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Block A Advanced Computer Architecture (191.019)

1 Block A

• Chip Production

‣ Sand → Silicon Ingot → Wafer → Lithography

Layout of a standard cell

vdd!

gnd!

A

B

C

ACA V1.0 10

Figure 1.1: Standard Cell (NAND)

• Logic with HIGH and LOW

A1.11. Example: D-Latch
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Figure 1.2: D-Latch

A1.12. Example: Edge-driven D Flip Flop
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Figure 1.3: Edge-driven D Flip Flop
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• Stages:
Instruction Decode

(ID)
Writeback

(WB)
Memory Stage 

(MS)
Execute 

(EX)
Instuction Fetch

(IF)

Five-stage Pipeline - Stages

07.04.2025 Computer Systems 18

Instruction
Memory

PC
M
U
x

+4

IF/ID

Register 
File

DI

Extend

ID/EX

A
L

U

M
U
x

A
D

D

EX/MS

Data
Memory

MS/WB

M
U
X

Figure 1.4: Five-stage Pipeline

• Moore’s Law

‣ the number of transistors on chips doubles every two years

‣ ≈ double the computational power on the same area

• Semiconductor Challenges

‣ transistor density is coming close the the size of atoms

‣ quantum effects start interfering

‣ N2 dimension

– 2 nm = 2 ⋅ 10−9 m
‣ A14 has 14 ångström (= 1, 4 nm)

– atomic radius of silver = 1, 72 ångström
‣ Power: “Dennard Scaling”, hard to bring power to and heat from the chips

‣ Memory bandwidth cannot keep up with processor performanceBlock C: Processor Pipelines

V1.0 ACA 36

WBIF EXID

• In-order pipeline
• Five Stages
• Scalar pipeline: CPI >= 1

MEM

WBEXID MEMIF

BP

BTB

• Branch Predictor (BP)
• Branch Target buffer (BTB)

WB
ALU

ID
MEM

MUL/DIV
IF

BP

BTB

• Multi-cycle
• 4-stage

WB

ALU

ID

LSU

MUL/DIV
IF

BP

BTB

• Multi-cycle
• 4-stage
• Load-Store Unit (LSU)

• Instruction Issue Buffer (IB)
• Out-of-order (OoO)

WB

ALU

ID

LSU

MUL/DIVIF

BP

BTB

IB

• Superscalar , Reorder-Buffer (ROB)
• Register Renaming

• Very Large Instruction Word (VLIW)
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Figure 1.5: Processor Pipelines
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Block C: Multi-threading and VPUs

V1.0 ACA 37

• Multi Threading
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• Vector Processing Unit (VPU)
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Figure 1.6: Multi-Threading and VPUs
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2 Block B

2.1 RISC-V ISA and Compiler Basics
• Instruction Interface

‣ program is a list of instructions

‣ a instruction is a 16/32/64 bit value

– single command

‣ the program counter (pc) points to current position in the program

• Data Interface

‣ Load Instruction

– puts value on the address bus

– receives a value on the rdata bus

‣ Store Instruction

– puts address on the address bus

– puts value on the wdata bus

• Instruction Memory

‣ used with pc to get the instructions to execute

• Data Memory

‣ address is supplied

‣ returns/gets the data value

• Register File Memory

‣ some values are not stored in a memory but in a bank of registers

‣ usually one or more register is read and usually one is written within one instruction

‣ register address is small (4-5 bit), typically 16 or 32 values are stored

‣ realized with a small SRAM with two read ports and one write portRegister File is Inside Processor

Data Memory Interface 

Processor Logic

V1.0 ACA 9

Register

File
AR1

AR2

AW

DW

DR1

DR2

rs1 rs2 rd Value reg_rs2reg_rs1
Data 

Memory

addr
data_o

data_in

ctrl_in ctrl_o

DAddr 

Wdata

Crtl

Rdata

Instruction 
Memory

addr data

PC

Instr

Processor

Instruction Memory Interface 

Figure 2.1: Register File inside a Processor

2.1.1 RISC-V Instruction Set Architecture

• Instruction Set Architecture (ISA) defines:

‣ processor state organizations (registers)

‣ what instructions a processor executes

– how it is encoded in machine code
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Block B — RISC-V ISA and Compiler Basics Advanced Computer Architecture (191.019)

– how assembly looks like

‣ some behavior of the processor (exceptions, …)

• a cross-compiler can generate the assembly code for a different processor (as it’s running on)

• Microarchitecture

‣ processor model describes ISA, number of pipeline stages, …

• Why RISC-V?

‣ open ISA

‣ invented by UC Berkley

‣ more and more SoCs are becoming available

‣ has 32 registers

Register ABI Name Description Saver

x0 Zero hard-wired zero -

x1 ra return address caller

x2 sp stack pointer callee

x3 gp global pointer -

x4 tp thread pointer -

x5-7 t0-2 temporaries caller

x8 s0, fp safed register, frame pointer callee

x9 s1 saved register callee

x10-11 a0-1 function arguments caller

x12-17 a2-7 function arguments caller

x18-27 s2-11 saved registers callee

x28-31 t3-6 temporaries caller

Table 2.1: RISC-V Register Names

• Application Binary Interface (ABI)

‣ specified rules for register usage

– passing arguments and results for function calls

‣ callee-saved: called function has to restore modified values in these registers

‣ caller-saved: called function can modify these and has not to restore them

‣ assigns aliases for registers x0-x31 (see Table 2.1)

Instruction 

Format

Primary use rd rs1 rs2 Immediate

R-type register-regis

ter, ALU in

structions

destination first source second source

I-type ALU immedi

ate, Load

destination first source 

base register

value displace

ment

S-type Store, Compare 

and Branch

base register 

first source

data source to 

store second 

source

displacement 

offset

U-type Jump and Link, 

Jump and Link 

Register

register desti

nation for re

turn pc

target address 

for jump and 

link register

target address 

for jump and 

link

Table 2.2: RISC-V Instruction Formats

• 32-bit Instructions
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‣ Integer Register-Register Instructions (R-type)

– Runs an arithmetic or logical operation on registers

– Both operands are values in registers

‣ Integer Register-Intermediate Instructions (I-type)

– Second operand is a immediate (constant) value

– Immediate is encoded in the machine code

– there is no SUBI, use addition with negative immediate

‣ Control Transfer Instructions

– Unconditional jumps

– Conditional Branches

‣ Load Store Instructions

– Move data between memory and registers

– Load-store Architecture: Operations on registers only

‣ Examples

– ADD a1, a2, a3

• regs[a1] = regs[a2] + regs[a3]

– SUB a1, a2, a3

• regs[a1] = regs[a2] - regs[a3]

– Move is a pseudo instruction

• actually implemented as a ADDI a1, a2, 0

• Control Transfer Instructions - Jumps

‣ Unconditional Jump (pc relative)

– J 8 ⇒ pc = pc + (8 << 1)

– J is a pseudo instruction: JAL zero, 8

‣ Unconditional Jump and Link (pc relative)

– JAL ra, 8 ⇒ regs[ra] = pc + 4; pc = pc + (8 << 1)

– this is used for function calls, where we want to return to the main control flow later

‣ Unconditional Jump and Link Register (register with offset)

– JALR rd, rs1, imm ⇒ pc = (regs[rs1] + imm) & ~1; regs[rd] = pc+4

– RET is a pseudo instruction: JAR zero, ra, 0

• Control Transfer Instructions – Branches

‣ BEQ a1, a2, loop_start ⇒ if (reg[a1] == reg[a2]) pc = loop_start else nothing

‣ further branch instructions

– not equal: BNE

– less than: BLT

– less than (unsigned): BLTU

– greater or equal than: BGE

– greater or equal than (unsigned): BGEU

• Load Store Instructions

‣ Load Word (4 byte): LW a1, 80(a2)

– ⇒ reg[a1] = mem[80 + reg[a2]]

‣ Store Word (4 byte): SW a1, 80(a2)

– ⇒ mem[80 + reg[a2]] = reg[a1]

‣ also options with halfword (lh/sh) and byte (lb/sb) (with sign extension)

‣ to avoid sign extension of halfword and byte loads: lhu, lbu

• Integer Multiplication Instructions (M-Extension)

‣ multiplying two 32 bit values can result in a 64 bit value

‣ (signed) Only the lower 32 bit: MUL rdl, rs1, rs2

‣ (signed) Only the higher 32 bit: MULH rdh, rs1, rs2

‣ unsigned-unsigned version: MULU and MULHU

‣ unsigned-signed version: MLSU and MULHSU

🆙
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• Integer Divison Instructions (M-Extension)

‣ (signed) Divison: DIV rdl, rs1, rs2

‣ (signed) Remainder: REM rdh, rs1, rs2

‣ unsigned-unsigned version: DIVU and REMU

‣ unsigned-signed version: DIVSU and REMSU

37

Compilation C-code: 
val1=val1+4; 

Assembly-code: 
ADDI x10,x10,4 

Machine code: 
0x00450513

Figure 2.2: Compilation with different stages of code representationCompiler Frontend and Backend

Program (C, C++)

Frontend (Lexical, Syntax, Semantical Analyzer)

Abstract Syntax Tree (AST)

Lowering

Intermediate Representation (IR) Code

Backend (Code Generation)

Assembler Code

So
ft

w
ar

e
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o
m

p
ila

ti
o

n

Optimization

Figure 2.3: Compiler Frontend and Backend

• Lexical Analysis (Scanning)

‣ reads stream of characters and groups them in meaningful sequences (lexemes)

• Syntax Analysis (Parsing)

‣ reads token stream and outputs the syntax tree

• Semantical Analysis

‣ reads abstract syntax tree and checks against semantics of programming language

‣ adds type casts

• Intermediate Representation (IR)

‣ Three Address Code

– maximal 3 addresses per operation

– examples:

• x := y op z with op ∈ {+, −, ∗, /, ^, &, …}
• x := y

🆙
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• goto Bx

• if x relop y goto Bx

‣ with relop ∈ {=, ≤, ≥, <, >, ≠, …}

Three address code (4/4)

• Example: Three address code for DE-Solver

• Compiler generated temporary variables: t1 – t7  

C-Code section

repeat {

 x1 = x+dx;

 u1 = u–3*x*u*dx–3*y*dx;

 y1 = y+u*dx;

 x=x1;u=u1;y=y1; 

} until (x1 < a); 

Three address code

B1: x1 := x+dx;

    t1 := y*dx;

    t2 := 3*t1;

    t3 := u*dx;

    t4 := x*t3;

    t5 := 3*t4;

    t6 := u-t5;

    u1 := t6-t2;

    t7 := u*dx;

    y1 :=  y+t7;

    x:=x1;

    u:=u1;

    y:=y1;

    if x1 >= a goto B1;

Lecture Slides – HLS © 2024 D. Mueller-Gritschneder
Figure 2.4: Example Code

• Static Single Assignment (SSA)

‣ all assignments are to variables with distinct names

‣ Φ-Operator chooses the assigned value for recombination of two values

Normal Code SSA Code

p := a+b

q := p-c

p:= q*d

p$1 := a+b

q := p$1-c

p$2 := q*d

Table 2.3: Normal Code vs. SSA

    if (a>b) goto B1

    p$1 := a-b

    goto B2

B1: p$2 := a+b

B2: p$3 := Phi(p$1, p$2)

Listing 2.1: Phi Operator

• LLVM Intermediate Representation

‣ CLANG is the frontend

‣ LLVM has many targets

‣ IR

– in SSA

– evolves with LLVM, but minor changes

– variables are marked with %

– has datatypes

2.2 Static Code Analysis

2.2.1 Control and Data Flow Analysis

• Basic Block

‣ maximal sequence of instructions with

1. no jump target labels (except at the first line)

– cannot jump into a basic block

2. no jump (execpt last “return” instruction)

– cannot jump out of a basic block

‣ single-entry, single-exit, straight-line code segment

• Control Flow Graph (CFG)

‣ 𝐺𝑐(𝑉 , 𝐸)
‣ nodes 𝑉 = {𝐵𝑖 : 𝑖 = 1, …, 𝑛𝐵}

– are basic blocks of the algoritm

‣ edges 𝐸 = {(𝐵𝑖, 𝐵𝑗) : 𝑖, 𝑗 = 1, …, 𝑛𝐵}
– branches, cycles
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‣ Data Flow Graph (DFG) is a directed acyclic graph

– describe data dependencies in a basic block

– Nodes: operations in block

– Edges: Data dependencies between operations

‣ paths in DFG describe concurrent operations, that may be executed in parallel

ACA

• Example 1: Goertzel Algorithm (IR Code)

B1

B2

B3

Control Flow Graph (CFG) (2/2)

B1: s_prev1 := 0.0

s_prev2 := 0.0

i:=0

t1 := 2*3.14 

f := t1 * freq

param f

t2 := call cos,1

coeff:=2.0*t2

B2: t3:= coeff * s_prev1

t4:= x[i] 

t5 := t4 - s_prev2

s := t3 + t5 

s_prev2 := s_prev1 

s_prev1 := s

i:=i+1

if i < 64 goto B2 

B3: t6:= s_prev1 * s_prev1

t7:= s_prev2 * s_prev2

t8:= s_prev1 * s_prev2

t9:= t8 * coeff

t10:= t6+t7

power:= t10 – t9

return power

V1.0 10Figure 2.5: Example of Basic Blocks

Data Flow Graph (DFG) (3/3) 



+

−

s_prev1 s_prev2 coeff

 


t6

t7

t10

t8

t9

power

Three address code:

B3: t6:=s_prev1 * s_prev1

    t7:=s_prev2 * s_prev2

    t8:=s_prev1 * s_prev2

    t9:=t8 * coeff

    t10:=t6+t7

    power:=t10 – t9

return power

Basic block B3 of the Goertzel algorithm:

power = (s_prev1*s_prev1) + (s_prev2*s_prev2) - (s_prev1*s_prev2*coeff);

return power; 

ACA

return

V1.0 12Figure 2.6: Inside a Basic Block with Three Address Code

2.2.2 Code Optimization

• Techniques, mostly executed only on one single basic block

‣ common subexpression elimination

– two instructions execute same operation on the same operands (can be easily seen in SSA)

– one operation can be replaced by a copy statement

‣ dead code elimination

– can be identified with CFG (leads to nowhere)

‣ arithmetic identities

– remove stuff like 𝑎 + 0, 𝑏 ⋅ 1, 𝑐/1, 𝑎𝑏 ⋅ 𝑏
‣ strength reduction

– replace operation with equivalent operations that is cheaper to execute in hardware

– 𝑥 ⋅ 2 ⇒ 𝑥 ≪ 1
‣ constant folding (propagation)

– calculate constant expressions at compile time: 2 ⋅ 5 + 6 = 16
‣ tree height reduction

– increase possible concurrency by avoiding data dependencies

🆙
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– better for multi-issue processors, multi-threading

Tree Height Reduction

• Increase possible concurrency by avoiding data dependencies.

• Increases possibilities for parallel execution in  hardware 
implementations or on multi-issue processors.

e:=d+(c-a*b) 



−

+

t1:= a * b

t2:= c - t1

e:= d + t2 

No parallel 
execution due 
to data 
dependencies.

a b

c

d

e

e:=(d+c)-a*b 

 +

−

t1:= a * b

t2:= d + c

e:= t2 – t1 

Parallel 
execution of 
multiplication 
and addition 
possible.

a b c d

e

Tree height = 3.

Tree height = 2.

ACA
V1.0 22Figure 2.7: Tree Height Reduction

• Global Code Optimization Techniques

‣ considering more than one basic block

‣ global common subexpression elimination

‣ global dead code elimination

‣ code motion

– move statements out of the loop, if their value is independent from loop iteration

‣ induction variable reduction

– induction variables change by constant value in each iteration of loop

– apply strength reduction and common subexpression elimination on induction variables

‣ loop unrolling

– loop classification

• do-all loops: no data dependencies between loop iterations

• do-across loops: exists possible data dependencies between loop iterations

– execute serveral loop iterations in one single iteration of optimized loop

– unroll factor: number of non-optimized loop iterations executed in one iteration of optimized loop

2.2.3 Live Variable Analysis

• Dataflow Analysis

‣ determines dataflow values at each point in the program

‣ values before IR statement: 𝑠𝑖 : IN[𝑠𝑖]
‣ values after IR statement: 𝑠𝑖 : OUT[𝑠𝑖]
‣ each IR statement applies a transfer function on the dataflow values:

– forward flow analysis: OUT[𝑠𝑖] = 𝑓𝑠,𝑖(IN[𝑠𝑖])
– backward flow analysis: IN[𝑠𝑖] = 𝑓𝑠,𝑖(OUT[𝑠𝑖])
– transfer function of a basic block is the composition of the transfer functions of all statements

• Controlflow Constraints

‣ within one basic block, the dataflow values after an IR statement are the same as before the next statement

‣ between basic blocks:

– forward flow problem: values at the entry to the basic block are the union of the values at the end of 

all predecessors

– backward flow problem: values at the end of the basic block are the union of the values at the entry of 

all its successors

• Variable Liveliness Analysis

‣ variables at entry to basic block 𝐵𝑥: IN[𝐵𝑥]
‣ variables at end of basic block 𝐵𝑥: OUT[𝐵𝑥]
‣ set of defined variables: DEF[𝐵𝑥]
‣ set of used variables: USE[𝐵𝑥]
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‣ Conditions for Live Variable Analysis

1. is a backward flow analysis

2. transfer function: IN[𝐵𝑥] = USE[𝐵𝑥] ∪ (OUT[𝐵𝑥] − DEF[𝐵𝑥])
3. control flow constraints: OUT[𝐵𝑥] = ⋃𝑆𝑥

IN[𝑆𝑥]
– 𝑆𝑥 are successor basic blocks of 𝐵𝑥

4. boundary condition: IN[END] = {}
• Why is variable lifetime important?

‣ compiler does not need to assign registers to all variables during their full lifetime

– can be spilled (moved in the stack)

‣ number of needed registers depends on numver of variables which are live at a certain point in the 

program

‣ registers can be reused in case that the lifetime of variables does not overlap
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3 Block C

3.1 Scalar Pipeline and Branch Prediction

3.1.1 In-order Scalar Processor Pipeline

Pipelined execution

• We break down instructions in sub-computations and place them into stages (s)

• We execute the instructions in a pipelined fashion („Fließband“)

V1-1 ACA 6

SLLI a2,a1,2 s1 s2 s3 s4 s5

ADD t1,t0,t2 s1 s2 s3 s4 s5

LW a0,0(a3) s1 s2 s3 s4 s5

SLLI a2,a1,2 SLL S2 s3

ADD t1,t0,t2 ADD s2

LW a0,0(a3) LW

Figure 3.1: Instructions in a pipelined fashion

Recap: Five-Stage In-order Scalar Processor Pipeline (Harris & Harris)
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Figure 3.2: Five State In-order Scalar Processor Pipeline
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• Stages:
Instruction Decode

(ID)
Writeback

(WB)
Memory Stage 

(MS)
Execute 

(EX)
Instuction Fetch

(IF)

Five-stage Pipeline - Stages

V1-1 ACA 9

Instruction
Memory

PC
M
U
x

+4

IF/ID

Register 
File

DI

Extend

ID/EX

A
L

U

M
U
x

A
D

D

EX/MS

Data
Memory

MS/WB

M
U
X

Figure 3.3: Pipeline split up into Stages

Stages and Subcomputations

• Instruction Fetch (IF)

‣ fetch next instruction, next Program Counter (PC)

• Instruction Decode (ID)

‣ DI: decode instruction

‣ RF: read operands

‣ Extend: sign extend immediate, sign extend and shift or LUI, AUIPC, BX

• Execute (EX)

‣ Arithemtic Logic Unit (ALU): compare result, compute address, comparison (branch taken/not taken), 

compute JR branch target address

‣ ADD: compute branch target address

• Memory Stage (MS)

‣ read/write data memory

• Write Back (WB)

‣ write result

• data hazards can be effectively mitigated using a forward path

‣ named “forward path” but the signal buses go back in the pipeline

• RET is a pseudo-instruction

‣ RET → JR ra → JALR x0, ra, 0

• the Harris Pipeline does not support to load a register value into PC

‣ another bus needed for implementing the JR instruction

3.1.2 Data Hazards

• due to forward path: possible data hazard after loading with penalty of 1 clock cycle

• Read after Write (RAW)

‣ one instructions reads operand that is written as result of previous instructions

• compiler can often move instructions to avoid RAW data hazards after loads

‣ program order must not change

🆙
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3.1.3 Control Hazards

• control hazards arise from instructions that change the PC

‣ when the flow of instructions addresses is not sequential

– unconditional branches (jal, jalr)

– conditional branches (beq, bne, …)

– exceptions

• possible approaches

‣ stall: impacts Cycles per Instructions (CPI)

‣ move decision point as early in the pipeline as possible (extra hardware)

‣ predict and hope for the best 🙏
‣ delay decision (requires compiler support)

• control hazards occur less frequently than data hazards

‣ but they cannot be solved as effectively as data hazards with forwarding

• branches determine flow of control

‣ fetching next instruction depends on branch outcome

‣ PC is either (𝑃𝐶 + 4) or (𝑃𝐶 + imm ≪ 1)
• Stall on Branch

‣ conservative approach: wait until branch outcome determined before fetching next instruction

• Reducing Branch Delay

‣ move branch decision to ID stage

‣ reduce cost of the taken branch

‣ target address adder in ID

‣ branch penalty: only one clock cycle

Reducing Branch Delay  - Move Branch Decision to ID Stage – Branch Taken

• Target address adder in ID, Extra comparator to get branch decision in ID

• Branch penalty: Only one clock cycle

V1-1 ACA

40

40 BEQ a1,a2,L1

44 AND a2,a0,a2

48 OR a0,a2,t1 

52 ADD a0,a0,a1

56 L1: 

LW a1,4(a4)

R
F A

L
UIF MS WB

CC1 CC2 CC3 CC4 CC6CC5 CC7 CC8 CC9 CC10

Branch 
taken

ID A
L

UIF MS WB

PC=PC+8<<1=40 + 16 =56 

C
M

P
A

D
D

M
U
x

E

Bubble

Figure 3.4: Move Branch Decision to ID Stage

3.1.4 Static Branch Prediction

• longer pipelines cannot determine branch outcome early

‣ this means branch penalty becomes unacceptable

• Simple Static Branch Prediction Schemes

‣ always not taken

‣ always taken

• Always Not Taken

‣ Correct Prediction

– penalty: 0 Clock Cycles (CC)

‣ Incorrect Prediction

– penalty: 2 CC

– flush instructions from pipeline

• Always Taken

‣ Correct Prediction

🆙
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– branch target address is computed in the EX stage

– Branch Target Buffer (BTB) stores the Branch Target Address (BTA) for a certain branch (see Figure 3.5)

– content addressable memory

– lookup via PC

– BTB has entry

• BTA via BTB

• penalty: 0 CC

‣ Incorrect Prediction

– penalty: 2 CC (just as with Always not taken)

– flush instructions from pipeline

• Statistics

‣ typical statistics: 60% to 70% branches are taken

‣ always not taken: 62% mispredictions

‣ always taken: 38% mispredictions

‣ Backward Taken, Forward Not Taken (BTFNT)

– forward branches not taken: ≈ 10% mispredictions

– backward branches taken: ≈ 20% mispredictions

CPI = 1 + 𝑏 ⋅ 𝑝 ⋅ 𝑚
𝑏… relative number of branch instructions

𝑝… cycle penalty for mispredictions
𝑚… misprediction rate

Branch Target Buffer (BTB)

• Stores the Branch Target Address (BTA) for a certain branch (e.g. identified by its own 
Branch Instruction Address (BTI))

• Content Addressable Memory (Costly for entries) 
• Update policy (similar to caches)

• Entries entered in pairs (BIA, BTA)

• entry not available for first branch execution

• Lookup via PC

V1-1 ACA 47

Branch Target Buffer (BTB)

Branch Instruction Address (BIA) Branch Target Address (BTA)

Lookup
PC

Update

BIA

BTA

Speculative taken
BTA

Valid BTB Entry (1), 
No Valid BTB Entry (0) 

Branch in EX 

Figure 3.5: Branch Target Buffer (BTB)

3.1.5 Dynamic Branch Prediction

ℹ️ Note

In longer pipelines, branch penalty is more significant

• Branch Prediction Buffer (aka. Branch History Table (BHT))

‣ stores last outcome (taken, not taken)

‣ check table, expect the same outcome

‣ start fetching from fall-through (not taken) or target (taken)

‣ in case of misprediction, flush pipeline and flip prediction

💡 Tip

For example in a loop the taken branch is way more common than not taken (just last iteration)

• Single-Bit/1-Bit/Last-Time Predictor

‣ indicates which direction the branch went last time it executed

‣ PNT: Predict NT (bit=0): fetch the instruction from PC+4

🆙
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‣ PT: Predict T (bit=1): get target address from the BTB

‣ see Figure 3.6

Start
(0) (1)

Taken
Not Taken

Not Taken

Taken

Figure 3.6: Single-Bit Predictor

• Global Predictor

‣ one single Branch History Entry for all branches

• Local Predictor

‣ one entry for each BTB entry

• 2-Bit Predictor

‣ prediction does not change on a single misprediction

‣ PNST: Strongly Not Taken (00), PWNT: Weakly Not Taken (01)

‣ PWT: Weakly Taken (10), PST: Strongly Taken (11)

‣ see Figure 3.7

‣ a prediction must be wrong twice (consecutively) before the prediction is changed

Start
(00) (01) (10) (11)

Taken
Not Taken

Not Taken

Taken

Not Taken

Taken

Not Taken

Taken

Figure 3.7: 2-Bit Predictor

3.1.6 A Look at a Real Processor - CVA6

This is not relevant for the 

exam

3.1.7 A Look at a Real Processor - ESP32-C3

This is not relevant for the 

exam

3.1.8 A Look at a Real Processor - Trap Handling

This is not relevant for the 

exam
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3.2 From Scalar to Superscalar

3.2.1 Multi-Cycle Operations

Pipelined Functional Unit (FU)

• complex computations require deep circuit logic

• critical paths limits the design’s frequency

• same is as processor design: break FU into stages and integrate registers (pipeline)

• latency is the number of pipeline stages

• initialization interval: delay between start of two computations

Pipelined Functional Units (FUs)

• Complex computations require deep circuit logic

• Critical path in deep logic limits the design’s frequency

• Similar to processor design, break FU into stages and integrate registers to build a pipeline

➢Latency (in cycles) equals to number of pipeline stages

➢ Initialization Interval: Delay (in cycles) between start of two computations

• Example:  2-stage Multiplier

V1-0 ACA 8

Cycle 1

MUL a0,a0,t0 IF ID MUL(s1) MUL(s2) MUL(s3) WB

MUL a1,a1,t1 IF ID MUL(s1) MUL(s2) MUL(s3) WB

MUL a2,a2,t2 IF ID MUL(s1) MUL(s2) MUL(s3) WWBB

Cycle 2 Cycle 3 Cycle 4

Latency = 2 Cycles

Initialization Interval = 1 Cycle
MUL

s1
MUL

s2

Stage 
s1

Stage 
s2

Latency

Initialization
Interval

Figure 3.8: Example: 2-stage Multiplier

Serial FU

• often complex operations such as divisions can be computed by iterative algorithms

• the number of iterations often depends on the input values

‣ can be implemented on a serial FU

Serial Functional Units (FUs)

• Often complex operations such as divisions can be computed by iterative algorithms

• The number of iterations (required clock cycles) often depends on the input values

• These iterations can be implemented on a serial FU, which is busy as long as it computes

➢Latency equals to number of cycles required for computation

➢ Initialization Interval equals to number of cycles required for computation 

• Example: Serial Divider

V1-0 ACA 9

Latency = 1-64 Cycles

Initialization Interval = Latency

1-64 clock cycles

DIV

Latency

DIV a0,a0,t0 2 DIV DIV MUL(s3) WB

DIV a1,a1,t1 4 ID DIV DIV DIV DIV

Figure 3.9: Example: Serial Divider

Multi-cycle Functional Units are integrated into the EX Stage

Integration of Multi-cycle Functional Units 

• Multi-cycle Functional Units are integrated into the EX stage

• Example only for Multiplier
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A
L

U

A
D

D

M
U
x

M
U
x

M UL

Extended Immediate

PC

Rs1

Rs2

M
U
x

M
U
x

Forwarded 
from MS

Forwarded 
from WB
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Result

Simplified Illustration Style for 
Multiplexing
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Value
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Value

M
U
x

Forwarding also sometimes called
„bypass“

Figure 3.10: Example: for Multiplier in EX Stage
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Scalar Five-Stage Pipeline with Multi-cycle FUs  and Forwarding

• Multi-cycle Functional Units are integrated into the EX stage

• Simplified diagram

V1-0 ACA 12

BTA: Branch Target Address
PCp4: PC+4
JRBTA: Register-defined 
branch target address
TBTA: Taken-BTA from 
Branch Target Buffer (BTB)

DIIMEM

DMEMA
L

U
A

D
D

DIV

M UL

RF

Extend

Forwarding

BTA

WBIF ID MSEX

+4

PCp4

PCp4
BTA

JRBTA

JRBTA

TBTA

PC

BTB TBTA

BIA

BIA
BTA

Figure 3.11: Example: Multiplier in Full Pipeline

Scalar Four-Stage Pipeline with Multi-cycle FUs and Load Store Unit (LSU)

• We can add a 
second address 
computation adder 
(AC) to form a 
simple so-called 
load/store unit (LSU)

V1-0 ACA 15

DIIMEM

DMEM

A
L
U

A
D

D

DIV

M UL

RF

Forwarding

BTA

WBIF ID EX

A
C

LSU

Figure 3.12: Example: with second Address Adder (AC) -> simple Load/Store Unit

Execution Scheme: Four-Stage In-Order Scalar Pipeline 

• The EX stage has an execution scheme defined by the processor control path

• Version 1: Static In-order Scheduling
➢Allow only one single instruction in the EX stage

➢Data hazards: Operands are forwarded by previous instruction

V1-0 ACA 16

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

ADD a1,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL MUL WB

MUL a4,a1,a4 IF ID stall MUL MUL WB

LW t1,0(a3) IF stall ID stall AC DMEM WB

ADDI t1,t1,4 stall IF stall ID stall ALU WB WB

EX still busy
Stalls backpropagate in 
pipeline

RAW 
dependencies

t1 is forwarded Data hazard
After load
and EX 
stage still 
busy
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Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs

• Version 2: Static In-order Scheduling exploiting Pipelined FUs

➢Allow only one single instruction in EX stage

➢Except for: Pipelined MUL can use Initialization Interval for two consecutive MUL 
(still need to check for RAW dependency between the MUL)

V1-0 ACA 17

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a1,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL(s1) MUL(s2) WB

MUL a4,a1,a4 IF ID MUL(s1) MUL(s2) WB

LW t1,0(a3) IF ID stall AC DMEM WB

ADDI t1,t1,4 IF stall ID stall ALU WB WB

3.2.2 Load/Store Optimizations

Memory System

• The memory for more complex 
processors usually uses caches to 
allow for fast accesses

• Memory latency depends 
whether the data is found in the 
cache (cache hit/miss)

• Also instructions are loaded from 
caches, so also instruction fetch 
may require several cycles on an 
instruction cache miss. 

V1-0 ACA 19

Data CacheInstruction Cache

Interconnect + Memory System (L2 Cache, Main Memory)

DMEM

DI
A

L
U

A
D

D
DIV

M UL

RF

BTA

A
C

LSU

IMEM

Instruction Cache Misses

• causes several cycles of delay for instruction fetch (IF)

‣ depending on speed to catch fresh instruction block from memory

• instructions are usually reloaded to cache in blocks (cache line size)

‣ so that usually there are several cahce hits after a cache miss

• advanced caches pre-fetch the next block before the cache miss happens

‣ to hide cache refill latencies

Load Cache Miss

• data cache misses lead to extra cycles for loads as the data needs to get fetched from another memory

‣ (e.g. Level 2 Cache, Main Memory, …)

• due to this the pipeline has to be stalled

Non-blocking Loads

• load access are far longer times in flight due to cache misses

• most interconnects/caches allow overlap mulitple memory accesses

Example: cache observes both addresses for load accesses and may need to reload cache lines for both accesses 

when both miss

🆙
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Nonblocking Loads (2/2)

• Cache usually returns values in-order (some caches/interconnects support to return data 
out-of-order)

• Example (function 3): When only the first load misses, the second load still needs to wait 
in the LSU when the LSU returns results in-order.
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

LW t1,0(a0) IF ID AC DMEM DMEM DMEM DMEM WB

LW t2,0(a1) IF ID AC DMEM DMEM DMEM DMEM WB ADD

ADD t1,t1,t2 IF ID stall stall stall stall ALU WB WB

No data cache miss, but we 
need to wait for first cache 
access to finish.

Data Cache Misses

Figure 3.16: Example with non-blocking loads

Store Cache Miss

• depending on Store Policy

‣ additional latencies for store possible when a dirty cache line needs to be replaced (first needs to be 

written back, before new line can be loaded)

• Write Through Data Cache

‣ long store latency because the data is written not only to cache but also main memory

Buffers

• a buffer can store several values

• FIFO (first in, first out)

‣ buffer values can only be read in the same order they are written to

• Reorder Buffer

‣ can look up and read any value in the buffer

• Store Buffer

‣ not needed to wait until a store write is complete

‣ Store Unit (SU) with Store Buffer

– put store address and data to store buffer (aka “Posted Stores”)

– store buffer performs memory store access independently from pipeline

– only stall pipeline for stores when store buffer is full

‣ Load Unit (LU)

– need to first look whether address is in store buffer then in cache

– or need to wait until Store Buffer is empty

3.2.3 Challenges for Exploiting Instruction Level Parallelism

Challenges for Exploiting Instruction Level Parallelism: Structural Hazards

• Start instructions in EX stage when FUs are available?

• Challenge: Structural Hazards, e.g. in WB Stage 

V1-0 ACA 32

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

ADD a2,t1,t2 IF ID ALU WB WB

MUL a2,a0,a2 IF ID MUL(s1) MUL(s2) WB

MUL a4,a1,a4 IF ID MUL(s1) MUL(s2) WB WB

LW t1,0(a3) IF ID AC DMEM WB MA WB

ADDI a3,a3,4 IF ID ALU WB ALU WB

Two WB in same cycle!
WB collision!
Structural Hazard!

• instructions can overtake each other due to different FU latencies

‣ requires consideration of instruction dependencies during pipelined execution to preserve program order
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3.2.4 Instruction Dependencies

• Read after Write (RAW)

‣ result of one instruction is needed as input for 

another instruction

• Write after Read (WAR)

‣ a value is used (read) and then updated (write)

– the write is not allowed to overtake the read

• Write after Write (WAW)

‣ a value is written and then written again

‣ the second write may not overtake the first update

‣ often created when registers are reused

Types of Instruction Dependencies

• Read-after-Write (RAW): Also „True dependency“
• Result of one instruction (write) is needed as 

input for another instruction (read)
• May cause data hazards (we seen this one already)

• Write-after-Read (WAR): Also „anti-dependency“
• A value is used (read) and then updated (write)
• The update (write) is not allowed to overtake the use (read)

• Write-after-Write (WAW): Also „output dependency“
• A value us updated (write) and then updated again (write)
• The second update may not overtake the first update
• Often created when registers are reused for different 

variables 
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Example for RAW:
XOR a1,a2,a4
                RAW
ADD a3,a1,t1

Example for WAR:
SW a1,0(a2)
                  WAR
ADDI a2,a3,4

Example for WAW:

LW a1,0(a2)
           WAW
LI a1,a3,4

Figure 3.18: Examples RAW, WAR, WAW

Dep. For Example Program (vec_add) (RAW)

• Mark all RAW dependencies for the 
following code block:

V1-0 ACA 37

LI t0,0 
LI t3,4
vec_add_for:
  LW t1,0(a0) 
  LW t2,0(a1) 
  ADD t1,t1,t2 
  SW t1,0(a2) 
  ADDI a0,a0,4
  ADDI a1,a1,4
  ADDI a2,a2,4
  ADDI t0,t0,1 
  BLTU t0,t3,vec_add_for 
  RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

RAW
RAW

RAW

RAW

Figure 3.19: Mark all RAW, WAR, WAW
Dep. For Example Program (vec_add) (RAW)

• Mark all RAW dependencies for the 
following code block:

V1-0 ACA 37

LI t0,0 
LI t3,4
vec_add_for:
  LW t1,0(a0) 
  LW t2,0(a1) 
  ADD t1,t1,t2 
  SW t1,0(a2) 
  ADDI a0,a0,4
  ADDI a1,a1,4
  ADDI a2,a2,4
  ADDI t0,t0,1 
  BLTU t0,t3,vec_add_for 
  RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

RAW
RAW

RAW

RAW

Figure 3.20: Marked RAW

Dep. For Example Program (vec_add) (WAR)

• Mark all WAR dependencies for the 
following code block:

V1-0 ACA 38

LI t0,0 
LI t3,4
vec_add_for:
  LW t1,0(a0) 
  LW t2,0(a1) 
  ADD t1,t1,t2 
  SW t1,0(a2) 
  ADDI a0,a0,4
  ADDI a1,a1,4
  ADDI a2,a2,4
  ADDI t0,t0,1 
  BLTU t0,t3,vec_add_for 
  RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

WAR

WAR

WAR

Figure 3.21: Marked WAR

Dep. For Example Program (vec_add) (WAW)

• Mark all WAW dependencies for the 
following code block:
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LI t0,0 
LI t3,4
vec_add_for:
  LW t1,0(a0) 
  LW t2,0(a1) 
  ADD t1,t1,t2 
  SW t1,0(a2) 
  ADDI a0,a0,4
  ADDI a1,a1,4
  ADDI a2,a2,4
  ADDI t0,t0,1 
  BLTU t0,t3,vec_add_for 
  RET

LW t1,0(a0)

LW t2,0(a1)

ADD t1,t1,t2

SW t1,0(a2)

ADDI a0,a0,4

ADDI a1,a1,4

ADDI a2,a2,4

ADDI t0,t0,1

BLTU t0,t3,vec_add_for

WAW

Figure 3.22: Marked WAW
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Challenges with Interleaving Instruction Executing in EX Stage

1. consider RAW, WAR and WAW

2. structural hazards must be avoided (e.g. FU is already busy)

3. some instructions can cause exceptions (e.g. memory fault)

3.2.5 Out-of-Order (OoO, O3) Pipeline

• first implementation of Scoreboard in 1964

• to use out-of-order execution, the ID pipeline stage has to be split into two stages

1. Issue: decode instructions, check for structural hazards

2. Read Operands: wait until no data hazard

• in a dynamically scheduled pipeline all instructions pass through the issue stage in order (in-order issue) 

but they can be stalled or bypass each other in the second stage (read operands) and thus enter EX stage 

out-of-order

Steps in Out-of-Order Execution (Scheme 1*)

• 1. Issue
➢ Functional unit is free 
➢No other active instruction has the same destination register

(guarantee that WAW hazards cannot be present) 
➢ If a structural or WAW hazard exists, then the instruction issue stalls, and no further instructions will issue 

until these hazards are cleared. 

• 2. Read operands
➢ When source operands are available, the scoreboard tells the functional unit to proceed to read the operands from the 

registers and begin execution. 
➢ The scoreboard resolves RAW hazards dynamically in this step, and instructions may be sent into execution out of order. 

• 3. Execution 
➢ The functional unit begins execution upon receiving operands. When the result is ready, it notifies the scoreboard that it 

has completed execution. 

• 4. Write result
➢ Once the scoreboard is aware that the functional unit has completed execution, the scoreboard checks for WAR hazards 

and stalls the completing instruction, if necessary. 

-- *Computer Architecture A Quantitative Approach –  5th Ed. Section C7

V1-0 ACA 46

Figure 3.23: OoO Execution Scheme 1

Steps in Out-of-Order Execution (Simpler Scheme 2**)

• Issue Buffer (IB) holds multiple instructions waiting to issue.

• Instruction Decode (ID) adds next instruction to IB if 
• there is space in IB and
• the instruction does not have a WAR or WAW dependency with any instruction in IB.

• Instruction Issue (IS) can issue any instruction in IB whose 
• RAW hazards are satisfied to all previous instructions in IB 
• FU is available.

• Note: With writeback (WB) we delete the instruction from the IB, this may enable 
more instructions to issue as RAW dependencies are resolved.

-- **Inspired by MIT course, Daniel Sanchez - 
http://csg.csail.mit.edu/6.823S20/Lectures/L09.pdf

V1-0 ACA 47

IB WBIF RO EX

Read Operands
and Execute

Issue
(Dispatch)

IS

Complete

Figure 3.24: OoO Execution Scheme 2
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Example OoO Processor: Scoreboard Integration 
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Scoreboard (ScB)

ISIMEM

LSU (LU and 
SU)

A
L

U
A

D
D

DIV

M UL

BTA

IB

RF

Example four-stage pipeline with
• IB size 4 and
• 4 ports to issue instructions from

buffer (4 ROs)
• 4 ports for write back (WB) 

No structural hazards in RO/WB
This is costly, we will later see that
the ports are under-utilized
-> limit ports in HW and limit issue
or stall for structural hazards

Forwarding

Figure 3.25: OoO Execution Scoreboard Integration

Terminology

V1-0 ACA 70

• Processors:

➢Scalar (CPI >= 1)

➢Some stages can be multi-
issue, e.g. four WB ports

• In-order/OoO can be 
different for every stage. 

➢But: OoO usually means 
instructions are scheduled 
OoO in EX stage.

WBIF EXID MS

IB WBIF RO EXIS

• OoO• In-order

• In-order

Figure 3.26: Terminology

3.2.6 Register Renaming

• WAW and WAR limit further reordering

‣ no real dependencies (→ artificially added because of limitation of registers)

• register limited by ISA

• compiler optimizations limited

Approach: Register Renaming

• rename to microarchitecture register names

‣ more microarchitecture registers than logical ISA registers

‣ entirely eliminates WAR and WAW hazards

🆙

27 / 131



Block C Advanced Computer Architecture (191.019)

Register Renaming

• Approach: Rename to microarchitecture register names 
• More microarchitecture registers than logical ISA registers
• Entirely eliminates WAR and WAW hazards
• Not visible to the outside world

• Introduced by Robert Tomasulo (1967)
• Reservation stations (FU-specific IBs) before FUs store instructions and reg. names
• Tomasulo Algorithm: Computer Architecture A Quantitative Approach 5th Ed. – 

Chapter 3
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SW t1,0(a2)

ADDI a2,a2,4

WAR

SW t1,0(a2)

ADDI p2,a2,4

Figure 3.27: Use microarchitecture names

Example: Register Renaming removes WAW, RAW stalls
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS RO LU LU WB

DIV x17,x13,x12 IF IS IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS RO ALU WB

MUL x19,x12,x18 IF IS RO MUL MUL WB

MUL x20,x17,x14 IF IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall IS IB IB RO SU SB

LW p1,4(x8) IF IS RO LU LU WB LU LU WB

ADDI X13,p1,4 IF IS IB RO ALU WB

CPI = 1,2

10 instructions
4 cycles ramp-up (5-stage pipeline)
Total 16 cycles -4 cycles = 12 cycles

We do not have to stall IF and IS on WAW and WAR, but RAW still makes instruction wait in IB for operands.
In this example the LW stores to x10 and we use an extra physical register p1 to replace x10. 
Removes WAW dependency to the store.

Figure 3.28: Example of Register Renaming

3.2.7 Simple Superscalar Processor

Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode

V1-0 ACA 76

Scoreboard (ScB)

ISIMEM

LSU (LU and 
SU)

A
L

U
A

D
D

DIV

M UL

BTA

IB

RF

Forwarding

IS

Instruction fetch can
fetch two instructions at once
Ideal IPC = 2

Figure 3.29: Dual Instruction Fetch and Decode
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Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode – Example
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB

LW x13,0(x7) IF IS IB RO LU LU WB

DIV x17,x13,x12 IF IS IB IB RO DIV DIV DIV DIV WB

ADDI x18,x12,28 IF IS IB RO ALU WB

MUL x19,x12,x18 IF stall stall IS RO MUL MUL WB

MUL x20,x17,x14 IF stall stall stalll IS IB IB RO MUL MUL WB

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB

SW x10,0(x11) IF stall stall IS IB IB RO SU SB

LW p1,4(x8) IF IS RO LU LU WB LU LU WB

ADDI X13,p1,4 IF IS IB IB RO ALU WB

CPI = 1,2

10 instructions
4 cycles ramp-up (5-stage pipeline)
Total 16 cycles -4 cycles = 12 cycles

Fetching more instructions assures the issue buffer is always filled.
BUT: Instruction Level Parallelism can limit instructions executing in parallel
We will later see: We need to optimize code for superscalar pipeline to see benefit!

Figure 3.30: Dual Instruction Fetch and Decode - Example

3.2.8 Reorder Buffer (ROB)

• some instructions can cause exceptions

‣ memory fault

‣ before entering exception handling all previous instructions should have committed

‣ no instruction after the one that caused the exception should have committed

Challenge with OoO Pipelines and Exceptions 

• Some instructions can cause exceptions 
• Memory fault on load/store

• Before entering exception handling all previous instructions should have committed 
(done their write back)

• No instruction after the one that caused the exception should have committed (done their write back)

V1-0 ACA 79

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

SW t1,0(a0) IF IS AC SB SB SB MSA WB

SW t2,0(a1) IF IS AC SB SB SB FAULT WB ADD

LI t2,4 IF IS ALU WB stall stall ID ALU WB

LI would have committed before we observe the 
memory store fault exception (imprecise exception)

Figure 3.31: Pipelines and Exceptions

Implementing Precise Exceptions in OoO Pipelines

• all correct before should have committed, no of the following has committed

• scoreboard approach did not support precise exceptions

• different approach:

‣ Reorder Buffer sorts all WB commits and makes sure store buffer only sends committed stores to memory
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Reorder Buffer (ROB)

• Reorder buffer: Orders the WBs and commits them in-order

• Also assures stores are committed in order with WBs (needed for precise exceptions)
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IB WBIF RO EXIS

• OoO• In-order

ROB CO

• In-order

Read Operands
and Execute

Issue
(Dispatch)

Complete Commit
(Retire)

Finish

Figure 3.32: Reorder Buffer (ROB)

Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode with ROB 
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Instruction fetch can
fetch two instructions at once
Ideal IPC = 2

ROB to reorder the write backs

Scoreboard, IB and ROB
can be implemented as one joint data
buffer in the hardware

Scoreboard (ScB)

ISIMEM

LSU (LU and 
SU)

A
L

U
A

D
D

DIV

M UL

BTA

IB

RF

Forwarding

IS

R
O
B

Figure 3.33: Dual Instruction Fetch and Decode with ROB

Simple Superscalar (Scoreboard) – Dual Instruction Fetch and Decode with ROB – Example
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 …

LW x12,8(x9) IF IS RO LU LU WB CO

LW x13,0(x7) IF IS IB RO LU LU WB CO

DIV x17,x13,x12 IF IS IB IB RO DIV DIV DIV DIV WB CO

ADDI x18,x12,28 IF IS IB RO ALU WB ROB ROB ROB ROB CO

MUL x19,x12,x18 IF stall stall IS RO MUL MUL WB ROB CO

MUL x20,x17,x14 IF stall stall stalll IS IB IB RO MUL MUL WB CO

ADD x10,x20,x13 IF IS IB IB IB RO ALU WB CO

SW x10,0(x11) IF stall stall IS IB IB RO SU SB SC

LW p1,4(x8) IF IS RO LU LU WB CO LU LU WB

ADDI X13,p1,4 IF IS IB IB RO ALU WB CO

CPI = 1,2

10 instructions
5 cycles ramp-up (6-stage pipeline)
Total 17 cycles -5 cycles = 12 cycles

As we fetch more than one instruction we need more than one commit ports (but if exeption only commit the
ones before the instruction causing execption)
Store must also commit in order (SC: store commit)
WB: indicates write back to ROB buffer

Figure 3.34: Dual Instruction Fetch and Decode with ROB - Example
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3.2.9 A Look at a Real Processor - CVA6

This is not relevant for the 

exam

3.3 Multi-Issue Multi-Threading

3.3.1 Increasing Processors’ Performance

• recap: superscalar processor reach CPI = 1

• performance is defined as

Performance = 1
IC

⋅ Instructions
Cycle

⋅ 1
Cycle Time

= IPC ⋅ Freq
IC

= Freq
IC ⋅ CPI

= 1
runtime

• IC … Instruction Count

• CPI … Cycles per Instruction

• IPC… Instructions per Cycle

• superpipelining aims at increasing performance via frequency

• superscalar, VLIW aims at increasing performance via IPC

• compiler optimizations can improve instruction count and IPC

Superpipelining and Multi-Issue

• Scalar five-stage pipeline

• Superpipelining concept:  Multi-Issue concept:

V1-0

SLLI a2,a1,2 IF ID EX MS WB

ADD t1,t0,t2 IF ID EX MS WB

SLLI a5,a4,2 IF ID EX MS WB

LW a0,0(a3) s1 IF ID EX MS WB

SLLI a2,a1,2

ADD t1,t0,t2

SLLI a5,a4,2

LW a0,0(a3)

SLLI a2,a1,2 IF ID EX MS WB

ADD t1,t0,t2 IF ID EX MS WB s5

SLLI a5,a4,2 IF ID EX MS WB s5

LW a0,0(a3) IF ID EX MS WB s5

• Superpipelining aims at higher clock frequency by increasing number of pipeline stages!

• Multi-Issue processors enable CPI < 1 (IPC > 1) by fetching, decoding and executing multiple instructions in parallel 

ACA

Figure 3.35: Superpipelining and Multi-Issue

3.3.2 Superpipelining

• aims to reduce cycle time (increase clock frequency)

• deep pipelining or superpipelining: having more stages than a given baseline (e.g. five-stage pipeline)

‣ pipeline stages do not need to be split evenly
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Example: MIPS R4000

• Example MIPS R4000 Pipeline* 
• Cache access time most critical in the design

• Eight stages (registers not shown -> lines for cycle boundaries)

*-- diagram according to Computer Architecture  A Quantitative Approach – Section C6

V1-0

WBIF RF EXIS

IMEM DMEM

A
L
URF

DF DS TC

• IF — First half of instruction fetch; 
• IS — Second half of instruction fetch, 

complete instruction cache access. 
• RF — Instruction decode and register 

fetch
• EX — Execution, which includes 

effective address calculation, ALU 
operation, and branch-target 
computation and condition evaluation.

• DF — Data fetch, first half of data cache 
access.

• DS — Second half of data fetch, 
completion of data cache access. 

• TC — Tag check, to determine whether 
the data cache access hit. 

• WB — Write-back

ACA

Figure 3.36: Example: MIPS R4000

• instruction dependencies have higher penalties (due to deeper pipeline)

‣ branch decision later available → prediction even more important as more instructions must be flushed

– in MIPS R4000: 3 cycles branch penalty

‣ forwarding can’t remove all stall cycles for RAW dependencies

– Load-use delay: 3 cycles

Limits of Superpipelining

• number of stages in Desktop: 12-20 stages

• number of stages in embedded cpus: 1-20 stages

3.3.3 Multi-Issue

Static Multiple Issue

• at compile time

• compiler groups instructions to be issued together 

in a bundle

• sorts them into “issue slots”

• compiler detects and avoids hazards

Dynamic Multiple Issue

• during execution

• CPU examines instruction stream and chooses in

structions to issue each cycle

• compiler can help by reordering instructions

• CPU resolves hazards using advanced techniques at 

runtime

Specualtion

• guess what to do with an instruction

‣ start operation as soon as possible

‣ check wether guess was right

– if so, complte the operation

– if not, roll-back and to the right thing

• common to static and dynamic multiple issue

• examples

‣ Speculate on branch outcome

– execute instructions after branch, roll back if different path is taken

‣ Speculate on store

– precedes load does not refer to same address

– can execute load instruction before the store instruction

• roll back if the store writes the same address the load reads from

Compiler or Hardware Speculation

🆙
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• compiler can reorder instructions

‣ e.g. move load before branch

‣ insert “fix-up instructions” to recover from incorrect guess

• hardware can look ahead for instructions to execute

‣ buffers results until it determines they are actually needed

‣ flush buffers on incorrect speculation

3.3.4 Very Long Instruction Word (VLIW) Static Multi-Issue

Static Multiple Issue

• compiler groups instructions into issue packets (aka bundles)

‣ group of instructions that can be issued on a single cycle

‣ determined by pipeline resources required

• specified multiple concurrent operations

‣ ⇒ Very Long Instruction Word (VLIW)

Scheduling Static Multiple Issue

• compiler must remove some/all hazards

‣ reorder instructions into issue packets

‣ no dependencies within a packet

‣ but if pipeline is known, all WAR dependencies are allowed if read operand happens for all instructions 

in a packet before write back

– WAW and RAW must be still avoided inside a packet

• all dependencies between packets must be considered in the pipeline

‣ pad with nop if necessary

Example: Pipeline with Static Dual Issue

• We fetch and decode two instructions: One instructions is executed on slot 1 the other on 
slot 2 (Each way can execute certain instruction types)

V1-0

DI

IMEM

DMEM

A
L
U

A
D
D

RF

Forwarding

BTA

WBIF ID EX

A
C

DI
Slot 2

ALU

Branch Comp.

Load/Store

Slot 1 

MS

ACA

Figure 3.37: Example: Pipeline with Static Dual Issue

Hazards in the Dual-Issue RISC-V

• more instructions executing in parallel

• RAW data hazard

‣ forwarding avoided stalls with single-issue

‣ now can’t use ALU result in Load/Store Unit in same packet

• Dependencies are handled as follows without register renaming:

‣ RAW hazards are handled by the scoreboard. The instruction can be issued when all previous instructions 

with RAW dependency are at least in their finish state (last cycle of execute), hence, values are ready to 

be forwarded or available in the register file.
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‣ WAR hazards are resolved by the scoreboard. The instruction can be issued when all previous instructions 

with WAR dependency are at least in their RO state (cycle before execute).

‣ WAW hazards are resolved by a ROB. Instructions can only be committed one cycle after all previous 

instructions with WAW dependency committed.

• Load-Use hazard

‣ still one cycle use latency, but now two instructions

Dependency Analysis

Loop: lw   x31, 0(x20)      # x31=array element

      add  x31, x31, x21    # add scalar in x21

      sw   x31, 0(x20)      # store result

      addi x20, x20, –4     # decrement pointer

      blt  x22, x20, Loop   # branch if x22 < x20

V1-0

lw   x31, 0(x20)

add  x31, x31, x21

sw   x31, 0(x20)

addi x20, x20, –4

blt  x22, x20, Loop

RAW

RAW

RAWLoop:

WAR

Compiler can reorder instructions, but needs to adopt the offset of the sw

lw   x31, 0(x20)

addi x20, x20, –4

add  x31, x31, x21

sw   x31, 4(x20)

blt  x22, x20, Loop

RAW

RAW

WAR
Loop:

RAW
RAW

(WAW)

(WAW)WAR

ACA

Figure 3.38: Dependency Analysis

Compiler Optimizations

• Loop Unrolling

‣ replicate loop body to expose more parallelism (reduce loop-control overhead)

‣ use different registers per replication

– compiler applies register renaming to eliminate all data dependencies that are not true data depen

dencies

‣ avoid loop-carried anti-dependencies

– store followed by a load of the same register

– aka name dependencies - reuse of a register name

‣ Unroll Factor: number of loop body replications

‣ Fully Unrolled: unroll factor is equal to number of iterations

Limits of VLIW

• branches and lables break sequential instruction execution

• hard to find sufficient instruction level parallelism in single Basic Block (BB)

• Compiler Optimizations

‣ loop unrolling

‣ function inlining

‣ SW pipelining: schedule instructions from different iterations together

‣ trace scheduling & superblocks: schedule beyond basic block boundaries

• code size increases (due to loop unrolling, function inlining, …)

• binary compatibility: if microarchitecture changes, VLIW code may not be compatible anymore

3.3.5 Superscalar Dynamic Multi-Issue

• exploits Instruction Level Parallelism

• in-order: in order issue but pipeline selects issues bundles

• out-of-order: dynamically scheduled

• Phases of Instruction Execution:
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1. Fetch

2. Decode

3. Rename

4. Dispatch

5. Issue

6. Execute

7. Complete

8. Commit (Retire)

Archetype of a OoO Superscalar Pipeline 

• According to Shen & Lipasti : Modern Processor Design (2005), Fig. 4.20.

V1-0

IF
FU2

FU3

FU1IF/ID Buffer Dispatch Buffer

ID DP

Dispatch

Reservation Stations

Reorder Buffer
(ROB)

CO

Complete

Store Buffer

RT

Retire

Issue Finish
In-order Out-of-order In-order

ACA

Figure 3.39: Archetype of OoO Superscalar Pipeline

Superscalar vs. VLIW

• superscalar requires more complex hardware for instruction scheduling

• issue buffers for OoO execution

• complicated multiplexing between instruction issue structure & FU

• dependence checking logic between parallel instructions

• functional unit hazard checking

• VLIW requires a complex compiler and higher code size

• superscalars can execute pipeline-dependent code more efficiently

Wide instruction fetch can 
fetch two instructions at once 
Ideal IPC = 2

Change HW:
• Increase number of IB/scoreboard slots to 8
• Reduce the number of RO ports to 2
• and Commit (CO) ports to 2
• Structural hazard can cause extra cycles
• With register renaming

Simple Superscalar (Scoreboard) – Dual Fetch, Decode and Issue with ROB 

V1-0 ACA

Scoreboard (ScB)

ISIMEM

LSU (LU and 
SU)

A
L
U

A
D
D

DIV

M UL

BTA

IB

RF

Forwarding

IS

R
O
B

Figure 3.40: Simple Superscalar
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Simple Superscalar (Scoreboard) – Dual Instruction Fetch, Decode and Issue – Example 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

addi x20,x20,-16 IF IS RO ALU WB CO

lw   x28, 0(x20) IF IS IB RO LU LU WB CO

lw x29,12(x20) IF IS IB RO LU LU WB CO

add x28,x28,x21 IF IS IB IB RO ALU WB CO

lw x30,8(x20) IF IF IS IB RO LU LU WB CO

add x29,x29,x21 IF IS IB IB RO ALU WB CO

lw x31,4(x20) IF IF IS IB RO LU LU WB CO

add x30,x30,x21 IF IS IB IB RO ALU WB CO

sw  x28,16(x20) IF IS IB RO SU SB SC

add x31,x31,x21 IF IS IB IB RO ALU WB CO

sw x29,12(x20) IF IS IB RO SU SB SC

sw  x30,8(x20) IF IS IB IB RO SU SB SC

sw  x31,4(x20) IF IS IB IB RO SU SB SC

blt x22,x20, Loop IF IS IB RO ADD

#instr in IB+RO+EX 0 0 2 4 5 7 8 8 8 5 3 1
V1-0

CPI = 0,5
IPC=2

12-5=
7 cycles

! Renaming to avoid WAR and 
WAW hazards is omitted here, 
but it is assumed no stalls on 
WAR and WAW!

14 instructions

ACA

Figure 3.41: Simple Superscalar - Example

Instruction Scheduling for Superscalar

• The process of mapping a series of instructions into execution resources

• Decides when and where an instruction is executed

V1-0

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

1

2 3 4

5 6

Dependence 
graph

FU 1 FU 2

1

2

3

4 5

6

Derived from CA course of Mikko Lipasti-University of Wisconsin

1,2,3,4 can execute on FU1
5,6 can execute on FU 2

ACA

Figure 3.42: Instruction Scheduling for Superscalar

Instruction Scheduling via Selection and Wakeup

• A set of wakeup and select operations

• Wakeup

‣ Broadcasts the tags of parent instructions selected

‣ Dependent instruction gets matching tags, determines if source operands are ready

‣ Resolves RAW data dependencies

• Select

‣ Picks instructions to issue among a pool of ready instructions

‣ Resolves resource conflicts

‣ Issue bandwidth

‣ Limited number of functional units / memory ports
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Instruction Scheduling via Selection and Wakeup - Example

• Wakeup and Selection Example:

V1-0

FU 1 FU 2 Ready to Issue Select and
Wakeup

1 1 Select 1
Wakeup 2,3,4

2 2,3,4 Select 2
Wakeup 5

3 3,4,5 Select 4,5
Wakeup -

4 3 Select 3
Wakeup 6

5 6 Select 6

1

2

3

4 5

6

1

2 3 4

5 6

ACA

Figure 3.43: Instruction Scheduling via Selection and Wakeup - Example

3.3.6 Hardware Multi-Threading

• Thread

‣ has state and a current program counter

‣ shares the address space of a single process, allowing a thread to easily access data of other threads 

within the same process.

• Multithreading

‣ multiple threads share a processor without requiring an intervening process switch.

‣ The ability to switch between threads rapidly is what enables multithreading to be used to hide pipeline 

and memory latencies.

‣ Exploiting Thread-Level Parallelsim (TLP) to improve uniprocessor throughput (IPC)

Thread-Level Parallelsim (TLP)

• Multithreading (MT) targets to exploit thread-level parallelism (TLP)

• MT allows multiple threads to share the FUs of a single processor

• MT does not duplicate the entire processor, duplicating only private state, such as the registers and PC.

• A more general method to exploit TLP is to use a multi-core processor that can execute multiple indepen

dent threads in parallel.

• Many recent compute platforms incorporate multi-core processors, for which each single core additionally 

provides multithreading support.

Fine-Grained vs. Coarse-Grained MT

• Fine-grained multithreading

‣ switches between threads on each clock cycle,

‣ execution of instructions from multiple threads to be interleaved. (often round-robin skipping stalled 

threads)

‣ Advantage: hide the throughput losses that arise from both short and long stalls because instructions 

from other threads can be executed when one thread stalls, even if the stall is only for a few cycles.

‣ Disadvantage: slows down the execution of an individual thread because a thread that is ready to execute 

without stalls will be delayed by instructions from other threads.

• Coarse-grained multithreading

‣ switches threads only on costly stalls, such as level two or three cache misses.

‣ Advantage: less likely to slow down the execution of any one thread

‣ Disadvantage: it is limited in its ability to overcome throughput losses, especially from shorter stalls.

Simultaneous Multithreading (SMT)

• dynamically scheduled (OoO) processors already have many of the hardware mechanisms needed to 

support SMT

• Multithreading can be built on top of an out-of-order processor by adding
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‣ separate PCs and register files, and

‣ the capability for instructions from multiple threads to commit.

• Instructions from different threads can be issued in same cycle.

ALU MUL DIV LU/SUALU MUL DIV LU/SU

Patterns for Types of Multithreading (MT)

V1-0

Cycle ALU MUL DIV LU/SU

i+1

i+2

i+3

i+4

i+5

i+6

i+7

i+8

i+9

i+10

i+11

Fine-grained MT 

Time

Coarse-grained MT Simultaneous MT (SMT) 

ACA

Figure 3.44: Patterns for Types of Multithreading

3.3.7 A Look at Real Processors - A15 & BOOM

This is not relevant for the 

exam

3.4 Caches and Memory

Introduction

Data Memory Interface 

Processor Logic

V1.1 ACA 5

Register

File
AR1

AR2

AW

DW

DR1

DR2

rs1 rs2 rd Value reg_rs2reg_rs1
Data 

Memory

addr
data_o

data_in

ctrl_in ctrl_o

DAddr 

Wdata

Crtl

Rdata

Instruction 
Memory

addr data

PC

Instr

Processor

Instruction Memory Interface 

• Computer performance 

• depends on:

• Processor performance

• Memory system performance

Processor / Memory Interface:

Figure 3.45: Introduction to Caches

• in previous chapters it was assumed that memory access takes 1 clock cycles

‣ this hasn’t been true since 1980s

• Memory System Challenges

‣ make memory system appear as fast as processor

‣ use hierarchy of memories
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‣ ideal memory

– fast

– cheap

– large

Memory Hierarchy

V1.1 ACA 8

CPU Cache

Main
Memory

Processor Chip
CLK

Hard 
Disk

Cache

Main Memory

Virtual Memory

Capacity

Sp
e

ed

Technology Price / GB Access Time (ns)

SRAM $100 0.2 - 3

DRAM $3 10 - 50

SSD $0.10 20,000

Bandwidth (GB/s)

100+

30

0.05 - 3

0.001 - 0.1HDD $0.03 5,000,000

Figure 3.46: Memory Hierarchy

Locality

• exploit locality to make memory fast

• temporal locality

‣ locality of time

‣ if data used recently, likely to use it again soon

• spatial locality

‣ locality of space

‣ if data used recently, likely to use nearby data soon

3.4.1 Memory Performance

• Hit: data found in that level of memory hierarchy

• Miss: data not found

• Average memory access time (AMAT): average time for processor to acces data

Hit Rate = # hits
# memory accesses

= 1 − Miss Rate Miss Rate = # misses
# memory accesses

= 1 − Hit Rate

AMAT = 𝑡cache + MRcache[𝑡MM + MRMM(𝑡VM)]

✍️ Example

• A Program has 2000 loads and stores

• 1250 of these data values in cache

• rest supplied by other levels of memory hierarchy

What are the hit and miss rates?
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Hit Rate = 1250
200

= 0.625

Miss Rate = 750
2000

= 0.375

✍️ Example

• Suppose processor has 2 levels of hierarchy: cache and main memory

• 𝑡cache = 1 cycle, 𝑡MM = 100 cycles

What is the AMAT of the example 1?

AMAT = 𝑡cache + MRcache[𝑡MM + MRMM(𝑡VM)]

💡 Tip

MRMM = 0 because it has all the data

AMAT = 𝑡cache + MRcache(𝑡MM) = [1 + 0.375 ⋅ 100] cycles = 38.5 cycles

3.4.2 Caches

• highest level in memory hierarchy

• fast (typically ≈ 1 cycle access time)

• ideally supplies most data to processor

• usually holds most recently accessed data

Cache

• Highest level in memory hierarchy

• Fast (typically ~ 1 cycle access time)

• Ideally supplies most data to processor

• Usually holds most recently accessed data

V1.1 ACA 15

CPU Cache

Main
Memory

Processor Chip
CLK

Hard 
Disk

Figure 3.47: Structure of Cache and CPU

Cache Design Principles

• what data is held in the cache?

‣ ideally, cache anticipates needed data and puts it in cache

‣ but impossible to predict future

– use past to predict the future (temporal and spatial locality)

• how is data found?

‣ cache organized into 𝑆 sets

‣ each memory address maps to exactly one set

‣ caches categorized by # of blocks in a set:

– direct mapped: 1 block per set

– 𝑁 -way set associative: 𝑁  blocks per set

– fully associative: all cache blocks in 1 set

• what data is replaced?

Cache Terminology
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• Capacity 𝐶

‣ number of data bytes in cache

• Block Size 𝐵

‣ bytes of data brought into cache at once

• Degree of associativity 𝑁

‣ number of blocks in a set

• Number of sets 𝑆

‣ each memory address maps to exactly one cache set

‣ 𝑆 = 𝐵
𝑁

3.4.3 Direct-Mapped Caches

Direct-Mapped Cache

V1.1 ACA 22

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]

mem[0x00...04]

mem[0x00...08]

mem[0x00...0C]

mem[0x00...10]

mem[0x00...14]

mem[0x00...18]

mem[0x00..1C]

mem[0x00..20]

mem[0x00...24]

mem[0xFF...E0]

mem[0xFF...E4]

mem[0xFF...E8]

mem[0xFF...EC]

mem[0xFF...F0]

mem[0xFF...F4]

mem[0xFF...F8]

mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000

00...00000100

00...00001000

00...00001100

00...00010100

00...00011000

00...00011100

00...00100000

00...00100100

11...11110000

11...11100000

11...11100100

11...11101000

11...11101100

11...11110100

11...11111000

11...11111100

6 (110)

5 (101)

4 (100)

3 (011)

2 (010)

1 (001)

0 (000)

Figure 3.48: Direct-Mapped Cache

Direct-Mapped Cache Hardware

V1.1 ACA 23

DataTag

00
Tag Set

Byte

OffsetMemory 
Address

DataHit

V

 

                       

=

27 3

27 32

8-entry x 
(1+27+32)-bit

SRAM

Figure 3.49: Direct-Mapped Cache Hardware
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Direct-Mapped Cache Performance - Compulsory Misses

V1.1 ACA 24

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory 

Address

V

 

3

00100...00

1

00...00

00...00

1

mem[0x00...0C]

mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

# RISC-V assembly code

         addi s0, zero, 5

         addi s1, zero, 0

LOOP:    beq  s0, zero, DONE

         lw   s2, 4(s1)

         lw   s3, 12(s1)

         lw   s4, 8(s1)

         addi s0, s0, -1

         j    LOOP

DONE:

𝑴𝒊𝒔𝒔 𝑹𝒂𝒕𝒆 =
3

15
= 20% 

Temporal Locality
Compulsory Misses

Figure 3.50: Direct-Mapped Cache Performance - Compulsory Misses

• compulsory misses are misses if the cache is empty, so it has to get the data from the memory

DataTagV

00...001
mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...01

0

0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Direct-Mapped Cache Performance - Conflict Miss

V1.1 ACA 25

# RISC-V assembly code

       addi s0, zero, 5

       addi s1, zero, 0

LOOP:  beq  s0, zero, DONE

       lw   s2, 0x4(s1)

       lw   s4, 0x24(s1)

       addi s0, s0, -1

       j    LOOP

DONE:

𝑴𝒊𝒔𝒔 𝑹𝒂𝒕𝒆 =
10

10
= 100% 

Conflict Misses

Figure 3.51: Direct-Mapped Cache Performance - Conflict Misses
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3.4.4 Associative Caches

𝑁-Way Set Associative Cache

V1.1 ACA 27

DataTag

Tag Set

Byte

OffsetMemory

Address

Data

Hit
1

V

=

01

00

32 32

32

DataTagV

=

Hit
1Hit

0

Hit

28 2

28 28

Way 1 Way 0

Figure 3.52: 𝑁 -Way Set Associative Cache

• 𝑁 -Way set associative cache reduce reduce conflict misses but are more expensive to build

3.4.5 Spatial Locality

• caches with larger block size, use the spatial locality better, because they load more neighbour data

Cache Organization Recap

Organization Number of Ways (𝑁 ) Number of Sets (𝑆)

Direct Mapped 1 𝐵
𝑁 -Way Set Associative 1 < 𝑁 < 𝐵 𝐵

𝑁

Fully Associative 𝐵 1

Table 3.4: Cache Organization Recap

3.4.6 Cache Replacement Policy

• compulsory: first time data accessed

• capacity: cache too small to hold all data of interest

• conflict: data of interest maps to same location in cache which is currently used

• Miss penalty: time it takes to retrieve a block from lower level of hierarchy

• if cache is full: program access data X and evicts data Y

‣ capacity miss if access Y again

• how to choose Yto minimize chance of needing it again?

‣ Least recently used (LRU) replacement

Multilevel Caches

• larger caches have lower miss rates, longer access times

• expand memory hierarchy to multiple levels of caches

• Level 1: small and fast (e.g. 16 KB, 1 cycle)

• Level 2: larger and slower (e.g. 256 KB, 2-6 cycles)

• (most modern PCs have L1, L2 and L3 cache)

3.4.7 Cache Miss/Hit Strategy

Hit & Miss on reading/load
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• load hit: valid bit is set and tag maches ⇒ data is found in cache

• load miss: data is not found in cache, pipeline needs to be stalled, slower memory must deliver the data

Hit & Mis on writing/store

• write hit

‣ write-through

• updates the cache and the main memory immediately

👍 simple

👍 data consistency with main memory guaranteed

👎 frequent access to the main memory

👎 loss of performance

‣ copy-back (aka write-back)

• refresh the cache and mark the block as dirty

– only update the main memory later when the block is removed from cache

👍 write hit is much faster

👍 less frequent accesses to the main memory

👎 data inconsistency with the main memory

👎 read miss is slower (due to copy-back)

‣ write- buffer

– for data consistency and fast write operations

– new value is entered in the cache and second fast cache

– processor can continue with further processing

– if buffer is full, processor must wait

• write miss

‣ write-around

– ignore the cache and write directly to memory

– mostly in combination with Write-Through

‣ fetch-on-write

– replace the current content of the cache and update the tag

– if block size > 1, load the remaining data belonging to the block from the main memory after

– read access to the main memory and the write hit depending on the strategy

– most frequently used method

3.5 Vector Processors
• System-on-Chip (SoC)s are often multi-core systems

• general-purpose SoC may have many replicates of general-purpose processors (e.g. many ARM or standard 

RISC-V cores)

• to improve energy-efficiency many SoC use specialized cores (heterogeneity)

Types of Specialized Cores

• Vector Processors

‣ introduced in the 70s (Cray)

‣ got new attention recently especially due to machine learning workloads

• GPUs

‣ were initially introduced for redering graphics in real time (video games)

‣ General Purpose GPU (GP-GPU): programming language such as CUDO from NVIDIA allowed to use 

GPUs for other computations beside rendering

• HW Accelerators

‣ processing cores that are specialized for a certain task (with very limited programmability)

‣ usually faster and more energy efficient than software running on programmable core

‣ different types:
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– deep learning: Tensor Processing Units / Neural Processing Units

– security: encryption and decryption

– Video En/Decoders

• Application-specific Instruction Set Processors (ASIPs)

‣ between general-purpose programmable cores and accelerators

‣ some programmability but tailored towards a certain application

‣ example: Audio/Video Digital Signal Processors (DSPs)

3.5.1 Flynn’s Taxonomy

Flynn’s Taxonomy

ACA 7

Multiple Instruction stream,
Multiple Data stream (MIMD)Multiple Instruction stream,

Single Data stream (MISD)

• Classification of Computing Cores

Single Instruction stream,
Multiple Data stream (SIMD)

Single Instruction stream,
Single Data stream (SISD)

Vector
Packed SIMD

Multi-Threaded
Multi-Core

GPUs
(Multi-threaded

SIMD)

ScalarSuperscalar

VLIW Systolic Arrays

Figure 3.53: Classification of Computing Cores

3.5.2 Vector Units

Vector Instruction Sets

• one instruction operates on several data values (SIMD)

• the data values are independent

• operation use the same type of functional unit for all data

• data values are store in separate registers

• data values are aranged in uniform structure (vector)

• load/store access

‣ a continuous range of memory

‣ use a regular pattern (strided access)

• one instruction stream for parallel pipelines (so called lanes)

• Input and Output are an array (vector)v1= [v1[0] v1[1] v1[2]… v1[n]]
• FUs operate on one element of vectore.g. Multiplier: v3[i] = v1[i]*v2[i]
• FUs exist for different data types(integer, floating point)
• FUs often use deep pipeline for high frequency
• Initialization Interval usually = 1

• R: Read Operands
• O: Operation
• W: Write Result

Functional Units (FUs) for Vector Arithmetic

ACA 10

Six-stage Pipelined FULatency = 6
1 2 3 4 5 6
R O O O O W

Clock Cycle

Figure 3.54: FU for Vector Arithmetic
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Example – Timing for Single Vector Instruction

• Execution on Vector Unit
• with four lanes (L0-L3)
• FUs with 4 stages
• Vector size is 12

• Lanes are used in pipelined fashion(no dependencies between elements)

• Full result is ready after 6 cycles
• 4 cycles ramp-up to fill the pipeline

ACA 13

L0 R O O W v3[0]
L1 R O O W v3[1]
L2 R O O W v3[2]
L3 R O O W v3[3]

L0 R O O W v3[4]
L1 R O O W v3[5]
L2 R O O W v3[6]
L3 R O O W v3[7]

L0 R O O W v3[8]
L1 R O O W v3[9]
L2 R O O W v3[10]
L3 R O O W v3[11]

1 2 3 4 5 6Clock Cycle

vmul.vv v3, v1, v2

Ramp-up time

Figure 3.55: Example - Timing for Single Vector Instruction

Example – Timing for Sequence of Vector Instructions

• Full result only ready after lastcycle of vector instruction

• An instruction using the resultneeds to wait until completed

• Causes a dead time (also calledrecovery time) – delay until next vectorinstruction can start down pipeline

ACA 14

R O O W
R O O W
R O O W
R O O W

1 2 3 4 5 6Clock Cycle

vmul.vv v3, v1, v2
vadd.vv v5, v3, v4

7 8 9 10 11 12
Dead time

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

MUL
Unit

ADD
Unit

Figure 3.56: Example - Timing for Sequence of Vector Instruction

Vector Chaining

• vector version of forwarding paths

• results are forwarded element-wise to next FU via chaining
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Example – Timing for Sequence of Vector Instructions with Chaining and Interleaving

• Interleaving can overlapindependent vector instructionsas soon as FUs become available

• Example:

ACA 17

1 2 6 7 8 9 10 11 12

vmul.vv v3, v1, v2
vadd.vv v5, v3, v4

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

MUL
Unit

ADD
Unit

3 4 5

vmul.vv v3, v1, v2
vadd.vv v5, v3, v4

vmul.vv v8, v6, v7
vadd.vv v10, v8, v9

vmul.vv v8, v6, v7
vadd.vv v10, v8, v9

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

R O O W
R O O W
R O O W
R O O W

MUL
R Stage
busy for
3 cycles

Figure 3.57: Example - Timing for Sequence Vector with Chaining and Interleaving

3.5.3 The RISC-V Vector Instruction Set

• RISC-V “V” Vector Extension

‣ standard extension for the RISC-V ISA

• memory-register vector instructions (operations on registers)

• vector and vector element sizes are configurable (vectors can be longer than one vector register)

• Control Status Register (CSR): specialized register to save configuration and status of processor

Programming Model

• vector register and vector length

‣ 32 vector data registers (v0 - v31) each VLEN bits long

‣ vector length register VL

– defines on how many elements will the next vector operation be executed

‣ vector type register VLTYPE

– used to define vector length via parameter SEW (selected element width) and LMUL

– used to define tail and mask policy via vta and vma

‣ vector byte length VLENB

– read-only, holds value VLEN/8

– used to define vector register length VLEN (fixed)

‣ vector length register VL

– read-only, can be updated by the vset{i}vl{i} instructions

– used to define on how many elements will the next vector operations be executed

– vl is limited by VLMAX = LMUL ⋅ VLEN
SEW

‣ vector start vstart

– used to define the index of first element to be executed by a vecto r instruction
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RISC-V Vector Programming Model - Vector Layouts

23

• Example vector register data layouts

0 1 2 3 4 5 6 tail
element index

LMUL=2
SEW=32bits VLEN=128bits

vl=7
VLMAX=8

0 1 2 tail
VLEN=128bits

vl=3
VLMAX=4

SEW=64bits

LMUL=2
element index

• vl is limited by VLMAX=LMUL * VLEN / SEW
• Tail : the elements past the vector length vl; not affected by the current operation
• Two tail policies: undisturbed & agnostic

• undisturbed : the tail elements are left unmodified
• agnostic : the tail elements are left undisturbed or fill in with all 1s

ACA

Figure 3.58: Vector Layouts

RISC-V Vector Programming Model - Vector Layouts in Vector Registers

ACA 24

• Example vector register data layouts

0 1 2 3 4 5 6 tail
element index

LMUL=2
SEW=32bits VLEN=128bits

vl=7
VLMAX=8

0 1 2 tail
VLEN=128bits

vl=3
VLMAX=4

SEW=64bits

LMUL=2
element index

0 1 2 3v0

v1
[0] [1] [2] [3]

VLEN=128bitsSEW=32bits

0 1v0

v1
[0] [1]

VLEN=128bitsSEW=64bits

2 tail4 5 6 tail

Figure 3.59: Vector Layouts in Vector Registers

Vector Masking

• the mask value used to control execution of a masked vector instruction is always supplied by vector 

register v0

• where available, masking is encoded in a single-bit vm field in the instruction word
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Simple Implementation
Execute all N operations, turn off result writeback according to mask

RISC-V Vector Programming Model

ACA 26

• Masking
• This bitmask defines which of the result element should be actually modified by the operation
• Two mask policies : undisturbed & agnostic

• undisturbed : mask-off elements keep the value they had before the operation
• agnostic : mask-off elements can either be undisturbed or written with all 1s.

Density-Time Implementation
Scan mask vector and only execute elements with non-zero masks

Figure 3.60: Vector Masking

Vector Code Example

ACA 34

# C code
for ( i = 0; i < 8; i++)

C[i] = A[i] + B[i];
# Scalar Code

li a0, 8
loop:

lw a4, 0(a1)
lw a5, 0(a2)
add a4, a4, a5
sw a4, 0(a3)
addi a3, a3, 4
addi a2, a2, 4
addi a1, a1, 4
addi a0, a0, -1
bnez a0, loop

# Vector Code
vsetvli t0, zero ,e32, m2,
ta, ma # t0 = 8
vle32.v v8, (a1)
vle32.v v10, (a2)
vadd.vv v8, v10,v8
vse32.v v8, (a3)

# (a1) A
# (a2) B
# (a3) C

Figure 3.61: Vector Code Example
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3.5.4 Vectorization

Automatic Code Vectorization

ACA 39

for (i=0; i<N; i++)
C[i] = A[i] + B[i] ;

load
load

add

store

load
load

add

store

Scalar Sequential Code

Iter.1

Iter.2

load
load

add
store

load
load

add
store

Ti
me

Iter.1 Iter.2

Vectorization is a massive compile-time reordering of operation sequencing
requires extensive loop-dependence analysis

Vectorized Code

Vector Instruction

Figure 3.62: Automatic Code Vectorization

3.5.5 C Vector Intrinsics

Please see Section 8.1

3.5.6 Packed SIMD

Packed SIMD Extensions

• Very short vectors added to existing ISAs for microprocessors
• Use existing (32) 64-bit registers split into 2x32b or ( 2x16b) 4x16b or (4x8b) 8x8b
• Single instruction operates on all elements within register
• Examples:

• RISC-V P Extension (not ratified)
• CoreV Extension (Custom Vendor extension of Open HW Group, not official)

ACA 43

64b
32b 32b

8b 8b 8b 8b 8b 8b 8b 8b
16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b
16b 16b 16b 16b

⨁ ⨁ ⨁ ⨁4x16b adds

x11
x12

x13

Figure 3.63: Automatic Code Vectorization

• Pros of Packed SIMD

👍 no extra HW co-processor

👍 SIMD unit can share resources in pipeline (make ALU a SIMD ALU)

• Cons of Packed SIMD

👎 no configurable vector length

👎 usually no wider load/store unit

👎 limited by scalar register sizes

🆙
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3.5.7 A look at a real vector unit - ARA

This is not relevant for the 

exam
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4 Block D

4.1 Introduction to High Level Synthesis (HLS)

4.1.1 HW Design Flow in a Nutshell

Abstraction Levels & Design Views

Design View

Behavior Structure Geometry

A
b

s
tra

c
tio

n
 L

e
v
e
l

System
System 

Specification

Connected 

Components
Chip, Board

Architecture Algorithms
CPU, Bus, HW-

accelerator
Floor plan

Register 

Transfer

Register 

Transfers / 

FSMs

Module netlist

(ALU, Mux, Register)

Makro-cells

(IP-blocks)

Logic
Boolean 

Equations

Gate netlist

(Gates, FlipFlops)

Standard cells, 

library cells

Circuit
Differential 

Equations
Transistor netlist Mask data

ACAV1-0 5Figure 4.1: Abstraction Levels & Design Views

A2.2. Y-chart

Behavioral view Structural view

Geometrical view

Polygons

Makro cells

Standard cells

Chip, Board

Algorithm

Boolean 

Equations

Register-

Transfers

Differential

Equations

Processor, 

Memory, Switch

ALU, Register, 

Mux

Gate, FF

Transistor

ACA
V1-0 6

Abstraction Levels & Design Views

Figure 4.2: Y-Diagram
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System Specification

Specification of Components 
and Tasks

SW Code Generation HW Synthesis

Prototypes (Virtual)

System Synthesis

Interface 
Synthesis

Simulation

System models

ACA
V1-0 7

Figure 4.3: System Specification

System Synthesis

• Inputs

‣ specification of the system

– description of the functionality and design constraints

• Typical Synthesis Steps

‣ description of

– functionality as a set of communicating tasks

– behavior of tasks at an algorithmic level

– task communication

‣ allocation of system components such as processors, buses, memory, …

‣ binding of tasks and inter-task communication to system components (HW/SW partitioning)

• Output

‣ An output specification of components, tasks, and inter-task communication that guarantees to meet the 

system specification
ASIC HW Synthesis Flow

Algorithmic description
of the task (C, SystemC)

Register Transfer Model (HDL)

High-level (HW) synthesis

Logic synthesis

Gate netlist

Layout synthesis

Layout / mask data

Simulation Te
st

 b
en

ch

Timing 
analysis 

Simulation 

ACA
V1-0 9

Figure 4.4: ASIC HW Synthesis Flow
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HLS Synthesis Step

• Input

‣ Algorithmic description of a task (e.g., in C, C+

+, SystemC)

‣ Design constraints (maximal latency, available 

resources, …)

• Synthesis steps

‣ Static code analysis and code optimization

‣ Datapath synthesis (Scheduling, allocation, 

binding)

‣ Control unit synthesis (FSM implementation)

• Output:

‣ Description of hardware module at RT level

Logic Synthesis Step

• Input

‣ Description of HW module on RT level

‣ Design constraints (minimal clock frequency, 

maximal area, …)

‣ Gate library

• Synthesis steps

‣ Logic optimization

‣ Technology mapping

• Output

‣ Gate netlist

Physical Synthesis Step

• Input

‣ Gate library

‣ Design constraints

‣ Layout library (P-cells)

• Synthesis steps

‣ Placement of modules

‣ Routing of signal nets

• Output

‣ Layout, mask data

Software Compilation

• Inputs

‣ Algorithmic description of a task

• Synthesis steps

‣ Static Code Analysis and Optimization

‣ Code Generation (instruction selection, register 

allocation, and assignment)

‣ Assembler, linker, loader

• Outputs

‣ Assembly code/machine code for the target 

processor

Interface Synthesis

• Input

‣ Description of inter-task communication

‣ Design constraints (protocols, data rates, …)

• Outputs

‣ Drivers, bus interfaces, …
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Algorithmic Description of the task (C, SystemC)

Frontend (Lexical, Syntax, Semantical Analyzer)

Intermediate Code Representations

Static Code Analysis and Optimization

Optimized Intermediate Code Representations

SW Code Generation

Register Transfer Model (HDL)Assembler Code

High level HW Syn. Backend

So
ft

w
ar

e
 c

o
m

p
ila

ti
o

n

H
ig

h
-l

e
ve

l h
ar

d
w

ar
e

 s
yn

th
e

si
s

ACA
V1-0 15

Figure 4.5: HLS and SW Compilation Flow

4.1.2 The HLS Synthesis Task

Basic Task

Algorithmic description of 
the task (C, SystemC)

 RT model of Hardware 
module in VHDL or 

Verilog

DP_Status

DP_Control

Control_IN Data_INControl_OUT Data_OUT

Controller
Data path

HW Module Interface

Bus_Control
Bus_Address
Bus_Data

int function1(int x, int y, int z) 

{

int a;

a=x*(y*y+z);

return a; 

} 

High-level HW 
Synthesis

ACA
V1-0 17

This is called usually
an HW accelerator or

IP block

Figure 4.6: Basic Task

Other names for HLS

• High-level Hardware synthesis

• algorithmic synthesis

• behavioral synthesis

• C synthesis

Classes of Hardware Components

• Data-oriented designs

‣ examples: video signal processing, compression, encryption, …

• Control-oriented designs

‣ examples: traffic light control, industrial machine control, …

• HLS works better on data-oriented designs

Performance Metrics

• Clock Cycle Time Δ𝑇
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‣ cycle duration of the driving clock of the HW module

‣ the combinatorial path in the circuit with the largest delay places a lower limit on the clock cycle time 

(critical path).

• Latency Λ

‣ number of clock cycles between the start of processing a block of data and the point of time at which 

the result is ready at the output.

• Processing time 𝑡exe = Λ ⋅ Δ𝑇

• Throughput 𝑇

‣ number of blocks of data that can be processed in a fixed time

• Chip Area (Application-specific integrated circuit (ASIC))

‣ estimated via gate count

‣ Datapath: Number of Hardware Operation Units, such as multipliers, ALUs, registers, multiplexers, …

• FPGA Resources

‣ number of LUTs, number of Digital Signal Processor (DSP) Blocks, …

• Power/Energy Consumption

‣ Dynamic power consumption: Power consumed by switching transistors in the circuit

‣ Static power consumption: Power consumed due to leakage currents.

Design Goals and Constraints

• Synthesis algorithms handle two typical cases:

• Timing-constrained

‣ constrained: implement task such that it can compute results within a maximum number of clock cycles 

(maximal latency)

‣ second goal: minimize the number of registers (register sharing), multiplexers, control unit states, …

• Resource-constrained

‣ constrained: Implement task with a fixed maximum number of functional units (adders, ALUs, multi

pliers) in the datapath.

‣ goal: minimize latency

‣ second goal: minimize the number of registers (register sharing), multiplexers, control unit states, …

Synchronous HW Design

• All registers in the control unit and the datapath share the same clock

• Assumptions for simplification:

‣ Functional units have a fixed and known delay, such that the number of clock cycles to execute an 

operation is assumed to be fixed and data-independent.

‣ The delay of interconnects and multiplexers can be neglected.

• Real-life:

‣ Longest combinatorial path in the circuit will determine the maximal clock frequency.

‣ Logic synthesis will try to optimize the circuit depending on the target clock frequency and area.

Datapath Synthesis Steps

• Scheduling:

‣ Determines the start time of each operation

• Binding:

‣ Determines on which functional units the operation is executed.

‣ Determines in which registers variables are saved.

• Allocation:

‣ Selection of resources, such as functional units, registers, and multiplexers.

Interface Synthesis

• Interfaces can differ strongly

• Interfaces may consist of memory, registers, FIFOs and FSMs for communication protocols

• Crossing of clock domains is possible
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‣ e.g. between bus clock and HW module clock

4.1.3 Datapath Synthesis HW Resources

HW Resources in the Datapath

• Functional units: Adders, multipliers, ALUs, …

‣ Execute operations on data (e.g., Add, Shift, AND, OR, Mult, …)

‣ Fixed and known delay

‣ Fixed and known area demand

• Signal nets and multiplexers

‣ Delay and area demand is neglected.

• Memory elements: Registers

‣ Delay and area demand is neglected.

• NFU (Non-functional Unit)

‣ Non-existent helper resource

‣ used to execute special NOP, LOOP, BRANCH, CALL operations (more on this later)

• Functional units are identified by a pair (𝑘𝑟, 𝑧𝑟)
‣ type: 𝑘𝑟 ∈ 𝐾 with 𝐾 = {ALU, MULT, …}
‣ index: 𝑧𝑟 = 1, 2, …
‣ example

– (ALU, 1), (ALU, 2), (MULT, 1)

Time-Resource-Plane (TRP)

• X-axis: Resources

‣ List allocated functional units

‣ Assign operations to functional units (Binding)

• y-axis: Time

‣ Division into clock cycles.

‣ Plan temporal order of the operations

‣ Select start times of operations (Scheduling)

‣ Values must be saved in registers between clock cycles.

Time-Resource-Plane (TRP)  (2/4)

CC 1

CC 4

CC 3

CC 2

Add,1 Mult,1 Mult,2

Time in clock cycles (CC)

Resources (Functional units)
• Example: Goertzel 

Algorithm 

    (Basic block B3)

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

t6= 

s_prev1* 

s_prev1

t7= 

s_prev2* 

s_prev2

t8= 

s_prev1* 

s_prev2

t9= t8* 

coeff

t10= 

t6+t7

power= 

t10–t9

ACA
V1-0 34

Figure 4.7: TRP Example Goertzel (1)
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Time-Resource-Plane (TRP)  (3/4)

CC 2

CC 5

CC 4

CC 3

Add,1 Mult,1

CC 1

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

t6= 

s_prev1* 

s_prev1

t7= 

s_prev2* 

s_prev2

t8= 

s_prev1* 

s_prev2

t9= t8* 

coeff

t10= 

t6+t7

power= 

t10–t9

• Example: Goertzel 
Algorithm 

    (Basic block B3)

ACA
V1-0 35

Figure 4.8: TRP Example Goertzel (2)

Time-Resource-Plane (TRP)  (4/4)

CC 2

CC 3

Add,1 Mult,1

CC 1

Mult,2 Mult,3

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

t6= 

s_prev1* 

s_prev1

t7= 

s_prev2* 

s_prev2

t8= 

s_prev1* 

s_prev2

t9= t8* 

coeff

t10= 

t6+t7

power= 

t10–t9

• Example: Goertzel 
Algorithm 

(Basic block B3)

ACA
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Figure 4.9: TRP Example Goertzel (3)

Pareto-Optimality

• A solution is Pareto optimal if no other solution is better in all design performance metrics.

• Different Pareto-optimal solutions allow different trade-offs between the design performance metrics.

• The best solution is picked based on preferences for design performance metrics.
Pareto-Optimality (2/2)

1 2 3 4 5 60

0

0

10

15

20

5

Chip Area [units] 

(Demand: Adder=2 area units, Multiplier=5 area units)

Latency [Clock cycles]

1 Adder, 3 Multiplier

Minimal Latency

1 Adder, 2 Multiplier

1 Adder, 1 Multiplier

Minimal chip area

12

7

17

ACA
V1-0 38Figure 4.10: Example Pareto
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4.1.4 Sequencing Graphs

• Sequencing graph: 𝐺𝑠 = (𝑉𝑠, 𝐸𝑠)
‣ hierarchy of Directed Acyclic Grpah (DAG)s

‣ each graph is called a Sequencing Graph Unit (SGU)

‣ SGUs are polar: one source and one sink node is added which are labeled NOP

• Nodes: 𝑉𝑠 = {𝑣𝑖 : 𝑖 = 0, …, 𝑛}
‣ NOPs

‣ operation ∈ {+, <, >, ⋅, …}
‣ hierarchical node (CALL, BRANCH, LOOP)

• Edges: 𝐸𝑠 = {(𝑣𝑖, 𝑣𝑗) : 𝑖, 𝑗 = 0, …𝑛}
‣ between nodes in one SGU (data dependency between two operations)

‣ between source and sink (connection between SGU on different hierarchical levels)

• paths describe the concurrent operations that may possibly be executed in parallel

Sequencing Graph

• Example: SGU for basic block B3 of Goertzel algorithm



+

−

 



NOP

NOP



+

−

s_prev1 s_prev2 coeff

 


t6

t7

t10

t8

t9

power

Data flow graph Sequencing graph unit

ACA

return

return

op7
v8

V1-0 41

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

• Example: Goertzel 
Algorithm 

(Basic block B3)

Figure 4.11: Example Goertzel Algorithms with SGU

Sequencing Graph

• Hierarchical nodes: CALL, LOOP, BR

LOOP
BR

CALL  −

+

NOP

NOP

Call to procedure Control flow branchControl flow loop

 −

+

NOP

NOP

Called SGU of one lower 
hierarchical level is executed 
once.

SGU of lower hierarchical level 
is executed 0 to N times.



+

NOP

NOP

+

NOP

NOP

Only one of the two SGU of lower 
hierarchical level is executed 
once.

ACA
V1-0 42Figure 4.12: Hierarchical Nodes in SGU
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• Example: Goertzel algorithm 

NOP

<

NOP

Loop



 

 +

−


−

+

+

NOP

NOP



B1: s_prev1 := 0.0

s_prev2 := 0.0

i:=0

t1 := 2*3.14 

f := t1 * freq

param f

t2 := call cos,1

coeff:=2.0*t2

B2: t3:= coeff * s_prev1

t4:= x[i] 

t5 := t4 - s_prev2

s := t3 + t5 

s_prev2 := s_prev1 

s_prev1 := s

i:=i+1

if i < 64 goto B2 

B3: t6:= s_prev1 * s_prev1

t7:= s_prev2 * s_prev2

t8:= s_prev1 * s_prev2

t9:= t8 * coeff

t10:= t6+t7

power:= t10 – t9

return power

SGU for cos



SGU for B2

SGU for B1 and B3

ACA

return

read x

= ==

CALL

=

=

V1-0 43Figure 4.13: Full Example Goertzel Algorithm

Sequencing Graph in the TRP

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

return power

• Example: Goertzel 
Algorithm 

    (Basic block B3)



+

−

 



NOP

NOP

CC 1

CC 2

CC 3

Scheduled sequencing graph

(Operations assigned to clock cycles)

ACA

return

V1-0 45Figure 4.14: Sequencing Graph in the TRP (1)

Sequencing Graph in the TRP

1
t6= s_prev1 * s_prev1

t7= s_prev2 * s_prev2

t8= s_prev1 * s_prev2

t9= t8 * coeff

t10= t6+t7

power= t10 – t9

return power

• Example: Goertzel 
Algorithm 

    (Basic block B3)

***

+ *

-

NOP

NOP

CC 2

CC 3

Add,1 Mult,1

CC 1

Mult,2 Mult,3

Scheduled sequencing graph with binding

(Operations assigned to clock cycles and operational units)

NFU,1

ACA

return

V1-0 46Figure 4.15: Sequencing Graph in the TRP (2)

Operation Chaining

• The delay of operational units can allow for two operations to be executed in one clock cycle.

Multi-Cycle Operations

• The delay of functional elements may require several clock cycles for the execution of the operation.
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• New operation can start before previous operation 
has finished. 

• Number of concurrent operations is equal to 
pipeline depth.

• Operational units has internal registers to save 
intermediate values.

*

*

*

+

*

-

NOP

NOP

CC 2

CC 5

CC 4

CC 3

Add,1 Mult,1

CC 1

• Example: Goertzel algorithm

CC 6

CC 7

NFU,1

ACA

return

V1-0 49Figure 4.16: Pipelined Operational Units

4.2 Scheduling for High Level Synthesis

4.2.1 The Scheduling Task

Recap SGU

• 𝐺𝑠,𝑢 = (𝑉𝑢, 𝐸𝑢) 𝑉𝑢 = 𝑣𝑥, …, 𝑣𝑦 ⊂ 𝑉𝑠
‣ 𝑥: index of Source NOP Node

‣ 𝑦: index of the Sink NOP Node (with 𝑦 > 𝑥)

• execution delay of operation 𝐷 = {𝑑𝑖 : 𝑖 = 𝑥, …, 𝑦}
‣ NOPs have an execution delay of zero

• Wanted:

‣ start time for each operation 𝑇 = {𝑡𝑖 : 𝑖 = 𝑥, …, 𝑦}
• Scheduling is a function 𝜏

‣ Constraints: The starting time of an operation must be at least as large as the starting time of all 

predecessor operations plus their execution delay.

‣ Result: A scheduled sequence graph where each node is marked with its starting time.

𝜏 : 𝑉𝑢 → ℤ+; 𝜏(𝑣𝑖) = 𝑡𝑖
𝑡𝑖 ≥ 𝑡𝑗 + 𝑑𝑗 ∀𝑖, 𝑗 : (𝑣𝑗, 𝑣𝑖) ∈ 𝐸𝑢

• Latency of a schedule: Λ = 𝑡𝑦 − 1

4.2.2 As-soon-as-possible (ASAP) Schedule

• Schedule for unconstrained resources

• Goal: minimal latency

• Solution: topological sorting of the sequencing graph

• ASAP start time for node 𝑣𝑖

𝑡𝑆𝑖 = max
𝑗:(𝑣𝑗,𝑣𝑖)∈𝐸𝑢

(𝑡𝑆𝑗 + 𝑑𝑗)

• quadratic complexity: 𝑂(|𝑉 2|)
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ASAP_schedule(G_s,u(V_u,E_u)) {

Start time of node v[x]: t_S[x]=1;

repeat {

        Select node v[i], whose direct predecessors v[j] all have been assigned a 

starting time.

    Set start time for node v[i]:

        t_S[i]=max(t_S[j]+d[j]);

    } until node v[y] has been assigned a starting time.

    return (t_S);

}

Code 4.1: Pseudo-Code for ASAP Algorithm

4.2.3 As-late-as-possible (ALAP) Schedule

• Schedule with fixed latency (time-constrained)

• Given latency

Λ𝐿 = 𝑡𝐿𝑦 − 1 = Λmax

• Goal: find the latest starting time for all operations such that the maximum latency constraint is met

𝑡𝐿𝑖 = min
𝑗:(𝑣𝑗,𝑣𝑖)∈𝐸𝑢

(𝑡𝐿𝑗 − 𝑑𝑖)

• same complexity as ASAP

ALAP_schedule(G_s,u(V,E),Lambda_max) {

    Start time for node v[y]: t_L[y]=Lambda_max+1

    repeat {

        Select node v[i], whose direct successors v[j] all have been assigned a 

starting time.

        Set start time for node v[i]:

        t_L[i]=min(t_L[j]-d[i])

    } until node v[x] has been assigned starting time

    return (t_L)

}

Code 4.2: Pseudo-Code for ALAP Algorithm

4.2.4 Mobility of Operations

• Given an upper constraint on latency: Λ = 𝑡𝑦 − 1 ≤ Λmax
• ASAP Schedule: minimal start times for operations

• ALAP Schedule: maximal start times for operations

• Mobility of operations on the time axis:

𝜇𝑖 = 𝑡𝐿𝑖 − 𝑡𝑆𝑖 , 𝑖 = 𝑥, …, 𝑦

• For opeations with 𝜇𝑖 = 0
‣ the start time is fixed: 𝑡𝑖 = 𝑡𝐿𝑖 = 𝑡𝑆𝑖
‣ These operations are located on the critical path

❗ not the same as critical paths in logic circuits

• There is no schedule for latency constraint Λ ≤ Λmax
‣ possible if 𝑡𝑆𝑦 > Λmax + 1
‣ or 𝑡𝐿𝑥 < 1

🆙

62 / 131



Block D — Scheduling for High Level Synthesis Advanced Computer Architecture (191.019)
Mobility of Operations
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ASAP ALAP

• Example: DE-Solver  
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Figure 4.17: Example: DE-Solver with ASAP and ALAP

4.2.5 Hu’s Algorithm

• goal: minimize latency

• resource constraint: maximum number of resources = 𝑎
• requirements

‣ only one type of resource

‣ All execution delays are 1
– Split up operations into multiple if a larger delay exists

• properties

‣ linear complexity: 𝑂(𝑛)
‣ greedy algorithm

‣ optimal: finds a schedule with minimal latency

Set of ready operations

𝑈act = {𝑣𝑖 | ∀𝑗:(𝑣𝑗,𝑣𝑖)∈𝐸𝑢
𝑡𝑗 + 𝑑𝑗 ≤ 𝑡act}

⟺ direct predecessors finished

• label each node with length of longest path from this node to the sink (𝛼𝑖)

• set of operations to start 𝑆act
‣ must be operations that are ready

‣ must be less than or equal to the number of available resources 𝑎
‣ the label 𝛼𝑖 should be maximal

🆙

63 / 131



Block D — Scheduling for High Level Synthesis Advanced Computer Architecture (191.019)

HU(G_s,u(V,E),a) {

    Label nodes v[i] with max. path length alpha[i] to sink v[y]

    Set start time for source node v[x]: t_HU[x]=1

    Set t_act=1

    repeat {

        Select set of nodes S_act, such that for v[i] in S_act:

            1. v[i] is in U_act

            2. alpha[i] of v[i] in S_act is maximal

            3. Number of elements in S_act: |S|<=a

        Set start time of all v[i] in S_act: t_HU[i]=t_act

        Set t_act=t_act+1

    } until sink node v[y] was assigned a start time

    return (t_HU)

}

Code 4.3: Hu’s Algorithm

Hu‘s Algorithm

3 ALUs for all operations (+,-,*,<) 0.   Label nodes

1. Iteration:

 Sact={v1, v2, v6}

 Start times:

2. Iteration:

  Sact ={v3, v7, v8}

  Start times:

3. Iteration:

  Sact ={v4, v9, v10}

  Start times:

4. Iteration:

  Sact ={v5, v11}

  Start times:

1

2

2

3

4

4
3

1

2

1

2

• Example: DE-Solver  
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Figure 4.18: Example: DE-Solver with Hu’s Algorithm

4.2.6 List Scheduling

Priorities

• resource constrained (goal: minimize latency)

‣ number of resources of type 𝑘 : 𝛼𝑘
‣ priority equals maximal sum of execution delays on paths to sink

Prio(𝑣𝑖) = max
𝑣

( ∑
𝑤∈𝐻𝑣

𝑑𝑤) with 𝐻𝑣 equals to paths from 𝑣𝑖 to sink

• time constrained (goal: minimize resources)

‣ maximal latency: Λ ≤ Λmax
‣ slack of a node: distance to ALAP start time

‣ priority at time 𝑡act equals slack: 𝑠𝑖 = 𝑡𝐿𝑖 − 𝑡act
• heuristic and greedy algorithm based on priorities

Prio(𝑣𝑖) = 𝑠𝑖 = 𝑡𝐿𝑖 − 𝑡act

Operation Sets

• Set of candidate operations ready to be executed on a resource of type 𝑘

𝑈act,𝑘 = {𝑣𝑖 | 𝑣𝑖 of type 𝑘 ∧ ∀𝑗:(𝑣𝑗,𝑣𝑖)∈𝐸𝑢
𝑡𝑗 + 𝑑𝑗 ≤ 𝑡act}

• Set of running operations on a resource of type 𝑘
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𝑇act,𝑘 = {𝑣𝑙 | 𝑣𝑙 of type 𝑘 ∧ 𝑡𝑙 + 𝑑𝑙 > 𝑡act}

LIST_L(G_s,u(V,E),a) {

    Set start time of source node v[x]: t_LR[x]=1

    t_act=1

    repeat {

        foreach type of resource k=1,2,… {

            Find set of candidate operations U_act[k]

            Find set of running operations T_act[k]

            Select starting operations v[i] in S_act[k] such that:

                1. v[i] in U_act[k]

                2. Priorities Prio(v[i]) maximal

                3. Number of running and starting operations smaller than resource 

number:|S_act[k]| + |T_act[k]| <= a[k]

                Set start time of v[i] in S_act[k]: t_LR[i]=t_act

        }

        t_act=t_act+1

    } until sink node v[y] was assigned a start time

    return (t_LR)

Code 4.4: List Scheduling Algorithm: Resource Constraint

• Example DE-Solver

• Resource Constrained (2xMULT, 1xALU)

• Schedule:

List Scheduling with Resource Constraint - Example

 




+ 

+

−

−

NOP

NOP

v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v0

v12

1

2
3

4

6 6 5

1

3

1

2

It. 2xMULT d=2 Cycles 1xALU d=1 Cycle Start time

tact Uakt,mult Tact,mult Sact,mult Uact,alu Sact,alu ti

1 {v1,v2,v6,v8} {} {v1,v2} {v10} {v10} t1=t2=t10=1

2 {v6,v8} {v1,v2} {} {v11} {v11} t11=2

3 {v3,v6,v8} {} {v3,v6} {} {} t3=t6=3

4 {v8} {v3,v6} {} {} {}

5 {v7,v8} {} {v7,v8} {v4} {v4} t4=t7=t8=5

6 {} {v7,v8} {} {} {}

7 {} {} {} {v5,v9} {v5} t5=7

8 {} {} {} {v9} {v9} t9=8

Priorities Prio(vi)

Latency

ACA
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Figure 4.19: Example: List Scheduling with Resource Contraint
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LIST_R(G_s,u(V,E),Lambda_max) {

    Set Number of resources: a[k]=1 for all k

    t_L = ALAP_Schedule(G_s,u(V,E),Lambda_max)

    if t_L[x] < 1 then return("No schedule possible")

    Set start time of node v[x]: t_LT[x]=1

    t_act=1

    repeat {

        foreach type of resource k {

            Find set of candidate nodes U_act[k]

            Find set of running nodes T_act[k]

            Compute slack s[i] = t_L[i] – t_act for v[i] in U_act[k]

            Place all v[i] from U_act[k] into S_act[k], with slack s[i]=0

            Set start time of v[i] in S_act[k]: t_LT[i]=t_act

            if |S_act[k]| + |T_act[k]| > a[k] then {

                Update a[k]: a[k] = |S_act[k]| + |T_act[k]|

            }

            if |S_act[k]| + |T_act[k]| < a[k] then {

                {

                    Place nodes v[l] from U_act[k] without S_act[k]  into R_act[k],

                    Such that slack s[l] for v[l] in R_act[k] minimal }

                until |S_act[k]| + |T_act[k]| +  | R_act[k] | = a[k] or no more nodes 

in U_act[k]

                Set start time of nodes v[l] in R_act[k]:

t_LT[l]=t_act

}

}

t_act=t_act+1

} until sink node v[y] was assigned a start time

return (t_LT);

Code 4.5: List Scheduling Algorithm: Timing Constraint

List Scheduling with Timing Constraint – Improved Version with Restart

• Improved Algorithm: Timing-constrained resource minimization.

• Restart the algorithm each time the number of resources is increased; do not reset the number of resources 

to 1, but start with the last value.

4.2.7 Force-Directed Scheduling

• Heuristic based on a force-based model

• Timing constrained resource minimization

• Published by Paulin & Knight, TCAD 1989

Distribution of Start Times

• The time frame of possible starting times for node 𝑣𝑖

𝑇𝑖 = [𝑡ASAP
𝑖 𝑡ALAP

𝑖 ]

• with a width of the time frame of 𝜇𝑖 + 1
• The distribution for the starting time of node 𝑣𝑖 at time 𝑡act

𝑝𝑖(𝑡act) = {
1

𝜇𝑖+1 ∀𝑡act ∈ 𝑇𝑖

0 ∀𝑡act ∉ 𝑇𝑖

• uniform distribution in the time frame

Resource Demand

• The demand for resources of type 𝑘 at clock cycle 𝑡act
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𝑞𝑘(𝑡act) = ∑
{𝑖:op𝑖 is from type 𝑘}

𝑝𝑖(𝑡act)

• The mean demand for resources of type 𝑘 in the time frame 𝑇𝑖

𝑚𝑘,𝑖 = 1
𝜇𝑖 + 1

⋅ ∑
𝑡ALAP
𝑖

𝑡𝑝=𝑡ASAP
𝑖

𝑞𝑘(𝑡𝑝)

Self Force

𝐹𝑆(𝑡act)
𝑖 = 𝑞𝑘(𝑡act) − 𝑚𝑘,𝑖

• Difference between the demand of a resource of type k in clock cycle 𝑡act and the mean demand for a 

resource of type 𝑘 in the time frame 𝑇𝑖 of the node

• 𝐹𝑆(𝑡act>0
𝑖 : In this clock cycle, the demand for the resource is high, pushing node 𝑣𝑖 away from 𝑡act with a 

positive self-force.

• 𝐹𝑆(𝑡act<0
𝑖 : In this clock cycle, the demand for the resource is low, pulling node 𝑣𝑖 closer to 𝑡act with a 

negative self-force.

• Example: DE-Solver

• Self force for clock cycle 1 positive because the demand for multipliers is high 
and negative for clock cycle 2, because demand is lower.

v6

Ti [1,2] ↓ qMULT(tact) ↓

pi(1) 1/2 17/6

pi(2) 1/2 7/3

ACA

 
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−
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v9

v10

v11

2,83

2,33

0,83

0

CC1

CC2

CC3

CC4

0,25

-0,25

V1-0 44

Force-directed Scheduling – Self Force for Example

Figure 4.20: Example: Self Force

Shift of Time Frames of Successors / Predecessors

• The selection of a start time for a node changes the time frames for its direct predecessor and successor 

nodes.

‣ node 𝑣𝑗 is a direct predecessor or successor of 𝑣𝑖
‣ The start time for node 𝑣𝑖 is selected as

– New time frame and mobility for nodes 𝑣𝑗 : 𝑡𝑖 = 𝑡act

𝑇𝑖 = [𝑡̃ASAP
𝑖 𝑡̃ALAP

𝑖 ]

𝜇̃𝑗 = 𝑡̃ALAP
𝑗 − 𝑡̃ASAP

𝑗

‣ New demand for resources

𝑚̃𝑘,𝑖 = 1
𝜇̃𝑖 + 1

⋅ ∑
𝑡̃ALAP
𝑖

𝑡𝑝=𝑡̃ASAP
𝑖

𝑞𝑘(𝑡𝑝)

Predecessor and successor forces

𝐹𝑉 ,𝑁
𝑖,𝑗 (𝑡act) = 𝑚̃𝑘,𝑗 − 𝑚𝑘,𝑗
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• Change of mean demand for resources of type k for predecessor and successor nodes.

• 𝐹𝑉 ,𝑁
𝑖,𝑗 (𝑡act) > 0: by setting the start time of node 𝑣𝑖 to 𝑡act, the successor/predecessor node 𝑣𝑗 can only 

be scheduled in clock cycles with a higher demand for resources of type 𝑘. Push 𝑣𝑖 away from 𝑡act by a 

positive predecessor/successor force.

• 𝐹𝑉 ,𝑁
𝑖,𝑗 (𝑡act) < 0: The other way around; pull 𝑣𝑗 to 𝑡act with a negative predecessor/successor force.

• Example 3: DE-Solver
•        is direct successor of

• For 

• For 

v7

Ti [2,3] ↓ qMULT(tact) ↓

pi(2) 1/2 7/3

pi(3) 1/2 5/6

ACA
V1-0 47

Force-directed Scheduling - Predecessor and successor forces for Example

Figure 4.21: Example: Predecessor and Successor forces

Total Force

𝐹𝑇
𝑖 (𝑡act) = 𝐹𝑆(𝑡act)

𝑖 + ∑
{𝑗:(op𝑖,op𝑗)∈𝐸}

𝐹𝑁
𝑖,𝑗 (𝑡act) + ∑

{𝑗:(op𝑗,op𝑖)∈𝐸}

𝐹𝑉
𝑖,𝑗(𝑡act)

• Sum of self-force, predecessor forces, and successor forces.

• To minimize resources, select starting times with minimal force, which should lead to a minimal mean 

demand of resources of all types for the schedule.Force-directed Scheduling Example

• Force will push v6 towards start time t6=2 because there is
less demand for MUL in CC2 and v7 is pushed to a later start
time where there is also less demand for MUL. 

ACA
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Figure 4.22: Example: Force-directed Scheduling
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FDS(G_s,u(V,E),Lambda_max) {

    repeat {

        Compute the time frame for all nodes.

        Compute the distribution for the starting time for all nodes and all mean 

demands.

        Compute the total force for each node.

        Select the node with the minimal force and assign the starting time to it.

    } until a starting time has been assigned to all nodes.

    return (t-FDS)

}

Code 4.6: Force-Directed Scheduling Algorithm

4.3 Binding RTL and FSM Generation

4.3.1 The Binding Task

Binding Tasks

• Goal: Save resources by sharing of functional units and registers.

Sequencing graph

Binding of operations to 
functional units 

Operation Binding

Lifetime of variables

Binding of variables to registers 

Register Binding

ACA
V1-0 3

Figure 4.23: Binding Tasks

• Concurrent operations can be scheduled to be executed in parallel.

‣ These cannot be bound to the same FU (in the same clock cycle).

4.3.2 Graph Coloring

• The cover of a set 𝑆 is a set of subsets of 𝑆 such that their union is equal to 𝑆.

• The partition of 𝑆 is a cover of 𝑆 such that all subsets in the cover are disjoint.

• A clique of an undirected graph 𝐺 is a subset of the nodes 𝑉  in which all nodes are fully connected with 

each other.

‣ clique-cover, clique-partition as above

• 𝜒(𝐺)… chromatic number is the minimal coloring.
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• Example:
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Graph Theory – Example Graph Coloring

Figure 4.24: Examples: Graph Coloring

4.3.3 Operation Binding

• type of functional units: 𝑘𝑟 ∈ 𝐾
• set of functional unit types: 𝐾 = {ALU, MUL, …}
• A functional unit is defined by type and index: (ALU, 1)
• An operation is executable on a FU if the operation is supported by the unit.

Executability 

• Operation is executable on functional units, if the operation is supported 
by the functional unit.

• Cover: (NFU for auxiliary nodes in sequence graph with no HW)

• Bipartite graph:

k + - > < * NOP LOOP BR CALL

ALU x x x x

MULT x

NFU x x x x

ALU
MULT






+

− NFU

NOP

LOOP

CALL

BR

ACA
V1-0 15Figure 4.25: FU Executability

Operation-Compatibility-Graph

• Operations are compatible if and only if:

‣ they can be executed on the same FU, ∧
‣ if either one operation always starts after the 

other has finished, ∨
– they are on alternative paths in the control flow

• operation-compatibility-graph: 𝐺+
𝐾(𝑉 , 𝐸+)

‣ An edge connects compatible operations 𝐸+.

‣ Cliques in the compatibility graph are sets of 

operations that can be bound to the same FU.

Operation-Conflict-Graph

• Operations are incompatible

‣ if they must be executed on a different FU, or

‣ if they are executed in parallel due to the sched

ule.

• operation-conflict-graph 𝐺−
𝐾(𝑉 ,𝐸−)

‣ Edges connect incompatible operations.

‣ Interval graphs can be seen as a special case of a 

conflict-graph.

– Overlaps of intervals produce conflicts.

• The conflict graph and the compatibility graph are 

complementary.

Operation Binding
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Operation Binding

• Problem formulation:

 Mapping:

 such that

 and

 

ACA
V1-0 18

Figure 4.26: Operation Binding

• Each operation is bound to one FU.

• The operation must be executable on the FU 𝑧𝑟.

‣ 𝛽(𝑣𝑖) = (𝑘𝑟, 𝑧𝑟) with 𝑖 = 1, …, 𝑛
• Two operations that are bound to the same FU must be compatible.

‣ (𝑘𝑟, 𝑜(𝑣𝑖)) ∈ 𝐸𝐴
‣ 𝛽(𝑣𝑖) ≠ 𝛽(𝑣𝑗) ∀𝑖, 𝑗 : (𝑣𝑖, 𝑣𝑗) ∈ 𝐸−

Left-Edge-Algorithm

• To color an interval graph with the minimum number of colors.

• worst-case complexity 𝑂(|𝑉 | ⋅ log(|𝑉 |))

LeftEdge(G_I(V_I,E_I)) {

    Sort intervals I[i]=[l[i] r[i]] in list L by increasing l[i]

    Set color number c=0;

    repeat {

        Go to the start of List L

        Set S={}

        Set r_act=0;

        repeat {

            Select next interval I[s]=[l[s] r[s]] from List L

            if (l[s] >= r_act) {

                Insert I[s] in set S

                Set r_act=r[s]

                Delete I[s] from List L

            }

        until (End of List L is reached)

        Assign color c to all intervals in set S

        Select next color number: c=c+1;

    }

    until (List L is empty)

}

Code 4.7: Left-Edge-Algorithm

• Input:

‣ Given Schedule

‣ Interval graph of the execution times for the operations.

‣ Operation-conflict graph for each functional unit type.

• The Left-Edge Algorithm is applied for each functional unit type with a disjoint set of colors.

• Output: Binding of operations to the functional units.
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v6v6

v4

v5v3

v2v1

Operations-Conflict-Graph (MULT)

Operations-Conflict-Graph (ALU)

v3

v1 v5

v2

v4 v6

1

2

3

4

5

6

7

v2

v5

v1

v3

v4

v0

v7

• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU
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Operation Binding with Left-Edge Algorithm

Figure 4.27: Operation Binding with Left-Edge Algorithm

4.3.4 Register Binding

• Live variables: Variables are live from their generation until their last use (lifetime). After their last use, 

they are considered dead.

• Register Sharing: The number of registers is decreased by storing variables with non-overlapping lifetimes 

in the same register.

• Variables are incompatible, if their lifetimes overlap.

• Register-conflict graph:

‣ Variables are the nodes.

‣ Incompatible variables are connected by an edge.

• Interval graph

‣ The Left-Edge Algorithm can compute a minimal coloring.

‣ The coloring defines cliques of variables that can share one register.

Local Live Variable Analysis

• First, run global live variable analysis.
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• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU
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Local Live Variable Analysis

Figure 4.28: Local Live Variable Analysis: Goertzel Algorithm

4.3.5 Datapath Generation

Data Flow Graph with Schedule and Binding
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• Shows the data flow between FUs and registers.

• The number of multiplexers can be determined.

• The required control signals can be determined.

• Allows for the generation of an RTL description of the datapath.

• Example: SGU for basic block B3 of Goertzel algorithm
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Data Flow Graph with Schedule and Binding

Figure 4.29: Data Flow Graph with Scheduling and Binding: Goertzel Algorithm
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• Example: SGU for basic block B3 of Goertzel algorithm

C
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ck
 C
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R1

R1

(ALU,1)

t9 t6 t7

t9
t10

power

ACA
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Data Flow Graph with Schedule and Binding

Figure 4.30: Data Flow Graph with Scheduling and Binding (SGU): Goertzel Algorithm

4.3.6 Control Unit Generation

• Generates control signals for:

‣ data flow

‣ control flow

‣ the interface to the hardware module

• Processes status signals from:

‣ the datapath

‣ the interface

Finite State Machine (FSM)

• Is a 6-tuple:

‣ Input alphabet: 𝐼
‣ Output alphabet: 𝑂
‣ Set of states: 𝑋

🆙

73 / 131



Block D — Binding RTL and FSM Generation Advanced Computer Architecture (191.019)

‣ Set of starting states: 𝑅 ⊆ 𝑋
‣ Set of transition relations: 𝑓 ⊆ (𝑋 × 𝐼 × 𝑋)
‣ Output relation: 𝑔 ⊆ (𝑋 × 𝑂 × 𝑋)

• A FSM is deterministic if and only if there is a single starting state (|𝑅| = 1) and state transitions and 

output relations are functions: 𝑓 : (𝑋 × 𝐼) → 𝑋 𝑔 : (𝑋 × 𝑂) → 𝑂
‣ An FSM is completely specified if and only if these functions are completely defined.

Activation Signals for Operations

• The activation signals of an operation are all control signals required for its execution.

• Activation signals may include:

‣ The multiplexer control signals to establish a connection between input registers, functional unit, and 

output register.

‣ Register-enable signal to write the result to the output register.

‣ ALU control signals to select the correct operation.

• A read activation signal is used to enter input values into the register.

• A hold signal is used to keep the value of a variable in a register.

FSM with Data Specification

• The FSM with data specification describes the schedule and the control flow of the datapath and the HW 

module interface.

• The operations of the datapath are assigned to the states of the FSMD.

• The FSMD has one state transition for each clock cycle.

• Transitions may depend on status signals from the datapath or the interface.

(MC2)

(MC2)

Hold t8
Hold t6

Hold t6

Hold t9

• Example: SGU for basic block B3 of Goertzel algorithm

Ack=1/Ready=0

-/Ready=1

Reset state 
transitions omitted.

v1 

v1 

v2

v2

(MC1) (MC1)

(MC2)

v3 

v3 

v5

v5

(MC1) (MC1)

(MC2)

v4 

v6 

Hold power

Start=1

Start=0

Ack=0

Ack=0

Ack=1/Ready=0

ACA
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FSM with Data Specification (FSMD)

Figure 4.31: FSM with Data Specification (FSMD)

State Assignment

• Number of state variables: 𝑛bit
• Number of possible states: |𝑋| = 2𝑛bit

• Number of state variables: 𝑛bit = ⌈log2|𝑋|⌉
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State Assignment

• Number of state variables: 

• Number of possible states: 

• Minimal number of state variables:  

• State coding:

State Binary One-hot Almost one-hot

x0
000 00001 0000

x1
001 00010 0001

x2
010 00100 0010

x3
011 01000 0100

x4
100 10000 1000

ACA
V1-0 71

Figure 4.32: State Assignment - State Coding

Next-State and Output Logic

Start Reset Ack SV SV next

0 0 X 000 000

1 0 X 000 001

X 0 X 001 010

X 0 X 010 011

X 0 X 011 000

X 0 X 100 101

X
X

0
0

0
1

101
101

110
000

X
X

0
0

0
1

110
110

110
000

X 1 X XXXX 000

• Example: SGU for basic block B3 of Goertzel algorithm (Reset 
transitions not shown in state transition diagram are includes in 
next state logic)

Start=1

Start=0

Ack=0

Ack=1

Ack=1

Ack=0

ACA
V1-0 75

Next-State and Output Logic

Figure 4.33: Next-State and Output Logic for Goertzel Algorithm

4.4 Loop and IO Optimization

4.4.1 I/O Scheduling

Register Interface

• Data is stored in registers in the interface (access via bus).

• Read/write operations can be scheduled concurrently with zero delay.

• Example: Read/Write operations scheduled implicitly.

Data path

HW Module Interface

Clk

D Q

En

Ra

Clk

D Q

En

Rb

a

b

c

C-Code section
int binomial(int a, int b) {

 int c=a+b;

         c=c*c;

 return c;

}

+



NOP

NOP

ACA
V1-0 4

Register Interface

Figure 4.34: Register Interface

Array Register Interface
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• Array is stored in registers in the interface (e.g. adressable via bus)

• Read/Write operations can be scheduled concurrently with zero delay

• Example: 

BusDataIN

Data path

Clk

D Q

En

R1

Clk

D Q

En

R2

…

a[0]

a[1]

C-Code section
int acc(int a[4]) {

 int c1=  a[0]+a[1];

         int c2=  a[2]+a[3];

 int c=c1+c2;

 return c;

}

ACA
V1-0 5

Array Register Interface

Figure 4.35: Array Register Interface

Array FIFO Interface

• Array is stored in FIFO buffer in the interface (e.g. adressable via bus)

• Read/Write operations can be scheduled only sequencially with zero delay

• Stalls possible if FIFO is empty

• Example: 

BusDataIN
Data path

…

a[]

C-Code section
int acc(int a[4]) {

 int c1=  a[0]+a[1];

         int c2=  a[2]+a[3];

 int c=c1+c2;

 return c;

}

Clk

Full

In

WrEn

FIFO

ReadEn

Out

Empty

ACA
V1-0 6

Array FIFO Interface

Figure 4.36: Array FIFO Interface

• array is stored in FIFO

• stalls if FIFO is empty

SRAM Buffers

• On-chip buffers using SRAM cells (different from flip-flops)

• Single-port SRAM

‣ Only one port to read or write

• Dual-port SRAM

‣ Two ports to read or write

‣ Cannot read/write the same location on both ports at the same time

‣ True dual-port SRAM: Can read the same location on both ports; writes or read/write still need to be 

arbitrated.

• Timing

‣ Returns data either in the same (zero-delay) or the next clock cycle (pipelined).

Ping Pong Array Memory Interface

🆙

76 / 131



Block D — Loop and IO Optimization Advanced Computer Architecture (191.019)

• One RAM for input one RAM for output

• Switch/overlap between phases (ping pong scheme)

• All ports can be kept busy if read/writes from two different execution runs overlap
(high utilization of memory ports).

Addr1

R1

RAM1 W2

Addr2

R2

W1

M
u

x

Addr1

R1

RAM2 W2

Addr2

R2

W1

M
u

x

M
u

x

V1-0 ACA 10

Ping Pong Array Memory Interface

Addr1

R1

RAM1 W2

Addr2

R2

W1

M
u

x

Addr1

R1

RAM2 W2

Addr2

R2

W1

M
u

x

M
u

x

Figure 4.37: Ping Pong Array Memory Interface

• One RAM for input, one RAM for output.

• Switch/overlap between phases (ping-pong scheme).

• All ports can be kept busy if read/write operations from two different execution runs overlap (high 

utilization of memory ports).

4.4.2 Control Flow and Loop Scheduling

Combining Schedules of SGUs

• Algorithms find a schedule for a single sequencing graph unit (SGU).

• Hierarchy nodes (CALL, BR, LOOP) represent an SGU.

• The schedule for a complete sequencing graph is found by:

‣ Compute the schedule for the SGU on the lowest level of the hierarchy first.

‣ Extract the execution time of hierarchy nodes from the latency of the schedule of their corresponding 

SGUs.

‣ Schedule the top-level SGU with the hierarchy node.

‣ Shift the start time of the schedule of the lower-level SGU to the start time of the corresponding hierarchy 

node.

• The schedule can be data-dependent or independent.

• Execution of loop iteration starts before last loop iteration ended

• Initialization Interval Tp is delay between start of iterations

• For loop pipelining Tp< ΛSGU,LOOP

• Start time of nodes for different iterations k,k+1:    ti
(k+1) = ti

(k)+Tp

• Latency of Loop Node: dLoop = Tp
. #iterations + (ΛSGU,LOOP - Tp )

• Example:

ACA

It.1CC1

CC2

CC3

CC4

CC6

CC5

It.2
It.3

It.4
It.5

CC7

CC8

It.6

Initialization Interval Tp=1 Ramp-up phase

Ramp-down phase

V1-0 22

Loop Pipelining

Figure 4.38: Loop Pipelining
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5 Block E

5.1 Multi-Core Challenges

5.1.1 Cache Recap

ℹ️ Note

Please take a look at Section 3.4

5.1.2 Caching with Write ThroughCaching - Example

• Simple Example program (for simplicity no optimization):

29.04.2025 14

1: for (i=0; i<2; i++) {

2:      x[i] = x[i] + a[i];

3: }

// basepointer t0 = 0x0000 1000

// basepointer t1 = 0x0000 2000

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

LW a0,4(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,4(t0)

Cache

P

Interconnect

Memory 
Controller (MC)

Main Memory

Processor Chip

Memory Chip

Read x[0]=2, miss -> fetch
Read a[0]=5, miss -> fetch

Write x[0]=7, hit

0x1000: x[0]=7
0x2000: a[0]=5
0x1004: x[1]=10
0x2004: a[1]=7

a0=10
a1=7

Read x[1]=3, miss -> fetch
Read a[1]=7, miss -> fetch

Write x[1]=10, hit, write through

Write through
x[1] to memory

0x1000: x[0]=7
0x1004: x[1]=10
…
0x2000: a[0]=5
0x2004: a[1]=7

Figure 5.1: Caching with Write ThroughCaching - Example

• Simple Example program (for simplicity no optimization):

29.04.2025 17

1: for (i=0; i<2; i++) {

2:      x[i] = x[i] + a[i];

3: }

// basepointer t0 = 0x0000 1000

// basepointer t1 = 0x0000 2000

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

LW a0,4(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,4(t0)

Cache

P

Interconnect

Memory 
Controller (MC)

Main Memory

Processor Chip

Memory Chip

Read x[0]=2, miss -> fetch
Read a[0]=5, miss -> fetch

Write x[0]=7, hit -> mark dirty

0x1000 (D): x[0]=7
0x2000 (C): a[0]=5
0x1004 (D): x[1]=10
0x2004 (C): a[1]=7

a0=10
a1=7

Dirty (D),
The value is
not back in 
memory

We assume
the first
two values
are not 
replaced

Read x[1]=3, miss -> fetch
Read a[1]=7, miss -> fetch

Write x[1]=10, hit -> mark dirty

0x1000: x[0]=2
0x1004: x[1]=3
…
0x2000: a[0]=5
0x2004: a[1]=7

Figure 5.2: Caching with Write-back (Copy back), no eviction
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Caching - Example

• Simple Example program (for simplicity no optimization):

29.04.2025 20

1: for (i=0; i<2; i++) {

2:      x[i] = x[i] + a[i];

3: }

// basepointer t0 = 0x0000 1000

// basepointer t1 = 0x0000 2000

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

LW a0,4(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,4(t0)

Cache

P

Interconnect

Memory 
Controller (MC)

Main Memory

Processor Chip

Memory Chip

Read x[0]=2, miss -> fetch
Read a[0]=5, miss -> fetch

Write x[0]=7, hit -> mark dirty

0x1004 (D): x[1]=10
0x2004 (C): a[1]=7

a0=10
a1=7Dirty,

The value is not 
back in memory

First two values, 
are evicted and 
replaced, then we
need to write x[0] 
back before
caching the new
values, as it is
marked dirty

Read x[1]=3, miss -> write back x[0], fetch
Read a[1]=7, miss -> fetch

Write x[1]=10, hit -> mark dirty

0x1000: x[0]=7
0x1004: x[1]=3
…
0x2000: a[0]=5
0x2004: a[1]=7

Figure 5.3: Caching with Write-back (Copy back), with evictionCaching - Example

• Simple Example program (for simplicity no optimization):

29.04.2025 23

1: for (i=0; i<2; i++) {

2:      x[i] = x[i] + a[i];

3: }

// basepointer t0 = 0x0000 1000

// basepointer t1 = 0x0000 2000

LW a0,0(t0)

LW a1,0(t1)

ADD a0,a0,a1

SW a0,0(t0)

LW a0,4(t0)

LW a1,4(t1)

ADD a0,a0,a1

SW a0,4(t0)

Cache

P

Interconnect

Memory 
Controller (MC)

Main Memory

Processor Chip

Memory Chip

0x1000: x[0]=2
0x1004: x[1]=3
…
0x2000: a[0]=5
0x2004: a[1]=7

Read x[0]=2, miss -> fetch
Read a[0]=5, miss -> fetch

Write x[0]=7, hit -> mark dirty

0x1000 (D): x[0]=7 | x[1] = 10
0x2000 (C): a[0]=5 | a[1] = 7

a0=10
a1=7

Dirty,
The value is
not back in 
memory

Read x[1]=3, hit
Read a[1]=7, hit

Write x[1]=10, hit, already marked dirty

Due to data locality we
see more cache hits!

Figure 5.4: Caching with block size > 1

5.1.3 Multi-Processors with Shared Memory

Symmetric Multi-Processor (Symmetric Multi-Processor (SMP)) with Shared Cache

• several processor cores on the chip

• individual private caches (L1)

• shared caches (L2) and shared main memory

• Single-core multi-threading: All threads run on same processor core

• SMP: Threads executed on several processor cores (P0,P1,…) in parallel, presenting three challenges:

‣ The Cache Coherency Problem

‣ Memory Consistency Problem

‣ Synchronization Problem
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29.04.2025 25

Interconnect

Cache

P1

Processor Chip

Memory 
Controller (MC)

Main Memory

Memory Chip

Cache

P0

Cache

P2

Cache

P3

L2 Cache

• Several processor cores on the processor chip

• Individual private caches (L1)

• Shared caches (e.g. L2) and shared main memory

• Single-core multi-threading: All threads run on 
same processor core

• SMP: Threads executed on several processor cores 
(P0,P1,…) in parallel - Three challenges:
• The Cache Coherency Problem 

• Memory Consistency Problem

• Sychronization Problem

Figure 5.5: Shared Cache

5.1.4 The Cache Coherency Problem
Cache Coherency Problem - Example

• Example program:

29.04.2025 28

1:  x[0] = 0;

2:  #pragma omp parallel for

3:  for (i=0; i<2; i++) {

4:    #pragma omp critical {

5:      x[0] = x[0] + a[i];

6:    }

7:  }

8: result = x[0];

Part for Multi-
threaded
execution

//Line 1 Thread 0 (P0): x[0]=0 

SW zero,0(t0) // store 0 to x[0] in memory

//Line 5: Thread 0 (P0): x[0] = x[0] + a[0];

LW a0,0(t0) // load x[0] from memory

LW a1,0(t1) // load a[0] from memory

ADD a0,a0,a1 

SW a0,0(t0) // store x[0] to memory

Line 8 Thread 0 (P0): result = x[0]

LW a2,0(t0)//load x[0] from memory->result in a2

• Multi-threaded execution on two processors P0 and P1

//Line 5: Thread 1 (P1): x[0] = x[0] + a[1];

LW a0,0(t0) // load x[0] from memory

LW a1,4(t1) // load a[1] from memory

ADD a0,a0,a1 

SW a0,0(t0) // store x[0] to memory
Start: 
Memory: a[0] = 3; a[1] = 7
Base pointer register x: t0=0x0000 1000
Base pointer register a: t1=0x0000 2000

Figure 5.6: Cache Coherency Problem Code Example

5.1.5 Multi-threaded Execution without Caches

⚠️ Warning

Too many graphical slides

5.1.6 The Memory Consistency Problem

The Memory Consistency Problem for SMP

• Preserving program order on each single processor is insufficient for correct code execution.
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• Mechanisms are needed to ensure that accesses of one processor appear to execute in program order to all 

others.

• Ensuring full program order across processors is expensive in terms of performance.

• Often, processors only enforce partial program ordering.

• Memory consistency model: Types of enforced program ordering by the processor.

5.1.7 The Synchronization Problem
Lock – Variable –High-level and RISC-V Implementation

1: void lock(int *lockvar) {

2:   while (*lockvar == 1) {} ; // wait until released

3:     *lockvar = 1; // acquire lock

4: }

5: void unlock(int *lockvar) {

6:  *lockvar = 0; // release lock

7: }

29.04.2025 59

• Shared variable that can be used by threads to lock this section and release it
• This will not be enough as we will show later.
• Possible implementation in high-level language and RISC-V asm:

lock: // addr *lockvar in a0

Loop1: //while (*lockvar==1){}  

LW a1,0(a0)

BNE a1,zero,Loop1

LI a1,1

SW a1,0(a0)

RET

unlock:  

SW zero,0(a0)

RET

Figure 5.7: Lock – Variable – High-level and RISC-V Implementation

• A race condition at the instruction level caused both threads to enter the critical section.

• Programmers need other primitives to achieve synchronization.

• Software solution: Peterson’s algorithm

‣ Can achieve mutual exclusion

‣ Suffers from a lack of scalability for many threads.

• HW support for synchronization

‣ Reduce synchronization overhead

‣ Enable scalable synchronization for many parallel threads

5.2 Cache Coherency

5.2.1 Cache ControllersCoherence Controller

V1.0 5

Bus

Processor Chip

Memory 
Controller (MC)

Main Memory

Memory Chip

L2 Cache

Bus

Snooper
Outstanding
Transaction Table FSM

Cache

Processor (P)

Coherence
Controller (CC)

Cache blocksTag entries

Cache

P0

CC

Cache

P1

CC

Cache

P2

CC

Cache

P3

CC

ACA

Figure 5.8: Coherence Controller

Outstanding transaction table & Snooper

• Outstanding transaction table

‣ In the split transaction bus, multiple requests to different addresses can be placed on the bus even when 

the oldest request has not obtained its data.
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‣ keeps track of bus transactions that have not completed.

• Bus snooper.

‣ Snoops each bus transaction

‣ checks the cache tag array to see if it has the block that is involved in the transaction

‣ checks the current state of the block (if the block is found)

‣ changes the state of the block

‣ New state of block -> a finite state machine (FSM) that implements the cache coherence protocol

‣ Data that is sent out is placed in a queue called the write back buffer

5.2.2 Coherence Protocol for Write Through Caches

Coherence Protocol for Write Through Caches - Requests

• The simplest cache coherence protocol: write-through caches.

• Requests from the processor side, as well as from the bus side are snooped by the snooper.

• Processor requests to the cache include:

‣ 1.PrRd: processor-side request to read a cache block.

‣ 2.PrWr: processor-side request to write to a cache block.

• Snooped requests to the cache include:

‣ 1.BusRd: snooped request that indicates there is a read request to a block made by another processor.

‣ 2.BusWr: snooped request that indicates there is a write request to a block made by another processor. 

In the case of a write-through cache, the BusWr is a write-through to the main memory performed by 

another processor.

Coherence Protocol for Write Through Caches – Cache Block States

Each cache block has an associated state which can have one of the following values:

1. Valid (V): the cache block is valid and clean, meaning that the cached value is the same with that in the 

lower-level memory component (in this case the main memory).

2. Invalid (I): the cache block is invalid. Accesses to this cache block will generate cache misses.FSM for Coherence Protocol for Write Through Caches – Snooper FSM

• Processor Side Request

V1.0 10

V

PrRd/-
PrWr/BusWr

I

PrRd/BusRd

PrWr/BusWr

• Bus Side Request

V

BusRd/-

I

BusWr/-

BusRd/-
BusWr/-

FSM

PrRd PrWr

BusRd BusWr BusRd BusWr

Bus

Cache

FSM

Processor (P)

The processor in the book uses a write around (write no-allocate) policy so the value is
directly updated in the memory and not fetched to the cache (remains invalid)ACA

Figure 5.9: Snooper FSM

5.2.3 MSI Protocol with Write Back Caches

In the MSI protocol, processor requests to the cache include:

1. PrRd: processor-side request to read from a cache block.

2. PrWr: processor-side request to write to a cache block.

Bus-side requests include:

1. BusRd: snooped request that indicates there is a read request to a cache block made by another processor.
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2. BusRdX: snooped request that indicates there is a read-exclusive (write) request to a cache block made by 

another processor which does not already have the block.

3. Flush: snooped request that indicates that an entire cache block is written back to the main memory by 

another processor.

Cache Block States

Each cache block has an associated state which can have one of the following values:

1. Modified (M): the cache block is valid in only one cache, and the value is (likely) different from the one 

in the main memory. This state extends the meaning of the dirty state in a write-back cache for a single-

processor system, except that now it also implies exclusive ownership. Whereas dirty means the cached 

value is potentially different from the value in the main memory, modified means both the cached value 

is potentially different from the value in the main memory, and it is cached only in one location.

2. Shared (S): the cache block is valid, potentially shared by multiple processors, and is clean (the value is 

the same as the one in the main memory). The shared state is similar to the valid state in the coherence 

protocol for write through caches.

3. Invalid (I): the cache block is invalid (either not cached, or cached but outdated).

Read Permission Write Permission

Modified State (M) ✅️ ✅️

Shared State (S) ✅️ ❌️

Invalid State (I) ❌️ ❌️

Table 5.5: MSI Protocol Permissions

• Intervention: downgrade to S state

• Invalidation: downgrade to I stateMSI Protocol with Write Back Caches - Snooper FSM

• Processor Side Request

V1.0 16

M

PrRd/-
PrWr/-

I
PrWr/BusRdX

• Bus Side Request

S

PrRd/BusRd

M

PrRd/-

I
BusRdX/Flush

BusRd/-
BusRdX/-

S

BusRdX/-

PrWr/BusRdX BusRd/Flush

BusRd/-

FSM

PrRd PrWr

BusRd BusRdX BusRd BusRdX

Bus

Cache

Flush

Processor (P)

Flush

ACA

Figure 5.10: MSI Protocol - Snooper FSM - Snooper FSM
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MSI Protocol with Write Back Caches – Processor Side Request

V1.0 28

• In invalid state (I):
• Processor read request (PrRd): 

• Cache miss occurs
• To load the data into the cache, a BusRd is posted on the bus
• Fetching block from memory -> Set state to S

• Processor write Request (PrWr):
• posts a BusRdX request on the bus
• Other caches will invalidate their cached copies
• Fetching block from memory -> Set state to M
• Processor can update the block

• In shared state (S):
• Processor read request (PrRd): 

• Block already cached -> provide value to processor
• No bus transaction

• Processor write Request (PrWr):
• Block already cached
• posts a BusRdX request on the bus
• Other caches will invalidate their cached copies
• Processor can update the block in its own cache 

• In modified state (M):
• Processor read request (PrRd) & Processor write Request (PrWr)

• No change in state

• Processor Side Request

M

PrRd/-
PrWr/-

I
PrWr/BusRdX

S

PrRd/BusRd

PrRd/-

PrWr/BusRdX

ACA

Figure 5.11: MSI Protocol - Snooper FSM - Processor Side RequestMSI Protocol with Write Back Caches – Bus Side Request
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• Bus Side Request

M

I
BusRdX/Flush

BusRd/-
BusRdX/-

S

BusRd/Flush

BusRd/-

• In invalid state (I):
• Bus read request (BusRd, BusRedX): 

• No change in state as block can be ignored (not cached or invalid)

• In shared state (S):
• Bus read request (BusRd): 

• Another cache is fetching the block for read
• No state change

• Exclusive bus read request (BusRdX): 
• Another processor is fetching the block for write
• Invalide our copy 

• In modified state (M):
• Bus read request (BusRd): - Intervention

• Another cache is fetching the block for read and has a miss
• Flush the block to the other cache and to the memory (clean sharing)
• Move the shared state (our copy is still up to date)

• Exclusive bus read request (BusRdX): 
• Another cache is fetching the block for read and has a miss
• Flush the block to the other cache and to the memory (clean sharing)
• Invalidate our copy

BusRdX/-

ACA

Figure 5.12: MSI Protocol - Snooper FSM - Bus Side Request

5.2.4 MESI Protocol with Write-Back Caches

In the MESI protocol, processor requests to the cache include:

1. PrRd: processor-side request to read from a cache block.

2. PrWr: processor-side request to write to a cache block.

Bus-side requests include:

1. BusRd: snooped request that indicates there is a read request to a cache block made by another processor.

2. BusRdX: snooped request that indicates there is a read-exclusive (write) request to a cache block made by 

another processor which does not already have the block.

3. Flush: snooped request that indicates that an entire cache block is written back to the main memory by 

another processor.

4. FlushOpt: snooped request that indicates an entire cache block is posted on the bus in order to supply it 

to another processor. We refer to such an optional block flush as a cache-to-cache transfer.

Each cache block has an associated state which can have one of the following values:

1. Modified (M): the cache block is valid in only one cache, and the value is (likely) different from the one 

in the main memory. This state has the same meaning as the dirty state in a write back cache for a single 

processor system.

2. Exclusive (E): the cache block is valid, clean, and only resides in one cache.

3. Shared (S): the cache block is valid, clean, and may reside in multiple caches.

4. Invalid (I): the cache block is invalid.
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• Processor Side Request
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M

PrRd/-
PrWr/-

I

PrWr/BusUpgr

E

PrWr/BusRdX

PrRd/-

PrWr/-

S

PrRd/-
PrRd/BusRd(C)

PrRd/BusRd(!C)

• In invalid state (I):
• Processor read request, other processor has cache block (PrRd(C)): 

• Cache miss occurs

• To load the data into the cache, a BusRd is posted on the bus

• Other processors indicate with C that they have a copy in cache

• Fetching block from other cache (FlushOpt) -> Set state to S

• Processor read request, no other processor has cache block (PrRd(!C)): 
• Cache miss occurs

• To load the data into the cache, a BusRd is posted on the bus

• Other processors indicate with C that they do not have a copy in cache

• Fetching block from memory -> Set state to E

• Processor write Request (PrWr):
• posts a BusRdX request on the bus

• Other caches will invalidate their cached copies, possibly flush to mem

• Fetching block from memory -> Set state to M

• Processor can update the block

ACA

Figure 5.13: MESI Protocol with Write Back Caches - Snooper FSM (1)MESI Protocol with Write Back Caches - Snooper FSM

• Processor Side Request
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M

PrRd/-
PrWr/-

I

PrWr/BusUpgr

E

PrWr/BusRdX

PrRd/-

PrWr/-

S

PrRd/-
PrRd/BusRd(C)

PrRd/BusRd(!C)

• In shared state (S):
• processor read request (PrRd): 

• Block already cached -> provide value to processor

• No bus transaction

• Processor write Request (PrWr):
• Block already cached

• posts a BusUpgr request on the bus

• Other caches will invalidate their cached copies

• Processor can update the block in its own cache 

• In modified state (M):
• processor read request (PrRd) & Processor write Request (PrWr)

• No change in state

ACA

Figure 5.14: MESI Protocol with Write Back Caches - Snooper FSM (2)MESI Protocol with Write Back Caches - Snooper FSM

• Processor Side Request
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M

PrRd/-
PrWr/-

I

PrWr/BusUpgr

E

PrWr/BusRdX

PrRd/-

PrWr/-

S

PrRd/-
PrRd/BusRd(C)

PrRd/BusRd(!C)

• In exclusive state (E):
• processor read request (PrRd): 

• Block already cached -> provide value to processor

• No bus transaction

• Processor write Request (PrWr):
• Block already cached

• No other processor has copy, no need to send bus message

• Processor can update the block in its own cache 

One major advantage of MESI!

ACA

Figure 5.15: MESI Protocol with Write Back Caches - Snooper FSM (3)
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• Bus Side Request

• In invalid state (I):
• Bus read request (BusRd, BusRdX,BusUpgr): 

• No change in state as block can be 
ignored (not cached or invalid)

• In shared state (S):
• Bus read request (BusRd): 

• Another cache is fetching the block for read

• FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

• No state change

• Exclusive bus read request (BusRdX): 
• Another processor is fetching the block for write

• FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

• Invalide our copy 

• Bus upgrade request (BusUpgr): 
• Another processor is fetching the block for write;

but has a local copy

• Invalide our copy 

M

I

E

BusRdX/FlushOpt

BusRd/-
BusRdX/-
BusUpgr/-

S

BusRdX/
Flush

BusRd/
FlushOpt

BusRd/Flush

BusRd/FlushOpt

BusRdX/FlushOpt
BusUpgr/-
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Figure 5.16: MESI Protocol with Write Back Caches - Snooper FSM (4)MESI Protocol with Write Back Caches - Snooper FSM
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• Bus Side Request

M

I

E

BusRdX/FlushOpt

BusRd/-
BusRdX/-
BusUpgr/-

S

BusRdX/
Flush

BusRd/
FlushOpt

BusRd/Flush

BusRd/FlushOpt

BusRdX/FlushOpt
BusUpgr/-

• In modified state (M):
• Bus read request (BusRd): 

• Another cache is fetching the block for read and has a 
miss

• Flush the block to the other cache and to the memory
(clean sharing)

• Move to the shared state (our copy is still up to date)

• Exclusive bus read request (BusRdX): 
• Another cache is fetching the block for write and has a 

miss

• Flush the block to the other cache and to the memory
(clean sharing)

• Invalidate our copy

ACA

Figure 5.17: MESI Protocol with Write Back Caches - Snooper FSM (5)MESI Protocol with Write Back Caches - Snooper FSM
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• Bus Side Request

• In exclusive state (E):
• Bus read request (BusRd): 

• Another cache is fetching the block for read and has a 
miss

• FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

• Move the shared state (our copy is still up to date)

• Exclusive bus read request (BusRdX): 
• Another cache is fetching the block for write and has a 

miss

• FlushOpt to allow a cache-to-cache transfer, as value
is same as in memory

• Invalidate our copy

M

I

E

BusRdX/FlushOpt

BusRd/-
BusRdX/-
BusUpgr/-

S

BusRdX/
Flush

BusRd/
FlushOpt

BusRd/Flush

BusRd/FlushOpt

BusRdX/FlushOpt
BusUpgr/-
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Figure 5.18: MESI Protocol with Write Back Caches - Snooper FSM (6)

Comparison MSI vs. MESI

• Compared to the MSI protocol, the MESI protocol does not reduce bandwidth usage on the bus, but it does 

reduce bandwidth use to the main memory due to cache-to-cache transfers (FlushOpt).

• Bandwidth to the main memory is often a bottleneck when there are a lot of processors connected to the 

same memory (known as the Memory wall!).
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• Additionally, MESI keeps track of data that is exclusive to the thread (threads often operate on private data; 

not all data is shared). No bus signaling is required for this private data.

5.2.5 MOESI Protocol with Write-Back Caches

Request In the MOESI protocol, processor requests to the cache include:

1. PrRd: processor-side request to read a cache block.

2. PrWr: processor-side request to write to a cache block.

Bus-side requests include:

1. BusRd: snooped request that indicates there is a read request to a cache block made by another processor.

2. BusRdX: snooped request that indicates there is a read exclusive (write) request to a cache block made by 

another processor which does not already have the block.

3. BusUpgr: snooped request that indicates that there is a write request to a cache block that another 

processor already has in its cache.

4. Flush: snooped request that indicates an entire cache block is placed on the bus by a processor to facilitate 

a transfer to another processor’s cache. (Different from MESI! Not to memory, closer to FlushOpt in MESI!)

5. FlushOpt: snooped request that indicates an entire cache block is posted on the bus in order to supply it to 

another processor. (We refer to it as FlushOpt because, unlike Flush which is needed for write propagation 

correctness, FlushOpt is implemented as a performance-enhancing feature that can be removed without 

impacting correctness.)

6. FlushWB: snooped request that indicates that an entire cache block is written back to the main memory 

by another processor, and it is not meant as a transfer from one cache to another.

Cache Block States Each cache block has an associated state which can have one of the following values:

1. Modified (M): the cache block is valid in only one cache, and the value is (likely) different from the one in 

the main memory. This state has the same meaning as the dirty state in a write-back cache for a single-

processor system, except that now it also implies exclusive ownership.

2. Owned (O): the cache block is valid, possibly dirty, and may reside in multiple caches. However, when 

there are multiple cached copies, there can only be one cache that has the block in the Owned state; other 

caches should have the block in the Shared state.

3. Exclusive (E): the cache block is valid, clean, and only resides in one cache.

4. Shared (S): the cache block is valid, possibly dirty, and may reside in multiple caches.

5. Invalid (I): the cache block is invalid.

V1.0 5429.04.2025

M

PrRd/-
PrWr/-

I

PrWr/BusUpgr

E

PrWr/BusRdX

PrRd/-

PrWr/-

S

PrRd/-
PrRd/BusRd(C)

PrRd/BusRd(!C)
O

PrRd/-

PrWr/BusUpgr

M

I

E

BusRdX/
FlushOpt

BusRd/-
BusRdX/-
BusUpgr/-

S

BusRdX/Flush

BusRd/FlushOpt

BusRd/Flush

BusRd/-

BusRdX/-
BusUpgr/-

O

BusRd/Flush

BusRdX/Flush
BusUpgr/-
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Figure 5.19: MOESI - Snooper FSM

FlushWB

• The owner (O) keeps track of the latest version on each block and supplies it.

• Dirty sharing: The memory may not have an up-to-date copy.
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• FlushWB’s role:

• If the owner evicts the cache block, then it needs to be written back to the main memory (this is the 

FlushWB), it is not in the FSM, as it is not caused by a read/write of this cache block, but by another block 

causing the eviction.

• There is no owner after that but other caches may still have block in shared state (transfer of owner can 

be implemented)

FlushOpt

• FlushOpt occurs when downgrading from Exclusive (E) to Shared (S) or Invalid (I)

• As a key characteristic, MOESI fetches blocks from the owner

• If the block is in the E state, it is not marked as “owned.”

• Yet, as an optimization feature, FlushOpt indicates that the block is supplied by the cache having it in the 

“E” state and not by the memory in a clean-sharing cache-to-cache transfer

• This is not needed for correctness (write propagation) as the block could also be supplied by the memory 

(clean sharing; memory has a valid copy)

MOESI vs. MESI

• MOESI allows for dirty sharing:

‣ Less memory traffic, faster transfers (cache-to-cache).

‣ But with an L2 cache, the effect may be less important, as L2 to L1 transfers may still be fast.

• MOESI needs 3 bits per cache line to store state; MESI only 2 bits

• MESI, MOESI:

‣ Open question: When several blocks have a clean cache block in the Shared state – who supplies the 

block?

5.2.6 Future Protocols

• MESIF (by Intel): MESI with a forwarding state (used as a designated supplier when several caches share 

a clean block), but no dirty sharing, such as MOESI.

• MSI, MESI; MOESI: Invalidation-based protocols

5.3 Memory Models

5.3.1 Sequential Consistency (SC) & Synchronization Problem

• Memory Model: Mechanisms are needed to ensure that accesses of one processor appear to execute in 

program order to all others, at least partly.

• Atomic Operations: Hardware support for synchronization

5.3.2 Abstract View on Interleaving Threads

• Interleavings are all possible intertwinings of sequences of statements from threads.

• An interleavings graph is a representation of interleavings in the form of a graph.

‣ Each path from the start node to the end node of the graph corresponds to an interleaving.

‣ The set of all such paths corresponds to the set of all possible interleavings

‣ Due to different runtimes, different scheduling strategies, different hardware architectures, the actual 

execution sequence can match any arbitrary interleaving.

• a Race Condition is a situation in which the result of an operation depends on the temporally intertwined 

execution of certain other operations.
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Introductory Example (with Interleavings Graph)

V1-0 ACA 7

Figure 5.20: Interleavings Graph

Sequential Consistency from the Programmer’s Perspective

• a single global memory

• each core generates memory operations in program order

5.3.3 Atomic Instructions and Variables

• Assumption: The assignment of a 16-bit word occurs non-atomically, by copying the two 8-bit halves 

separately.

• When multiple threads access common memory cells (variables), it may be necessary to guarantee that 

operations on variables are executed atomically, i.e., indivisibly.

• This can only be guaranteed by the hardware (CPU).

• All common CPUs offer such atomic operations as instructions.

Volatile Atomic

all other threads see all accesses to variables (not 

optimized by compiler)

Additionally, operations on these variables are 

atomic.

Table 5.6: Difference between volatile and atomic

5.3.4 Synchronization with Atomic Variables

Producer - Consumer

• A piece of data should be safely transferred from one thread to another thread.

‣ thread 𝑇1 writes to variable 𝐷, thread 𝑇2 should read from 𝐷
• With the help of an atomic variable (flag 𝐹 ), data can be transferred “safely” from one thread to another.

5.3.5 Program vs. Execution Order in the Relaxed Memory Model

• In addition to atomic variables, executing the instructions in program order was recognized as a prereq

uisite for the Sequentially Consistent (SC) memory model.

• Modern computer architectures do not guarantee that instructions are executed in program order

• The compiler and OoO processor apply optimizations with reordering of instructions as for single-threaded 

execution
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Level (Re-)Ordering

Source Code Program Order

Compiler optimizing of the code (moving and removing instructions)

CPU instruction scheduling, OoO-Execution

Memory write buffers, caches, …

Execution execution order

Table 5.7: Levels of Reordering in the Relaxed Memory Model

5.3.6 Release/Acquire Memory Model

• How can we integrate the new memory models so that sensible work is possible? We need additional 

hardware tools.

• Modern computer architectures offer so-called

• Memory-Fences (Memory Barriers).

• Moving instructions across memory fences is prohibited.

Release/Acquire Memory Model

• How can we integrate the new memory models so that sensible work is possible? We need

additional hardware tools.

• Modern computer architectures offer so-called
• Memory-Fences (Memory Barriers).

• Moving instructions across Memory-Fences is prohibited.

V1-0 ACA 41

Figure 5.21: Release/Acquire Fence

• Programming languages must offer adequate language features so that memory fences can be utilized.

• Release and Acquire operations for atomic variables.

• Temporal relativity can be ensured for atomic variables, but not for conventional variables.

ℹ️ Note

Automatic placement of Memory-Fences is not possible (undecidable problem)! (Equivalent to the Halting 

Problem)

Sequential Consistency on Modern Computers

Hardware tools can also ensure SC.

👍 Programmers do not have to worry.

👍 Programs are easier to write and debug.

👍 The correctness of such programs is easier to prove.

👎 The hardware instructions for SC are very expensive (slow).

👎 The performance advantages of modern architectures are not utilized.

Release/Acquire Memory Model

• Release-Operation: Sets a memory fence so that no load and store operations that stand in program order 

before the Release operation can be moved behind the Release operation.

• Acquire-Operation: Sets a memory fence so that no load and store operations that stand in program order 

after the Acquire operation can be moved before the Acquire operation.

• Relaxed-Operation: Sets no memory fences.
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5.3.7 Blocking Wait

• Disadvantage of the previous type of communication/synchronization: a thread is in a loop until data can 

be read.

• Wastes unnecessary computing time and energy.

Semaphore

Lock(S);

Z_local := Z;

Z_local := Z_local +  ...;

Z := Z_local;

Unlock(S);

Code 5.8: Easy Semaphore Example

👍 easy to understand

👍 no waste of computing time and energy

👍 sequential consistent

👎 if a thread crashes between lock and unlock, no other thread can make progress

👎 thread dispatching takes a lot of time.

👎 Read-Modify-Write operations are slow

5.3.8 Non-Blocking Wait

• Instead of synchronization via semaphore or similar, direct use of Read-Modify-Write operations.

• Optimistic approach.

• Function RMW(V, old_value, new_value)

• Returns true if the atomic variable V still has the old value; V receives the new value simultaneously.

• Returns false otherwise. Implicitly, old_value is set to new_value.

👍 If few threads access the central variable simultaneously, it is very efficient.

👍 If a thread crashes, other threads can still make progress.

👍 Sequentially consistent and Release/Acquire memory model are possible.

👎 Difficult to understand for more complex algorithms.

👎 Even more difficult to understand for more complex algorithms when combined with Release/Acquire 

memory order.

👎 Suffers from the ABA problem (to be explained on the next slides).

The ABA Problem

1. Process P1 reads value A from a shared memory location.

2. P1 is preempted, allowing process P2 to run.

3. P2 writes value B to the shared memory location.

4. P2 writes value A to the shared memory location.

5. P2 is preempted, allowing process P1 to run.

6. P1 reads value A from the shared memory location.

7. P1 determines that the shared memory value has not changed and continues.

• → Thus an RMW operation may succeed, although it actually should not.

• The ABA problem can be solved via CAS operations by counting the number of accesses to shared data.

Load-Link/Store-Conditional (LL/SC) Operation

• Function LL(address) loads the value stored at the address

• Function SC(address, value) stores the value at the address, provided that there was no interfering 

store to the address. It returns true if successful, and false otherwise.

• LL: stores the address at the cache line
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• Any modification to any portion of the cache line (via conditional or ordinary store) causes the store-

conditional (SC) to fail

• LL/SC operations are supported by DEC Alpha, PowerPC, MIPS, ARM, RISC-V, etc.

👍 Not sensitive to the ABA problem

👍 Instruction set: needs two words instead of three, which are needed by CAS

👎 Sometimes fails if a context switch occurs between LL and SC operations

👎 Sometimes fails if a second LL/SC operation occurs

👎 No nesting of LL/SC operations

5.3.9 Performance Comparison
Performance Gain Intel X86 through SC-AR-Relaxation

Experiment:

• N Threads

• 10M Lock/Unlock operations in a loop, no operation between Lock and Unlock

• 28 Cores, 2-socket system (Intel Xeon E5-2697 v3 @ 2.60 GHz)

V1-0

from: S. Yang, S. Jeong, B. Min, Y. Kim, B. Burgstaller, J. Blieberger, Design-space evaluation for non-blocking synchronization in Ada: lock elision of
protected objects, concurrent objects, and low-level atomics, Journal of System Architecture, Volume 110, 2020, 101764, ISSN 1383-7621,
https://doi.org/10.1016/j.sysarc.2020.101764 .

ACA 77

Figure 5.22: Performance Gain Intel X86 through SC-AR-Relaxation
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6 Block F

6.1 On-Chip Buses
Motivation

• Most chips feature a range of processing elements (PEs) / multi-cores

• PEs need to communicate with each other

• On-chip Interconnect architecture and type play crucial role in performance.

• Chips and devices are connected via different types of interconnects

6.1.1 Interconnect Types

• On-Chip: Connects modules that are integrated into the same chip (IC: integrated circuit)

• PCB-level: Connects different ASICs + connectors and other component all mounted on one Printed Circuit 

Board (PCB).

• Many other interconnects (board to board, rack to rack): PCIe, Ethernet, CAN, UART, I2C, SPI, GPIO

6.1.2 On-chip Buses

6.1.2.1 Memory-mapped Buses

• Purpose

‣ Read or write a value from or to a certain address

‣ Value can be data or peripheral control information

• Memory-mapped Bus has several (sub-)buses (group of signals) and a defined bus protocol

‣ Address bus

‣ Data bus for reading data

‣ Data bus for writing data

‣ Control signals: Indicate if access is read or write, bus length, ID, bus grant, …

• Modules on the bus can either act as initiators or targets

‣ Typical initiators: CPUs, DSPs, DMAs, bus bridges, …

‣ Typical targets: Memory, accelerators, interface peripheral, bus bridge

Classes of Memory-mapped Buses

• Single-initiator bus

‣ One initiator component can address different target components, which are mapped to different 

addresses

• Shared bus

‣ There are several initiators on the bus

‣ An arbiter decides which initiator module is granted access to the bus

‣ Only one initiator can access one slave via the bus at a time

• Layered bus

‣ There is more than one arbiter such that more than one initiator is granted access on the bus

‣ Only one target component on each layer can be accessed at a time

• Crossbar/ bus matrix

‣ Each target component has its own arbiter

‣ Each target component can be accessed by one initiator at a time

6.1.2.2 Single Initiator

• Target knows

‣ if it is addressed by observing the address bus ADDR
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‣ or decoder generates SEL signal for targets based on address bus ADDR

• Target can receive data on write data bus WDATA

• Decoder forwards the data from the addressed target by multiplexing it to the read data bus RDATA

• Additional control bus CTRL for signals related to bus protocol (e.g. WR, SEL, RDY )

Single-Initiator Bus

• Target knows 
• if it is addressed by observing the address bus ADDR 

• or decoder generates SEL signal for targets based on address bus ADDR 

• Target can receive data on write data bus WDATA

• Decoder forwards the data from the addressed target by multiplexing it to the read data 
bus RDATA

• Additional control bus CTRL for signals related to bus protocol (e.g. WR, SEL, RDY )
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Figure 6.1: Single Initiator

Simple Write Access

1. Initiator places address and data on the ADDR and WDATA bus

• Initiator indicates write by setting signal WR to high

• Initiator indicates that access is started by setting SEL signal to high

2. Target acknowledges write access by RDY signal

Simple Write Access

1. Initiator places address and data on the ADDR and WDATA bus
Initiator indicates write by setting signal WR to high
Initiator indicates that access is started by setting SEL signal to high

2. Target acknowledges write access by RDY signal
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Figure 6.2: Single Initiator - Write

Simple Read Access

1. Initiator places address on the ADDR bus

• Initiator indicates read access by setting signal WR to low

• Initiator indicates that access is started by setting SEL signal to high

2. Target places data on RDATA bus

• Target acknowledges read access by RDY signal

Simple Read Access

1. Initiator places address on the ADDR bus
Initiator indicates read access by setting signal WR to low
Initiator indicates that access is started by setting SEL signal to high

2. Target places data on RDATA bus
Target acknowledges write access by RDY signal

AVA 13

SEL Target1Init

ADDR

WR

RDATA

RDY

SEL

ADDR

WR

RDATA

RDY

C1 C2 C3 C4

addr

data

ADDR

RDATA

RDY

WR

C1 C2 C3 C4

addr

data

ADDR

RDATA

RDY

WR

C5 C6

No wait cycles Two wait cycles

SEL SEL

V1.0

Figure 6.3: Single Initiator - Read

Performance

• each access takes a minimum of two cycles

• maximum bus bandwidth is: BWbus = 0.5 ⋅ buswidth ⋅ 𝑓bus
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Pipelined Access

• The next address can be placed on the bus while the data is read

‣ Additional control signals and logic required to support pipelined accesses

• maximum bus bandwidth is: BWbus = buswidth ⋅ 𝑓bus

Burst Accesses

• A burst accesses consecutive addresses

• Version 1: the addresses for all accesses must be given and a control signal that indicates that this is a burst 

access of a certain size

• Version 2: Only the start address and a control signal indicating the burst size must be provided

Burst Accesses

• A burst accesses a consecutive row of addresses

• Version 1: the addresses for all accesses must be given and a control signal that indicates 
that this is a burst access of a certain size

• Version 2: Only the start address must be given and a control signal that indicates that 
this is a burst access of a certain size
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addr1
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Four data values are returned for one start address (burst4)
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Figure 6.4: Single Initiator - Burst

6.1.2.3 Multiple Initiators

Shared Bus

• The arbiter grants access to the initiator

• only the address and data of the initiator are forwarded to the targets

Shared Bus

• Arbiter grants access to the initiator: 

• Only the address and data of one initiator is forwarded to the targets
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Figure 6.5: Multiple Initiators - Arbiter

• Round-robin: Access granted to initiators in pre-defined order that is repeated

• FIFO: First initiator requesting the bus is granted access

• Priority: Initiator with highest priority is granted access to the bus

Split Accesses

• A slave can allow an access to be split if it involves many wait cycles

• Access for initiator 𝐼1 is split by the slave issuing a start of split

• 𝐼2 is granted the bus, and the access for initiator 𝐼2 is performed

‣ Then, the access for initiator 𝐼1 is finished by issuing an end of split

🆙

95 / 131



Block F — On-Chip Buses Advanced Computer Architecture (191.019)

Split Accesses

• Slave can allow a split of an access if it was many wait cycles

• Access of initiator I1 is split by issuing a start of split by slave

• I2 is granted the bus and access of initiator I2 is performed
Then access of initiator I1 is finished by issuing an end of split
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Figure 6.6: Multiple Initiators - Arbiter

Crossbar / Bus Matrix

‣ all targets can be accessed individually

‣ conflicts only arise when two initiators access the same target

‣ GRANT/REQ omitted

Crossbar / Bus Matrix
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• All targets can be accessed individually

• Only conflict when two initiators access same target

• GRANT/REQ omitted.
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Figure 6.7: Multiple Initiators - Bus Matrix

Layered Bus

‣ Targets are on different layers

‣ Initiator can connect to targets on different layers simultaneously

Layered Bus

• Targets are on different layers

• Initiator can connect to targets on different layers simultaneously
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Figure 6.8: Multiple Initiators - Layered Bus

Some Bus Standards

• AMBA Bus (ARM)
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‣ AHB: Advanced High Performance Bus

‣ APB: Advanced Peripheral Bus

‣ AXI: Advanced eXtensible Interface

• Wishbone (Open)

• TileLink (Open)

6.2 Network-on-Chip (NoC)

6.2.1 Introduction to NoCs

• Need for scalability and reduced cost

‣ Avoid long interconnects and delays caused by increased system complexity

‣ Reduce wiring overhead due to an increasing number of system components

• Performance demands

‣ Goal: high bandwidth and low latency

‣ Concurrent communication required due to increased traffic

• Solution: Network-on-Chip (NoC)

‣ Move from bus to network (small-scale networks at the chip/system level)

– Larger-scale networks will be discussed in later lectures

‣ Broadcast can be avoided, but is still possible via multiple messages (when required)

‣ Serialization is achievable, e.g., by forcing the same path or via sequence numbers

Basics

• Objective: To connect nodes with each other via routers and wires, enabling messages to be sent from 

source to destination

• Building blocks:

‣ Node: any component, e.g., processor, memory, or a combination of them

‣ Network interface: module connecting a node to the network

‣ Router: forwards data from inputs to outputs (network interfaces or other routers)

‣ Link: physical set of wires, e.g., connecting two routers

‣ Channel: logical connection between routers

‣ Message: unit of transfer for the nodes

‣ Packet: unit of transfer for the network

6.2.2 NoC Topologies

• Topology: arrangement of nodes and channels

‣ Determines e.g., number of hops, number of alternative paths, cost

• Properties for comparison

‣ Degree: number of links at each node

‣ Distance: number of links in the shortest route

‣ Diameter: maximum distance between any two nodes

‣ Bisection bandwidth: available bandwidth from one partition to the other, when cutting the network 

into two equal parts (minimum for multiple possible cuts)
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• Direct networks: each terminal node is associated with a router; routers are sources/sinks 
and switches for traffic from other nodes

• Indirect networks: terminal nodes are connected via intermediate stages of switch nodes; 
terminal nodes are sources/sinks, intermediate nodes only switch traffic
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Figure 6.9: Network Topologies
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Table 6.8: Comparison of Network Topologies

6.2.3 NoC Messages

• Message: a logically continuous group of bits, may be arbitrarily long

• Packet: basic unit of routing and sequencing, with a restricted maximum length

‣ Consists of a header and a segment of a message
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• Flit (flow control digit): basic unit of bandwidth and storage allocation

‣ Contains no separate routing/sequencing information and therefore follow the same path in-order

‣ Subdivision allows for low overhead (large packets) and fine-grained resource utilization (small flits)

• Phit (physical transfer digit): information transferred over a channel in a single clock cycle

Messages

• Message: logically continuous group of bits, may be arbitrarily long

• Packet: basic unit of routing and sequencing, restricted maximum length
• Consists of header + segment of a message

• Flit (flow control digit): basic unit of bandwidth and storage allocation
• Contain no separate routing/sequencing information and therefore follow the same path in-order

• Subdivision allows for low overhead (large packets) and fine-grained resource utilization (small flits)

• Phit (physical transfer digit): information transferred over a channel in a single clock cycle
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Figure 6.10: Message

Flow Control vs. Routing

• Flow control: Allocates resources (channels, control state, buffers) to packets

‣ Alternative view: resolve contention during packet transmission

‣ Contention: What happens if two packets want to use the same channel at the same time?

• Routing: Selects the path a packet takes from source to destination

‣ Determines how well the potential of the given topology is exploited

‣ Should balance load across network channels

6.2.4 NoC Flow Control

• Bufferless

‣ Dropping

‣ Misrouting

– No buffers available, therefore misroute “losing” packets, “winning” packet gets the requested channel

‣ Circuit switching

– First allocate channels to build a circuit from source to destination, then send packets along the circuit, 

deallocate circuit after packets are sent

• Buffered

‣ Store-and-forward

– Each node waits until packet is received completely before transmission to the next node

‣ Cut-through

– Flits are forwarded as soon as they are received, and the subsequent channel and buffer space is 

acquired (allocation still at packet granularity)

‣ Wormhole

‣ Virtual channel
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• Wormhole flow control: When B blocks, channel p and q are idle

• Virtual-channel flow control: A can use channel p and q using a second virtual channel
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Figure 6.11: Wormhole & Virtual-channel

6.2.5 NoC Routing

• Selects the path a packet takes from source to destination in a given topology

• Determines how well the potential of the given topology is exploited

• Balance load across the network channels to avoid hotspots and contention

‣ Difficult, particularly with non-uniform traffic patterns causing load misbalances

6.2.5.1 Dimension-order Routing

• First move towards x-dimension, then move towards y-dimension (XY)

👍 simple

👍 minimal

👎 can cause load imbalance

👎 doesn’t exploit path diversity

Dimension-order Routing

• First move towards x-dimension, then move towards y-dimension (XY)
• To increase the clarity, we will focus on 2D meshes in the following

• Example: 2D Mesh

• Dimension-order routing: simple, minimal, can cause load imbalance, doesn‘t exploit path 
diversity

ACA 37

Dimension-order routing:
Deterministic and minimal

Alternate route:
non-minimal
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Figure 6.12: Dimension-order Routing

6.2.5.2 Valiant’s Algorithm

• A packet from source 𝑠 to destination 𝑑 is routed via an intermediate node 𝑑′

• Randomly select intermediate node 𝑑′

• Phase I: Route packet from s to 𝑑′

• Phase II: Route packet from 𝑑′ to 𝑑
• Use arbitrary routing algorithm for Phase I+II, e.g., dimension order routing for tori and meshes

👍 randomizes traffic

👍 balances network load

👎 non-minimal

👎 doesn’t exploit locality
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Valiant‘s Algorithm

• Packet from source s to destination d is routed via an intermediate node d‘
• Randomly select intermediate node d‘

• Phase I: Route packet from s to d‘

• Phase II: Route packet from d‘ to d

• Use arbitrary routing algorithm for Phase I+II, 
e.g., dimension order routing for tori and meshes

• Can use arbitrary routing algorithm for the two phases
• For tori and meshes: Dimension-order routing as appropriate choice

• Valiant‘s Algorithm: Randomizes traffic, balances network load, non-minimal, doesn‘t 
exploit locality
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Figure 6.13: Valiant’s Routing

• Improvement

‣ restrict 𝑑′ to one in a minimal quadrant

‣ preserves locality, compromises load balancing

Valiant‘s Algorithm

• Minimal version of Valiant‘s algorithm for k-ary n-cubes:
• Restrict intermediate node: d‘ lies in minimal quadrant

between s and d (subnetwork with s and d as corner nodes)

• Randomly selects among minimal routes

• Steps:
• Identify quadrant

• Select intermediate node d‘ from quadrant

• Route from s to d‘

• Route from d‘ to d

• With dimension-order routing (either XY or YX): Doesn‘t use all paths
• Idea: Select randomly whether to use XY or YX (but: deadlock problem arises)

• Preserves locality, improves load balancing (compared to deterministic routing)
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Figure 6.14: Valiant’s Improved Routing

• Deadlocks

‣ situation where packets cannot make progress as they are waiting on each other to release resources

Deadlock Avoidance: Restrict Routing

ACA 41

• Dimension Order Routing (k-ary n-meshes)
• E.g., first x then y (we have seen this approach already)

• Deadlock-free, but restricts path diversity

• Turn Model: Focuses on the turns allowed and the cycles they can form
• 2D mesh: 8 possible turns forming two abstract cycles

• XY Routing removes four turns (prevents deadlocks)

V1.0

Figure 6.15: Restrict Routing (1)
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ACA 42

• Turn Model: Focuses on the turns allowed and the cycles they can form
• Removing one (carefully selected) turn from each abstract cycle also prevents deadlocks

• Removing any two turns does not prevent deadlocks

west-first: traveling west 
only allowed at the start

north-last: traveling north 
only allowed as last direction

negative-first: traveling first 
west and south, then east 

and north

≡ ≡

V1.0

Figure 6.16: Restrict Routing (2)

6.2.5.3 Channel Dependence Graph (CDG)
Channel Dependence Graph (CDG)

• Network topology:

• Channel Dependence Graph:
• One vertex for each channel

• Edges denote dependences
• Dependence exists if it is possible for channel i to wait for channel i+1

• 180° turns not allowed (e.g., AB → BA)
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Figure 6.17: CDG
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Cycles in the CDG

• Channel Dependence Graph may contain cycles

• Route through AB, BE, EF and route through EF, FA, AB → Deadlock
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Figure 6.18: Cycles in CDG
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• Example: Remove Edges in the CDG (West-first turn model)
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Figure 6.19: Acyclic CDG
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7 Block G

7.1 GP-GPUs, TPUs, NPUs
ML Plattforms are Heterogeneous

Cloud

Datacenter:
Multi-Servers 
with Multi-GPUs

Desktop/Workstation
/Fog:
PC with GPU

Edge/Mobile:
Mobile Phone
Raspberry PI
Embedded GPU
Specialized SoCs

Extreme Edge / TinyML:
MCU
Specialized low-power SoC

• Large computing continuum with possibly connectivity:

Hundreds of CPUs 
Hundreds of GBs of DRAM
Several GPUs with 
Tens of GB of DRAM
Several TB of Storage

2-128 CPUs 
Tens of GBs of DRAM
1-2 GPUs with Tens of GB of DRAM
A few TB of Storage

1-4 CPUs 
1-4 GBs of DRAM
1 GPUs with a few GB of DRAM
Specialized Accelerators
Tens to Hundreds of GB of Storage

1 CPU 
Hundreds of kB to a few MB of 
embedded SRAM
Low-power Acceleration / Co-proccesors
A few MB of Storage, e.g. embedded Flash

Embedded Machine Learning / Edge AICloud ML Desktop ML
4V1.0 ACA

Figure 7.1: ML Platforms

• Types include: Deep Neural Networks, Convolutional Neural Networks, Transformers, Graph Neural 

Networks, and Recursive Neural Networks.

• Computing demand is often measured in MAC operations

• Size is often measured in the number of parameters

• Examples

• Large Language Models (LLMs) - produces human-like text

‣ GPT-4: 170 trillion parameters (10e12)

‣ GPT-3: 175 billion parameters (10e9)

‣ ResNet18: 11 million parameters (10e6) for image classification (e.g., autonomous driving)

‣ Keyword Spotting (KWS): 16k-300k parameters (10e3) to detect keywords in an audio stream (e.g., for 

audio wakeup in TinyML)

Embedded ML Applications

• Data is generated at the edge by various sensors.

• ML applications are executed on embedded devices “close to” the sensors.

• Examples

‣ Autonomous driving based on HD cameras, Lidar, and radar

‣ Wearable human activity tracking using gyroscopes and accelerometers

‣ Visual wake-up from camera

‣ Audio wake-up (keyword spotting) from microphone

‣ Gesture recognition from radar sensors

ANN Architectures

• Layered computation: 𝑎𝑙 = 𝑓 𝑙(𝑎𝑙−1)

‣ 𝑎𝐿 = 𝑓𝐿(𝑓𝐿−1(…𝑓1(𝑥)…))
• 𝑎𝑙 = 𝑓 𝑙(𝑊 ⋅ 𝑎𝑙−1 + 𝑏𝑙−1)

‣ 𝑊 : weights

‣ 𝑎: activations

‣ 𝑓 𝑙: activation functions (ReLU, tanh, softmax)

• The design of the ANN model architecture must consider the target system

‣ ROM/RAM memory resources (weights, activations)

‣ Computational power: Operations (support for nonlinear operations)
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‣ Acceleration features (types of layers, layer configurations)

• Network Architecture Search (NAS)

‣ Algorithms that systematically explore different ANN model architectures automatically

‣ Computationally very expensive (requires training many candidates to evaluate accuracy)

Training

• Training of the ANN model is done on a powerful machine (GPU)

• Trained model is deployed on the embedded device

• The embedded device executes the trained model (inference task).

• Training

‣ Selection of hyperparameters

‣ Optimization of the ANN model’s trainable parameters

‣ Typically using a backpropagation algorithm

Quantization

• Models are usually trained with floating-point (FP) precision (float, double).

• Inference (execution of trained model on embedded device)

• Full precision (FP) computation (multiplication, addition) is expensive

• Hardware Floating Point Units are expensive (area, energy)

• For inference, the model is transferred to a quantized variant

• Integer computations are less expensive

• Many challenges: rounding, overflow, rescaling, shifting

• Simple Example (8-bit integer [−127…128]):

Quantization Formats

• Integer formats for weights/activations usually given by bit-width: x-bit

• On many embedded processors (byte-type quantization simplest 8bit, 16bit)

• Byte /uint8 (8bit) quantization range: [0 … 255]

• Accumulation variables usually larger size

• Sub-byte integer quantization < 8 bit
‣ Binary quantization w in {0,1}

‣ Ternary quantization w in {-1,0,1}

• Also reduced-precision floating-point possible (many formats)

Pruning

• Unstructured pruning: Small weight values are set to zero.

‣ Skip computation with zero values (may require additional logic in the program)

• Structured pruning: A column, row, or kernel is removed from the operator

‣ The operator is modified
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Example: Convolutional Neural Network 

• Consists of layers (structure reprented by
data flow graph)

14V1.0 ACA

Figure 7.2: Convolutional Neural Network - Example

Image to Column (Img2Col) Transformation

‣ For many targets, a highly optimized implementation of matrix-matrix-multiply computation exists (e.g., 

for accelerators, CPUs with SIMD support, GPUs, and even single-issue CPUs).

‣ Img2Col transforms a convolution operation into a matrix-matrix multiply operation.

‣ Requires building a batch matrix that is larger than the original activation tensor because it holds 

duplicate values.

– Usually, Img2Col is not applied to the full input activation tensor but rather within the convolution 

loop on a portion of the tensor to avoid building the entire batch matrix

7.1.1 General-Purpose Graphics Processor Units (GPGPUs)

• GPUs were initially introduced for real-time rendering, especially for video games.

• Nowadays, GPUs can be found in many devices (data centers, PCs, laptops, phones, embedded GPUs, etc.).

• General Purpose (GP-GPU): NVIDIA’s CUDA programming language allowed GPUs to be used for general-

purpose computing beyond rendering (now especially used for ML)

• GPUs are combined with a CPU either on a single chip or by inserting an additional card (e.g., via PCIe).

• The CPU is responsible for initiating computation on the GPU and transferring data to and from the GPU; 

it is often called “the host”.

GPU (Discrete vs. Integrated)

• GPUs are combined with a CPU either on a single chip or by inserting an additional card 
(e.g. via PCIe). 

• The CPU is responsible for initiating computation on the GPU and transferring data to and 
from the GPU. The CPU is often called “the host”.
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Host CPU GPU

Graphics 
Memory

System 
Memory

CPU GPU

System 
Memory

Cache

Discrete GPU: Own memory

Integrated GPU:
Shared memory
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Figure 7.3: GPU: Discrete vs Integrated

Threads, Warps, Thread block

• The threads that compose a compute kernel are organized into a hierarchy consisting of a grid of thread 

blocks, which in turn consist of warps.

• In the CUDA programming model, individual threads execute instructions whose operands are scalar 

values (e.g., 32-bit floating-point).
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• To improve efficiency, typical GPU hardware executes groups of threads together in lock-step (SIMD). 

These groups, called warps, consist of 32 threads

• Warps are grouped into a larger unit, called a thread block by NVIDIA.

• GPUs use the Single Instruction, Multiple Data (SIMD) model

• Scalar instruction streams for each CUDA thread are grouped together for SIMD execution on hardware

• Loads and stores are scatter-gather, as threads perform scalar loads and stores.

8 Laboratories

8.1 Lab 1: Vector Processors

8.1.1 Vector Configuration

• Vector processor utilizes SIMD

Design Time Parameters:

• VLEN

‣ in vector_config.cmake called VREG_W

• VMEM_W

‣ size of the memory ports in bits

‣ has to be equal to the pipeline containing the VLSU

Run Time Parameters:

• VL

‣ if vl > VLMAX ⇒ vl = VLMAX is returned

‣ VLMAX can be requested with __riscv_vsetvlmax_e{}m{}

• SEW

• ‣ LMUL
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Figure 8.1: Graphical Representation of the RISC-V Design-Time and Runtime Parameters

Restrictions:

• all 6 functional units must be present

• only one unit of each type is allowed

• 2 ≤ # number of pipelines ≤ 6

Timing Behavior:

• wider lanes allows for functional units to precess faster through more parallel operations

• microarchitecture always passes entive vector register groups through the pipeline

‣ ⇒ latency of instructions depends on VLMAX independet on the current set vl

• Only one vector operation can be processed in a vector pipeline at once.

‣ However, if two vector operations use different pipelines with no data dependencies, they can be 

processed simultaneously

• 3 Read Ports, 1 Write Port

• vector-chaining is performed at the whole-vector register level

‣ assuming each operation uses a different pipeline

8.1.2 Functional Units

Functional Unit Description & Tasks Commands Latency Cycles Init Interval

VLSU Laod-Store Unit vle, vse,

vlse, vsse

4 1

VMUL Multiply-Unit vmul, vwmul 5 1

VALU Arithmetic Unit vadd, vsub,

vwadd, vwsub

3 1

SLD Slide Unit variable variable

VDIV Division Unit 34 32

VLEM Elementwise Unit variable

(but very slow)

variable
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8.1.3 How to Start

8.1.3.1 (optional) Find a good algorithm

• mostly hard

8.1.3.2 Implement Basic Vectorized Code

❗ first version -> keep - LMUL at a minimum

• 1 before every sign extension

get it working according to test cases

chunk addressing

• fit as much data into the variables but keep track how much data was processed already

size_t rem_colsB = numColsB;

while (rem_colsB > 0U) {

    ...

    rem_colsB -= vl;

}

pointer access important and dangerours

8.1.3.3 Maximize - LMUL

just so within a certain scope (e.g. a while loop) not more than 32 physical registers are used

• → but already seperated into respective pipelines to utilize vector-chaining

8.1.3.4 optimize vector_config.cmake

identify which unit is used for which operation and then seperate in respective pipelines

• no overhead, minimal seperation

try to “play around” with REG_W, but very likely it shouldn’t be too high

• either 64 or 128 bits

❗ can either reduce/boost performance

minimize pipeline width to get to LUT target (but maximize within LUT target)

• → do everything within the LUT target (minimize everything to achieve LUT target, but maximize 

within LUT target)

8.1.3.5 Loop Unrolling

try to process multiple (2x, 4x, 8x) vector operations within a single loop cycle

• use the following constructs for it

while (2* i < numRowsB){...}

i = 2*i;

while (i < numRowsB){...} // tail

or

size_t vl_max = __riscv_vsetvlmax_e16m4();

while (len >= 2* vl_max) {...} // in here only load vl_max elements

while (len > 0U){...} // tail

❗ do not forget the tail handling

8.1.3.6 Play Around

❗ use as little vector registers as possible

❗ use combined wideining instruction
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• instead of multiplication and sext seperatly

play around with vector_config.cmake in order to hit targets

8.1.4 RISC-V V Extension Assembly Reference

8.1.4.1 Data types and configuration instructions

vsetvli rd, rs1, vtypei   # rd = new vl,  rs1 = AVL, vtypei = new vtype setting

vsetivli rd, uimm, vtypei # rd = new vl, uimm = AVL, vtypei = new vtype setting

vsetvl rd, rs1, rs2       # rd = new vl,  rs1 = AVL, rs2 = new vtype value

# Accepted SEW: e8/e16/e32/e64

# Accepted LMUL: mf8/mf4/mf2/m1/m2/m4/m8

# Examples: Request vector length stored in a0, store the provided length in t0

vsetvli t0, a0, e8        # SEW= 8, LMUL=1

vsetvli t0, a0, e8, m2    # SEW= 8, LMUL=2

vsetvli t0, a0, e32, mf2  # SEW=32, LMUL=1/2

Intricacies of the vsetvli instruction:

rd rs1 AVL value Effect on vl

- !x0 Value in rs1 Gives requested vl or VLMAX, whichever is greater

!x0 x0 INT_MAX Sets vl to VLMAX

x0 x0 Old vl Keeps old vl, but can change data type (SEW, LMUL)

8.1.4.2 Load/Store instructions

Vector Load/Store

# Vector loads and stores

# vd destination, rs1 base address, vm is mask encoding (v0.t or <missing>)

 vle8.v vd, (rs1), vm  # 8-bit unit-stride load

vle16.v vd, (rs1), vm  # 16-bit unit-stride load

vle32.v vd, (rs1), vm  # 32-bit unit-stride load

vle64.v vd, (rs1), vm  # 64-bit unit-stride load

# vs3 store data, rs1 base address, vm is mask encoding (v0.t or <missing>)

 vse8.v vs3, (rs1), vm # 8-bit unit-stride store

vse16.v vs3, (rs1), vm # 16-bit unit-stride store

vse32.v vs3, (rs1), vm # 32-bit unit-stride store

vse64.v vs3, (rs1), vm # 64-bit unit-stride store
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Vector strided Load/Store

# Vector strided loads and stores

# vd destination, rs1 base address, rs2 byte stride

 vlse8.v vd, (rs1), rs2, vm  # 8-bit strided load

vlse16.v vd, (rs1), rs2, vm  # 16-bit strided load

vlse32.v vd, (rs1), rs2, vm  # 32-bit strided load

vlse64.v vd, (rs1), rs2, vm  # 64-bit strided load

# vs3 store data, rs1 base address, rs2 byte stride

 vsse8.v vs3, (rs1), rs2, vm # 8-bit strided store

vsse16.v vs3, (rs1), rs2, vm # 16-bit strided store

vsse32.v vs3, (rs1), rs2, vm # 32-bit strided store

vsse64.v vs3, (rs1), rs2, vm # 64-bit strided store

8.1.4.3 Arithmetic, logical and move instructions

General vector binary arithmetic operation syntax

# Assembly syntax pattern for vector binary arithmetic instructions

# Operations returning vector results

vop.vv vd, vs2, vs1 # vector-vector     vd[i] = vs2[i] op vs1[i]

vop.vx vd, vs2, rs1 # vector-scalar     vd[i] = vs2[i] op x[rs1]

vop.vi vd, vs2, imm # vector-immediate  vd[i] = vs2[i] op imm

# Assembly syntax pattern for vector widening arithmetic instructions

# Double-width result, two single-width sources: 2*SEW = SEW op SEW

vwop.vv vd, vs2, vs1 # vector-vector  vd[i] = vs2[i] op vs1[i]

vwop.vx vd, vs2, rs1 # vector-scalar  vd[i] = vs2[i] op x[rs1]

# Double-width result, first source double-width, second source single-width: 2*SEW = 

2*SEW op SEW

vwop.wv vd, vs2, vs1 # vector-vector  vd[i] = vs2[i] op vs1[i]

vwop.wx vd, vs2, rs1 # vector-scalar  vd[i] = vs2[i] op x[rs1]
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Vector Single-Width Integer Add, Subtract and Multiply

# Integer adds

vadd.vv vd, vs2, vs1  # Vector-vector

vadd.vx vd, vs2, rs1  # vector-scalar

vadd.vi vd, vs2, imm  # vector-immediate

# Integer subtract

vsub.vv vd, vs2, vs1  # Vector-vector

vsub.vx vd, vs2, rs1  # vector-scalar

# Signed multiply, returning low bits of product

vmul.vv vd, vs2, vs1  # Vector-vector

vmul.vx vd, vs2, rs1  # vector-scalar

# Signed multiply, returning high bits of product

vmulh.vv vd, vs2, vs1 # Vector-vector

vmulh.vx vd, vs2, rs1 # vector-scalar

# Unsigned multiply, returning high bits of product

vmulhu.vv vd, vs2, vs1  # Vector-vector

vmulhu.vx vd, vs2, rs1  # vector-scalar

# Signed(vs2)-Unsigned multiply, returning high bits of product

vmulhsu.vv vd, vs2, vs1 # Vector-vector

vmulhsu.vx vd, vs2, rs1 # vector-scalar

Vector Widening Integer Add, Subtract and Multiply

# Widening unsigned

vwaddu.vv vd, vs2, vs1  # vector-vector, all other variants possible

# Widening signed

vwadd.vv vd, vs2, vs1   # vector-vector, all other variants possible

# Widening signed-integer multiply

vwmul.vv vd, vs2, vs1, vm  # vector-vector

vwmul.vx vd, vs2, rs1, vm  # vector-scalar

# Widening unsigned-integer multiply

vwmulu.vv vd, vs2, vs1, vm # vector-vector

vwmulu.vx vd, vs2, rs1, vm # vector-scalar

Vector Multiply-Add (multiply-accumulate)

# Integer multiply-add, overwrite addend

vmacc.vv vd, vs1, vs2  # vd[i] = +(vs1[i] * vs2[i]) + vd[i]

vmacc.vx vd, rs1, vs2  # vd[i] = +(x[rs1] * vs2[i]) + vd[i]

# Integer multiply-add, overwrite multiplicand

vmadd.vv vd, vs1, vs2  # vd[i] = (vs1[i] * vd[i]) + vs2[i]

vmadd.vx vd, rs1, vs2  # vd[i] = (x[rs1] * vd[i]) + vs2[i]

🆙

112 / 131



Laboratories — Lab 1: Vector Processors Advanced Computer Architecture (191.019)

Vector Sign-extend/Zero-extend, Reduce and Move

# Scalar -> Vector

vmv.v.v vd, vs1  # vd[i] = vs1[i]

vmv.v.x vd, rs1  # vd[i] = x[rs1]

vmv.v.i vd, imm  # vd[i] = imm

# Vector -> Scalar

vmv.x.s rd, vs1  # rd = vs1[0]

# Extension:

vzext.vf2 vd, vs2  # Zero-extend SEW/2 source to SEW destination

vsext.vf2 vd, vs2  # Sign-extend SEW/2 source to SEW destination

vzext.vf4 vd, vs2  # Zero-extend SEW/4 source to SEW destination

vsext.vf4 vd, vs2  # Sign-extend SEW/4 source to SEW destination

# Simple reductions, where [*] denotes all active elements:

vredsum.vs vd, vs2, vs1    # vd[0] = sum( vs1[0] , vs2[*] )

# Unsigned sum reduction into double-width accumulator

vwredsumu.vs vd, vs2, vs1  # 2*SEW = 2*SEW + sum(zero-extend(SEW))

# Signed sum reduction into double-width accumulator

vwredsum.vs vd, vs2, vs1   # 2*SEW = 2*SEW + sum(sign-extend(SEW))

8.1.4.4 Code examples

# Example: Load 16-bit values, widen multiply to 32b, shift 32b result right by 3, 

store 32b values.

# On entry:

# a0 holds the total number of elements to process

# a1 holds the address of the source array

# a2 holds the address of the destination array

loop:

    vsetvli a3, a0, e16, m4, ta, ma # vtype = 16-bit integer vectors; a3 = vl (number 

of elements this iteration)

    vle16.v v4, (a1)        # Get 16b vector

    slli t1, a3, 1          # Multiply # elements by 2 bytes (sizeof 16-bit int)

    add a1, a1, t1          # Bump pointer

    vwmul.vx v8, v4, x10    # Widening multiply into 32b in <v8--v15>

    vsetvli x0, x0, e32, m8, ta, ma # Operate on 32b values LMUL 8

    vsrl.vi v8, v8, 3       # Shift by 3

    vse32.v v8, (a2)        # Store vector of 32b elements

    slli t1, a3, 2          # Multiply # elements  by 4 (sizeof int)

    add a2, a2, t1          # Bump pointer

    sub a0, a0, a3          # Decrement count by vl

    bnez a0, loop           # Any more elements to process?
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8.2 Lab 2: High Level Synthesis

8.2.1 Theoretical Questions (for practice only)

8.2.1.1 Lab 1

What are memory-mapped peripherals?

Communication with the peripherals is done over memory regions. Hardware registers are mapped into 

the address space. It is handled like load/store (done by the LSU (LoadStore Unit)).

What is the reason for declaring register references as volatile?

So the compiler does not optimize them away (when only only read, not written, they’re deleted). Also 

order of memory access is retained.

What are the contents of Uart/uart_t struct in the UART driver library?

• Pointer to all control status registers

• And a custom callback function.

What is busy waiting

Waiting in a while loop, where no operation is performed just waiting/checking the value.

Is polling, in general, a bad design choice?

No

• If you have a predictable system where everything happens in known cycles.

• If the system needs to be cycle-accurate.

‣ interrupts have an overhead

Why is there still a system tick reported, while the processing system is in busy wait state? 

(Bare-metal system)

Because timer interrupts still get triggered by the timer.

What is cross compilation?

If the host operating system/architecture is not the same as the target operating system/architecture.
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What is C-code validation and C-code synthesis in Vivado-HLS?

Validation is the process where the C-code gets tested on a testbench to see if the output is the same as 

expected. Checks that the C algorithms performs the correct operation.

Synthesis is building a hardware component which implements the function defined in the C-code.

What is Local vs Global optimizations?

local:

• Limited to one Basic Block or loop iteration.

• Techniques:

‣ local scheduling

‣ local resource sharing

‣ peephole optimization

global:

• Works on the entire Control Data Flow Graph (CDFG).

• Focuses on parallelism and reducing overall latency.

• Techniques:

‣ loop unrolling

‣ loop pipelining

‣ function inlining

‣ array access optimization

What are Directives in Vivado-HLS= List the available directies and provide a one-line 

descripton of each.

List is in Section 8.2.3.

How does loop-unrolling works in optimizing the design?

Allows loop iterations to be executed in parallel, reducing the overall cycles needed.

What is the difference between DATAFLOW and functional-level PIPELINE directives?

DATAFLOW does additional optimizations, not only pipelining.

What is the difference between LOOP_FLATTEN and UNROLL directives?

FLATTEN changes the loop hierachy (in code and RTL) but does not influence the number of executed 

iterations, unrolling minimizes the iterations.

What were the indicators that led to conclusion that the inital design was not pipelined 

in Step 3 of the tutorial?

1. Latency and initialization interval of the top block where equal.

2. For all loops it was reported that they were not pipelined.
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Why didn’t we apply PIPELINE-directive directly to the dict_1d in Step 4 of the tutorial?

Then the dct_coeff table would need to be duplicated for every pipeline stage.

What were the indications that led to the conlcusion that an imperfect loop nest was 

blocking the loop-pipelining in Step 5 of the tutorial?

There was still a loop hierachy despite loop flattening was specified.

What were the inidcator that led to the conlcusion that data-dependency was “bottleneck

ing” the design in Step 6?

1. There was a warning about exactly that.

2. DCT loop was taking many more cycles than all other loops.

Describe briefly how an HDL design from Vivado-HLS can be exported to Vivado’s IP-

Catalog?

Solution → Export RTL

8.2.2 Definitoins

8.2.2.1 Modul Hierachy

• Latency: the total time it takes for the function to finish one execution (start to finish)

• Interval: time you must wait before you can call the function again

‣ if not pipelined:

latency = interval
‣ if pipelined: interval = 1

• Look-Up Table (LUT): the fundamental programmable logic gate used for boolean operations and small 

distributed memory (LUTRAM)

• Flip-Flop (FF): a 1-bit storage register used to hold state and sychronize data between pipeline stages

• Digital Signal Prcessor (DSP): a hardened solicon block optimized for high-speed, efficient arithmetic 

without using genal logic

8.2.2.2 Performance Profile

The following metrices describe the behaviour of a specific loop (inside the function)

• Iteration Latency: the time it takes to complete one single iteration of the loop

• Initiation Interval: the time between two loop iterations

‣ (if sequential: = iteration latency, if pipelined = 1).

• Trip Count: number of times the loop is executed

8.2.2.3 Total Time

• Sequential: latency = trip count ∗ iteration latency
• Pipelined: latency = (trip count ∗ initiation iterval) + iteration latency
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8.2.3 Directives

⚠️ Not all of them
are important

Figure 8.2: Flowgraph how to work towards targets
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Figure 8.3: Flowgraph how to work towards targets (Extended)

8.2.3.1 ALLOCATION

Limits the number of RTL instances of specific functions and loop iterations.

• 👍️ Reduces area

• 👎️ Also reduces performance

8.2.3.2 ARRAY PARTITION

Partition an array into multiple smaller arrays, use many smaller memories instead of a single large one.

• 👍️ More read/write ports ⇒ better throughput

• 👎️ More instances ⇒ more area

• 💡 small arrays ⇒ use complete partition
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Figure 8.4: How different partition modes work

• Block

‣ use if you have strided array accesses

• Cyclic

‣ ⚠️ if you have successiv array accesses you should use that

– because then successive elements are in different lanes and are non-blocking

• Complete

8.2.3.3 DATAFLOW

The HLS tool seeks to minimize latency and improve concurrency as much as data-dependencies allow. This 

way, functions or loop iterations can operate in parallel (interleaving)

• ⚠️ can only be applied to the top-level function

• 👍️ Better throughput

• 👍️ Lower latency

• 👎️ More area usage

8.2.3.4 DEPENDENCE

Explicitly define dependencies between loop iterations since sometimes the automatic analysis is too conser

vative.

• 👍️ Potentially more optimal solution

• 👎️ Potentially wrong solution due to eliminated true dependencies

8.2.3.5 EXPRESSION_BALANCE

Rearrange assotiative and commuatative operations; on by default for integers; off by default for floats.

8.2.3.6 FUNCTION_INSTANTIATE

Use different RTL instances for different calls to the same function.

8.2.3.7 INLINE

inlines a function, so it’s not a separate RTL entity.

• 👍️ Better global optimization

• 👎️ RTL block cannot be reused for other calls to the function.

8.2.3.8 LATENCY

Specifies minimum and/or maximum latency.

8.2.3.9 LOOP_MERGE

Merge consequtive loops into one but only if they have the same bounds / same number of iterations and no 

data dependency between them.
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8.2.3.10 LOOP_FLATTEN

Turn nested loops into one single loop.

• 👍️ Saves a clock cycle per outer loop iteration

8.2.3.11 PIPELINE

Converts a code block into a pipelined instance with a given instantiation interval.

• 👍️ Better throughput

• 👎️ More hardware needed

8.2.3.12 STABLE

Specifies that the input argument does not change and does not need to be saved at the start of the function.

8.2.3.13 STREAM

Implements an array as a FIFO instead of RAM. More efficient in some cases.

8.2.3.14 UNROLL

Specification for loop unrolling (unroll factor).

8.3 Lab 3: Multi-Core Programming Basics

8.3.1 Open MP & Atomics

8.3.1.1 Directives & Functions

8.3.1.1.1 Useful omp Functions

int id = omp_get_thread_num();

int numthreads = omp_get_num_threads();

8.3.1.1.2 General

#pragma omp parallel

{

    ...

}

• general directive to advise the processor to run it on multiple threads

• will run on all threads if not specified

#pragma omp single

{

    ...

}

• the following section will only be done by one thread, and skipped by all others

• synchronization after this block

• only makes sense if this block is inside a omp parallel block.
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8.3.1.1.3 Loops

#pragma omp parallel for

for(...)

{

    ...

}

#pragma omp collapse(k)

for(...)

{

    ...

}

#pragma omp reduction(+: sum)

for(...)

{

    ...

}

• omp parallel for

‣ distributes loop iterations among threads inside a parallel region

• omp collapse(k)

‣ where 𝑘 is the number of nested loops which will be collapsed

• omp reduction(op: var)

‣ Performs a reduction operation (sum, max, min, etc.) across all threads transparently

‣ #pragma omp reduction(+: sum)

8.3.1.1.4 Atomic Operations

std::atomic<std::string*> ptr{nullptr};

std::atomic<bool> ready(false);

• to use variable as atomics they must be defined that way

8.3.1.1.4.1 Memory Orders

As the name suggests, memory orders are used to control the order of memory operations. They are used to 

prevent reordering of memory operations by the compiler or CPU.

Memory Order Description Typical Usage

relaxed instruction reordering by the compiler/cpu is allowed 

in both directions

release no reads or writes in the current thread can be 

reordered before this load.

producer publishes with release

acquire no reads or writes in the current thread can be 

reordered after this store

consumer reads it with acquire

Table 8.9: Memory Orders in C++

Despite the memory_order all operations in these variables are atomic, it affects only the order of memory 

operations.
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8.3.1.1.4.2 Storing

atomic_store_explicit(&ptr, msg, std::memory_order_relaxed);

atomic_store_explicit(&ready, true, std::memory_order_release);

// same as

ptr.store(msg, std::memory_order_relaxed);

ready.store(true, std::memory_order_release);

Code 8.27: Atomic Store

8.3.1.1.4.3 Loading

while (!atomic_load_explicit(&ready, std::memory_order_acquire)) {

    // busy-wait

}

p = atomic_load_explicit(&ptr, std::memory_order_acquire);

// same as

p = ptr.load(std::memory_order_acquire);

Code 8.28: Atomic Load

8.3.1.2 Threads

std::this_thread::yield();

• halts the current thread for a small time, to give the others chance to run

8.3.2 Tipps

8.3.2.1 Busy Waiting

if (ready.load(memory_order_acquire))

{

    ...

}

• busy waiting on a ready flag is usually done with the ordering memory_order_acquire

8.3.2.1.1 Not So Busy Waiting

// wait for producer

while (!atomic_load_explicit(&ready, std::memory_order_acquire))

    std::this_thread::yield();

• yield gice the other thread the chance to run

‣ signalizes that this thread has nothing to do for now

• it has to be executed on this_thread which is a namespace

‣ is similar to std::this_thread::sleep_for(100ms); which suspends the current thread for a fixed time

8.3.2.2 False Sharing

False Sharing is when independent variables lay in the memory next to each other and get cached all at once. 

Now if one of them gets modified, the whole line gets invalidated. This means that other threads have to 

read from memory again, if they want to use “their” vairable.
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A fix for this would be alignment with padding. This means that between every variable there are put 

variables which are needed by the same thread. If the threads does not need any other variables, typically it 

is filled with not-used variables. A example for that would be a struct which holds at the end an array which 

fills it up.

typedef struct {

    uint8_t ready;

    uint8_t padding[CACHE_LINE_SIZE-sizeof(uint8)];

} Thread_Var_t

In modern C++ standards there is another builtin function to align, for example entries of an array

#define CACHE_LINE_SIZE 64

alignas(CACHE_LINE_SIZE) double partial_sum[MAX_THREADS];

Now every entry of partial_sum can be modified without invalidating the other entries.
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8.3.3 Code examples

8.3.3.1 Producer & Consumer

#include <atomic>

#include <thread>

#include <iostream>

#include <string>

std::atomic<std::string*> ptr{nullptr};

std::atomic<bool> ready(false);

void producer() {

    std::string* msg = new std::string("Hello from Producer!");

    atomic_store_explicit(&ptr, msg, std::memory_order_relaxed);

    atomic_store_explicit(&ready, true, std::memory_order_release);

}

void consumer() {

    std::string* p = nullptr;

    while (!atomic_load_explicit(&ready, std::memory_order_acquire)) {

        // busy-wait

    }

    // p = ptr.load(std::memory_order_acquire);

    p = atomic_load_explicit(&ptr, std::memory_order_acquire);

    std::cout << "Consumer received message: " << *p << std::endl;

    delete p;

}

int main() {

    std::thread t1(producer);

    std::thread t2(consumer);

    t1.join();

    t2.join();

    return 0;

}

Each for every (independent) exchanged message, you have one variable holding the value and one ready 

signal, to signalize the reader, that the value is now valid. Both of them should be atomic. And their memory 

access according to Table 8.9.

• std::atomic<std::string*> ptr{nullptr};

• std::atomic<bool> ready(false);

• Producer wrtites with: memory_order_release

• Consumer reads with: memory_order_acquire

9 Outlines
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10 Glossarium

ABI – Application Binary Interface 9

ALU – Arithemtic Logic Unit 17, 50, 50, 56, 56, 57

ASIC – Application-specific integrated circuit 56

BB – Basic Block: Block which cannot be split up anymore 34

BTB – Branch Target Buffer 19, 19, 19, 20, 20

CDFG – Control Data Flow Graph 

CDG – Channel Dependence Graph 102, 102, 102, 103, 128, 128, 128

CC – Clock Cycles 18, 18, 19, 19

CFG – Control Flow Graph 12, 13

CPI – Cycles per Instructions 18

DAG – Directed Acyclic Grpah 59

DMA – Direct Memory Access 

DSP – Digital Signal Processor: sometimes meaning digital signal processing 56

DFG – Data Flow Graph 13, 13

FSM – Finite State Machine 3, 54, 56, 69, 69, 70, 71, 72, 73, 73, 74, 74, 74, 74, 74, 82, 82, 83, 83, 84, 84, 127, 127, 

127, 127, 127, 127

FU – Functional Unit 21, 21, 21, 24, 26, 35, 37, 45, 46, 69, 70, 70, 70, 70, 70, 71, 71, 71, 73, 126, 127

HA – Hardware Accelerator: moving parts of the software to the hardware, to be faster and more efficient 

HLS – High Level Synthesis 3, 3, 52, 52, 53, 54, 54, 55, 55, 55, 55, 55, 56, 57, 58, 59, 60, 126

II – Initiation Interval 

ISA – Instruction Set Architecture: specifies the set of instructions that a processor can execute 8, 27, 27, 47

IR – Intermediate Representation 14, 14, 14

LMUL: how many physical registers are bundled into one logical 107, 109, 109

NoC – Network-on-Chip 4, 4, 4, 4, 4, 4, 97, 97, 97, 97, 98, 98, 99, 99, 100, 100, 101, 102, 103

PC – Program Counter 17, 17, 18, 18, 19

RAW – Read after Write: somethimes also called True Dependency 17, 17, 25, 25, 25, 25, 26, 32, 33, 33, 33, 125, 

125, 125

RTL – Register Transfer Level 3, 69, 69, 70, 71, 72, 73, 73, 74

SEW: selected element width 107

SGU – Sequencing Graph Unit 59, 59, 59, 59, 59, 61, 73, 77, 77, 126, 126, 127

SIMT – Single Instruction, Multiple Threads 

SIMD – Single Instruction, Multiple Data 3, 45, 50, 50, 50, 50, 50, 107, 107, 107

SoC – System-on-Chip 44, 44, 44
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SSA – Static Single Assignment 12, 12, 13

TRP – Time-Resource-Plane 57, 57, 58, 58, 60, 60, 126, 126, 126, 126, 126

TLP – Thread-Level Parallelsim 37, 37

VL: actual Vector Length 107

VLEN: Vector Length 107

VLIW – Very Long Instruction Word 2, 33, 33, 34, 34, 35, 35

WAR – Write after Read 25, 25, 25, 25, 26, 27, 27, 33, 34, 125, 125, 125

WAW – Write after Write 25, 25, 25, 25, 26, 27, 27, 33, 34, 125, 125, 125

Dennard Scaling – Dennard Scaling: As transistors get smaller, their power density stays constant, so that 

the power use stays in proportion with area. 

DSA – Domain-Specific Architecture: A computer architecture specialized for a particular domain or appli

cation. 

GPU – Graphics Processing Unit: A specialized electronic circuit designed to rapidly manipulate and alter 

memory to accelerate the creation of images in a frame buffer intended for output to a display device. 

Moore's Law – Moore's Law: The number of transistors on a microchip doubles about every two years. 

NPU – Neural Processing Unit: A class of specialized hardware accelerator or microprocessor that is optimized 

for the execution of artificial intelligence (AI) algorithms. 

RISC – Reduced Instruction Set Computer 

RISC-V – RISC-V: An open standard instruction set architecture (ISA) based on reduced instruction set 

computer (RISC) principles. 2, 8, 9, 9, 9, 81, 92, 127, 128, 128

SMP – Symmetric Multi-Processor 79

TPU – Tensor Processing Unit: An AI accelerator application-specific integrated circuit (ASIC) developed by 

Google for neural network machine learning. 

vector-chaining: generate interim results (without LSU) so they can be used and forwarded to other units 

108, 109
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