbed & agnostic
* undisturbed : the tail elements are left unmodified
* agnostic : the tail elements are left undisturbed or fill in with all 1s

ACA 23

Figure 3.58: Vector Layouts

RISC-V Vector Programming Model - Vector Layouts in Vector Registers

* Example vector register data layouts

‘element index ‘element index
> >
SEW=32bits SEW=64bits
<«———— VLEN=128bits ——» <4——— VLEN=128bits ——»
vi=7 vi=3
VLMAX=8 ————————— VIMAXsA ——————————————————>
o] 2 [3] [0] [1]

SEW 3Zb|t5 SEW 54b\(
VLEN=128bits ———» VLEN=128bits ——

Figure 3.59: Vector Layouts in Vector Registers

Vector Masking

+ the mask value used to control execution of a masked vector instruction is always supplied by vector
register v0

 where available, masking is encoded in a single-bit v field in the instruction word
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RISC-V Vector Programming Model

* Masking
* This bitmask defines which of the result element should be actually modified by the operation
* Two mask policies : undisturbed & agnostic
* undisturbed : mask-off elements keep the value they had before the operation
* agnostic : mask-off elements can either be undisturbed or written with all 1s.

Simple Implementation Density-Time Implementation
Execute all N operations, turn off result writeback according to mask Scan mask vector and only execute elements with non-zero masks

Write Data
Port

vo.m[2] = 1

No
operation
performed

No write

vom[1]=0
performed

ACA 26

Figure 3.60: Vector Masking

Vector Code Example

# C code # Scalar Code # Vector Code
for (i=0;i<8;i++) li a0, 8 vsetvli t0, zero ,e32, m2,
C[i] = A[i] + BJ[i]; loop: ta,ma #t0=8
Iw a4, 0(al) vle32.v v8, (al)
Iw a5, 0(a2) vle32.v v10, (a2)
add a4, a4, a5 vadd.ww  v8,v10,v8
sw a4, 0(a3) vse32.v v8, (a3)

addi a3, a3, 4
addi a2, a2, 4

addial, al, 4 #(@l) A
addi a0, a0, -1 #(a2) B
bnez a0, loop #(@3) C

Figure 3.61: Vector Code Example
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3.5.4 Vectorization

Automatic Code Vectorization

for (i=0; i<N; i++)

Scalar Sequential Code C[I] :A[I] + B[I],
Vectorized Code

_———— - _——_————

( load \{ load

Time

Vector Instruction

Vectorization is a massive compile-time reordering of operation sequencing
C—) requires extensive loop-dependence analysis

ACA 39

Figure 3.62: Automatic Code Vectorization

3.5.5 C Vector Intrinsics

Please see Section 8.1

3.5.6 Packed SIMD

Packed SIMD Extensions

64b

32b [ 32b
16b [ 16b [ 16b [ 16b
8o | 8 | 8b 8o | 8 | 8 | 8 | 8b

l l
l l
l l
l l

Very short vectors added to existing ISAs for microprocessors
¢ Use existing (32) 64-bit registers split into 2x32b or ( 2x16b) 4x16b or (4x8b) 8x8b

Single instruction operates on all elements within register

¢ Examples:
RISC-V P Extension (not ratified)
CoreV Extension (Custom Vendor extension of Open HW Group, not official)

xi1 | 16b [ 16b [ 16b [ 16b ]
x12] 16b [ 16b [ 16b [ 16b ]
ot aae @Y o P P
x13| 16b [ 16b [ 16b [ 16b |

Figure 3.63: Automatic Code Vectorization

« Pros of Packed SIMD

/& no extra HW co-processor

/& SIMD unit can share resources in pipeline (make ALU a SIMD ALU)
« Cons of Packed SIMD

F' no configurable vector length

7 usually no wider load/store unit
¥ limited by scalar register sizes
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3.5.7 A look at a real vector unit - ARA

This is not relevant for the
exam
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4 Block D

4.1 Introduction to High Level Synthesis (HLS)

4.1.1 HW Design Flow in a Nutshell

System Connected .
Specification Components Chip, Board
Algorithms CPU, Bus, HW- Floor plan

accelerator
Tﬁi%?e;[fsr / Module netlist Makro-cells
FSMs (ALU, Mux, Register) (IP-blocks)
Boolean Gate netlist Standard cells,
Equations (Gates, FlipFlops) library cells
le'fere_ntlal Transistor netlist Mask data
Equations

Figure 4.1: Abstraction Levels & Design Views

iy x
ns K\
Algorithm - ’ 7 x \ .\ . Processor,
gorrtm . A SN B N Memory, Switch
Register- " | g NN _
9 g ~ ALU, Register,
Transfers - .
. Mux
Boolean .-\  * = ()0
Equations X A Gate, FF
// x * \\\ i
Differential - NN - Transistor
Equations * Palygons
"\, "Standard cells
“Makro cells
* Chip, Board

ACA

Figure 4.2: Y-Diagram
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System Specification

System models

l

Specification of Components Simulation 1
and Tasks

—

Prototypes (Virtua

Figure 4.3: System Specification

System Synthesis
« Inputs
» specification of the system
— description of the functionality and design constraints
« Typical Synthesis Steps
» description of
- functionality as a set of communicating tasks
— behavior of tasks at an algorithmic level
- task communication
» allocation of system components such as processors, buses, memory, ...
» binding of tasks and inter-task communication to system components (HW/SW partitioning)
o Output

» An output specification of components, tasks, and inter-task communication that guarantees to meet the
system specification

Algorithmic description
of the task (C, SystemC)

)
-C V
S}
c
8
= Register Transfer Model (HDL)
(]
'_
~

Gate netlist

Timing
analysis

ACA

Figure 4.4: ASIC HW Synthesis Flow

Layout / mask data
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HLS Synthesis Step
« Input
» Algorithmic description of a task (e.g., in C, C+
+, SystemC)
» Design constraints (maximal latency, available
resources, ...)
+ Synthesis steps
» Static code analysis and code optimization

» Datapath synthesis (Scheduling, allocation,
binding)
» Control unit synthesis (FSM implementation)
« Output:
» Description of hardware module at RT level
Logic Synthesis Step
« Input

» Description of HW module on RT level
» Design constraints (minimal clock frequency,
maximal area, ...)
» Gate library
« Synthesis steps
» Logic optimization
» Technology mapping
« Output
» Gate netlist

Physical Synthesis Step
« Input

» Gate library

» Design constraints

» Layout library (P-cells)
« Synthesis steps

» Placement of modules

» Routing of signal nets
+ Output

» Layout, mask data

54/
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Software Compilation
« Inputs
» Algorithmic description of a task
« Synthesis steps
» Static Code Analysis and Optimization
» Code Generation (instruction selection, register
allocation, and assignment)
» Assembler, linker, loader
« Outputs
» Assembly code/machine code for the target
processor

Interface Synthesis
« Input

» Description of inter-task communication

» Design constraints (protocols, data rates, ...)
« Outputs

» Drivers, bus interfaces, ...

O8]
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Advanced Computer Architecture (191.019)

Algorithmic Description of the task (C, SystemC)

Assembler Code

[ Frontend (Lexical, Syntax, Semantical Analyzer) ] »
w

()]

g = = £
B Intermediate Code Representations S
= o
£ = g
] [ Static Code Analysis and Optimization ] o
(] ©
1] =
g < ]
£ Optimized Intermediate Code Representations @
v <
s g &

[ SW Code Generation High level HW Syn. Backend ]
v - v

Register Transfer Model (HDL)

ACA

Figure 4.5: HLS and SW Compilation Flow

4.1.2 The HLS Synthesis Task

int functionl (int x, int y, int z)

{

int a;
. . L a=x* (y*y+z);
Algorithmic description of return a;
the task (C, SystemC) }
High-level HW Dpfcontml;
Synthesis Controller 1

g

RT model of Hardware
module in VHDL or

Control_OUT ﬂ Control_IN

L4
%:‘ Data path
P_Status
Data_OUT ﬂData_lN ﬂ

HW Module Interface I

Verilog
This is called usually @ TT

Bus_Control
an HW accelerator or

Bus_Address
IP block

Bus_Data C

ACA

Figure 4.6: Basic Task

Other names for HLS

+ High-level Hardware synthesis
» algorithmic synthesis

« behavioral synthesis

« C synthesis

Classes of Hardware Components
« Data-oriented designs
» examples: video signal processing, compression, encryption, ...
« Control-oriented designs
» examples: traffic light control, industrial machine control, ...
« HLS works better on data-oriented designs

Performance Metrics
« Clock Cycle Time AT
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» cycle duration of the driving clock of the HW module
» the combinatorial path in the circuit with the largest delay places a lower limit on the clock cycle time
(critical path).
« Latency A
» number of clock cycles between the start of processing a block of data and the point of time at which
the result is ready at the output.
» Processing time ¢, = A - AT
Throughput T’
» number of blocks of data that can be processed in a fixed time

« Chip Area (Application-specific integrated circuit (ASIC))

» estimated via gate count

» Datapath: Number of Hardware Operation Units, such as multipliers, ALUs, registers, multiplexers, ...
« FPGA Resources

» number of LUTs, number of Digital Signal Processor (DSP) Blocks, ...
« Power/Energy Consumption

» Dynamic power consumption: Power consumed by switching transistors in the circuit
» Static power consumption: Power consumed due to leakage currents.

Design Goals and Constraints
« Synthesis algorithms handle two typical cases:
« Timing-constrained
» constrained: implement task such that it can compute results within a maximum number of clock cycles
(maximal latency)
» second goal: minimize the number of registers (register sharing), multiplexers, control unit states, ...
+ Resource-constrained
» constrained: Implement task with a fixed maximum number of functional units (adders, ALUs, multi-
pliers) in the datapath.
» goal: minimize latency
» second goal: minimize the number of registers (register sharing), multiplexers, control unit states, ...

Synchronous HW Design
« All registers in the control unit and the datapath share the same clock
+ Assumptions for simplification:
» Functional units have a fixed and known delay, such that the number of clock cycles to execute an
operation is assumed to be fixed and data-independent.
» The delay of interconnects and multiplexers can be neglected.
+ Real-life:
» Longest combinatorial path in the circuit will determine the maximal clock frequency.
» Logic synthesis will try to optimize the circuit depending on the target clock frequency and area.

Datapath Synthesis Steps
+ Scheduling:
» Determines the start time of each operation
+ Binding:
» Determines on which functional units the operation is executed.
» Determines in which registers variables are saved.
« Allocation:
» Selection of resources, such as functional units, registers, and multiplexers.

Interface Synthesis

+ Interfaces can differ strongly

« Interfaces may consist of memory, registers, FIFOs and FSMs for communication protocols
+ Crossing of clock domains is possible
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» e.g. between bus clock and HW module clock

4.1.3 Datapath Synthesis HW Resources

HW Resources in the Datapath

« Functional units: Adders, multipliers, ALUs, ...
» Execute operations on data (e.g., Add, Shift, AND, OR, Mult, ...)
» Fixed and known delay
» Fixed and known area demand

+ Signal nets and multiplexers

» Delay and area demand is neglected.

Memory elements: Registers

» Delay and area demand is neglected.
« NFU (Non-functional Unit)
» Non-existent helper resource
» used to execute special NOP, LOOP, BRANCH, CALL operations (more on this later)
Functional units are identified by a pair (k,., z,.)

» type: k, € K with K = {ALU, MULT, ...}

» index: 2, = 1,2, ...

» example

- (ALU, 1), (ALU,2), (MULT, 1)

Time-Resource-Plane (TRP)
o X-axis: Resources

» List allocated functional units
» Assign operations to functional units (Binding)
« y-axis: Time
» Division into clock cycles.
» Plan temporal order of the operations
» Select start times of operations (Scheduling)
» Values must be saved in registers between clock cycles.

e Example: rtzel
ample: Goertze Resources (Functional units)

Algorithm
(Basic block B3) Add,1 | Mult,1 | Mult,2
t6= t8=
té= s prevl * s prevl CC1 s_prevl*| s prevl*
t7= s _prev2 * s _prev2 s _prevl | s prev2
t8= s prevl * s prev2 t7= £9= tg*
t9= t8 * coeff cc2 SPrevitl coett
t10= t6+t7 S_Prev
power= t10 - t9 t10=
CcC3 t6+t7
power=
cc4 t10-t9

Time in clock cycles (CC)

Figure 4.7: TRP Example Goertzel (1)
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* Example: Goertzel Add1 | Mult1
Algorithm .
. CC1 N
(Basic block B3) S
t7=
té= s_prevl * s prevl CC2 s _prev2*
t7= s_prev2 * s_prev2 s:prevZ
t8= s prevl * s prev2 oo
t9= t8 * coeff t10=
1%
£10= t6+t7 cc3 to+t? 27&2:2
power= t10 - t9 —
t9= t8*
CC4 coeff
power=
CC5 £10-t9

Figure 4.8: TRP Example Goertzel (2)

¢ Example: Goertzel
Algorithm Add,1  |Mult,1 | Mult,2 | Mult,3

(Basic block B3)

t6= t7= o=
t6= s_prevl * s prevl CC 1 s_prevl*|s_prev2*s prevl*
t7= s prev2 * s prev2 s_prevl |s prev2 |s prev2
t8= s prevl * s prev2 cC 2 t10= t9= t8x*
t9= t8 * coeff t6+t7 coeff
t10= t6+t7 —
power= t10 - t9 CcC3 £10-t9

Figure 4.9: TRP Example Goertzel (3)

Pareto-Optimality

« A solution is Pareto optimal if no other solution is better in all design performance metrics.

« Different Pareto-optimal solutions allow different trade-offs between the design performance metrics.
+ The best solution is picked based on preferences for design performance metrics.

Chip Area [units]
(Demand: Adder=2 area units, Multiplier=5 area units)

A

20 1 Adder, 3 Multiplier
Minimal Latency
17 frmmmmmmmmmm e @
15 1
@
10 1

1 Adder, 1 Multiplier
,,,,,,,,,,,,,,, @ Minimal chip area

0 T T i T i
3 5 6 Latency [Clock cycles]

Figure 4.10: Example Pareto
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4.1.4 Sequencing Graphs
+ Sequencing graph: G, = (V_, E,)
» hierarchy of Directed Acyclic Grpah (DAG)s
» each graph is called a Sequencing Graph Unit (SGU)
» SGUs are polar: one source and one sink node is added which are labeled NOP
« Nodes: V, = {v, : i =0, ...,n}
» NOPs
» operation € {+,<,>,-,...}
» hierarchical node (CALL, BRANCH, LOOP)
« Edges: B, = {(vi,vj) 14,7 =0, n}
» between nodes in one SGU (data dependency between two operations)

» between source and sink (connection between SGU on different hierarchical levels)
« paths describe the concurrent operations that may possibly be executed in parallel

Data flow graph Sequencing graph unit

e Example: Goertzel s_prevl s _prevz = coeff

Algorithm
(Basic block B3)

té= s_prevl * s_prevl
t7= s_prev2 * s prev2
t8= s_prevl * s_prev2
t9= t8 * coeff

t10= t6+t7

power= tl0 - t9

Figure 4.11: Example Goertzel Algorithms with SGU

¢ Hierarchical nodes: CALL, LOOP, BR

Call to procedure Control flow loop Control flow branch

-
, ~

I e
1 -
‘ [ BR ]
T Ex
N
\‘ 9
1

A2
Called SGU of one lower SGU of lower hierarchical level ~ Only one of the two SGU of lower
hierarchical level is executed is executed O to N times. hierarchical level is executed

once. once.

Figure 4.12: Hierarchical Nodes in SGU
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Bl: s_prevl := 0.0
s_prev2 := 0.0
i:=0
tl := 2%3.14
f :=tl * freq
param f
t2 := call cos,1

coeff:=2.0*t2

B2: t3:= coeff * s_prevl

td:= x[1i]

t5 := t4 - s_prev2
s 1= t3 + t5
s_prev2 := s_prevl
s_prevl := s
ir=i+41

if i < 64 goto B2

B3: t6:= s_prevl * s_prevl

s_prev2 * s_prev2
s_prevl * s_prev2
t8 * coeff

t10:= t6+t7

N
~ ~—e—"
1= t10 - t9
() @ SGU for B1 and B3 Teturn power

e Example: Goertzel
Algorithm

(Basic block B3)

té= s_prevl * s prevl

t8= s_prevl * s prev2 CC2
t9= t8 * coeff

power= t10 - t9 cc3
return power

Scheduled sequencing graph
(Operations assigned to clock cycles)

Figure 4.14: Sequencing Graph in the TRP (1)

e Example: Goertzel
Algorithm NFU,1 |Add,1 |Mult,1 |Mult2 |Mult3

(Basic block B3) @g %

té= s _prevl * s prevl CC1

g

\*//

bld

t8= s_prevl * s prev2 CC2
t9= t8 * coeff

power= t10 — t9 ccs
return power @

Scheduled sequencing graph with binding
(Operations assigned to clock cycles and operational units)

<
+
T

]

9

Figure 4.15: Sequencing Graph in the TRP (2)

Operation Chaining
« The delay of operational units can allow for two operations to be executed in one clock cycle.

Multi-Cycle Operations
 The delay of functional elements may require several clock cycles for the execution of the operation.
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NFU,1 | Add,1 | Mult,1

Q@
* New operation can start before previous operation cC1 - \
has finished.

* Number of concurrent operations is equal to cc2 \

intermediate values. CcC4 £~

CC5

A
ipeline depth .
pipeline depth. co3 Q/

* Operational units has internal registers to save ’\<
A

CCo

CC7@-

Figure 4.16: Pipelined Operational Units

4.2 Scheduling for High Level Synthesis

4.2.1 The Scheduling Task

Recap SGU

« Gy =V, By) V=050, CV
» x: index of Source NOP Node
» y: index of the Sink NOP Node (with y > x)

« execution delay of operation D = {d, : i = z, ..., y}
» NOPs have an execution delay of zero

« Wanted:

» start time for each operation T = {¢t, : i = z, ..., y}

Scheduling is a function 7

» Constraints: The starting time of an operation must be at least as large as the starting time of all
predecessor operations plus their execution delay.

» Result: A scheduled sequence graph where each node is marked with its starting time.

TV, =2 Z%1(v;) =

ti
t; >t;+d; Vi, j:(v;,v;)€EB,

%

Latency of a schedule: A = ¢, — 1

4.2.2 As-soon-as-possible (ASAP) Schedule

« Schedule for unconstrained resources
+ Goal: minimal latency

Solution: topological sorting of the sequencing graph
ASAP start time for node v,

9 = max 2 +d,
’ j:(vj’vi)eEu( / J)

« quadratic complexity: O(|V?|)
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ASAP_schedule(G_s,u(V_u,E u)) {
Start time of node v[x]: t S[x]=1;
repeat {
Select node v[i], whose direct predecessors v[j] all have been assigned a
starting time.
Set start time for node v[il]:
t S[il=max(t _S[jl+d[j]);
} until node v[y] has been assigned a starting time.
return (t_S);

Code 4.1: Pseudo-Code for ASAP Algorithm

4.2.3 As-late-as-possible (ALAP) Schedule

« Schedule with fixed latency (time-constrained)
« Given latency

AP =t —1=A,,

X
« Goal: find the latest starting time for all operations such that the maximum latency constraint is met

tL = min th —d.
¢ j:(vj,vi)EEu( J l)

+ same complexity as ASAP

ALAP schedule(G_s,u(V,E),Lambda max) {
Start time for node v[y]: t L[y]l=Lambda max+1
repeat {
Select node v[i], whose direct successors v[j] all have been assigned a
starting time.
Set start time for node v[i]:
t L[i]=min(t L[j1-d[i])
} until node v[x] has been assigned starting time
return (t L)

Code 4.2: Pseudo-Code for ALAP Algorithm

4.2.4 Mobility of Operations

+ Given an upper constraint on latency: A = ¢, —1 < A,
+ ASAP Schedule: minimal start times for operations

« ALAP Schedule: maximal start times for operations

+ Mobility of operations on the time axis:

ui:tf—tf, 1=2,..,9Y

+ For opeations with p; =0
» the start time is fixed: t;, = t/' = 7
» These operations are located on the critical path
| not the same as critical paths in logic circuits
+ There is no schedule for latency constraint A < A,
» possible if tf > A +1
»ortl <1
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CC1
@ @Ug @
(:?’lﬁ (%) @2)6 + (:?’U Vo
V10
¥

CcC2

CC3

CC4

- - *‘ ,

CC5 NOP ’U] 2
Operation i 1 2 3 4 5 6 7 8 9 10 1
ASAP 1 1 2 3 4 1 2 1 2 1 2
ALAP 1 1 2 3 4 2 3 3 4 3 4
Mobilitat x; 0 0 0 0 0 1 1 2 2 2 2

ACA

Figure 4.17: Example: DE-Solver with ASAP and ALAP

4.2.5 Hu’s Algorithm

+ goal: minimize latency
« resource constraint: maximum number of resources = a
 requirements

» only one type of resource

» All execution delays are 1

— Split up operations into multiple if a larger delay exists

+ properties

» linear complexity: O(n)

» greedy algorithm

» optimal: finds a schedule with minimal latency

Set of ready operations

Uact = {vi | vj:(vj,vi)eEutj + dj < tact}
< direct predecessors finished

+ label each node with length of longest path from this node to the sink («;)
+ set of operations to start S,

» must be operations that are ready

» must be less than or equal to the number of available resources a

» the label «; should be maximal
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HU(G s,u(V,E),a) {
Label nodes v[i] with max. path length alpha[i] to sink v[y]
Set start time for source node v[x]: t HU[x]=1
Set t act=1
repeat {
Select set of nodes S act, such that for v[i] in S act:
1. v[i] is in U act
2. alpha[i] of v[i] in S act is maximal
3. Number of elements in S act: |S|<=a
Set start time of all v[i] in S act: t HU[i]=t act
Set t act=t act+l
} until sink node v[y] was assigned a start time
return (t HU)

Code 4.3: Hu’s Algorithm

3 ALUs for all operations (+,-,*,<) 0. Label nodes

1. lIteration:
See=tVp V2 V!
Start times:

2. lteration:

tf =t =gl =1

Spet =13 V7 V) = i "
Starttimes: t3 " =t7" =15'" =2
3. lteration:
Saet =Vs Vo Vio}
Starttimes: % = ¢flv = ¢Hv =3

4. lteration:
SR St =tvs viif
S
ok V12 Starttimes: 5" =t{}* =4

ACA

Figure 4.18: Example: DE-Solver with Hu’s Algorithm

4.2.6 List Scheduling
Priorities
« resource constrained (goal: minimize latency)
» number of resources of type k : o,
» priority equals maximal sum of execution delays on paths to sink

Prio(v;) = max( Z dw) with H,, equals to paths from v, to sink
v weH,

+ time constrained (goal: minimize resources)

» maximal latency: A < A,

» slack of a node: distance to ALAP start time

» priority at time ¢, equals slack: s, = t& — ¢,
+ heuristic and greedy algorithm based on priorities

Prio(v;) = s, = tF —t

7 [ act

Operation Sets
+ Set of candidate operations ready to be executed on a resource of type k

Uact,k = {vi | Uy of type kA vj:(vj,vl-)eEutj + dj < tact}

+ Set of running operations on a resource of type k
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a

oo = {v; | v, of type kAt +dp >t}

LIST L(G _s,u(V,E),a) {
Set start time of source node v[x]: t LR[x]=1
t act=1
repeat {
foreach type of resource k=1,2,.. {
Find set of candidate operations U act[k]
Find set of running operations T act[k]
Select starting operations v[i] in S _act[k] such that:
1. v[i] in U act[k]
2. Priorities Prio(v[i]) maximal
3. Number of running and starting operations smaller than resource
number: |S act[k]| + |T act[k]| <= alk]
Set start time of v[i] in S act[k]: t LR[i]=t act
b
t_act=t_act+l
} until sink node v[y] was assigned a start time
return (t LR)

Code 4.4: List Scheduling Algorithm: Resource Constraint

.............

Example DE-Solver
Resource Constrained (2xMULT, 1xALU)

_—7
* Schedule: Priorities Prio(v,)

It. | 2xMULT d=2 Cycles 1xALU d=1 Cycle Start time
Lact Usgmute Locymute Sactmu Usctata | Sactatu G 1

(v vave vsh {3 {vpva} {vio} {vio} 1=t=t,=1

{veVs} o} { v} i} ;=2
Latency
{Vs Ve Vst {3 {vsvel {} {} 15=1=3
g bt |0 0 0 A =28

{vavs} { {vave} vt vy} 1L=t,=1g=5
£ {vsvs} {3 & {4
& 8 { {vs v} {vs} 15=7
{4 { {4 {vo} {vo} 1,=8

=T B I B LY T B B B

Figure 4.19: Example: List Scheduling with Resource Contraint

1

O8]
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LIST R(G_s,u(V,E),Lambda max) {

Set Number of resources: al[k]=1 for all k

t L = ALAP Schedule(G_s,u(V,E),Lambda max)

if t L[x] < 1 then return("No schedule possible")

Set start time of node v([x]: t LT[x]=1

t act=1

repeat {

foreach type of resource k {
Find set of candidate nodes U act[k]
Find set of running nodes T act[k]
Compute slack s[i] = t L[i] — t act for v[i] in U act[k]
Place all v[i] from U act[k] into S act[k], with slack s[i]=0
Set start time of v[i] in S act[k]: t LT[i]=t act
if |S act[k]| + |T_act[k]| > al[k] then {
Update a[k]: alk] = |S_ act[k]| + |T act[Kk]|

}
if |S act[k]| + |T_act[k]| < al[k] then {
{
Place nodes v[l] from U act[k] without S act[k] into R act[k],
Such that slack s[l] for v[l] in R act[k] minimal }
until |S act[k]| + |T act[k]l| + | R act[k] | = a[k] or no more nodes

in U act[k]
Set start time of nodes v[l] in R act[k]:
t LT[l]=t act
}
}
t act=t act+l
} until sink node v[y] was assigned a start time
return (t LT);

Code 4.5: List Scheduling Algorithm: Timing Constraint

List Scheduling with Timing Constraint - Improved Version with Restart

+ Improved Algorithm: Timing-constrained resource minimization.

« Restart the algorithm each time the number of resources is increased; do not reset the number of resources
to 1, but start with the last value.

4.2.7 Force-Directed Scheduling

+ Heuristic based on a force-based model
« Timing constrained resource minimization
+ Published by Paulin & Knight, TCAD 1989

Distribution of Start Times
+ The time frame of possible starting times for node v,

T, = h?SAP t?LAP]

+ with a width of the time frame of p1; + 1
+ The distribution for the starting time of node v, at time ¢,

D, — # vtact € Tz
(tact) 0 Vtact ¢ T;

« uniform distribution in the time frame

Resource Demand
+ The demand for resources of type k at clock cycle ¢,
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qk(tact) = Z pi(tac‘c)

{i:0p; is from type k}

+ The mean demand for resources of type k in the time frame 7

tALAP

e Z Qk(t,

tASAP

my

Self Force

S(tact)
F;; b= qk(tact) mkvi

+ Difference between the demand of a resource of type k in clock cycle ¢, ., and the mean demand for a
resource of type k in the time frame T of the node

. F;S(t“tw: In this clock cycle, the demand for the resource is high, pushing node v, away from ¢, , with a
positive self-force.

o E5%a=0, 1 this clock cycle, the demand for the resource is low, pulling node v, closer to t,., with a

(2
negative self-force.

* Example: DE-Solver

v,, 2,33
Vg Ccc3
T; (121 | | quurr(tecd | cca 083
() | 112 17/6 0
P2 | 112 713

mi6 = o (avurr(1) + avvrr(2) = o+ (F +§) = 55
FS(1) = quurr(l) —myurre =2 - 3% =2 =1
Fés(2) = qMULT(2) — MMULT,6 = % — %

» Self force for clock cycle 1 positive because the demand for multipliers is high
and negative for clock cycle 2, because demand is lower.

Figure 4.20: Example: Self Force

Shift of Time Frames of Successors / Predecessors
« The selection of a start time for a node changes the time frames for its direct predecessor and successor
nodes.
» node v; is a direct predecessor or successor of v;
» The start time for node v, is selected as
- New time frame and mobility for nodes v, : ¢; = ¢

act
7 _ [FASAP FALAP

T, = [}9A7 §prAP]

~ __ FALAP _ FASAP
ri =1 G

» New demand for resources

iALAP

- 1 <
i >
b fi; + 1 FASAP k()
t —=ih
D [3
Predecessor and successor forces
V,N s
F;,j (tact) - k,] mk:
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« Change of mean demand for resources of type k for predecessor and successor nodes.
. F;‘;N (tact) > 0: by setting the start time of node v; to t,., the successor/predecessor node v; can only
be scheduled in clock cycles with a higher demand for resources of type k. Push v, away from ¢, by a

positive predecessor/successor force.

. F;‘;N (taet) < 0: The other way around; pull v; to ¢, with a negative predecessor/successor force.

* Example 3: DE-Solver v,
* 7 is direct successor of vg T 12,31 |4 Guonr(toed) L
. For p/2) 1/2 7/3
p/3) 1/2 5/6

ts=1—Tr=T; = (23] = FN(1) =0

* For t6:2—>T7:[3 3]—>,&7:O—>T7L1\4ULT,7:ﬁql(?)):é

6
mi7 = ﬁ(qMULT(Q) +auurr(3) =3+ 32) =1

—_
Nel SIS

[\
[N

N (o) _ = _ 5 _
F7(2) = myurrr —muuLry = — 15 = —

Figure 4.21: Example: Predecessor and Successor forces

Total Force

S (Bt E E
ET(tact> = F; (t“) + FN( act) + FV( act)
{3:(op;,0p;)€E} {7:(op;,0p; )€}

« Sum of self-force, predecessor forces, and successor forces.

+ To minimize resources, select starting times with minimal force, which should lead to a minimal mean
demand of resources of all types for the schedule.

@ m
5 cc2
e e Vﬁ.

-0,7 5CC3

CC4

[ o

* Force will push v6 towards start time t6=2 because there is
less demand for MUL in CC2 and v7 is pushed to a later start
time where there is also less demand for MUL.

Figure 4.22: Example: Force-directed Scheduling
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FDS(G_s,u(V,E),Lambda max) {
repeat {
Compute the time frame for all nodes.
Compute the distribution for the starting time for all nodes and all mean
demands.
Compute the total force for each node.
Select the node with the minimal force and assign the starting time to it.
} until a starting time has been assigned to all nodes.
return (t-FDS)

Code 4.6: Force-Directed Scheduling Algorithm

4.3 Binding RTL and FSM Generation

4.3.1 The Binding Task

Sequencing graph Lifetime of variables

O L

[ Operation Binding Register Binding

< <

Binding of operations to Binding of variables to registers
functional units

-
AT
-

* Goal: Save resources by sharing of functional units and registers.

Figure 4.23: Binding Tasks

« Concurrent operations can be scheduled to be executed in parallel.
» These cannot be bound to the same FU (in the same clock cycle).

4.3.2 Graph Coloring

+ The cover of a set S is a set of subsets of S such that their union is equal to S.

+ The partition of S is a cover of S such that all subsets in the cover are disjoint.

+ A clique of an undirected graph G is a subset of the nodes V' in which all nodes are fully connected with
each other.
» clique-cover, clique-partition as above

» X(G)... chromatic number is the minimal coloring.
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* Example:

G(V,E)

G(V’ V x V\E) —> Coloring

Figure 4.24: Examples: Graph Coloring

4.3.3 Operation Binding

+ type of functional units: k, € K

« set of functional unit types: K = {ALU, MUL, ...}

« A functional unit is defined by type and index: (ALU, 1)

« An operation is executable on a FU if the operation is supported by the unit.

k + - > < * NOP LOOP BR | CALL
ALU X X X X
MULT X
NFU X X X X

o ()
O<g O<E

Figure 4.25: FU Executability

Operation-Compatibility-Graph Operation-Conflict-Graph
« Operations are compatible if and only if: « Operations are incompatible
» they can be executed on the same FU, A » if they must be executed on a different FU, or

» if either one operation always starts after the » if they are executed in parallel due to the sched-
other has finished, V ule.
- they are on alternative paths in the control flow « operation-conflict-graph Gy (v g-

« operation-compatibility-graph: G5 (V, E*) » Edges connect incompatible operations.
» An edge connects compatible operations E™. » Interval graphs can be seen as a special case of a
» Cliques in the compatibility graph are sets of conflict-graph.
operations that can be bound to the same FU. — Opverlaps of intervals produce conflicts.

+ The conflict graph and the compatibility graph are
complementary:.

Operation Binding
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Mapping: B:V = K x1,2,3,..

Bw;) = (kr,2,) miti=1,..,n
such that (kr,0(v;)) € Ea
and ( ) ( ) Vi,j : (’Ui,'Uj) c F—

Figure 4.26: Operation Binding

« Each operation is bound to one FU.
+ The operation must be executable on the FU z,..

» B(v;) = (k,, 2,) withi=1,...,n
« Two operations that are bound to the same FU must be compatible.

(k o(v;)) € Ea
Blu) # B(v;) Vi,j: (vs,0;) € B

Left-Edge-Algorithm
+ To color an interval graph with the minimum number of colors.
« worst-case complexity O(|V| - log(|V]))

LeftEdge(G I(V I,E I)) {
Sort intervals I[i]=[1[i] r[i]] in list L by increasing 1[i]
Set color number c=0;
repeat {
Go to the start of List L
Set S={}
Set r_act=0;
repeat {
Select next interval I[s]=[l[s] r[s]] from List L
if (l[s] >= r_act) {
Insert I[s] in set S
Set r_act=r[s]
Delete I[s] from List L
}
until (End of List L is reached)
Assign color ¢ to all intervals in set S
Select next color number: c=c+1;

}
until (List L is empty)
}
Code 4.7: Left-Edge-Algorithm
« Input:

» Given Schedule

» Interval graph of the execution times for the operations.

» Operation-conflict graph for each functional unit type.
«+ The Left-Edge Algorithm is applied for each functional unit type with a disjoint set of colors.
+ Output: Binding of operations to the functional units.
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* Example: SGU for basic block B3 of Goertzel algorithm

3 * List Schedule for 2x MULT, 1x ALU
o
—g, Operations-Conflict-Graph (MULT)
[
) L8 2
R e B
g T V| s [T
............................ Operations-Conflict-Graph (ALU)
5 v,
O ol @ ©
7 v,

Figure 4.27: Operation Binding with Left-Edge Algorithm

4.3.4 Register Binding

« Live variables: Variables are live from their generation until their last use (lifetime). After their last use,
they are considered dead.

+ Register Sharing: The number of registers is decreased by storing variables with non-overlapping lifetimes
in the same register.

« Variables are incompatible, if their lifetimes overlap.

« Register-conflict graph:
» Variables are the nodes.
» Incompatible variables are connected by an edge.

« Interval graph
» The Left-Edge Algorithm can compute a minimal coloring.
» The coloring defines cliques of variables that can share one register.

Local Live Variable Analysis

« First, run global live variable analysis.

* Example: SGU for basic block B3 of Goertzel algorithm
* List Schedule for 2x MULT, 1x ALU

Clock Cycle

=

o U0 A~ W N

Figure 4.28: Local Live Variable Analysis: Goertzel Algorithm

4.3.5 Datapath Generation
Data Flow Graph with Schedule and Binding
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Shows the data flow between FUs and registers.
« The number of multiplexers can be determined.
+ The required control signals can be determined.
« Allows for the generation of an RTL description of the datapath.

* Example: SGU for basic block B3 of Goertzel algorithm

s prevl ; 'y 1 § s prev2
1 | mumy | | mu2) |

s _prevl T T 1 ¥ s _prev2
3 | mumy) | | mumz) |
o
> e
@)
4
é coeff

(MULT,2)

4 coeff

Figure 4.29: Data Flow Graph with Scheduling and Binding: Goertzel Algorithm

* Example: SGU for basic block B3 of Goertzel algorithm

Clock Cycle

Figure 4.30: Data Flow Graph with Scheduling and Binding (SGU): Goertzel Algorithm

4.3.6 Control Unit Generation

« Generates control signals for:

» data flow

» control flow

» the interface to the hardware module
« Processes status signals from:

» the datapath

» the interface

Finite State Machine (FSM)
« Is a 6-tuple:

» Input alphabet: I

» Output alphabet: O

» Set of states: X
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» Set of starting states: R C X
» Set of transition relations: f C (X x I x X))
» Output relation: g C (X x O x X)
« A FSM is deterministic if and only if there is a single starting state (|R| = 1) and state transitions and
output relations are functions: f: (X x [) = X ¢: (X x0)— O
» An FSM is completely specified if and only if these functions are completely defined.

Activation Signals for Operations
+ The activation signals of an operation are all control signals required for its execution.
« Activation signals may include:
» The multiplexer control signals to establish a connection between input registers, functional unit, and
output register.
» Register-enable signal to write the result to the output register.
» ALU control signals to select the correct operation.
+ A read activation signal is used to enter input values into the register.
+ A hold signal is used to keep the value of a variable in a register.

FSM with Data Specification

» The FSM with data specification describes the schedule and the control flow of the datapath and the HW
module interface.

« The operations of the datapath are assigned to the states of the FSMD.

« The FSMD has one state transition for each clock cycle.

« Transitions may depend on status signals from the datapath or the interface.

* Example: SGU for basic block B3 of Goertzel algorithm

p{Mc2) 1}2(Mc2)

Hold t8
pMcy) vj(MCl) o

Hold t6
VI(MC1) 1}Z(M(il) o

ngCZ) ngCZ) Hold t6

Ack=1/Ready=0

V4 Hold t9
-/Ready=1

Ve

Hold power (T

Reset state
transitions omitted.

Ack=0

Figure 4.31: FSM with Data Specification (FSMD)

State Assignment

+ Number of state variables:

+ Number of possible states: | X| = 2™

+ Number of state variables: n,;, = [log,|X]|]
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State Binary One-hot Almost one-hot

x 000 00001 0000
0

x 001 00010 0001
1

X 010 00100 0010
2

x 011 01000 0100
3

x 100 10000 1000
4

Figure 4.32: State Assignment - State Coding

Next-State and Output Logic

Start Reset

Ack

sV

SV next

000
000

000
001

001

010

010

011

011

000

100

101

101
101

110
000

110
110

110
000

X | XX | XX |X|X|X|X]|+ ©
Rr|loo|loo|o|lo|o|o|o o

X|rOoO|lrRPO|X|X|X|X]|XxX X

XXXX

000

Figure 4.33: Next-State and Output Logic for Goertzel Algorithm

4.4 Loop and 10 Optimization

4.4.1 I/O Scheduling

Register Interface

« Data is stored in registers in the interface (access via bus).

» Read/write operations can be scheduled concurrently with zero delay.

* Example: Read/Write operations scheduled implicitly.

C-Code section

int binomial (int a, int b) {
int c=a+tb;

c=c*c;
return c;
}
Ra
D a
—1] En
b ck |Fp
»|D Q
En
b ik

HW Module Interface

a

Ul
UQ

Figure 4.34: Register Interface

Array Register Interface
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* Example:

C-Code section
int acc(int af[4]) {
cl= af[0l+all];
int c2= af[2]+al[3];
int c=cl+c2;
return c;

'\l Data path
R1
D a — alo]
En
BusDatalN r} clk 2
" - >p a a[1]
: > En
’ D cik

Figure 4.35: Array Register Interface
Array FIFO Interface

C-Code section
int acc(int af[4]) {
cl= al0]+all];
int c2= al[2]+al[3];
int c=cl+c2;
return c;

Data path
n FIFO out > > >3]

Full : Empty
WrEn ReadEn
F> Clk

Figure 4.36: Array FIFO Interface

BusDatalN

« array is stored in FIFO
« stalls if FIFO is empty

SRAM Buffers

On-chip buffers using SRAM cells (different from flip-flops)
Single-port SRAM

» Only one port to read or write

Dual-port SRAM

» Two ports to read or write

» Cannot read/write the same location on both ports at the same time
» True dual-port SRAM: Can read the same location on both ports; writes or read/write still need to be
arbitrated.

Timing
» Returns data either in the same (zero-delay) or the next clock cycle (pipelined).

Ping Pong Array Memory Interface
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R1

Addrl

W1 RAM1 W2 |¢= »W1 RAM1 W2
R2 = R1 R2
Addr2 | €= =»{Addrl Addr2

o=/

R1

Addrl

W1 RAM2 W2 4-« »’Wl RAM2 W2

R2 > » R1 R2

Addr2 |e= « Addrl Addr2

Tt

Mux

XNIA

ACA

Figure 4.37: Ping Pong Array Memory Interface

« One RAM for input, one RAM for output.
« Switch/overlap between phases (ping-pong scheme).
« All ports can be kept busy if read/write operations from two different execution runs overlap (high

utilization of memory ports).

4.4.2 Control Flow and Loop Scheduling

Combining Schedules of SGUs
« Algorithms find a schedule for a single sequencing graph unit (SGU).
+ Hierarchy nodes (CALL, BR, LOOP) represent an SGU.

+ The schedule for a complete sequencing graph is found by:

>

>

>

Compute the schedule for the SGU on the lowest level of the hierarchy first.
Extract the execution time of hierarchy nodes from the latency of the schedule of their corresponding

Schedule the top-level SGU with the hierarchy node.

» Shift the start time of the schedule of the lower-level SGU to the start time of the corresponding hierarchy

 The schedule can be data-dependent or independent.

Execution of loop iteration starts before last loop iteration ended

Initialization Interval T, is delay between start of iterations

For loop pipelining

Start time of nodes for different iterations kk+1: | %) = t®+T,

Latency of Loop Node|d,,,, = T, - #iterations + (AsGy roop - T,)

Example:
cc1

T,< AsGu,Loor

,,,,, 1 It2

ACA

Figure 4.38: Loop Pipelining
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5 Block E

5.1 Multi-Core Challenges

5.1.1 Cache Recap

Please take a look at Section 3.4

5.1.2 Caching with Write Through

* Simple Example program (for simplicity no optimization):

a0=10
1: for (i=0; i<2; i++) { al=’
i ) x[1] = x[i] + a[i]; 0x1000: x[0]=7

0x2000: a[0]=5
0x1004: x[1]=10
0x2004: a[1]=7

// basepointer t0 = 0x0000 1000
// basepointer tl = 0x0000 2000
Write through
LW a0,0(t0) Read x[0]=2, miss -> fetch x[1] to memory
LW al,0(tl) Read a[0]=5, miss->fetch
ADD a0,a0,al

SW a0, 0 (t0) Write x[0]=7, hit 0x1000: x[0]=7
LW a0,4(t0) Read x[1]=3, miss -> fetch 0x1004: x[1]=10
LW al,4(tl) Read a[1]=7, miss ->fetch

ADD a0,a0,al 0x2000: a[0]=5
SW a0,4(t0) write x[1]=10, hit, write through 0x2004: a[1]=7

Figure 5.1: Caching with Write Through

* Simple Example program (for simplicity no optimization):
a0=10
al=7

1: for (i=0; i<2; i++) {

gf ) x[1] = x[i] + alil; Dirty (D), EEEE) 0x1000 (D): x[0]=7 i
. The value is 0x2000 (C): a[0]=5 ;
not back inq 0x1004 (D): x[1]=10 ;

// basepointer t0 = 0x0000 1000 memory 0x2004 (C): a[11=7 3
// basepointer tl = 0x0000 2000 : :
We assume ! !

i ' Memor :

LW a0,0(t0) Read x[0]=2, miss -> fetch ::\veof\il;’sltues ontroller \:VI
LW al,0(tl) Read a[0]=5, miss->fetch are not : '

ADD a0,a0,al replaced
SW a0, 0 (t0) Write x[0]=7, hit -> mark dirty P 0x1000: x[0]=2
LW a0,4(t0) Read x[1]=3, miss -> fetch 0x1004: x[1]=3
LW al,4(tl) Reada[1]=7, miss ->fetch

ADD a0,a0,al 0x2000: a[0]=5

SW a0,4(t0) \Write x[1]=10, hit -> mark dirt 0x2004:a[1]=7  MemoryChip i

Figure 5.2: Caching with Write-back (Copy back), no eviction
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* Simple Example program (for simplicity no optimization):

a0=10
Dirty, al=7
The value is not ;
back in memory ‘ 0x1004 (D): x[1]=10
0x2004 (C): a[1]=7

1: for (i=0; i<2; i++) {

2: x[1] = x[1] + al[i];
3: }

First two values,
are evicted and
replaced, then we
need to write x[0]
back before
caching the new
values, as it is G

// basepointer t0 = 0x0000 1000
// basepointer tl1 = 0x0000 2000

LW a0, 0(t0) Read x[0]=2, miss -> fetch
LW al,0(tl) Read a[0]=5, miss->fetch
ADD a0,a0,al ked di
SW a0,0(t0) Write x[0]=7, hit -> mark dirty marked dirty 0x1000: x[0]=7

LW a0,4(t0) Read x[1]=3, miss -> write back x[0], fetch 0x1004: x[1]=3
LW al,4(tl) Reada[l]=7, miss->fetch
ADD a0,a0,al 0x2000: a[0]=5

SW a0, 4 (t0) write x[1]=10, hit -> mark dirt LSy Voo e

Figure 5.3: Caching with Write-back (Copy back), with eviction

* Simple Example program (for simplicity no optimization):

a0=10
1: for (i=0; i<2; i+4) { al=7 ‘
gf x[i] = x[i] + al[i]; Dirty, 0x1000 (D): x[0]=7 | x[1] = 10
2} Thevalueis  0x2000 (C): a[0]=5 | a[1] = 7
not back in
memory

// basepointer t0 0x0000 1000
// basepointer tl = 0x0000 2000

LW a0,0(t0) Read x[0]=2, miss -> fetch
LW al,0(tl) Read a[0]=5, miss->fetch
ADD a0,a0,al

SW a0,0(t0) Write x[0]=7, hit -> mark dirty 0x1000: x[0]=2
LW a0,4(t0) Readx[1]=3, hit  Due to data locality we 0x1004: x[1]=3
LW al,4(tl) Readall]=7, hit see more ¢ache hits!

ADD a0,a0,al 0x2000: a[0]=5

SW a0,4(t0) write x[1]=10, hit, already marked dirty 0x2004: a[1]=7

Figure 5.4: Caching with block size > 1

5.1.3 Multi-Processors with Shared Memory
Symmetric Multi-Processor (Symmetric Multi-Processor (SMP)) with Shared Cache

several processor cores on the chip

individual private caches (L1)

shared caches (L2) and shared main memory

« Single-core multi-threading: All threads run on same processor core

« SMP: Threads executed on several processor cores (P0,P1,...) in parallel, presenting three challenges:
» The Cache Coherency Problem

» Memory Consistency Problem

» Synchronization Problem
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Processor Chip

PO P1 P2 P3

]

Cache Cache Cache Cache

Memory
Controller (MC)

Main Memory

Memory Chip

Figure 5.5: Shared Cache

5.1.4 The Cache Coherency Problem

* Example program: * Multi-threaded execution on two processors PO and P1

//Line 1 Thread 0 (P0): x[0]=0
SW zero,0(t0) // store 0 to x[0] in memory

1 x[0] = 0O;
2: #pragma omp parallel for //Line 5: Thread 0 (PO): x[0] = x[0] + al0];
3 for (i=0; i<2; i++) { LW a0,0(t0) // load x[0] from memory
4: #pragma omp critical { ’1 LW al,0(tl) // load a[0] from memory
5: x[0] = x[0] + al[i]; - ADD a0,20,al
6: } ‘ SW a0,0(t0) // store x[0] to memory
Tro} Part for Multi- //Line 5: Thread 1 (P1): x[0] = x[0] + a[ll;
8: result = x[0]; threaded LW a0,0(t0) // load x[0] from memory
execution LW al,4(tl) // load a[l] from memory
ADD a0,a0,al
Start: SW a0,0(t0) // store x[0] to memory
Memory: a[0] = 3; a[1] = 7 Line 8 Thread 0 (P0): result = x[0]
Base pointer register x: t0=0x0000 1000 LW a2,0(t0)//load x[0] from memory->result in a2

Base pointer register a: t1=0x0000 2000

Figure 5.6: Cache Coherency Problem Code Example

5.1.5 Multi-threaded Execution without Caches

Too many graphical slides

5.1.6 The Memory Consistency Problem

The Memory Consistency Problem for SMP
« Preserving program order on each single processor is insufficient for correct code execution.
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» Mechanisms are needed to ensure that accesses of one processor appear to execute in program order to all
others.

Ensuring full program order across processors is expensive in terms of performance.
« Often, processors only enforce partial program ordering.
« Memory consistency model: Types of enforced program ordering by the processor.

5.1.7 The Synchronization Problem

* Shared variable that can be used by threads to lock this section and release it
* This will not be enough as we will show later.
¢ Possible implementation in high-level language and RISC-V asm:

1: void lock(int *lockvar) { lock: // addr *lockvar in a0
. . . Loopl: //while (*lockvar==1) {}
* — .
2 while (*lockvar 1) {} ; // wait until released LW al,0(a0)
3: *lockvar = 1; // acquire lock BNE al,zero,Loopl
LI al,1
4: } SW al,0(a0)
RET

5: void unlock(int *lockvar) { unlock:

SW zero, 0(a0l)
6: *lockvar = 0; // release lock RET
T: 0}

Figure 5.7: Lock — Variable — High-level and RISC-V Implementation

« A race condition at the instruction level caused both threads to enter the critical section.
Programmers need other primitives to achieve synchronization.

« Software solution: Peterson’s algorithm
» Can achieve mutual exclusion
» Suffers from a lack of scalability for many threads.
« HW support for synchronization
» Reduce synchronization overhead
» Enable scalable synchronization for many parallel threads

5.2 Cache Coherency

5.2.1 Cache Controllers

’ Processor (P) i Processor Chip ‘
[} ’ PO H P1 H P2 H P3 ‘
Cache Tag entries Cache blocks t t t t 1
’ Cache H Cache || Cache Cache
[N S N N N
U NEIEIERER
v | ‘
Coherence ! #
Controller (CC) % :
Outstanding Memory
Transaction Table 4-»{ Snooper | FSM ‘ ; ’ Controller (MC) ’ L2 Cache ‘
e | |
i Memory Chip 1
vio ACA e 5

Figure 5.8: Coherence Controller

Outstanding transaction table & Snooper
+ Outstanding transaction table
» In the split transaction bus, multiple requests to different addresses can be placed on the bus even when
the oldest request has not obtained its data.
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» keeps track of bus transactions that have not completed.
« Bus snooper.
» Snoops each bus transaction
» checks the cache tag array to see if it has the block that is involved in the transaction
» checks the current state of the block (if the block is found)
» changes the state of the block
» New state of block -> a finite state machine (FSM) that implements the cache coherence protocol
» Data that is sent out is placed in a queue called the write back buffer

5.2.2 Coherence Protocol for Write Through Caches
Coherence Protocol for Write Through Caches - Requests

« The simplest cache coherence protocol: write-through caches.

Requests from the processor side, as well as from the bus side are snooped by the snooper.

Processor requests to the cache include:
» 1.PrRd: processor-side request to read a cache block.
» 2.PrWr: processor-side request to write to a cache block.

» Snooped requests to the cache include:
» 1.BusRd: snooped request that indicates there is a read request to a block made by another processor.
» 2.BusWr: snooped request that indicates there is a write request to a block made by another processor.
In the case of a write-through cache, the BusWr is a write-through to the main memory performed by
another processor.

Coherence Protocol for Write Through Caches — Cache Block States

Each cache block has an associated state which can have one of the following values:

1. Valid (V): the cache block is valid and clean, meaning that the cached value is the same with that in the
lower-level memory component (in this case the main memory).

2. Invalid (I): the cache block is invalid. Accesses to this cache block will generate cache misses.

* Processor Side Request * Bus Side Request ’ Processor (P) ‘
PrRd/- t
PrWr/BusWr BusRd/- Cache
PrRd PrWwr
BusWr/- FSM
PrRd/BusRd BusRd BusWr BusRd BusWr
PrWr/BusWr BusRd/-
BusWr/-
FSM

The processor in the book uses a write around (write no-allocate) policy so the value is

vin dirarth/ indatad in the memary and natfatchad tn the rarhe [ramainc inualid) 10

Figure 5.9: Snooper FSM

5.2.3 MSI Protocol with Write Back Caches

In the MSI protocol, processor requests to the cache include:
1. PrRd: processor-side request to read from a cache block.
2. PrWr: processor-side request to write to a cache block.

Bus-side requests include:
1. BusRd: snooped request that indicates there is a read request to a cache block made by another processor.

@
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2. BusRdX: snooped request that indicates there is a read-exclusive (write) request to a cache block made by
another processor which does not already have the block.

3. Flush: snooped request that indicates that an entire cache block is written back to the main memory by
another processor.

Cache Block States

Each cache block has an associated state which can have one of the following values:

1. Modified (M): the cache block is valid in only one cache, and the value is (likely) different from the one
in the main memory. This state extends the meaning of the dirty state in a write-back cache for a single-
processor system, except that now it also implies exclusive ownership. Whereas dirty means the cached
value is potentially different from the value in the main memory, modified means both the cached value
is potentially different from the value in the main memory, and it is cached only in one location.

2. Shared (S): the cache block is valid, potentially shared by multiple processors, and is clean (the value is
the same as the one in the main memory). The shared state is similar to the valid state in the coherence
protocol for write through caches.

3. Invalid (I): the cache block is invalid (either not cached, or cached but outdated).

Read Permission | Write Permission
Modified State (M)
Shared State (S) X
Invalid State (I) ) 4 X

Table 5.5: MSI Protocol Permissions

« Intervention: downgrade to S state
« Invalidation: downgrade to I state

* Processor Side Request * Bus Side Request ’ Processor (P) ‘
PrRd/- t
Prwr/- PrRd/- BusRd/- Cache

BusRd/Flush

L ]

PrRd PrWr Flush
FSM
BusRdX/- BusRd BusRdX BusRd BusRdX Flush

PrRd/BusRd

PrWr/BusRdX BusRdX/Flush

BusRd/-
BusRdX/-

vin ACA 16

Figure 5.10: MSI Protocol - Snooper FSM - Snooper FSM
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* Ininvalid state (1):
* Processor read request (PrRd):
* Processor Side Request * Cache miss occurs
* To load the data into the cache, a BusRd is posted on the bus
* Fetching block from memory -> Set state to S
PrRd/- * Processor write Request (PrWr):
Prwr/- PrRd/- * posts a BusRdX request on the bus
* Other caches will invalidate their cached copies
* Fetching block from memory -> Set state to M
* Processor can update the block

* In shared state (S):

* Processor read request (PrRd):
* Block already cached -> provide value to processor
* No bus transaction

* Processor write Request (PrWr):
* Block already cached
* posts a BusRdX request on the bus
* Other caches will invalidate their cached copies
* Processor can update the block in its own cache

* In modified state (M):
* Processor read request (PrRd) & Processor write Request (PrWr)
* No ch\?nge in state

PrRd/BusRd

PrWr/BusRdX

V10

Figure 5.11: MSI Protocol - Snooper FSM - Processor Side Request

* Ininvalid state (l):
* Bus Side Request * Bus read request (BusRd, BusRedX):
* No change in state as block can be ignored (not cached or invalid)

* In shared state (S):
BusRd)/- * Bus read request (BusRd):
¢ Another cache is fetching the block for read
* No state change
* Exclusive bus read request (BusRdX):
* Another processor is fetching the block for write
* Invalide our copy

Buskdx/-  * In modified state (M):
* Bus read request (BusRd): - Intervention

* Another cache is fetching the block for read and has a miss

« Flush the block to the other cache and to the memory (clean sharing)
BusRd/- * Move the shared state (our copy is still up to date)
BusRdX/- * Exclusive bus read request (BusRdX):
« Another cache is fetching the block for read and has a miss
* Flush the block to the other cache and to the memory (clean sharing)
* Invalidate our copy o

Figure 5.12: MSI Protocol - Snooper ESM - Bus Side Request

BusRd/Flush

BusRdX/Flush

5.2.4 MESI Protocol with Write-Back Caches

In the MESI protocol, processor requests to the cache include:
1. PrRd: processor-side request to read from a cache block.
2. PrWr: processor-side request to write to a cache block.

Bus-side requests include:

1. BusRd: snooped request that indicates there is a read request to a cache block made by another processor.

2. BusRdX: snooped request that indicates there is a read-exclusive (write) request to a cache block made by
another processor which does not already have the block.

3. Flush: snooped request that indicates that an entire cache block is written back to the main memory by
another processor.

4. FlushOpt: snooped request that indicates an entire cache block is posted on the bus in order to supply it
to another processor. We refer to such an optional block flush as a cache-to-cache transfer.

Each cache block has an associated state which can have one of the following values:

1. Modified (M): the cache block is valid in only one cache, and the value is (likely) different from the one
in the main memory. This state has the same meaning as the dirty state in a write back cache for a single
processor system.

2. Exclusive (E): the cache block is valid, clean, and only resides in one cache.

3. Shared (S): the cache block is valid, clean, and may reside in multiple caches.

4. Invalid (I): the cache block is invalid.
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* Ininvalid state (I):

* Processor Side Request * Processor read request, other processor has cache block (PrRd(C)):
* Cache miss occurs
PrRd/- * To load the data into the cache, a BusRd is posted on the bus
Prwr/- PrRd/- * Other processors indicate with C that they have a copy in cache

* Fetching block from other cache (FlushOpt) -> Set state to S
* Processor read request, no other processor has cache block (PrRd(!C)):
* Cache miss occurs

* To load the data into the cache, a BusRd is posted on the bus
PrWr/BusUpgr PrWr/BusRdX [ prrd/BusRd(IC) « Other processors indicate with C that they do not have a copy in cache
* Fetching block from memory -> Set state to E
* Processor write Request (PrWr):
* posts a BusRdX request on the bus
PrRd/BusRd(C) « Other caches will invalidate their cached copies, possibly flush to mem
PrRd/- * Fetching block from memory -> Set state to M
¢ Processor can update the block

vin ACA 40

Figure 5.13: MESI Protocol with Write Back Caches - Snooper FSM (1)

* In shared state (S):
* Processor Side Request * processor read request (PrRd):
* Block already cached -> provide value to processor

PrRd/- * No bus transaction

PrWr/- PrRd/- * Processor write Request (PrWr):
* Block already cached
* posts a BusUpgr request on the bus
* Other caches will invalidate their cached copies
* Processor can update the block in its own cache

* processor read request (PrRd) & Processor write Request (PrWr)
* No change in state

vin ACA a1

Figure 5.14: MESI Protocol with Write Back Caches - Snooper FSM (2)

* Processor Side Request * In exclusive state (E):
* processor read request (PrRd):
PrRd/- * Block already cached -> provide value to processor
Prwr/- PrRd/- * No bus transaction

* Processor write Request (PrWr):
* Block already cached
* No other processor has copy, no need to send bus message
* Processor can update the block in its own cache
Prwr/BusRdX | prRd/BusRd(!C) One major advantage of MESI!

PrRd/BusRd(C)

vin ACA a7

Figure 5.15: MESI Protocol with Write Back Caches - Snooper FSM (3)
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* Bus Side Request

BusRd/Flush| BusRd/ BusRdX/FlushOpt

BusRdX/FlushOpt
BusUpgr/-

BusRd/FlushOpt

BusRd/-
BusRdX/-
BusUpgr/-

vin

* Ininvalid state (l):

* Bus read request (BusRd, BusRdX,BusUpgr):

* No change in state as block can be
ignored (not cached or invalid)

¢ In shared state (S):

* Bus read request (BusRd):
* Another cache is fetching the block for read

* FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

* No state change
¢ Exclusive bus read request (BusRdX):
* Another processor is fetching the block for write

* FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

« Invalide our copy
* Bus upgrade request (BusUpgr):

* Another processor is fetching the block for write;
but has a local copy

ACA o Inmunlida anir ranu 43

Figure 5.16: MESI Protocol with Write Back Caches - Snooper FSM (4)

* In modified state (M):

* Bus Side Request

BusRd/Flush| BusRd/ BusRdX/FlushOpt

BusRdX/FlushOpt
BusUpgr/-

BusRd/FlushOpt

BusRd/-
BusRdX/-
BusUpgr/-

* Bus read request (BusRd):

* Another cache is fetching the block for read and has a
miss

¢ Flush the block to the other cache and to the memory
(clean sharing)

* Move to the shared state (our copy is still up to date)

* Exclusive bus read request (BusRdX):

Another cache is fetching the block for write and has a
miss

Flush the block to the other cache and to the memory
(clean sharing)

Invalidate our copy

ACA aa

Figure 5.17: MESI Protocol with Write Back Caches - Snooper FSM (5)

* In exclusive state (E):

* Bus Side Request

BusRd/Flush BusRd/

BusRdX/FlushOpt
BusUpgr/-

BusRd/-

* Bus read request (BusRd):

* Another cache is fetching the block for read and has a
miss

* FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

* Move the shared state (our copy is still up to date)

BusRdX/Flushopt * EXclusive bus read request (BusRdX):

Another cache is fetching the block for write and has a
miss

FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

Invalidate our copy

BusRd/FlushOpt BusRdX/-

BusUpgr/-

vin ACA a5

Figure 5.18: MESI Protocol with Write Back Caches - Snooper FSM (6)

Comparison MSI vs. MESI

+ Compared to the MSI protocol, the MESI protocol does not reduce bandwidth usage on the bus, but it does
reduce bandwidth use to the main memory due to cache-to-cache transfers (FlushOpt).

+ Bandwidth to the main memory is often a bottleneck when there are a lot of processors connected to the
same memory (known as the Memory wall!).
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« Additionally, MESI keeps track of data that is exclusive to the thread (threads often operate on private data;

not all data is shared). No bus signaling is required for this private data.

5.2.5 MOESI Protocol with Write-Back Caches
Request In the MOESI protocol, processor requests to the cache include:

1.
2.

PrRd: processor-side request to read a cache block.
PrWr: processor-side request to write to a cache block.

Bus-side requests include:

1.
2.

BusRd: snooped request that indicates there is a read request to a cache block made by another processor.
BusRdX: snooped request that indicates there is a read exclusive (write) request to a cache block made by
another processor which does not already have the block.

. BusUpgr: snooped request that indicates that there is a write request to a cache block that another

processor already has in its cache.
Flush: snooped request that indicates an entire cache block is placed on the bus by a processor to facilitate
a transfer to another processor’s cache. (Different from MESI! Not to memory, closer to FlushOpt in MESI!)

. FlushOpt: snooped request that indicates an entire cache block is posted on the bus in order to supply it to

another processor. (We refer to it as FlushOpt because, unlike Flush which is needed for write propagation
correctness, FlushOpt is implemented as a performance-enhancing feature that can be removed without
impacting correctness.)

FlushWB: snooped request that indicates that an entire cache block is written back to the main memory
by another processor, and it is not meant as a transfer from one cache to another.

Cache Block States Each cache block has an associated state which can have one of the following values:

1.

Modified (M): the cache block is valid in only one cache, and the value is (likely) different from the one in
the main memory. This state has the same meaning as the dirty state in a write-back cache for a single-
processor system, except that now it also implies exclusive ownership.

. Owned (O): the cache block is valid, possibly dirty, and may reside in multiple caches. However, when

there are multiple cached copies, there can only be one cache that has the block in the Owned state; other
caches should have the block in the Shared state.
Exclusive (E): the cache block is valid, clean, and only resides in one cache.

. Shared (S): the cache block is valid, possibly dirty, and may reside in multiple caches.

Invalid (I): the cache block is invalid.

BusRdX/
FlushOpt

v)
BusRd/-
BusRdX/

BusUpgr

BusRdX/Flush

BusRdX/-
BusUpgr/-

BusRdX/Flush
BusUpgr/-

1.04.20%4 n ACA

Figure 5.19: MOESI - Snooper FSM

FlushWB
« The owner (O) keeps track of the latest version on each block and supplies it.
« Dirty sharing: The memory may not have an up-to-date copy.
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+ FlushWB’s role:

« If the owner evicts the cache block, then it needs to be written back to the main memory (this is the
FlushWB), it is not in the FSM, as it is not caused by a read/write of this cache block, but by another block
causing the eviction.

« There is no owner after that but other caches may still have block in shared state (transfer of owner can
be implemented)

FlushOpt

« FlushOpt occurs when downgrading from Exclusive (E) to Shared (S) or Invalid (I)

« As a key characteristic, MOESI fetches blocks from the owner

« If the block is in the E state, it is not marked as “owned.”

+ Yet, as an optimization feature, FlushOpt indicates that the block is supplied by the cache having it in the
“E” state and not by the memory in a clean-sharing cache-to-cache transfer

« This is not needed for correctness (write propagation) as the block could also be supplied by the memory
(clean sharing; memory has a valid copy)

MOESI vs. MESI
« MOESI allows for dirty sharing:
» Less memory traffic, faster transfers (cache-to-cache).
» But with an L2 cache, the effect may be less important, as L2 to L1 transfers may still be fast.
« MOESI needs 3 bits per cache line to store state; MESI only 2 bits
« MESI, MOESI:
» Open question: When several blocks have a clean cache block in the Shared state — who supplies the
block?

5.2.6 Future Protocols

« MESIF (by Intel): MESI with a forwarding state (used as a designated supplier when several caches share
a clean block), but no dirty sharing, such as MOESL
« MSI, MESI; MOESI: Invalidation-based protocols

5.3 Memory Models

5.3.1 Sequential Consistency (SC) & Synchronization Problem

« Memory Model: Mechanisms are needed to ensure that accesses of one processor appear to execute in
program order to all others, at least partly.
« Atomic Operations: Hardware support for synchronization

5.3.2 Abstract View on Interleaving Threads

« Interleavings are all possible intertwinings of sequences of statements from threads.
+ An interleavings graph is a representation of interleavings in the form of a graph.
» Each path from the start node to the end node of the graph corresponds to an interleaving.
» The set of all such paths corresponds to the set of all possible interleavings
» Due to different runtimes, different scheduling strategies, different hardware architectures, the actual
execution sequence can match any arbitrary interleaving.
» a Race Condition is a situation in which the result of an operation depends on the temporally intertwined
execution of certain other operations.
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Thread1 (A B,C,D)= Thread 2
(0,0,0,0)

a: A :=1; b: B := 2;

c. C :=B; d: D :=A;

start > (0,0,0,0) ? (1,0,0,0) ‘ (1,0,0,0)

(0.2,0,0)

(0.2,0,0)
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=
o
= °
2
o
7
o
ol“x vo S
ee

Figure 5.20: Interleavings Graph

Sequential Consistency from the Programmer’s Perspective
« a single global memory
« each core generates memory operations in program order

5.3.3 Atomic Instructions and Variables

+ Assumption: The assignment of a 16-bit word occurs non-atomically, by copying the two 8-bit halves
separately.

« When multiple threads access common memory cells (variables), it may be necessary to guarantee that
operations on variables are executed atomically, i.e., indivisibly.

« This can only be guaranteed by the hardware (CPU).

« All common CPUs offer such atomic operations as instructions.

Volatile Atomic

all other threads see all accesses to variables (not | Additionally, operations on these variables are
optimized by compiler) atomic.

Table 5.6: Difference between volatile and atomic

5.3.4 Synchronization with Atomic Variables

Producer - Consumer
+ A piece of data should be safely transferred from one thread to another thread.
» thread T} writes to variable D, thread T;, should read from D
+ With the help of an atomic variable (flag F'), data can be transferred “safely” from one thread to another.

5.3.5 Program vs. Execution Order in the Relaxed Memory Model

« In addition to atomic variables, executing the instructions in program order was recognized as a prereq-
uisite for the Sequentially Consistent (SC) memory model.

+ Modern computer architectures do not guarantee that instructions are executed in program order

+ The compiler and OoO processor apply optimizations with reordering of instructions as for single-threaded
execution
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Level (Re-)Ordering

Source Code Program Order

Compiler | optimizing of the code (moving and removing instructions)

CPU instruction scheduling, OoO-Execution
Memory write buffers, caches, ...
Execution execution order

Table 5.7: Levels of Reordering in the Relaxed Memory Model

5.3.6 Release/Acquire Memory Model

« How can we integrate the new memory models so that sensible work is possible? We need additional
hardware tools.

+ Modern computer architectures offer so-called

+ Memory-Fences (Memory Barriers).

+ Moving instructions across memory fences is prohibited.

may be opl
reordered op2 none of those ...

... can be reordered
with any of those

may be
reordered op4

V1-0 ACA 4

Figure 5.21: Release/Acquire Fence

« Programming languages must offer adequate language features so that memory fences can be utilized.
« Release and Acquire operations for atomic variables.
+ Temporal relativity can be ensured for atomic variables, but not for conventional variables.

Automatic placement of Memory-Fences is not possible (undecidable problem)! (Equivalent to the Halting
Problem)

Sequential Consistency on Modern Computers

Hardware tools can also ensure SC.

/& Programmers do not have to worry.

/& Programs are easier to write and debug.

/& The correctness of such programs is easier to prove.

F The hardware instructions for SC are very expensive (slow).

F The performance advantages of modern architectures are not utilized.

Release/Acquire Memory Model

+ Release-Operation: Sets a memory fence so that no load and store operations that stand in program order
before the Release operation can be moved behind the Release operation.

« Acquire-Operation: Sets a memory fence so that no load and store operations that stand in program order
after the Acquire operation can be moved before the Acquire operation.

« Relaxed-Operation: Sets no memory fences.

O8]
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5.3.7 Blocking Wait

« Disadvantage of the previous type of communication/synchronization: a thread is in a loop until data can
be read.
» Wastes unnecessary computing time and energy.

Semaphore
Lock(S);
Z local := Z;
Z local := Z local + ...;
Z := Z local;
Unlock(S);

Code 5.8: Easy Semaphore Example

/& easy to understand

/& no waste of computing time and energy

‘e sequential consistent

F if a thread crashes between lock and unlock, no other thread can make progress
 thread dispatching takes a lot of time.

7 Read-Modify-Write operations are slow

5.3.8 Non-Blocking Wait

+ Instead of synchronization via semaphore or similar, direct use of Read-Modify-Write operations.
« Optimistic approach.
« Function RMW(V, old_value, new_value)
« Returns true if the atomic variable V still has the old value; V receives the new value simultaneously.
« Returns false otherwise. Implicitly, old_value is set to new_value.
/& If few threads access the central variable simultaneously, it is very efficient.
/& If a thread crashes, other threads can still make progress.
2= Sequentially consistent and Release/Acquire memory model are possible.
& Difficult to understand for more complex algorithms.
¥ Even more difficult to understand for more complex algorithms when combined with Release/Acquire
memory order.
¢ Suffers from the ABA problem (to be explained on the next slides).

The ABA Problem

Process P1 reads value A from a shared memory location.

P1 is preempted, allowing process P2 to run.

P2 writes value B to the shared memory location.

P2 writes value A to the shared memory location.

P2 is preempted, allowing process P1 to run.

P1 reads value A from the shared memory location.

P1 determines that the shared memory value has not changed and continues.
+ — Thus an RMW operation may succeed, although it actually should not.

NS W e

« The ABA problem can be solved via CAS operations by counting the number of accesses to shared data.

Load-Link/Store-Conditional (LL/SC) Operation
« Function LL (address) loads the value stored at the address
« Function SC(address, value) stores the value at the address, provided that there was no interfering
store to the address. It returns true if successful, and false otherwise.
« LL: stores the address at the cache line
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« Any modification to any portion of the cache line (via conditional or ordinary store) causes the store-
conditional (SC) to fail

LL/SC operations are supported by DEC Alpha, PowerPC, MIPS, ARM, RISC-V, etc.

Not sensitive to the ABA problem

Instruction set: needs two words instead of three, which are needed by CAS

Sometimes fails if a context switch occurs between LL and SC operations

Sometimes fails if a second LL/SC operation occurs

4 B

No nesting of LL/SC operations

5.3.9 Performance Comparison

280.55
338.7]
3148

11169

10271

46.6

AR Specdup over SC (%)

IS 2
1012 '
2 B
H glELGZ‘S 181628 B 12 181628 181628
Experiment: 1 = e
181628
« N Threads Arraylock  FairLock  FilterLock PetersonLock TASLock TATASLock

Lock benchmarks for 1, 2, 8, 16, 28 threads

e 10M Lock/Unlock operations in a loop, no operation between Lock and Unlock
* 28 Cores, 2-socket system (Intel Xeon E5-2697 v3 @ 2.60 GHz)

from: S. Yang, S. Jeong, B. Min, Y. Kim, B. Burgstaller, J. Blieberger, Design-space evaluation for non-blocking synchronization in Ada: lock elision of
protected objects, concurrent objects, and low-level atomics, Journal of System Architecture, Volume 110, 2020, 101764, ISSN 13837621,
https://doi.org/10.1016/j.sysarc.2020.101764 .

Vi-0 ACA

Figure 5.22: Performance Gain Intel X86 through SC-AR-Relaxation
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6 Block F

6.1 On-Chip Buses

Motivation

« Most chips feature a range of processing elements (PEs) / multi-cores

« PEs need to communicate with each other

 On-chip Interconnect architecture and type play crucial role in performance.
« Chips and devices are connected via different types of interconnects

6.1.1 Interconnect Types

« On-Chip: Connects modules that are integrated into the same chip (IC: integrated circuit)

« PCB-level: Connects different ASICs + connectors and other component all mounted on one Printed Circuit
Board (PCB).

« Many other interconnects (board to board, rack to rack): PCle, Ethernet, CAN, UART, 12C, SPI, GPIO

6.1.2 On-chip Buses

6.1.2.1 Memory-mapped Buses
« Purpose
» Read or write a value from or to a certain address
» Value can be data or peripheral control information
« Memory-mapped Bus has several (sub-)buses (group of signals) and a defined bus protocol
» Address bus
» Data bus for reading data
» Data bus for writing data
» Control signals: Indicate if access is read or write, bus length, ID, bus grant, ...
+ Modules on the bus can either act as initiators or targets
» Typical initiators: CPUs, DSPs, DMAs, bus bridges, ...
» Typical targets: Memory, accelerators, interface peripheral, bus bridge

Classes of Memory-mapped Buses

. Single-initiator bus

» One initiator component can address different target components, which are mapped to different
addresses

Shared bus

» There are several initiators on the bus

» An arbiter decides which initiator module is granted access to the bus
» Only one initiator can access one slave via the bus at a time
. Layered bus
» There is more than one arbiter such that more than one initiator is granted access on the bus
» Only one target component on each layer can be accessed at a time
« Crossbar/ bus matrix
» Each target component has its own arbiter
» Each target component can be accessed by one initiator at a time

6.1.2.2 Single Initiator

+ Target knows
» if it is addressed by observing the address bus ADDR
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» or decoder generates SEL signal for targets based on address bus ADDR
« Target can receive data on write data bus WDATA
« Decoder forwards the data from the addressed target by multiplexing it to the read data bus RDATA
« Additional control bus CTRL for signals related to bus protocol (e.g. WR, SEL, RDY )

; Target1
a1 I
Init it ; Target2
Initiator Mirrored I_y Target3
I T
et
Figure 6.1: Single Initiator
Simple Write Access
1. Initiator places address and data on the ADDR and WDATA bus
« Initiator indicates write by setting signal WR to high
« Initiator indicates that access is started by setting SEL signal to high
2. Target acknowledges write access by RDY signal
C1 €2 €3 4 | C1 L2 €3 4 C5 €6 !
ADDR ADDR L X addr X
L/ N A N

Figure 6.2: Single Initiator - Write

Simple Read Access
1. Initiator places address on the ADDR bus

« Initiator indicates read access by setting signal WR to low

« Initiator indicates that access is started by setting SEL signal to high
2. Target places data on RDATA bus

« Target acknowledges read access by RDY signal

C1 €2 €3 4 | C1 2 €3 C4 €5

6
ADDR aooR L X ek X
WR L N1 Y WwR Y
SEL : : : ; : SEL ! ' 3 3 3 N
RDATA | | >-< | RDATA
Roy | 1 /A 1 Roy

Figure 6.3: Single Initiator - Read

Performance
« each access takes a minimum of two cycles
+ maximum bus bandwidth is: BW, = 0.5 - buswidth - f;
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Pipelined Access
« The next address can be placed on the bus while the data is read

» Additional control signals and logic required to support pipelined accesses
« maximum bus bandwidth is: BW, . = buswidth - f;

Burst Accesses

« A burst accesses consecutive addresses

« Version 1: the addresses for all accesses must be given and a control signal that indicates that this is a burst
access of a certain size

« Version 2: Only the start address and a control signal indicating the burst size must be provided

Four data values are returned for one start address (burst4)

ic1ic2 icsica s | ic1ice ics3ica bs
ADOR | aooR
BuRsT ———

RoaTA | |G Geed Ga G AT |

Figure 6.4: Single Initiator - Burst

6.1.2.3 Multiple Initiators

Shared Bus

« The arbiter grants access to the initiator

+ only the address and data of the initiator are forwarded to the targets

REQ1-REQ3 |

> Arbiter
L]

GRANT ]

ADDR
WDATA

iDATA J
[T S— _ i
|- WOATA > »| Target2

gosta =-_"

WADDR, »| Target3
| i3 [

Decoder |4

Figure 6.5: Multiple Initiators - Arbiter

Target1

Init1

V”Y*
v v

« Round-robin: Access granted to initiators in pre-defined order that is repeated
« FIFO: First initiator requesting the bus is granted access
« Priority: Initiator with highest priority is granted access to the bus

Split Accesses
« A slave can allow an access to be split if it involves many wait cycles
+ Access for initiator I; is split by the slave issuing a start of split
+ I, is granted the bus, and the access for initiator I, is performed
» Then, the access for initiator /; is finished by issuing an end of split
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REQ1 Req

C1 :C2 :C3 :C4

REQ2 Req

C5

Cé

C7 :C8 :C9

GRANT "

ADDR1 addr1

addr’

RDATA
1

ADDR2
RDATA
2

SPLIT_
s

addr2

data2|

End

datat

Figure 6.6: Multiple Initiators - Arbiter

Crossbar / Bus Matrix

» all targets can be accessed individually

» conflicts only arise when two initiators access the same target
» GRANT/REQ omitted

Init1

Target1

Init2

Target2

Init3

>
I"_ >
ADDR :
[ ‘
&
DATA b
i— <
<
ADDR | |
(el
Coe Il
&
DATA b
i— <
&
<
ADDR | I
e
‘
L) D
<
&
<

Target3

Layered Bus

Figure 6.7: Multiple Initiators - Bus Matrix

» Targets are on different layers
» Initiator can connect to targets on different layers simultaneously

Init1

Target1

Init2

Init3

Target2

Some Bus Standards
« AMBA Bus (ARM)

Target3

Figure 6.8: Multiple Initiators - Layered Bus
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» AHB: Advanced High Performance Bus
» APB: Advanced Peripheral Bus
» AXI: Advanced eXtensible Interface

« Wishbone (Open)

« TileLink (Open)

6.2 Network-on-Chip (NoC)

6.2.1 Introduction to NoCs

« Need for scalability and reduced cost
» Avoid long interconnects and delays caused by increased system complexity
» Reduce wiring overhead due to an increasing number of system components
+ Performance demands
» Goal: high bandwidth and low latency
» Concurrent communication required due to increased traffic
« Solution: Network-on-Chip (NoC)
» Move from bus to network (small-scale networks at the chip/system level)
- Larger-scale networks will be discussed in later lectures
» Broadcast can be avoided, but is still possible via multiple messages (when required)
» Serialization is achievable, e.g., by forcing the same path or via sequence numbers

Basics
+ Objective: To connect nodes with each other via routers and wires, enabling messages to be sent from
source to destination
« Building blocks:
» Node: any component, e.g., processor, memory, or a combination of them
» Network interface: module connecting a node to the network
» Router: forwards data from inputs to outputs (network interfaces or other routers)
» Link: physical set of wires, e.g., connecting two routers
» Channel: logical connection between routers
» Message: unit of transfer for the nodes
» Packet: unit of transfer for the network

6.2.2 NoC Topologies

« Topology: arrangement of nodes and channels
» Determines e.g., number of hops, number of alternative paths, cost
« Properties for comparison
» Degree: number of links at each node
» Distance: number of links in the shortest route
» Diameter: maximum distance between any two nodes
» Bisection bandwidth: available bandwidth from one partition to the other, when cutting the network
into two equal parts (minimum for multiple possible cuts)
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* Direct networks: each terminal node is associated with a router; routers are sources/sinks

and switches for traffic from other nodes

<P

Fully Connected

* Indirect networks: terminal nodes are connected via intermediate stages of switch nodes;

{2

Ring

Mesh

terminal nodes are sources/sinks, intermediate nodes only switch traffic

links

o
&
=
oEE
Crossbar Butterfly
Figure 6.9: Network Topologies
Fully Con-| Ring Mesh Torus Crossbar | Butterfly | Tree
nected

Descrip- every node | each node [k  nodes [k  nodes | connects n

tion is con-| is con- | per dimen-| per dimen-| inputs to
nected nected to | sion sion m outputs
to every | two other
other node | nodes
with a di-
rect link

Nodes N N N=2¢ | N=2F =n-m

Links (N-(N— | N 2k- (k— |2N n-

D)/2 )

Degree N N 4 4 -

Diameter |1 |N/2] 2k —2 k 1

Bisection | |[N/2] - 2 k 2k -

Width [N /2]

Pros high fault | simple,low | path  di-| avoids non-block- | lower simple,
tolerance, | link costs | versity, asymme- | ing, la- | const com- | cheap
low con- regular try  and | tency pared to
tention, and equal-| improves crossbar
low la- length path diver-
tency links sity

Cons high costs,| high  la-|large  di-| unequal high cost,| blocking, | bottleneck
limited tency, lim-| ameter, link limited lack of | towards
scalability |ited path | asymmet- | lengths, scalability | path diver-| root

diversity ric (higher | higher cost sity, local-
demand compared ity not ex-
for central | to mesh ploitable

6.2.3 NoC Messages

Table 6.8: Comparison of Network Topologies

« Message: a logically continuous group of bits, may be arbitrarily long
« Packet: basic unit of routing and sequencing, with a restricted maximum length
» Consists of a header and a segment of a message
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« Flit (flow control digit): basic unit of bandwidth and storage allocation

» Contains no separate routing/sequencing information and therefore follow the same path in-order

» Subdivision allows for low overhead (large packets) and fine-grained resource utilization (small flits)
« Phit (physical transfer digit): information transferred over a channel in a single clock cycle

Packet e
_~Header T

packet | ] | | ]

. ’ Phlt| Phit I Phit I Phit ‘

Figure 6.10: Message

Flow Control vs. Routing
+ Flow control: Allocates resources (channels, control state, buffers) to packets

» Alternative view: resolve contention during packet transmission

» Contention: What happens if two packets want to use the same channel at the same time?
+ Routing: Selects the path a packet takes from source to destination

» Determines how well the potential of the given topology is exploited

» Should balance load across network channels

6.2.4 NoC Flow Control

« Bufferless
» Dropping
» Misrouting
- No buffers available, therefore misroute “losing” packets, “winning” packet gets the requested channel
» Circuit switching
- First allocate channels to build a circuit from source to destination, then send packets along the circuit,
deallocate circuit after packets are sent
+ Buffered
» Store-and-forward
- Each node waits until packet is received completely before transmission to the next node
» Cut-through
- Flits are forwarded as soon as they are received, and the subsequent channel and buffer space is
acquired (allocation still at packet granularity)
» Wormbhole
» Virtual channel
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* Wormhole flow control: When B blocks, channel p and g are idle

1 Virtual channel,

O

chan.p chan.q

Node 1 Node 21 Node 3
blocked

* Virtual-channel flow control: A can use channel p and g using a second virtual channel
|

00 00
= »
chan.p chan.q LD

Node 1 Node 2 Node 3
blocked

Figure 6.11: Wormbhole & Virtual-channel

6.2.5 NoC Routing

« Selects the path a packet takes from source to destination in a given topology
+ Determines how well the potential of the given topology is exploited
+ Balance load across the network channels to avoid hotspots and contention
» Difficult, particularly with non-uniform traffic patterns causing load misbalances

6.2.5.1 Dimension-order Routing
« First move towards x-dimension, then move towards y-dimension (XY)
£ simple
minimal
can cause load imbalance

FARAP SRS

doesn’t exploit path diversity

* Example: 2D Mesh

Dimension-order routing: Alternate route:
Deterministic and minimal non-minimal

Figure 6.12: Dimension-order Routing

6.2.5.2 Valiant’s Algorithm
+ A packet from source s to destination d is routed via an intermediate node d’
« Randomly select intermediate node d’
« Phase I: Route packet from s to d’
« Phase II: Route packet from d’ to d
« Use arbitrary routing algorithm for Phase I+Il, e.g., dimension order routing for tori and meshes
randomizes traffic
balances network load
non-minimal

doesn’t exploit locality
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Figure 6.13: Valiant’s Routing

« Improvement
» restrict d’ to one in a minimal quadrant
» preserves locality, compromises load balancing

8

[
[
—
[]

Figure 6.14: Valiant’s Improved Routing

+ Deadlocks
» situation where packets cannot make progress as they are waiting on each other to release resources

Turn Model: Focuses on the turns allowed and the cycles they can form
¢ 2D mesh: 8 possible turns forming two abstract cycles

Far4
Lttt

* XY Routing removes four turns (prevents deadlocks)
“1 |->
m T
L=p 4_'

Figure 6.15: Restrict Routing (1)
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Turn Model: Focuses on the turns allowed and the cycles they can form
* Removing one (carefully selected) turn from each abstract cycle also prevents deadlocks

a3y rert
Lttt o Lt J Lt

west-first: traveling west north-last: traveling north negative-first: traveling first
only allowed at the start only allowed as last direction west and south, then east
and north

* Removing any two turns does not prevent deadlocks
ror ~
R S N — |

t 9 Lt

Figure 6.16: Restrict Routing (2)

6.2.5.3 Channel Dependence Graph (CDG)

Network topology:

Channel Dependence Graph:
* One vertex for each channel
* Edges denote dependences
* Dependence exists if it is possible for channel i to wait for channel i+1
* 180° turns not allowed (e.g., AB - BA)

Figure 6.17: CDG

Channel Dependence Graph may contain cycles

- Remove selected
edges in the CDG

Figure 6.18: Cycles in CDG
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Example: Remove Edges in the CDG (West-first turn model)
Cyclic CDG

Acyclic CDG

Figure 6.19: Acyclic CDG
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7 Block G

7.1 GP-GPUs, TPUs, NPUs

* Large computing continuum with possibly connectivity:

-

Datacenter: Desktop/Workstation Edge/Mobile: Extreme Edge / TinyML:
[Fog: Mobile Phone MCU
PC with GPU Raspberry Pl Specialized low-power SoC
Embedded GPU
Specialized SoCs

Multi-Servers
with Multi-GPUs

Hundreds of CPUs 2-128 CPUs 1-4 CPUs 1cru
Hundreds of GBs of DRAM Tens of GBs of DRAM 1-4 GBs of DRAM Hundreds of kB to a few MB of
Several GPUs with 1-2 GPUs with Tens of GB of DRAM 1 GPUs with a few GB of DRAM embedded SRAM

Low-power Acceleration / Co-proccesors

Tens of GB of DRAM A few TB of Storage Specialized Accelerators
A few MB of Storage, e.g. embedded Flash

Several TB of Storage Tens to Hundreds of GB of Storage

mm»-mm_ Embedded Machine Learning / Edge Al

Figure 7.1: ML Platforms

Types include: Deep Neural Networks, Convolutional Neural Networks, Transformers, Graph Neural

Networks, and Recursive Neural Networks.

Computing demand is often measured in MAC operations

« Size is often measured in the number of parameters

« Examples

+ Large Language Models (LLMs) - produces human-like text

» GPT-4: 170 trillion parameters (10e12)

» GPT-3: 175 billion parameters (10e9)

» ResNet18: 11 million parameters (10e6) for image classification (e.g., autonomous driving)

» Keyword Spotting (KWS): 16k-300k parameters (10e3) to detect keywords in an audio stream (e.g., for
audio wakeup in TinyML)

Embedded ML Applications
« Data is generated at the edge by various sensors.
« ML applications are executed on embedded devices “close to” the sensors.
« Examples
» Autonomous driving based on HD cameras, Lidar, and radar
» Wearable human activity tracking using gyroscopes and accelerometers
» Visual wake-up from camera
» Audio wake-up (keyword spotting) from microphone
» Gesture recognition from radar sensors

ANN Architectures
. Layered computation: a! = fi(a'™")
»al = fE(FL1(LL A (=)..))
e al = fY(W a1
» W: weights
» a: activations
» fl: activation functions (ReLU, tanh, softmax)
« The design of the ANN model architecture must consider the target system
» ROM/RAM memory resources (weights, activations)
» Computational power: Operations (support for nonlinear operations)
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» Acceleration features (types of layers, layer configurations)

« Network Architecture Search (NAS)
» Algorithms that systematically explore different ANN model architectures automatically
» Computationally very expensive (requires training many candidates to evaluate accuracy)

Training
« Training of the ANN model is done on a powerful machine (GPU)
« Trained model is deployed on the embedded device
« The embedded device executes the trained model (inference task).
« Training

» Selection of hyperparameters

» Optimization of the ANN model’s trainable parameters

» Typically using a backpropagation algorithm

Quantization

+ Models are usually trained with floating-point (FP) precision (float, double).
« Inference (execution of trained model on embedded device)

« Full precision (FP) computation (multiplication, addition) is expensive

« Hardware Floating Point Units are expensive (area, energy)

« For inference, the model is transferred to a quantized variant

« Integer computations are less expensive

« Many challenges: rounding, overflow, rescaling, shifting

« Simple Example (8-bit integer [—127...128]):

Quantization Formats

« Integer formats for weights/activations usually given by bit-width: x-bit

« On many embedded processors (byte-type quantization simplest 8bit, 16bit)
Byte /uint8 (8bit) quantization range: [0 ... 255]

+ Accumulation variables usually larger size
+ Sub-byte integer quantization < 8 bit
» Binary quantization w in {0,1}
» Ternary quantization w in {-1,0,1}
+ Also reduced-precision floating-point possible (many formats)

Pruning
« Unstructured pruning: Small weight values are set to zero.

» Skip computation with zero values (may require additional logic in the program)
« Structured pruning: A column, row, or kernel is removed from the operator

» The operator is modified
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Consists of layers (structure reprented by

.
=

data flow graph)
MaxPool
A2
A" = Conv2D(X,W',b',6],5;,5!,8! P ReLu)
A% = maxpool(A'n2,n2)
A® = Conv2D(A2 W3, b% 62,6°,82,8%, P° ReLu) as
A* = maxpool(A® xf, xh) MaxPool
a® = flaten(A*) At

a® = Dense(a®, W&, b Softmax) m

Figure 7.2: Convolutional Neural Network - Example

Image to Column (Img2Col) Transformation

» For many targets, a highly optimized implementation of matrix-matrix-multiply computation exists (e.g.,
for accelerators, CPUs with SIMD support, GPUs, and even single-issue CPUs).

» Img2Col transforms a convolution operation into a matrix-matrix multiply operation.

» Requires building a batch matrix that is larger than the original activation tensor because it holds
duplicate values.
- Usually, Img2Col is not applied to the full input activation tensor but rather within the convolution

loop on a portion of the tensor to avoid building the entire batch matrix

7.1.1 General-Purpose Graphics Processor Units (GPGPUs)

+ GPUs were initially introduced for real-time rendering, especially for video games.

« Nowadays, GPUs can be found in many devices (data centers, PCs, laptops, phones, embedded GPUs, etc.).

« General Purpose (GP-GPU): NVIDIA’s CUDA programming language allowed GPUs to be used for general-
purpose computing beyond rendering (now especially used for ML)

« GPUs are combined with a CPU either on a single chip or by inserting an additional card (e.g., via PCle).

+ The CPU is responsible for initiating computation on the GPU and transferring data to and from the GPU;
it is often called “the host”.

CPU
Host CPU ﬁ‘ t t

t t Cache Integrated GPU:
System Shared memory
Memory t
Discrete GPU: Own memory System

Memory

Figure 7.3: GPU: Discrete vs Integrated
Threads, Warps, Thread block

+ The threads that compose a compute kernel are organized into a hierarchy consisting of a grid of thread
blocks, which in turn consist of warps.

+ In the CUDA programming model, individual threads execute instructions whose operands are scalar
values (e.g., 32-bit floating-point).
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« To improve efficiency, typical GPU hardware executes groups of threads together in lock-step (SIMD).

These groups, called warps, consist of 32 threads

« Warps are grouped into a larger unit, called a thread block by NVIDIA.

+ GPUs use the Single Instruction, Multiple Data (SIMD)

« Scalar instruction streams for each CUDA thread are grouped together for SIMD execution on hardware
« Loads and stores are scatter-gather, as threads perform scalar loads and stores.

8 Laboratories

8.1 Lab 1: Vector Processors

8.1.1 Vector Configuration

« Vector processor utilizes SIMD

Design Time Parameters:
« VLEN
» in vector config.cmake called VREG W
. VMEM W
» size of the memory ports in bits
» has to be equal to the pipeline containing the VLSU

Run Time Parameters:
« VL
» if vl > VLMAX = vl = VLMAX is returned

» VLMAX can be requested with _ riscv_vsetvimax

« SEW
- » LMUL
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element index

-—

SEW=32bits

VLEN=128bits —»
1=7

~

VLMAX=8

7

vl

v0

\

(1]

[0] (2]

0

——
SEW=32bits

+«———— VLEN=128bits

(3]

/

Figure 8.1: Graphical Representation of the RISC-V Design-Time and Runtime Parameters

Restrictions:

« all 6 functional units must be present
- only one unit of each type is allowed
+ 2 < # number of pipelines < 6

Timing Behavior:

« wider lanes allows for functional units to precess faster through more parallel operations

microarchitecture always passes entive vector register groups through the pipeline

» = latency of instructions depends on VLMAX independet on the current set vl

Only one vector operation can be processed in a vector pipeline at once.

» However, if two vector operations use different pipelines with no data dependencies, they can be

processed simultaneously
3 Read Ports, 1 Write Port

» assuming each operation uses a diffe

8.1.2 Functional Units

rent pipeline

vector-chaining is performed at the whole-vector register level

Functional Unit | Description & Tasks | Commands | Latency Cycles | Init Interval
VLSU Laod-Store Unit vle, vse, 4 1
vlse, vsse
VMUL Multiply-Unit vmul, vwmul 5 1
VALU Arithmetic Unit vadd, vsub, 3 1
vwadd, vwsub

SLD Slide Unit variable variable
VDIV Division Unit 34 32
VLEM Elementwise Unit variable variable

(but very slow)
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8.1.3 How to Start

8.1.3.1 (optional) Find a good algorithm
« mostly hard

8.1.3.2 Implement Basic Vectorized Code
| first version -> keep - LMUL at a minimum
+ 1 before every sign extension
[] get it working according to test cases

() chunk addressing
« fit as much data into the variables but keep track how much data was processed already

size t rem colsB = numColsB;
while (rem colsB > 0U) {

rem colsB -= vl;

[] pointer access important and dangerours

8.1.3.3 Maximize - LMUL
(] just so within a certain scope (e.g. a while loop) not more than 32 physical registers are used
+ — but already seperated into respective pipelines to utilize vector-chaining

8.1.3.4 optimize vector_config.cmake
[[] identify which unit is used for which operation and then seperate in respective pipelines
+ no overhead, minimal seperation
[] try to “play around” with REG_W, but very likely it shouldn’t be too high
« either 64 or 128 bits
| can either reduce/boost performance
(] minimize pipeline width to get to LUT target (but maximize within LUT target)
+ — do everything within the LUT target (minimize everything to achieve LUT target, but maximize
within LUT target)

8.1.3.5 Loop Unrolling
[] try to process multiple (2x, 4x, 8x) vector operations within a single loop cycle

« use the following constructs for it

while (2* i < numRowsB){...}
1= 2%i;
while (i < numRowsB){...} // tail

or

size t vl max = riscv_vsetvlmax el6m4();
while (len >= 2* vl max) {...} // in here only load vl max elements
while (len > OU){...} // tail

| do not forget the tail handling

8.1.3.6 Play Around
use as little vector registers as possible

use combined wideining instruction
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« instead of multiplication and sext seperatly

(] play around with vector_config.cmake in order to hit targets

8.1.4 RISC-V V Extension Assembly Reference

8.1.4.1 Data types and configuration instructions

vsetvli rd,

rsl, vtypei # rd
vsetivli rd, uimm, vtypei # rd
vsetvl rd, rsl, rs2

new vl, rsl
new vl, uimm
new vl, rsl

AVL, vtypei new vtype setting
AVL, vtypei = new vtype setting
AVL, rs2 = new vtype value

# rd

# Accepted SEW: e8/el6/e32/e64
# Accepted LMUL: mf8/mf4/mf2/ml/m2/m4/m8

# Examples:

vsetvli t0O, a0, e8

vsetvli tO,
vsetvli tO,

Request vector length stored in a@, store the provided length in tO

# SEwW= 8, LMUL=1

a0, e8, m2 # SEW= 8, LMUL=2
a0, e32, mf2 # SEwW=32, LMUL=1/2

Intricacies of the vsetvli instruction:

rd | rsl | AVL value | Effect on vl

- 'x0 | Value in rs1 | Gives requested vl or VLMAX, whichever is greater
10 | x0 | INT MAX | Sets vl to VLMAX

x0 | x0 | Old vl Keeps old vl, but can change data type (SEW, LMUL)

8.1.4.2 Load/Store instructions
Vector Load/Store

# Vector loads and stores

# vd destination,
vie8.v
vlel6.

Y,
vie32.v
v

vie64.

# vs3

vse8.v
vsel6.

v
vse32.v
v

vseb4.

vd, (rsl)
vd, (rsl)
vd, (rsl)
vd, (rsl),

’
’

’

store data,

vs3, (rsl)
vs3, (rsl)
vs3, (rsl)
vs3, (rsl)

rsl base address, vm is mask encoding (vO.t or <missing>)

vm # 8-bit unit-stride load
vm # 16-bit unit-stride load
vm # 32-bit unit-stride load
vm # 64-bit unit-stride load

rsl base address, vm is mask encoding (vO.t or <missing>)

’

’

’

’

vm # 8-bit unit-stride store
vm # 16-bit unit-stride store
vm # 32-bit unit-stride store
vm # 64-bit unit-stride store
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Vector strided Load/Store

# Vector strided loads and stores

# vd destination, rsl base address, rs2 byte stride
vlse8.v vd, (rsl), rs2, vm # 8-bit strided load
vlsel6.v vd, (rsl), rs2, vm # 16-bit strided load
vlse32.v vd, (rsl), rs2, vm # 32-bit strided load
vlse64.v vd, (rsl), rs2, vm # 64-bit strided load

# vs3 store data, rsl base address, rs2 byte stride
vsse8.v vs3, (rsl), rs2, vm # 8-bit strided store
vssel6.v vs3, (rsl), rs2, vm # 16-bit strided store
vsse32.v vs3, (rsl), rs2, vm # 32-bit strided store
vsseb4.v vs3, (rsl), rs2, vm # 64-bit strided store

8.1.4.3 Arithmetic, logical and move instructions

General vector binary arithmetic operation syntax

# Assembly syntax pattern for vector binary arithmetic instructions

# Operations returning vector results

vop.vv vd, vs2, vsl # vector-vector vd[i]
vop.vx vd, vs2, rsl # vector-scalar vd[i]
vop.vi vd, vs2, imm # vector-immediate vd[i]

vs2[i] op vsl[i]
vs2[i] op x[rsi]
vs2[i] op imm

# Assembly syntax pattern for vector widening arithmetic instructions

# Double-width result, two single-width sources: 2*SEW = SEW op SEW
vwop.vv vd, vs2, vsl # vector-vector vd[i] = vs2[i] op vsl[i]
vwop.vx vd, vs2, rsl # vector-scalar vd[i] = vs2[i] op x[rsl]

# Double-width result, first source double-width, second source single-width: 2*SEW =
2*SEW op SEW

vwop.wv vd, vs2, vsl # vector-vector vd[i]
vwop.wx vd, vs2, rsl # vector-scalar vd[i]

vs2[i] op vsl[i]
vs2[i] op x[rsl]
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Vector Single-Width Integer Add, Subtract and Multiply

# Integer adds

vadd.vv vd, vs2, vsl # Vector-vector
vadd.vx vd, vs2, rsl # vector-scalar
vadd.vi vd, vs2, imm # vector-immediate

# Integer subtract
vsub.vv vd, vs2, vsl # Vector-vector
vsub.vx vd, vs2, rsl # vector-scalar

# Signed multiply, returning low bits of product
vmul.vv vd, vs2, vsl # Vector-vector
vmul.vx vd, vs2, rsl # vector-scalar

# Signed multiply, returning high bits of product
vmulh.vv vd, vs2, vsl # Vector-vector
vmulh.vx vd, vs2, rsl # vector-scalar

# Unsigned multiply, returning high bits of product
vmulhu.vv vd, vs2, vsl # Vector-vector
vmulhu.vx vd, vs2, rsl # vector-scalar

# Signed(vs2)-Unsigned multiply, returning high bits of product
vmulhsu.vv vd, vs2, vsl # Vector-vector
vmulhsu.vx vd, vs2, rsl # vector-scalar

Vector Widening Integer Add, Subtract and Multiply

# Widening unsigned
vwaddu.vv vd, vs2, vsl # vector-vector, all other variants possible

# Widening signed
vwadd.vv vd, vs2, vsl # vector-vector, all other variants possible

# Widening signed-integer multiply
vwmul.vv vd, vs2, vsl, vm # vector-vector
vwnul.vx vd, vs2, rsl, vm # vector-scalar

# Widening unsigned-integer multiply
vwnulu.vv vd, vs2, vsl, vm # vector-vector
vwmulu.vx vd, vs2, rsl, vm # vector-scalar

Vector Multiply-Add (multiply-accumulate)

# Integer multiply-add, overwrite addend
vmacc.vv vd, vsl, vs2 # vd[il] +(vs1[i] * vs2[i]) + vd[i]
vmacc.vx vd, rsl, vs2 # vd[i] +(x[rsl] * vs2[i]) + vd[i]

# Integer multiply-add, overwrite multiplicand
vmadd.vv vd, vsl, vs2 # vd[i] = (vs1[i] * vd[i]) + vs2[i]
vmadd.vx vd, rsl, vs2 # vd[i] = (x[rsl] * vd[i]) + vs2[il]
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Vector Sign-extend/Zero-extend, Reduce and Move

# Scalar -> Vector

vmv.v.v vd, vsl # vd[i] = vs1[i]
vmv.v.x vd, rsl # vd[i] = x[rsl]
vmv.v.i vd, imm # vd[i] = imm

# Vector -> Scalar
vmv.x.s rd, vsl # rd = vsl[0]

# Extension:

vzext.vf2 vd, vs2 # Zero-extend SEW/2 source to SEW destination
vsext.vf2 vd, vs2 # Sign-extend SEW/2 source to SEW destination
vzext.vf4 vd, vs2 # Zero-extend SEW/4 source to SEW destination
vsext.vf4 vd, vs2 # Sign-extend SEW/4 source to SEW destination

# Simple reductions, where [*] denotes all active elements:
vredsum.vs vd, vs2, vsl # vd[0] = sum( vs1[O] , vs2[*] )

# Unsigned sum reduction into double-width accumulator
vwredsumu.vs vd, vs2, vsl # 2*SEW = 2*SEW + sum(zero-extend(SEW))

# Signed sum reduction into double-width accumulator
vwredsum.vs vd, vs2, vsl # 2*SEW = 2*SEW + sum(sign-extend(SEW))

8.1.4.4 Code examples

# Example: Load 16-bit values, widen multiply to 32b, shift 32b result right by 3,
store 32b values.
# On entry:
# a0 holds the total number of elements to process
# al holds the address of the source array
# a2 holds the address of the destination array
loop:
vsetvli a3, a0, el6, m4, ta, ma # vtype = 16-bit integer vectors; a3 = vl (number
of elements this iteration)

vlel6.v v4, (al) # Get 16b vector
slli t1, a3, 1 # Multiply # elements by 2 bytes (sizeof 16-bit int)
add al, al, t1 # Bump pointer

vwmul.vx v8, v4, x10 # Widening multiply into 32b in <v8--v15>

vsetvli x0, x0, e32, m8, ta, ma # Operate on 32b values LMUL 8

vsrl.vi v8, v8, 3 # Shift by 3

vse32.v v8, (a2) # Store vector of 32b elements

slli t1, a3, 2 # Multiply # elements by 4 (sizeof int)
add a2, a2, tl # Bump pointer

sub a0, a0d, a3 # Decrement count by vl

bnez a0, loop # Any more elements to process?
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8.2 Lab 2: High Level Synthesis

8.2.1 Theoretical Questions (for practice only)

8.2.1.1Lab 1

What are memory-mapped peripherals?

Communication with the peripherals is done over memory regions. Hardware registers are mapped into
the address space. It is handled like load/store (done by the LSU (LoadStore Unit)).

What is the reason for declaring register references as volatile?

So the compiler does not optimize them away (when only only read, not written, they’re deleted). Also

order of memory access is retained.

What are the contents of Uart/uart_t struct in the UART driver library?

« Pointer to all control status registers
« And a custom callback function.

What is busy waiting

Waiting in a while loop, where no operation is performed just waiting/checking the value.

Is polling, in general, a bad design choice?

No
« If you have a predictable system where everything happens in known cycles.
« If the system needs to be cycle-accurate.

» interrupts have an overhead

Why is there still a system tick reported, while the processing system is in busy wait state?

(Bare-metal system)

Because timer interrupts still get triggered by the timer.

What is cross compilation?

If the host operating system/architecture is not the same as the target operating system/architecture.
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What is C-code validation and C-code synthesis in Vivado-HLS?

Validation is the process where the C-code gets tested on a testbench to see if the output is the same as
expected. Checks that the C algorithms performs the correct operation.
Synthesis is building a hardware component which implements the function defined in the C-code.

What is Local vs Global optimizations?

local:
« Limited to one Basic Block or loop iteration.
+ Techniques:

» local scheduling

» local resource sharing

» peephole optimization

global:
« Works on the entire Control Data Flow Graph (CDFG).
+ Focuses on parallelism and reducing overall latency.
« Techniques:
» loop unrolling
» loop pipelining
» function inlining
» array access optimization

What are Directives in Vivado-HLS= List the available directies and provide a one-line

descripton of each.

List is in Section 8.2.3.

How does loop-unrolling works in optimizing the design?

Allows loop iterations to be executed in parallel, reducing the overall cycles needed.

What is the difference between DATAFLOW and functional-level PIPELINE directives?

DATAFLOW does additional optimizations, not only pipelining.

What is the difference between LOOP_FLATTEN and UNROLL directives?

FLATTEN changes the loop hierachy (in code and RTL) but does not influence the number of executed
iterations, unrolling minimizes the iterations.

What were the indicators that led to conclusion that the inital design was not pipelined

in Step 3 of the tutorial?

1. Latency and initialization interval of the top block where equal.
2. For all loops it was reported that they were not pipelined.
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Why didn’t we apply PIPELINE-directive directly to the dict_1d in Step 4 of the tutorial?

Then the dct_coeff table would need to be duplicated for every pipeline stage.

What were the indications that led to the conlcusion that an imperfect loop nest was
blocking the loop-pipelining in Step 5 of the tutorial?

There was still a loop hierachy despite loop flattening was specified.

What were the inidcator that led to the conlcusion that data-dependency was “bottleneck-
ing”the design in Step 6?

1. There was a warning about exactly that.
2. DCT loop was taking many more cycles than all other loops.

Describe briefly how an HDL design from Vivado-HLS can be exported to Vivado’s IP-

Catalog?

Solution — Export RTL

8.2.2 Definitoins

8.2.2.1 Modul Hierachy
Latency: the total time it takes for the function to finish one execution (start to finish)
Interval: time you must wait before you can call the function again

» if not pipelined:

latency = interval
» if pipelined: interval = 1
Look-Up Table (LUT): the fundamental programmable logic gate used for boolean operations and small
distributed memory (LUTRAM)
Flip-Flop (FF): a 1-bit storage register used to hold state and sychronize data between pipeline stages
Digital Signal Prcessor (DSP): a hardened solicon block optimized for high-speed, efficient arithmetic
without using genal logic

8.2.2.2 Performance Profile
The following metrices describe the behaviour of a specific loop (inside the function)
« Iteration Latency: the time it takes to complete one single iteration of the loop
« Initiation Interval: the time between two loop iterations
» (if sequential: = iteration latency, if pipelined = 1).
+ Trip Count: number of times the loop is executed

8.2.2.3 Total Time
+ Sequential: latency = trip count * iteration latency
+ Pipelined: latency = (trip count * initiation iterval) 4 iteration latency
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8.2.3 Directives

A Not all of them
are important

Control Flow analysieren
{Loop-Struktur [nested/sequential], Function
calls, ...)

LOOP PIPELINING |
' v N

- PIPELINE auf Loops anwenden
g (beginnend bei den inner-most
loops, vgl. Tree-Structure)

bei Warning: "Loop
Flattening fails" PIPELINE J
directive um eine Ebene nach
oben

PIPELINE von innen nach
aulken schieben und testen,
loop2: auch wenn keine Warning
code... "Flattening" besteht ->

TRADEOFF zwischen
Latency/Area, da PIPELINE
automatisch alle inneren Loops
unrolled

Y | Y,

v
——

Wenn noch genug Resources,
keine Dependencies
nelm zusatzlich zu PIPELINE: +
UNROLL

loop1: PIPELINE

Warning wird hier erzeugt!

Console auf I/O Warning
uberprifen: ARRAY PARTITION
anwenden, je nach Target
(Area/Latency Tradeoff) complete
oder block setzen

Function Base

DATAFLOW auf Top-Level
Function anwenden

INLINE auf kleine Funktionen
anwenden

N J

Figure 8.2: Flowgraph how to work towards targets
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Control Flow

Graph verstehen -

Abléufe / Aufrufe der Funktion

falls Iterations einer loop >
£20 und keine Data

Dependencies innerhalb der
Loop (zwischen den

Iterations)

PIPELINE diese loop, soweit
wie wéglichst “oben/aufen’

Beachte: nested loops werden
automatisch LOOP UNROLL
(durch PIPELINE)

analysiere Compiler Warnings
hinsichtlich "Loop Flattening fir
PIPELINE directives und "I/O
Memory" Fir ARRAY_PARTITION

hN

alle Subfunktionen INLINEN
(kostet Area, bringt
Latency)

falls Iterations einer loop
< £20 oder Data
Dependencies innerhalb
der Loop

LOOP UNROLL diese loop (beginne inner-
most loop), bei Bedarf auch nested loops
(wenn < * 20 Iterationen

analysiere Compiler Warnings hinsichtlich “1/0
Memory" for ARRAY_PARTITION

ARRAY_PARTITION anwenden
auf LOOP-UNROLLTE Bereiche
(Array store/loads in UVROLL
Bereiche gewdfs des UNROLL-

Faktors (n) in PARTITION)

- eyleici

012,34

wenn sequentiell
1 zugegriffen wird

- block: wenn strvded zugegriffen

- complete: vama(e Latency,
maximaler Area verbrauch

falls Area benstigt wird, dafir Latency eingebuft
werden kann

ARRAY_PARTITION in

die "gréBten’ LOOP UNROLL
ouf PIPELINE umstellen
(solange keine Data
Dependencies)

weniger Blocks (geringerer
Faktor, oder von complete

auf eyelie/block)

Figure 8.3: Flowgraph how

8.2.3.1 ALLOCATION

falls Latency benstigt wird, aber
Area vorhanden ist

~N

ARRAY_PARTITION in mehr
Blocks oder zu complete machen

PIPELINE auf LOOP
UNROLL umstellen (auch

innere Loops wenn outer
pipeline ausrollent)

to work towards targets (Extended)

Limits the number of RTL instances of specific functions and loop iterations.

/B Reduces area
F Also reduces performance

8.2.3.2 ARRAY PARTITION

Partition an array into multiple smaller arrays, us
/& More read/write ports = better throughput
F More instances => more area

small arrays = use complete partition

e many smaller memories instead of a single large one.
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Figure 8.4: How different partition modes work

+ Block
» use if you have strided array accesses
« Cyclic
» A\ if you have successiv array accesses you should use that
- because then successive elements are in different lanes and are non-blocking
« Complete

8.2.3.3 DATAFLOW

The HLS tool seeks to minimize latency and improve concurrency as much as data-dependencies allow. This
way, functions or loop iterations can operate in parallel (interleaving)

« A\ can only be applied to the top-level function

« /k Better throughput

« /kE Lower latency

« F More area usage

8.2.3.4 DEPENDENCE

Explicitly define dependencies between loop iterations since sometimes the automatic analysis is too conser-
vative.

« /k Potentially more optimal solution

« “F Potentially wrong solution due to eliminated true dependencies

8.2.3.5 EXPRESSION_BALANCE
Rearrange assotiative and commuatative operations; on by default for integers; off by default for floats.

8.2.3.6 FUNCTION_INSTANTIATE
Use different RTL instances for different calls to the same function.

8.2.3.7 INLINE

inlines a function, so it’s not a separate RTL entity.

« /& Better global optimization

« “F RTL block cannot be reused for other calls to the function.

8.2.3.8 LATENCY

Specifies minimum and/or maximum latency.

8.2.3.9 LOOP_MERGE

Merge consequtive loops into one but only if they have the same bounds / same number of iterations and no
data dependency between them.

@
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8.2.3.10 LOOP_FLATTEN
Turn nested loops into one single loop.
« /k Saves a clock cycle per outer loop iteration

8.2.3.11 PIPELINE

Converts a code block into a pipelined instance with a given instantiation interval.
« /k Better throughput

« “F More hardware needed

8.2.3.12 STABLE

Specifies that the input argument does not change and does not need to be saved at the start of the function.

8.2.3.13 STREAM

Implements an array as a FIFO instead of RAM. More efficient in some cases.

8.2.3.14 UNROLL
Specification for loop unrolling (unroll factor).

8.3 Lab 3: Multi-Core Programming Basics

8.3.1 Open MP & Atomics

8.3.1.1 Directives & Functions
8.3.1.1.1 Useful omp Functions

int id = omp _get thread num();
int numthreads = omp_get num threads();

8.3.1.1.2 General

#pragma omp parallel
{

}

« general directive to advise the processor to run it on multiple threads
« will run on all threads if not specified

#pragma omp single

{

}

« the following section will only be done by one thread, and skipped by all others
« synchronization after this block
« only makes sense if this block is inside a omp parallel block.
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8.3.1.1.3 Loops

#pragma omp parallel for
for(...)
{

}

#pragma omp collapse(k)
for(...)
{

}

#pragma omp reduction(+: sum)
for(...)
{

}

« omp parallel for
» distributes loop iterations among threads inside a parallel region
« omp collapse(k)
» where k is the number of nested loops which will be collapsed
« omp reduction(op: var)
» Performs a reduction operation (sum, max, min, etc.) across all threads transparently
» #pragma omp reduction(+: sum)

8.3.1.1.4 Atomic Operations

std::atomic<std::string*> ptr{nullptr};
std::atomic<bool> ready(false);

« to use variable as atomics they must be defined that way

8.3.1.1.4.1 Memory Orders

As the name suggests, memory orders are used to control the order of memory operations. They are used to
prevent reordering of memory operations by the compiler or CPU.

Memory Order Description Typical Usage

relaxed instruction reordering by the compiler/cpu is allowed
in both directions

release no reads or writes in the current thread can be | producer publishes with release
reordered before this load.

acquire no reads or writes in the current thread can be | consumer reads it with acquire
reordered after this store

Table 8.9: Memory Orders in C++

Despite the memory_order all operations in these variables are atomic, it affects only the order of memory
operations.
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8.3.1.1.4.2 Storing

atomic store explicit(&ptr, msg, std::memory order relaxed);
atomic store explicit(&ready, true, std::memory order release);

// same as
ptr.store(msg, std::memory order relaxed);
ready.store(true, std::memory order release);

Code 8.27: Atomic Store

8.3.1.1.4.3 Loading

while (!atomic load explicit(&ready, std::memory order acquire)) {
// busy-wait
}

p = atomic load explicit(&ptr, std::memory order acquire);

// same as
p = ptr.load(std::memory order_acquire);

Code 8.28: Atomic Load
8.3.1.2 Threads

std::this thread::yield();
+ halts the current thread for a small time, to give the others chance to run

8.3.2 Tipps
8.3.2.1 Busy Waiting

if (ready.load(memory order _acquire))

{
}

« busy waiting on a ready flag is usually done with the ordering memory_order_acquire
8.3.2.1.1 Not So Busy Waiting

// wait for producer
while ('atomic load explicit(&ready, std::memory order acquire))
std::this thread::yield();

« yield gice the other thread the chance to run
» signalizes that this thread has nothing to do for now
« it has to be executed on this_thread which is a namespace
» issimilar to std::this_thread::sleep_for(100ms); which suspends the current thread for a fixed time

8.3.2.2 False Sharing

False Sharing is when independent variables lay in the memory next to each other and get cached all at once.
Now if one of them gets modified, the whole line gets invalidated. This means that other threads have to
read from memory again, if they want to use “their” vairable.
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A fix for this would be alignment with padding. This means that between every variable there are put
variables which are needed by the same thread. If the threads does not need any other variables, typically it
is filled with not-used variables. A example for that would be a struct which holds at the end an array which
fills it up.

typedef struct {

uint8 t ready;

uint8 t padding[CACHE LINE SIZE-sizeof(uint8)];
} Thread Var t

In modern C++ standards there is another builtin function to align, for example entries of an array

#define CACHE LINE SIZE 64

alignas(CACHE LINE SIZE) double partial sum[MAX THREADS];

Now every entry of partial_sum can be modified without invalidating the other entries.
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8.3.3 Code examples
8.3.3.1 Producer & Consumer

#include <atomic>
#include <thread>
#include <iostream>
#include <string>

std::atomic<std::string*> ptr{nullptr};
std: :atomic<bool> ready(false);

void producer() {

std::string* msg = new std::string("Hello from Producer!");
atomic store explicit(&ptr, msg, std::memory order relaxed);
atomic store explicit(&ready, true, std::memory order release);

}

void consumer() {
std::string* p = nullptr;
while (!atomic load explicit(&ready, std::memory order acquire)) {
// busy-wait
}
// p = ptr.load(std::memory order acquire);
p = atomic load explicit(&ptr, std::memory order acquire);
std::cout << "Consumer received message: " << *p << std::endl;
delete p;

int main() {
std::thread tl(producer);
std::thread t2(consumer);
tl.join();
t2.join();
return 0;

Each for every (independent) exchanged message, you have one variable holding the value and one ready
signal, to signalize the reader, that the value is now valid. Both of them should be atomic. And their memory
access according to Table 8.9.

o std::atomic<std::string*> ptr{nullptr};

« std::atomic<bool> ready(false);

« Producer wrtites with: memory order release

« Consumer reads with: memory order_acquire

9 Outlines
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10 Glossarium

ABI - Application Binary Interface 9
ASIC - Application-specific integrated circuit 56

BB - Basic Block: Block which cannot be split up anymore 34

CC - Clock Cycles 18, 18, 19,19
CFG - Control Flow Graph 12, 13

CPI - Cycles per Instructions 18

DAG - Directed Acyclic Grpah 59

DMA - Direct Memory Access

DSP - Digital Signal Processor: sometimes meaning digital signal processing 56

DFG - Data Flow Graph 13, 13

IT - Initiation Interval
ISA - Instruction Set Architecture: specifies the set of instructions that a processor can execute 8, 27, 27, 47
IR - Intermediate Representation 14, 14, 14

LMUL: how many physical registers are bundled into one logical 107, 109, 109

SoC - System-on-Chip 44, 44, 44
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SSA - Static Single Assignment 12, 12, 13

TLP — Thread-Level Parallelsim 37, 37
VL: actual Vector Length 107

VLEN: Vector Length 107

Dennard Scaling — Dennard Scaling: As transistors get smaller, their power density stays constant, so that
the power use stays in proportion with area.

DSA - Domain-Specific Architecture: A computer architecture specialized for a particular domain or appli-
cation.

GPU - Graphics Processing Unit: A specialized electronic circuit designed to rapidly manipulate and alter
memory to accelerate the creation of images in a frame buffer intended for output to a display device.

Moore's Law — Moore's Law: The number of transistors on a microchip doubles about every two years.

NPU - Neural Processing Unit: A class of specialized hardware accelerator or microprocessor that is optimized
for the execution of artificial intelligence (AI) algorithms.

RISC - Reduced Instruction Set Computer

RISC-V - RISC-V: An open standard instruction set architecture (ISA) based on reduced instruction set

SMP - Symmetric Multi-Processor 79

TPU - Tensor Processing Unit: An Al accelerator application-specific integrated circuit (ASIC) developed by
Google for neural network machine learning.

vector-chaining: generate interim results (without LSU) so they can be used and forwarded to other units
108, 109
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