1)

12 statements that are either **true** or **false**. No justification is required. Correct answers count +1 points, incorrect answers -1 points. Overall, you cannot receive negative points for this exercise.

 \Box An unbounded adversary can break perfect secrecy

 $\Box f(n):=1^{-rac{1}{n}}$ is negligible (I'm not 100% sure about the function, but I think it was this one)

□ DES uses longer keys than AES

□ The three modes of operation (ECB, CBC, CTR) are CPA-secure

- □ The CBC and CTR modes of operation are CCA-secure
- Deterministic MAC schemes cannot be secure (in the standard sense of *existential unforgeability under adaptive chosen-message attacks*)
- Using MACs of the sent message, one can prevent replay attacks
- A hash function takes a string of arbitrary length and outputs a string of fixed length
- $\Box \left(\mathbb{Z}, \cdot
 ight)$ is a group
- $\Box x
 ightarrow [x^e mod N]$ is a permutation over \mathbb{Z}_N^*
- \Box The discrete logarithm problem is hard for $(\mathbb{Z}_p,+)$ with p being prime
- □ For private-key encryption, NIST recommends longer keys than for public-key encryption to reach a similar level of security

2)

a)

They wrote down the definition of CCA-security (the game with the challenger and adversary)

What modifications to the definition are necessary if you want to prove CPA-security?

b)

Give a definition for the one-time pad (define the functions Gen, Enc and Dec)

C)

Is the one-time pad CCA-secure? Justify your answer.

d)

Name one advantage and one disadvantage of private-key encryption compared to public-key encryption.

3)

Let $H: \{0,1\}^* \to \{0,1\}^n$ be a hash function and $f_k: \{0,1\}^n imes \{0,1\}^n \to \{0,1\}^n$ be a PRF.

Let $\boldsymbol{\Pi}$ be a MAC scheme that is defined like this:

- $\operatorname{Gen}(1^n)$: Return random $k \leftarrow \{0,1\}^n$
- $\operatorname{Mac}_k(m)$: Return $t := f_k(H(m))$
- $\operatorname{Vrfy}_k(m,t)$: Return 1 if $f_k(H(m)) = t$, return 0 otherwise

Show that if H is **not** collision-resistant, then Π is not secure (in the standard sense of *existential unforgeability under adaptive chosen-message attacks*)

4)

a)

Compute $[2^{63} \mod 11]$

b)

You are given two RSA public keys, (N_1, e_1) and (N_2, e_2) , where N_1 and N_2 share one of their prime factors. Show how you can efficiently obtain the secret keys from the public keys.

5)

a)

El-Gamal encryption is defined like this:

 $\operatorname{Gen}(1^n)$:

- Sample a group $(\mathbb{G},q,g) \leftarrow \mathcal{G}(1^n)$ (Maybe the group was fixed as well, I'm not sure anymore)
- Sample a group element $x \leftarrow \mathbb{Z}_q$
- Return the secret key sk:=x and the public key $pk:=g^x$

 $\operatorname{Enc}_{pk}(m)$:

- Sample a group element $y \leftarrow \mathbb{Z}_q$
- Compute $c_1 := g^y$ and $c_2 := pk^y \cdot m$
- Return $c := (c_1, c_2)$

Define $Dec_{sk}(c)$ and prove the correctness of the scheme.

b)

Let Π be the El-Gamal encryption scheme as defined in **a**) and Π' (Gen' (1^n) , Enc'_k(m), Dec'_k(c)) be a CCA-secure private-key encryption scheme. Show that the following scheme is **not** CCA-secure:

 $\operatorname{Gen}^{\prime\prime}(1^n)$:

• Same as $\operatorname{Gen}(1^n)$ from a)

 $\mathtt{Enc}_{pk}''(m)$:

- Sample a random key $k \leftarrow \{0,1\}^n$
- Compute $c_1:= \mathtt{Enc}_{pk}(k)$ and $c_2:= \mathtt{Enc}_k'(m)$
- Return $c := (c_1, c_2)^T$

 $\mathtt{Dec}''_{sk}(c)$:

- $c := (c_1, c_2)$
- Compute $k := \mathtt{Dec}_{sk}(c_1)$
- Return $m:=Dec_k'(c_2)$