Sample questions for preparing to the oral exam
Contents
Datalog	2
Datalog with Deterministic Negation	11
ASP Paradigm	19
ASP Extensions	26
ASP Computation	31
Description Logics (DL)	32
Existential Rules	42
Hybrid Knowledge Bases	49
Answer Set Programming - External Evaluation	50
ASP Stream Reasoning	51

[bookmark: _Toc129114321]Datalog
· Which feature(s) are missing standard relational query languages?
In general, recursion is not available (can be proven - only first-order logics) following extensions: SQL3 (limited recursion), Datalog (logic-programming style language)
· Which approaches are available to define the semantics of Datalog, and how do they work? [image: Ein Bild, das Text, Screenshot, drinnen enthält.

Automatisch generierte Beschreibung]Apply rules stepwise to derive from initial information some further information
no algorithms involved pure definition; model of sentences
Take proof strategy + calculus to derive information

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is active domain semantics, and how can it be ensured?
This is a syntactic ensurance to prevent infinite query results, it’s called rule safety;
it’s a prevention of introducing new values.
· Datalog syntax: how do Datalog rules and programs look like?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]Note:
relation (SQL) == predicate (logic programming)

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Tisch enthält.

Automatisch generierte Beschreibung]

[image: Ein Bild, das Tisch enthält.

Automatisch generierte Beschreibung]
· How is the least model semantics of Datalog conceptually defined, and why is one choosing the least model?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]existence from fund-amental property (intersection property)

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is Program Grounding, and what is the role of Herbrand models for Datalog?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
In LP: Reduce rules to ground rules by replacing the variables with constant symbols.
Program Grounding = do this in all possible ways (union of all rules)
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
LP semantics: HB(P) … “everything is true”; MM(P) … unique minimal model
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is the difference between Datalog and logic programming, and how can the two be reconciled (put together)?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· How is fixpoint semantics for Datalog conceptually defined, and which important result of algebra is used for that?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung][image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]= fixpoint
iii) follows from ii)

· What is the benefit of the fixpoint semantics for Datalog?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What would happen under fixpoint semantics if not active domain semantics would be used?
The procedure would never terminate!
· How is the proof-theoretic semantics for Datalog conceptually defined?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

· How can proof trees in Datalog be constructed in principle?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]= fixpoint approach
= proof of inconsistency

· Explain how conceptually SLD resolution works. What kind of problems come with it, and how can they be resolved?
[image:]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung][image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]Problems:

Head recursion -> could miss answers, no termination
non-linear recursion -> all answers, no termination
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Name some Datalog systems.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

[bookmark: _Toc129114322]Datalog with Deterministic Negation
· What problem surfaces when adding negation to Datalog?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is rule safety, and why is this adopted?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]in positive atom
(NOT only in an atom under negation)!

· What problems do the fixpoint semantics and least model semantics of Datalog have when it is (naively) extended to negation?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]cyclic definition -> no fixpoint

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What solution approaches exist to remove these problems?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image:]
· Explain conceptually what stratified semantics of Datalog is.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]Note: this introduces procedurality (violates declarativity)!

· How is stratified semantics formally defined (just the idea, not the details)?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

[image: Ein Bild, das Text, Person, Screenshot enthält.

Automatisch generierte Beschreibung]

· What does the Stratification Theorem informally say, and is this important?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· How can we test whether a Datalog program is stratified, and how expensive is that (polynomial or intractable)?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
This algorithm correctly works in polynomial time!
· What is the idea of three-valued semantics for the evaluation of atoms and rules?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]!

· Which two ways for defining the well-founded semantics of Datalog programs did we discuss?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]First way:

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
!
Second way:

· How is the immediate consequence operator T_P conceptually extended in order to define well-founded semantics? What is the technical "recipe" that is used?
 [image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]= set of consistent interpretations

· What is an unfounded set, and why does a greatest unfounded set exist? Unfounded when:
- atom does not appear in any H(r)
- B(r) only consists of unfounded atom -> H(r) unfounded

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
Union of two unfounded sets is again an unfounded set!

· What is the idea to define well-founded semantics using unfounded sets?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Does every program have a well-founded model?
???
[bookmark: _Toc129114323]ASP Paradigm
· What is the idea for the stable model semantics, if one looks at the extended immediate consequence operator T_{P,J}?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]gefährdet/beeinträchtigt

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]-> take output J as part of the definition wrt. the negation
-> J coincides with input I (übereinstimmen)

· What does one mean with "nondeterminism" in stable semantics?
That a Datalog program may have multiple stable models (no uniqueness).

· How is certain semantics informally defined?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]“everything is true” (every positive and negative inference is true)

· Describe the ASP idea (ASP Paradigm).
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image:]
· Which form do disjunctive answer set programs have? Why is disjunction added? more natural reading; can shift negation into head of rules

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· How is the semantics of disjunctive answer set programs defined?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image:]
· Can disjunction in rule heads, like in in(X) v out(X) :- node(X)., be always easily eliminated, by rewriting the rules?
???
· Given an example of an ASP program that has no answer sets.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Which basic properties of answer sets of a disjunctive answer set program do you know?
· Inconsistency and Constraints:
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

· Incomparability and Minimalityx ⊨ y:
x models (semantically entails) y

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Non-Monotonicity
[image: Ein Bild, das Text, Tisch enthält.

Automatisch generierte Beschreibung]
· Supportedness
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

· Non-Cumulativity
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Stratified Semantics
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· How do well-founded semantics and answer set semantics relate to each other?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
However, the WFS is not the intersection of all answer sets of P. WFS coincides with answer set semantics if it is total (no atom is unknown).
· Suppose given program has a single answer set. Do then answer set semantics and well-founded semantics coincide? -> NOT always
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Describe the Guess and Check Methodology.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Would a (fixed) stratified ASP program allow for deciding 3-colorability of a graph (which is given as data)?
· Would a (fixed) ASP program under well-founded semantics allow for deciding 3-colorability of a graph (which is given as data)?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Name some application areas of ASP. What makes the use of ASP beneficial?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung][image: Ein Bild, das Tisch enthält.

Automatisch generierte Beschreibung]
[bookmark: _Toc129114324]ASP Extensions 		
· Which kinds/types of ASP extensions do you know?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is strong negation, and is it needed?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

· What are choice constructs in ASP, conceptually?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

· Describe the notion of a weak constraint, and how such constraints are informally used for defining program semantics.should be satisfied, but if not, have to pay a penalty

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]some constraints have more weight than others
“Erwuenschtes”

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]Highest Prio level, then smallest weight -> lexicographical order

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]weight = penalty

· What is the Guess Check and Optimize Methodology?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]e.g. path cost

· What are aggregates, and what is the challenge to provide them in ASP?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung][image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

· How does an aggregate atom look like?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· How can answer semantics be extended to programs with aggregates?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

[bookmark: _Toc129114325]ASP Computation
· Name some reasoning tasks for ASP programs.
· What complexity does satisfiability for ASP programs (i.e., deciding whether some answer set exist) have for normal logic programs?
· What complexity does satisfiability for ASP programs (i.e., deciding whether some answer set exist) have for disjunctive logic programs?
· Is under answer set semantics evaluating disjunctive logic programs more difficult than evaluating normal logic programs?
· Is the Grounding & Solve approach good or bad from the perspective of worst-case complexity of evaluation?
· Name some ASP solvers; what is downscaling?
· Name some approached to evaluate ASP programs.
· What is the predominant evaluation approach for ASP to date?
· What is the idea of intelligent grounding?
· What is the grounding bottleneck, and how could it be overcome?
· Why is model search in ASP more complicated than in SAT solving?
· What problem do function symbols bring in ASP, and how can one manage it?
· Describe the idea of finitely grounded programs.
· What is the predominant way of model computation for ASP programs to date?
· What is a portfolio-solver for ASP, and which do you know?
· What is the Clark Completion of a program, and when can it be used to capture the answer sets of a logic program?
· What is informally a loop formula?
· What is the key idea for modern ASP solvers?
· What is Multi-shot ASP solving, and what can it be useful for?
· What benefits does ASP have compared to SAT?
· What benefits/drawbacks does ASP have compared to CP.
· What is an IDE, and which do you know for ASP? What is a big issue for such IDEs still?

[bookmark: _Toc129114326]Description Logics (DL)
· What is an ontology from a data management perspective?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Name some application areas of Ontologies.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is SNOMED?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· How do Description Logics relate to First-order Logic?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]!

· What does the language of Description Logics usually comprise? atomic classes/ unary predicates, atomic relations/binary preds and constants

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Which concept / role constructors do DLs have beyond Boolean-style constructors?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· How is a DL knowledge base usually composed? -> ABox and TBox
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]open-world perspective

[image:]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Which forms of terminological axioms do you know?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· How can the semantics of DLs be defined?
[image:]
[image:]
· How are interpretations in DL informally defined?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

· Which concepts are in ALC defined by restriction, and which pitfall exists for the usage in practice? ALC = mother of DLs, a concrete DL

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
T = top concept, every concept belongs to this class
with role constructors: undecidability possible

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· How is satisfaction of an ALC knowledge base by an interpretation defined?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]ask if opposite of what to check is existing

· Name standard reasoning problems in DL, and how they relate to Satisfiability testing.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]Satisfiability is the master problem!
to entail = zur Folge haben
subsumption = Unterordnung

· Name some non-standard reasoning tasks in DLs; can they be reduced to Satisfiability testing easily? -> ??
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· [image: Ein Bild, das Tisch enthält.

Automatisch generierte Beschreibung]What is SROIQ, and why is it important?
· S: ALC + role transitivity
· R: role box (role axioms, self-concepts)
· O: nominals
· I: inverse roles
· Q: qualified cardinality restrictions
complexity of reasoning: 2NExpTime-complete (for both, concept/KB satisfiability; worst case)nondeterministic exponential time

· What are lightweight DLs?
DLs that allow for low-cost reasoning since reasoning must be efficient, e.g.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is the idea for the Description Logic EL?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Which normal form we can use for EL?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is the main idea for canonical model construction in EL?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]!

· How can Satisfiability testing be done for EL^\bot?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]!

· What is EL^{++}?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What design rationale is behind DL-Lite?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Where has DL-Lite successfully been applied?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· How do axioms in DL-Lite look like?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]Inverse role

· What is the idea for the canonical model construction of DL-Lite?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is data complexity, what is combined complexity?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is the data complexity of EL, what of DL-Lite?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]intractable = unloesbar/ unfuegsam

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is OWL? (World Wide Web Consortium)

[image: Ein Bild, das Tisch enthält.

Automatisch generierte Beschreibung]
· Name the OWL-2 profiles and the underlying DLs.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Summary of this unit:
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

[bookmark: _Toc129114327]Existential Rules
· When modeling Description Logics in (pure) Datalog, for which axioms issues arise, i.e., it is not easily possible?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· How is negation handled in Datalog/ASP vs Description Logics?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

· What are the main differences between DLs and Datalog with respect to the intended usage?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text, drinnen, Screenshot enthält.

Automatisch generierte Beschreibung]Summary:

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung][image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]= Unique Name Assumption

· How can Datalog be extended to cater for modeling of the axioms that cannot be modeled in (pure) Datalog? What is the problem with such an extension?
[image:][image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]Problem:
KR = Knowledge Representation and Reasoning (?)

[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is the main reasoning service in Datalog^+, and how does it work? (extensional data, Abox in DLs)

[image:]X .. should match values of data in database, phi .. formula
Evaluate query over union of them
(rules, Tbox in DLs)

Look at the example from the slides in detail!

· What is the idea of Datalog^{+/-}?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is the chase procedure and how does it work?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung] -> the chase might not terminate!
· What is a universal model, and how can it be exploited?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image:]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· What is the data resp. combined complexity of BCQs for pure Datalog, and how much does that go up in the worst case for the fragments of Datalog^+ that we considered?
[image: Ein Bild, das Tisch enthält.

Automatisch generierte Beschreibung]Pure Datalog: ExpTime-c.

· What is Linear Datalog, and what data complexity it has?
[image: Ein Bild, das Text, drinnen, Screenshot enthält.

Automatisch generierte Beschreibung]Log space/ polynomial space

· What is first-order rewritability resp. Datalog rewritability? Can you give examples?
[image:]Database engine for
= formula in FOL

· What is guarded Datalog? How does it relate do DLs?
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Tisch enthält.

Automatisch generierte Beschreibung]

· What is Sticky Datalog? Is it more expressive than DL-Lite?
[image:]
· Name some systems that implement reasoning for existential rules.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
· Summary of this unit:
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]

[bookmark: _Toc129114328]Hybrid Knowledge Bases
· What is a hybrid knowledge base?
· Which principled ways did we consider for giving a semantics to hybrid knowledge bases?
· What is the idea of
· tight semantic integration?
· full semantic integration?
· loose coupling?
· Give some example(s), and say what advantages/disadvantages the types of combination have.
· What is informally dl-safety, what weak dl-safety? Why is it useful?
· What is the idea for non-monotonic dl-programs?
· Which constituents does an dl-atom have?
· How does a dl-program differ from an ordinary ASP program?
· How are dl-atoms informally evaluated, and how are informally answer sets defined for dl-programs?
· What is an FLP-answer set?
· What properties do answer sets of dl-programs enjoy?
· For what applications is the use of dl-programs handy?
· What is "uniform evaluation" of dl-programs, and why is considered? What issues arise with it?
· Describe the idea (steps) for the transformation of dl-programs over OWL2 RL ontologies into ASP, as used by DReW.
· Would the DReW transformation be applicable to Description Logics like ALC or SROIC?

[bookmark: _Toc129114329]Answer Set Programming - External Evaluation
· What are "inside" and "outside" ASP extensions? Can you give examples?
· What is embedded ASP?
· What is ASP + X, and what examples do you know?
· Which issues are especially important for the definition of a external information access from an ASP program?
· What is the notion of an external atom in HEX, and what constituents does it have?
· How is the semantics of an external predicate &g informally defined? What pragmatic assumptions are made in that, and what is/could be the motivation for that?
· How do HEX programs look like, and how are answer sets for a HEX program defined?
· Name some properties of answer sets that are lifted from ordinary ASP programs to HEX programs.
· Under which assumption about the complexity of evaluating external atoms are HEX programs not harder to evaluate than ordinary ASP programs?
· What is computation outsourcing, what information outsourcing? Give some examples.
· Describe some examples of application areas of HEX programs. Can you imagine one not in the list discussed?
· Name some implementation(s) of HEX programs.
· How is the black-box nature of external atoms countered in HEX?
· Give examples of properties of external predicates that can be exploited.
· How can value invention in HEX programs be handled?
· Name some formalisms related to HEX programs.
· Describe the differences to clingo (version 5).

[bookmark: _Toc129114330] ASP Stream Reasoning
· What is Streaming Data?
· What is Stream reasoning, and how does it differ from Temporal Reasoning?
· How is Stream reasoning different from Stream Processing?
· What is conceptually a window function? Which types of window functions occur in practice?
· What are the elements of the LARS language?
· How is satisfaction of a formula in LARS informally defined?
· What are LARS programs, and how is informally an answer stream defined?
· What features of answer sets are inherited to answer streams?
· What is nondeterminism of answer streams, and how can that be exploited?
· What is the complexity of deciding whether a LARS program has an answer stream over a given data stream?
· How does propositional LARS with sliding time-based windows compare to
· first-order logic
· second-order logic
· regular languages?
· What is complexity-wise the difference between LARS and linear-time logic (LTL)?
· Name some implementations of LARS, and what features they have.
· What uses of LARS for Analysis of other Stream reasoning languages do you know?
· What is CQL, what is ETALIS?
· What is Complex Event Processing, and where is a principled difference between the semantics of LARS and the semantics of ETALIS?
· When can LARS answer streams capture ETALIS minimal models for integer timelines?
· What other ASP/Datalog like Streaming reasoning approaches do you know?

image3.png
Definition 1
A Datalog rule r is an expression of the form

where n > 1 and RiE) ¢ Ro(%2), -, Ru(a) M
B Ry,...,R, are relations names
m X|,...,X, are vectors of variables and constants U (from dom)
m Every variable in X; must occur in X,, . . ., X, (“safety”)

m the head of r is R(x;), denoted H(r).
m the body of ris { R,(%2), . . ., R,(X,) }, denoted B(r).

Remark: the rule atom “«<” is often also written as “: ="

Definition 2
A Datalog program is a finite set of Datalog rules.

image93.png
Using the available constructors, we build more complex concept and roles
m Concept constructors:

female M child plane U bird
(fruit U vegetable) M —rotten > 2 hasChild.female
frog M VhasColor.green JhasParent.{zeus}

= Role constructors:

hasParent™ (inverse, = parent of) hasParent o hasParent (composition,
= grand child)

arnd marnts AthAare

image94.png
In the ABox we write

m Concept membership assertions, like Hero(perseus)
often written as “perseus : Hero”

m Role membership assertions, like hasParent(perseus, zeus)
often written as “(perseus, zeus) : hasParent”

Hence, an ABox may look like
hasParent(heracles, zeus)
hasParent(heracles, alcmene)
hasParent(perseus, zeus)
Deity(zeus)

Hero(perseus)

m Intuitively, it lists facts that are known to be true
m Can be seen as a partial description of the world

image95.png
m The TBox is a set of terminological axioms that state how concept or roles
are related to each other

image96.png
m Intuitively, it describes constraints on every object

m It can imply the existence of more objects

image97.png
® Two main kinds of terminological axioms:
® general concept inclusions (GCls):
CCD
® definitions:
A=D
where A is a concept name

image98.png
®m The semantics is given in terms of interpretations, similar as in FOL

image99.png
m Alternative: define semantics by translation to FOL

image100.png
= An interpretation has:

a non-empty domain
an interpretation function

* gives meaning to the basic symbols in the vocabulary

* extended to complex concept and roles, following the rules for the
constructors

® used to determine satisfaction of axioms in the TBox and
assertions in the ABox

m An interpretation that satisfies the ABox and the TBox is a model of the
knowledge base (KB)

m Satisfaction, entailment etc are then defined as usual

image101.png
Our basic vocabulary contains:
m a countable set N¢ of concepts names,
m a countable set Ny of role names (or just roles), and
m a countable set N, of individual names (or just individuals)

Definition 2 (ALC Concepts)
ALC concepts are defined inductively:
m every concept name A € N¢ is a concept
m T and L are concepts
m If Cis a concept, then —C is a concept
m If C; and C; are concepts, then C; 1 C, and C; LI C, are concepts
m If R € Np is a role and C is a concept, then VR.C and 3R.C are concepts

Note: In ALC we only have concept constructors

image102.png
Definition 3 (ALC Knowledge Base)
An ALC Knowledge Base is a pair K = (T, .A) where:
m The TBox T is a finite set of GCls (C; C (), and

m The ABox A is a finite set of (concept and role) membership assertions
(C(a),R(a, b))

image4.png
Definition 3

Let P be a Datalog program.
m An extensional relation of P is a relation occurring only in rule bodies of P.
m An intensional relation of P is a relation occurring in the head of some rule

in P.

m The extensional schema of P, edb(P), consists of all extensional relations
of P.

m The intensional schema of P, idb(P), consists of all intensional relations of
P.

m the schema of P, sch(P), is the union of edb(P) and idb(P).

image103.png
Definition 4 (Interpretation)

An interpretation T = (AZ,-T) consists of
* anon-empty set A” called domain
® an interpretation function -~

The interpretation function -~ maps
® every concept name A to a subset of AT, AT C AT

e every role name R to a set of pairs from AT, RT C AT x AT
(i-e. a binary relation over AT).

® every individual a to an element of AT, a* € AT

image104.png
Definition 5 (Satisfaction)

Il For an interpretation Z, we say that

* 7 satisfies a GCI C;

G itcFC ¢t

® 7 satisfies a TBox T if it satisfies every GClin T
e T satisfies a concept membership assertion C(a) if a* € CT

® 7 satisfies a role membership assertion R(a, b) if (aZ,b?) € RZ
® 7 satisfies a ABox A if it satisfies every membership assertion in A

Definition 6 (Model)

An interpretation Z satisfies a knowledge base K = (T, A) (is a model of K), if it
satisfies T and A.

Notation: 7

= « for 7 satisfies «

image105.png
Standard Reasoning Problems

Given a knowledge base C, we might want to know

o Satisfiability/Consistency: whether K is satisfiable

o Entailment: whether K entails an axiom (e.g. Mortal C —Deity)

o Concept Satisfiability: whether a given concept C is (un)satisfiable

e Classification: the subsumption hierarchy A C A’ of all atomic concepts

e Instance Retrieval: all individuals a known to be instances of a concept C

All these standard problems reduce polynomially to Satisfiability!

image106.png
Novel Reasoning Problems

e Conjunctive Query Answering: queries akin to SQL
e Inconsistency-Tolerance: avoid that K = « for every « if K is inconsistent

e Explanation: find a (minimal) K’ C K st. K' E « (‘axiom pinpointing’)

image107.png
Role Axioms RBox

Subrole

H rCs
S Transitivity Trans(r)
SR Role Chain ror Cs

Role Disjointness

Disj (s r)

image108.png
m The EL, DL-Lite, and RL era (starting from ca. 2005)

* Scalable lightweight DLs are sufficient for many applications
® Existential restrictions are more important than universal ones

® For domain models close to databases, existential restriction may not
be needed (active domain semantics)

image109.png
Essentially, £L is a half of ALC:
m It supports existential restrictions 3R.C, but no universal ones
m It supports conjunction C 1 D, but no disjunction
m Of course, no negation (sometimes _L allowed, see later)

Definition 7 (££ Concepts and Axioms)

EL concepts are defined by the following grammar:
C:=A|T|CNC|3RC
where A € N¢ is a concept name and R € Ny is a role.

EL concept inclusions are as usual C C D

image110.png
Proposition 1 (TBox Normal Form)

Any EL TBox T can be rewritten (using auxiliary symbols) to axioms of form
ACB A MNACB AC3RB 3JRALCBH

where A, A;, B concept names or T

image111.png
In the basic ££
m Every concept C is satisfiable:

* Cinduces a description tree that can be seen as a representation of a
model

m ltis also easy to show that every concept C is satisfiable w.r.t. every TBox
and w.r.t. every KB.

Theorem 9
Satisfiability (w.r.t. a TBox / KB) is trivial in EL.

Hence, we concentrate on deciding subsumption

image112.png
Theorem 10

Subsumption (w.r.t. a normalized TBox T) in £L is decidable in polynomial time.

Main idea:

m Reduce subsumption of arbitrary concepts to the one of atomic concepts

T

=FCLCD

iff TU{A(;7

c,pC

Ap}

FAcEAp

m Subsumption test for atomic A¢, Ap: construct a canonical model Zy for T
® use one element d, for each concept name A
® putd,,. into AcTT and add (pairs of) objects to the concept (role)

interpretations AZT (R”") to satisfy the axioms
® always reuse d, to satisfy 3R.A
mThenT =AcC Apiff TU {AC(dAC)}

m The whole algorithm runs in polynomial time

= Ap(dy,) iff da. € Ap™

Note: worst-case optimal, as the problem is P-complete

image5.png
[] The_occurring in a Datalog program P, is denoted by

adom(P).

= Givena dataiiii instance I, adom(P, 1) denotes adom(P) U adom(I), i.e.,
the occurring in Pand I
m adom(P,1) is the active domain of P with respect to I.

Definition 4 (rule instantation)

Given a valuation v : var(r) U dom — dom for a rule r of form (1), the
instantiation of r with v, denoted v(r), is the rule

Ri(v(%1)) < R (v(%2)), ..., Ra(v(%)))

which results by replacing each variable x with v/(x).

image113.png
A relevant extension of ££ is ££-, which also allows L as a concept
m Satisfiability is not trivial anymore, but it can be decided in polynomial time

m We simply build the canonical model of C, and answer unsatisfiable iff
some element must satisfy L

In ££*, satisfiability and subsumption are interreducible:

m Cis satisfiable w.rt. (T, A) iff (T,A)ECCL

m (T, A)=CCD iff CnA_pisunsatisfiable w.r.t. (T’, A), where
e T'=TU{A»,MDC 1},and
® A-pis a fresh concept name

m For model construction, use Acra_, and put

® the axiom Acru_, T CMA_pin T, and
® dacra_y, into Acra_,”".

image114.png
m In addition to L, one can also add the following to £L:

* nominals {a}

® range restrictions T C VR.C (also written 3R~.T C C)
(domain restrictions 3R.T C C C are naturally supported in&L)

® complex role inclusions Ry o...oR, C R

= One can still adapt the canonical model construction to accommodate
these features, and reasoning is still feasible in polynomial time
m The resulting DL is called LT+
(modulo some additional features like concrete domains)
* as mentioned, underlies the OWL EL profile

image115.png
m All standard reasoning problems are solvable in polynomial time

m The data described by the ontology can be queried efficiently
® very low computational complexity
® achievable by exploiting existing database technologies
m Basic data and conceptual modeling formalisms, e.g. ER-diagrams and
UML class diagrams, are expressible in (variants of) DL-Lite

¢ allows for formal reasoning in the formalisms and studying its
complexity

image116.png
m lts application has been especially successful in data-oriented areas, e.g.
* ontology based data access
* information and data integration
® conceptual modeling (UML)

image117.png
In DL-Lite, we distinguish between two kinds of concepts
m Basic concepts B, with the following syntax:

B:=A|3R|3R"
where 3R is an alternative syntax for 3R.T
m (General) concepts C, which may be negated
C:=B|-B

Definition 14 (DL-Lite Axioms)
In DL-Lite, every GCI axiom has the form
BCC

where B is a basic concept and C a general concept.

Note: GCls are a bit asymmetric and allow general concepts only on the r.h.s.

image118.png
m Similarly to £L, every satisfiable DL-Lite concept/KB has a canonical

model that serves to solving all standard reasoning tasks

m The canonical model can be built using a variant of the construction for ££
® Inverse roles R~ need care: 3R.T and 3S.T can not simply share the

same “witness” object d-.

® However, only one witness object dg for each 3R = 3R.T in the r.h.s.

of axioms is sufficient
* Negated concepts ~C can be viewed as concepts C and for C
also D C C is considered

CD

m Moreover, one can solve all reasoning problems without canonical model

construction

image119.png
m In DL-Lite, unsatisfiability is only due to some implied axiom C C —D that is
violated in the ABox

® to check satisfiability, we only need to derive all axims C C —D that
follow from the TBox and check them

* feasible in polynomial time (resolve repeatedly clauses of size < 2)

image120.png
m Subsumption is reducible to KB unsatisfiability

(T,A) = CcCD iff (T',A)is unsatisfiable

where for fresh A and d,

* T'=TU{AC C,AC -D}, and
o A =AU{A(d)}

image121.png
m We considered so far combined complexity
* ‘standard’ measure of complexity
® takes into account the size of the full input, i.e., the full KB, plus
possibly one or two concepts, individuals, . ..
m Reasonable: consider more fine-grained notions of complexity (as in DBs)
m When the ABox changes and may contain big amounts of data, we focus
on data complexity

Definition 15 (Data complexity)

The data complexity is the complexity of reasoning w.r.t. to an input ABox,
where the terminological component (TBox, concepts) is assumed to be fixed.

m Expressive DLs are intractable in data complexity (most are
NP/coNP-complete depending on the reasoning task)

m EL is P-complete in data complexity

m DL-Lite has lower data complexity than ££ (crucial difference)

image6.png
Datalog program P on metro database scheme

M ={links:line,station,nextstation}

reach(X,X) <« links(L,X,Y)
reach(X,X) <« links(L,Y,X)
reach(X,Y) < links(L,X,Z),reach(Z,Y)
answer(X) « links(‘Odeon’, X)
Here,
edb(P) = {links} (=M),
idb(P) = {reach,answer},
sch(P) = {links, reach, answer}

image122.png
m Expressive DLs are intractable in data complexity (most are
NP/coNP-complete depending on the reasoning task)

m EL is P-complete in data complexity

m DL-Lite has lower data complexity than ££ (crucial difference)

image123.png
Theorem 16
The data complexity of reasoning in DL-Lite is not higher than that of evaluating
an SQL query over a database

m DL-Lite has very low complexity

e feasible in logarithmic space, and inside a (highly parallelizable)
complexity class called ACy

m Any reasoning problem over a DL-Lite KB can be reduced to evaluating an
SQL query over a database corresponding to the ABox

® particularly appealing if we indeed have a very large and dynamic
ABox

® the implementation of this idea has made DL-Lite a very popular
formalism

image124.png
m The Web Ontology Language (OWL) is the standard format by the W3C

OWL Variant | DL counterpart
OWL 1 - Lite SHIF

OWL 1-DL SHOZQ
OWL 2 SROZQ

image125.png
e OWL EL is based on ££1T
® OWL QL is based on DL-Lite
® OWL RL is based on a kind of intersection of DLs and Horn rules

* basically, no existential restriction 3R.T, 3R.A, positive disjunction
C U Contherh.s. of axioms / in rule heads

® thus, resorts to an active domain semantics

image126.png
m Description Logics (DLs) are a widely used family of languages to formalize
ontologies

m Many DLs amount to decidable fragments of First-Order Logic (FOL)

m Various reasoning problems are considered, with satisfiability as the main
(master) problem

m Both expressive and lightweight DLs have been designed

m The Web Ontology Language (OWL) standard builds on DLs, with an
XML-ish syntax

m Usage of DLs in data-oriented applications has led to new reasoning
problems

image127.png
Question

Can we model DL axioms in Datalog/ASP, at least for such derivations?

DL Axiom Rule-based representation
A(a) Ala).
AMBCC C(X) «+ A(X),B(X).
ACVRB B(X) + A(X),R(X,Y).
RCS S(X,Y) + R(X,Y).
S=R" (SinvR) S(X,Y) « R(Y,X).; R(X,Y) + S(Y,X).
trans(R) R(X,Y) + R(X,Z2),R(Z,Y).
AC3RB JY.R(X,Y) AB(Y) + AX).
ALC<IR Y =27+« AX),R(X,Y),R(X,Z).
ALC {a} X =a+ A(X).
ANBC L 1« A(X), B(X).

much is not possible in pure Datalog

image128.png
m not in Datalog and ASP is different from negation in DLs

e —: Classical negation! Open World Assumption (OWA)!
Monotonicity!

® not: Different purpose! Closed World Assumption (CWA)!
Non-monotonicity!

publication T paper paper(X) < publication(X)
—publication T unpublished unpublished(X) < not publication(X)
paper(paper). paper(papery)
in DL: b~ unpublished(paper) in LP/Datalog = unpublished(paper).

m Also strong negation in LP (“—", sometimes “—") is not completely the same
as classical negation in DLs; e.g.

Rt E e paper(X) < publication(X)
—paper{tom). —paper(tom)
in DL: |= —publication(tom) Does not automatically infer in LP:

—publication(tom).

image129.png
m LPs are strong in query answering, i.e., P = q(a), but subsumption

checking as in DLs, i.e., does P = p(X) « q(X), is infeasible (undecidable
even for positive function-free programs).

m DLs allow for complex statements in the “head” (rhs of C), while use of
variables in LP rule bodies is more flexible

m DLs are stronger in type inference, while LPs are stronger in type checking:

person T 3hasname.string < person(X), not hasName(X,Y)
person(john) person(john)

is consistent in DL and infers is inconsistent, since there is no
ShasName(john) known name for john

image130.png
m Rules are more flexible than DLs for expressing ternary relations

m Use of aggregate functions (e.g. min, counr) and built-ins (e.g., <, <) is
common in Datalog/ASP

=m Minimality in rules allows to express transitive closure

m Closed world reasoning needs a representative data set — which in
practical cases is often there

m Different usage: DL semantics would infer values (or use null values) if not
present, while LP semantics indicates inconsistency if not present

image7.png
m For the Datalog program P above, adom(P) = { Odeon }
m Database instance I:

links | line station nextstation
4 St.Germain Odeon
4 Odeon St.Michel
4 St. Michel Chatelet
1 Chatelet Louvres
1 Louvres Palais-Royal
1 Palais-Royal Tuileries
1 Tuileries Concorde

adom(I) = { 4, 1, St.Germain, Odeon, St.Michel, Chatelet, Louvres,
Palais-Royal, Tuileries, Concorde }.

® adom(P,X) = adom(I).

image131.png
UNA

For every distinct individual names a and b, it holds for every interpretation Z
that a” # bT.

image132.png
m OWA (DL) vs CWA (LP)

m Existential quantification

= UNA

= Negation as failure

m Classical negation (DL) vs. strong negation (LP)

m Symmetry between “head” and “body” (DL) vs.
more complex bodies (LP)

m Type inference (DL) vs. type checking (LP)

image133.png
But: already Datalog(3] is undecidable

image134.png
Extend pure Datalog by allowing in the head:
m Existential quantification (3)
m Equality atoms (=)
m Constant false (L)
m Conjunctions of atoms
* may be compiled away:
IY.R(X,Y) «— A(X).
JYRX,Y)AB(Y) «+ AX). ~ R(X,Y) < R'(X,Y).
B(Y) < R'(X,Y).

The resulting Datalog[3, =, L] language can be used for query answering over
databases

a highly expressive KR language

image135.png
m Several Horn-DLs (no disjunction) can be expressed via Datalog™ rules
m In particular, ££ and DL-Liter

m But, Datalog™ rules can express more, e.g.

supervisorOf (X, X) < boss(X)
3Z parentOf (Z, X), parentOf (Z,Y) < siblingOf (X,Y)

m Higher arity predicates allow for more flexibility

® Standard DLs have only unary and binary predicates - concepts and
roles

image136.png
database

Datalog* ProV i
z

.- Query = 3X p(X)

(D,Z) EQuery < DA XZEQuery

image137.png
= Extend pure Datalog by allowing in the head:
¢ Existential quantification (3J)
® Equality atoms (=)
® Constant false (L)
m The resulting Datalog[=, =, L| language can be used for query answering
over databases
* But: already Datalog[3] is undecidable
e Approach: Datalog[3, =, 1] is (syntactically) restricted = Datalog*
® acyclicity conditions (not desired for knowledge representation)
® guardedness conditions (bearable in knowledge representation)
® Core: Datalog[d] = existential Datalog (= existential rules)

image138.png
Input: a database D, a Datalog[J] program (set of rules) ¥
Output: a model chase(D, %)
Method: m check if some rule r: H(r) < B(r) in X fires, i.e., B(r)
matches with facts in D and derived facts (=: valuation)

m add the fact v(H(r)), where every existentially quantified
variable Y is replaced by a fresh constant (null value)

m repeat until no rule newly fires (i.e., for a new)

image139.png
Tarern)

person(P) — 3F father(F,P) father(F,P) — person(F)

chase(D,Z) = D U {father(z, john), person(z,), father(z,,z,), ...}
infinite instance

image140.png
m Recall example: unknown/new values might needed (#)

m Thus, the active domain semantics of Datalog does not apply to (safe)
Datalog[d] rules

m The new values are called also null values, and the process value invention
m ltis intimately related to skolemization in logic, where the null value can be
seen as a Skolem term

3F fatherOf (F, P) < person(P). # = f(john),
person(john). where f(P) is a skolem function

m By applying existential rules exhaustively (Chase Procedure), a canonical
model of the rules and facts can be constructed

m This model is universal, i.e., can be mapped to every model

m ltis thus sufficient for (negation-free) query answering

image8.png
m Associate with each Datalog rule r of form
Ri(X) + Ry(%), ..., Ru(Xy)
the logical sentence o (r):
Vi,V (Ra(3%2) A -+ - ARy(%,) — Ri(%1))
where xi, ..., x, are the variables in r.

m Associate with P the set of sentences Xp = {o(r) | r € P}.

Definition 5 (Model and Least Model Semantics)
Let P be a Datalog program and I an instance of edb(P). Then,
m A model of P is an instance of sch(P) which satisfies Xp.

m The semantics of P on input I, denoted P(I), is the least model (unique
minimal model wrt set inclusion C) of P, containing I.

image141.png
m The model chase(D,) is homomorphically embeddable to each model M
of DU X:
a mapping : dom — dom exists, such that for each tuple ¢, it holds that
R(C) € chase(D, %) implies R(h(c)) € M
(under UNA on the active domain adom(X, D) of ¥ and D, h(c) = ¢ for
each ¢ € adom(X, D))

image142.png
m For any atom Q = R(¢) over the active domain of D,
DUY = R(C) iff chase(D, %) = R(C)

m Similarly, for a conjunction Q = R, (¢}), ..., Rk(ck) of such R;(¢:)
DUY k= Qiff chase(D,) |= Ri(&) foralli=1,...,k

m For a Boolean conjunctive query Q = 3XR,(¢1, X)), . .., Ri(@, X)) (X; C X):
DUY = Qiff chase(D, X) k= Q iff 37 chase(D, X) = Ry(¢y,Z;) for all i

image143.png
data combined ba-combined | fp-combined
L, LF, AF in ACo PSPACE-c. NP-c. NP-c.
G P-c. 2EXPTIME-C. EXPTIME-c. NP-c.
WG EXPTIME-c. | 2EXPTIME-C. EXPTIME-c. EXPTIME-c.
F, GF P-c. ExPTIME-c. NP-c. NP-c.
S, SF in ACo ExPTIME-c. NP-c. NP-c.
A in ACy NEXPTIME-c. | NEXPTIME-c. NP-c.
WS, WA P-c. 2EXPTIME-c. | 2EXPTIME-c. NP-c.

= Complexity notions
® data: rules X fixed, query Q fixed

® combined: general (no restriction)

® ba-combined: predicate arities bounded by a constant
® fp-combined: rules X fixed

m Main tool: chase procedure, restricted by syntatic rule constraints

image144.png
m Linearity: there exists only one body-atom
3F hasFather (P, F), person(F) < person(P)

m LSPACE data complexity, PSPACE-complete combined complexity
® Intuitively, D U X = Q can be reduced to a graph reachabilty problem

m Query answering is first-order rewritable

image145.png
compilation

translation
Qo | Qsqu [~ “~.._ evaluation

first-order query SQL query

w:onra ©(0raw)

evaluated and optimized
in the usual way

image146.png
m Guardedness: a single body-atom contains all the body-variables
employee(S) < supervisorOf (S, E), employee(E).
38’ supervisorOf (S', S), senior(S') < supervisorOf (S, E), employee(E).
m P-complete data complexity, 2ExPTIME-complete combined complexity

m Query answering is Datalog rewritable (cannot be first-order rewritable)
= low complexity

image147.png
m Guarded Datalog[d] includes semantically ££

£ Axioms | Guarded Datalog[]
ACB B(X) « A(X).
AMBLCC C(X) + A(X), B(X).
AC3RB | 3YR(X,Y),B(Y) «+ AX).
JRBCA A(X) < R(X,Y),B(Y).

m Use a normal form for EL
m every set of ££ axioms can be normalized efficiently

= Note: strictly more expressive than ££

image148.png
m Linear and Guarded Datalog[3] do not allow for proper joins
R(X,Y),P(Y,Z) in rule bodies

m In general, such joins lead to undecidability
m Stickiness: join variables stick to the inferred atoms

+ 12
R(X)Y), P(Y,Z2) - 3W T(X,Y,W) R(X,Y), P(Y.Z) > IW T(X,Y,W)
T(X.;,Z) — 3WS(Y,w) T(X,;,Z) — 3W S(X,W)

can not lose join values!
m LSPACE data complexity, EXPTIME-complete combined complexity
m Query answering is first-order rewritable = low complexity
m Strictly more expressive than DL-Liter

image149.png
m Various systems implement reasoning techniques for existential rules, e.g.
* RD-Fox [Motik et al. 2014], Ontop [Calvanese et al. 2017],
® DLV [Leone et al. 2012), Clipper [E_ et al., 2013],
® ChaseFUN [Bonifati, et al. 2017], Graal [Baget et al. 2015]
® VLog [Urbani et al., 2018]

image150.png
m Datalog[d] adds existential quantification in the head

m Reasoning is undecidable in general, but a plethora of decidable classes is
known

m The chase procedure is a major tool for reasoning
® different variants/versions of the chase procedure exist (the oblivious
chase, used above, may add facts unnecessarily)

m The lightweight DLs DL-Literand £L can be mapped to Linear and
Guarded Datalog[d], respectively

image9.png
Theorem 6 (Least Model)
Let P be a Datalog program and I a database instance of edb(P). Then,
M M = (\ M(I) is the least model of P, where

® M(I) is the set of all models of P containing I, and
® 1"is the intersection operator (S ={a |VS€ S:a € S}

@ adom(P(I)) C adom(P,1), i.e., no new values appear
[@ ForeachR € edb(P), P(I)(R) = I(R).

image10.png
Consequences:
m P(I) is well-defined, for each I

m A query Q(¥) defined by a distinguished “output” relation g € idb(P) has
always finite result

m Effective methods exist to compute Q(I)

image11.png
Two reasons to choose the least model containing I:

The Closed World Assumption:
* If afact R() is not true in all models of a database I, then infer that R(C) is
false.

® This amounts to considering I as complete
® This is customary in database practice
e.g. database of books in a library, train table, ...
The relationship to Logic Programming:
® Datalog should desirably match Logic Programming (seamless integration)

® Logic Programming builds on the minimal model semantics

image12.png
Given a rule r, let Const(r) be the set of all constants in r.

Definition 7 (Herbrand Universe and Base)
For a (function-free) logic program P, define
m the Herbrand universe of P, by

HU(P) = U Const(r)
reP
m the Herbrand base of P, by

HB(P) = { R(x1,...,x,) | Ris arelation (predicate) in P,
X1,...,X%, € HU(P),ar(R) = n}

image13.png
m Arule ¥ is a ground instance of a rule r with respect to HU(P), if r' = v(r)
for a valuation v such that v(x) € HU(P) for each x € var(r).

m The grounding of a rule r with respect to HU(P), denoted Groundp(r), is
the set of all ground instances of r wrt HU(P).

Definition 8 (Program Grounding)

The grounding of a logic program P is

Ground(P) = U Groundp(r)
reP

image14.png
Definition 9 (Herbrand Model)

m A (Herbrand-) interpretation I of P is any subset / C HB(P)
m A (Herbrand-) model of P is any M C HB(P) such that
for every r € Ground(P) : (H(r) € M) V (B(r) Z M)
Equivalently:
for every r € Ground(P) : (B(r) C M) — (H(r) € M)

image15.png
Proposition 1
HB(P) is always a model of P.

The least model property carries over:

Theorem 10 (Least Model of P)

Each logic program P has the least, i.e., unique minimal (wrt C) model, denoted
MM (P).

The model MM(P) is the semantics of P.

Theorem 11 (Datalog «+ Logic Programming)
Let P be a Datalog program and I be an instance of edb(P). Then,
P(T) = MM(P(P,T))

image16.png
m As stated above, Datalog is akin to logic programming, in particular to
Prolog

m There are important differences, though:
® There are no functions symbols in Datalog. Consequently, no potentially
infinite data structures such as lists are supported
® Datalog has a purely declarative semantics. In a Datalog program,

® the order of clauses is irrelevant
® the order of atoms in a rule body is irrelevant
® Datalog programs adhere to the active domain semantics (like Safe Relational
Calculus, Relational Algebra)
® syntactic ensurance: rule safety

® Datalog distinguishes between databases relations (“extensional database”,
edb) and derived relations (“intensional database”, idb)

image17.png
m Datalog is a close relative of many other rule-based query languages.
m A logic program has no distinction between edb and idb.
m A Datalog program P and an instance I of edb(P) can be mapped to a logic
program P(P,I) given by
P(P,I) =PU{R(7) | R € edb(P),7 € I(R)}.
m As a logical theory, this amounts to
Sp1=3SpU{R()) | R € edb(P),f € I(R)}.
m The semantics of P = P(P,I) is defined in terms of Herbrand
interpretations of the language induced by P:
® The domain of discourse are the constants occurring in P.
® Each constant occurring in P is interpreted by itself.

image18.png
m Results and techniques for logic programming can be exploited for Datalog
m Eg.,

® proof procedures for logic programming (e.g., SLD resolution) can be used to
Datalog (with some caveats)

® Datalog can be reduced by “grounding” to propositional logic programs
(utilized e.g. by the systems DLV, Smodels, clasp)

image19.png
Approach:

m Define an immediate consequence operator Tp(K) on db instances.
m Startwith K =1

m Apply Tp: Kew := Tp(K) = KU new facts.

m lterate until nothing new can be produced.

m The result yields the semantics.

image20.png
Lemma 14

For every Datalog program P,
[@ the operator Tp is monotonic, i.e., K C K’ implies Tp(K) C Tp(K’);
[@ K € inst(sch(P)) is a model of p < Tp(K) C K;
@ /fTp(K) = K thenK is a model of Xp.

image21.png
The semantics of P on database instance I of edb(I) is a special fixpoint:

Theorem 15 (Least Fixpoint Characterization)

Let P be a Datalog program and 1 be a database instance. Then
@ Ty has a least (wrt C) fixpoint containing I, denoted Ifp(P,I).

Ip(P,1) = P(1) = MM(P(P,1)).

Advantage: Constructive definition of P(I) by fixpoint iteration

image22.png
m For a logic program P, the power set lattice (P(HB(P)), C) over the
Herbrand base HB(P) is a complete lattice.

m We can associate with P an immediate consequence operator 7 on
HB(P) such that T'p(I) = {H(r) | r € Ground(P),B(r) C I}

m Tp is monotonic (in fact, continuous)

m Thus, Tp has the least fixpoint Ifp(T»). It coincides with 72> and MM (P)

Theorem 18 (Fix Point Iteration)

Given a Datalog program P and a database instance I,

P(I) = lﬁ’(T’P(P,I)) = T’;o;zp,l)

Remark: application of fixpoint theory is primarily of interest for infinite sets

image23.png
Basic idea

The answer of a Datalog program P on I is given be the set of facts which can
be proved from P and 1.

Definition 19 (Proof Tree)

A proof tree of a fact A from I and P is a labeled finite tree T such that
m each vertex of 7 is labeled by a fact

= the root of T is labeled by A
m each leaf of T is labeled by a fact in I

m if a non-leaf of T is labeled with A, and its children are labeled with
Ay, ..., A,, then there exists a ground instance r of a rule in P such that
H(r) =A;and B(r) = {Az,..., A}

image24.png
= Bottom Up construction: From leaves to root
Intimately related to fixpoint approach
® Define S t-p B to prove fact B from facts S if B € S or by a rule in P
® Give S = I for granted
* lterate to apply rules given S and add heads of applicable (firing) rules
= Top Down construction: From root to leaves
In logic programming view, consider program P (P, I).
® This amounts to a set of logical sentences Hpp 1) of the form
Vxp - -VX,,,(R] ()?1) \% —\Rz()?z) \% —\R3()?3) V-V —|R"(f,,))

® Prove A = R(7) via resolution refutation, i.e., that Hp(p) U {-A} is
unsatisfiable.

image25.png
m Logic Programming uses SLD resolution
m SLD: Selection Rule Driven Linear Resolution for Definite Clauses

m For Datalog programs P on I, resp. P(P, 1), things are simpler than for
general logic programs (no function symbols, unification is easy)

m Also non-ground atoms can be handled (e.g., sgc(ann, X))

image26.png
Method to prove a goal A = p(7)

select arule resp. fact r : Ay <— A,, ..., A, (if possible) and rename all
variables in r to fresh variables

check whether A and A, = p'(7') unify, i.e., p = p’ and there is a substition ¢
of the variables in A and A, by variables and constants such that A0 = A’0

if no, continue at step 1

else, if n = 1 return 0, and if > 2 recursively prove each goal A>6, ..., A,6;

apply the union 6, U - - - U 6, of the returned substitions 6; to 6, and return
the result.

image27.png
Remarks:
m Any returned 6 is a ground substitution, i.e., maps all variables to constants

m In Step 5, the union is only defined if all §; map the variables identically

m To ensure this, we can process the subgoals in any order A;,, A;,, ..., A;,
and substitute shared variables in the ; incrementally (i = 1,.. ., n).

image28.png
= Notice: Selection rule for next rule / atom to be considered for resolution
might effect termination

m Pure Prolog strategy (leftmost atom / first rule) is problematic

image29.png
Remedies
= loop checking
B memoization (tabling)

image30.png
Datalog SyStemMS .cov.see uwiomaie oot necarassysons _sererens na sstoies

m LDLTT [Ami et al.,, 2003]:
® historic system
® nonmonotonic / nondeterministic constructs
m XSB [Rao et al., 1997]:
® well-founded semantics
® tabling (memoization) [Swift and Warren, 2012])
® top down
m dlv [Leone et al., 2006]:
® data and knowledge management applications
® answer sets / stable semantics, well-founded semantics
® bottom up
m logicblox [Green et al., 2012], [Aref et al., 2015]:
® commercial implementation,
® applications in retail planning (Walwart) and insurance
m RDFOX https://www.oxfordsemantic.tech/product
® RDEF triple store with Datalog reasoning
® algorithm for incremental evaluation

image31.png
m A semantics is not straightforward due to possibly cyclic definitions

Example

single(X) < man(X), -~ husband(X)
husband(X) <— man(X), — single(X)

image32.png
Definition
A datalog™ program P is a finite set of datalog™ rules r of the form
A< B,...,B,
where n > 0 and
m Ais an atom Ry(Xp)
Each B; is an atom R;(X;) or a negated atom —R;(X;)
Xo, - - - , X, are vectors of variables and constants (from dom)
Every variable in Xy, . . ., X, must occur in some atom B; = R;(X;) (“safety”)
the head of r is A, denoted H(r).
the body of ris {By,...,B, }, denoted B(r), and
BY(r) = {R(¥) | RX) € B(r)}, B~ (r) = {R(X) | =R (%) € B(r)},

P has extensional and intensional relations, edb(P) resp. idb(P), like in datalog
Remarks:

m “="is as in LP often denoted by “not” (e.g., in DLV)

m Equality (=) and inequality (#, as — =) are usually available as built-ins; usage must be “safe”

image33.png
Problems with Least Fixpoints

= Natural trial: Define the semantics of datalog™ via least fixpoint of Tp.
m However, this suffers from several problems:
Tp may not have a fixpoint:
Py = { known(a) < —known(a) }
Tp may not have a least (i.e., single minimal) fixpoint:
P, = single(X) + man(X), ~husband(X)
2 =\ husband(X) < man(X), —single(X)
{man(dilbert)} fixpoints K; = {single(dilbert), man(dilbert)},
K> = {husband(dilbert), man(dilbert)}

I

The least fixpoint of Tp including I may not be constructible by fixpoint
iteration, i.e., not as limit T% (I) of the sequence {T%(I)}i>o:

P3 = P, U {husband(X) < —husband(X), single(X) }
I = {man(dilbert)}) only fixpoint K = {husband(dilbert), man(dilbert)}

Note: the operator Tp is not monotonic!

image34.png
Problems with Minimal Models

There are similar problems for model-theoretic semantics

m We can associate with P naturally a first-order theory ¥p as in the
negation-free case (write rules as implications):

R(X) < (M)R1(%1), - -, (7)Ra(%)
>
VEVE) - VE((D)R (1) A== A (2R (%)) D R(F))
m Still, K € inst(sch(P)) is a model of Xp iff Tp(K) C K (and models are not
necessarily fixpoints)

m However, multiple minimal models of ¥p containing I might exist (Dilbert
example).

image35.png
Constrain the syntax of programs:

Consider fragments where negation ‘naturally” evaluates to a single minimal model.
Most well-known: semantics for stratified programs [Apt et al., 1988], perfect model
semantics [Przymusinski, 1988].

Give up 2-valued semantics:

Facts might be true, false or unknown; adapt the notion of immediate consequence.
Most well-known: Well-founded semantics [van Gelder et al., 1991]

Resolves all problems P1-P3

Give up single fixpoint / model semantics:

Consider alternative fixpoints (models), and define results by intersection, called
certain semantics.

Most well-known: Stable model semantics [Gelfond and Lifschitz, 1988]

Still suffers from P1.

Give up fixpoint / minimality condition:

Operational definition of the result.

Most well-known: Inflationary semantics [Abiteboul and Vianu, 1988]

image36.png
“Easy” case: Datalog— programs where negation is applied only to edb relations.

m Such programs are called semi-positive

image37.png
Intuition

For evaluating the body of a rule instance r containing —R(7), the value of the
“negated” relation R(7) should be known.

Evaluate first R
if R(7) is false, then —R(7) is true,
if R(7) is true, then —R(7) is false and the rule is not applicable.

Example

innocent(X) < suspect(X), ~guilty(X)
guilty(X) < confess(X)

For I = {suspect(joe)}, compute result {suspect(joe), innocent(joe)}.

Note: this introduces procedurality (violates declarativity)!

image38.png
Definition
Associate with each datalog™ program P a directed graph DEP(P)
called Dependency Graph, as follows:
m N = sch(P), i.e., the nodes are the relations.
m E={(RR)|3reP:H(r)=R(@) A (-)R'(7) € B(r)},i.e., arcs R — R’
from the relations in rule heads to the relations in the body.
m Mark each arc R — R’ with “*”, if R(¥) is in the head of a rule in P whose
body contains —R’(y).

= (N,E),

Remark: edb relations are often omitted in the dependency graph

image39.png
Definition
A stratification of a datalog program P is a partitioning
n=J~
i>1
of sch(P) into nonempty, pairwise disjoint sets P; such that
(a)ifR € P;,, R € P;, and R — R’ is in DEP(P), then i > j;
(b)if R € P;, R € P;, and R — R’ is in DEP(P) marked with “*” then i > j.

Py, ..., P, are called the strata of P w.r.t. ¥.

Definition
A datalog program P is called stratified, if it has some stratification X.

image40.png
A stratification X gives an evaluation order for the relations in P, given
I € inst(edb(P)):
m First evaluate the relations in P; (which is —-free).
= All relations R in heads of P, are defined. This yields J; € inst(sch(Py)).
m Evaluate P, considering relations in edb(P) and P; as edb(P;), where —R(7)
is true if R(7) is false in T U Jy;
= All relations R in heads of P, are defined. This yields J, € inst(sch(Ps)).

m Evaluate P; considering relations in edb(P) and Py, ...,P;_; as edb(P;),
where —R(7) is true if R(7) is false in TUJ; U -+ U Ji—1;

m The result of evaluating P on I w.r.t. 3, denoted Px(I), is given by
IUJiU---UJy;

image41.png
Stratification Theorem

m The stratification X above is not unique.

m Alternative stratification >':
Py = {man, married, husband}, P> = {single}
m Evaluation with respect to ¥’ yields same result!

The choice of a particular stratification is irrelevant:

Theorem (Stratification Theorem)

Let P be a stratifiable datalog™ program. Then, for any stratifications > and ¥’
and € inst(sch(P)), Px(I) = Py (I).

m Thus, syntactic stratification yields semantically a canonical way of
evaluation.
m The result Py, (I) is called the stratified model or perfect model of P for I.

Remark: Prolog features SLDNF — SLD resolution with (finite) negation as failure

image42.png
Determining Stratifications

Algorithm STRATIFY

Input: adatalog™ program P
Output: a stratification X for P, or “no” if none exists

construct the directed graph G := DEP(P) (=(N, E)) with markers “*";
for each pair R, R’ € N do
if R reaches R’ via some path containing a marked arc
then begin E := EU {R — R'}; mark R — R’ with “*” end;
i=1;
identify the set K of all nodes R in G s.t. no marked R — R’ is in E;
if K = () and G has nodes left, then output “no”
else begin output K as stratum P;;
remove all nodes in K and corresponding arcs from G
end;

A if G has nodes left then begin i := i + 1; goto step 4 end else stop.

Step 5 outputs “no” if there is a cycle with a marked arc = some marked
R — R’ was added

image43.png
Principle:

Use three truth values: some facts are true, some false, all others are unknown.

Intuition:
m Positive literals must be derived by applying rules whose body is true

m Conclude that a negated atom —A is true, if A can not be derived by
assuming that all facts which are not true are false.

Example

Program P: g(a) < —p(a), r(a) p(a) < u(a) s(a) < —t(a)
r(a) «+ —u(a) t(a) « —s(a)

1-{}

image44.png
Definition
For any datalog™ program P and input I € inst(edb(P)), a fact A € HB(P,1) is
under well-founded semantics

m true, ifA € lfp('fpjz),

m false if A ¢ Toy(Ifp(Trs), and

= unknown otherwise.
The positive outcome of program P for I under well-founded semantics, denoted
Puy(D) 18 Up(Trr).

Example

For P and I above,

Pyr(D) = {r(a), q(a)}

image45.png
An alternative definition of well-founded semantics by unfounded sets avoids the
use squares of operators

m Take again a three-valued view but explicitly in interpretations
m Three-valued Herbrand interpretations are consistent sets
S C HB(P,I) U-.HB(P,T)
of ground literals, where =.X = {-A | A € X}.
m Satisfaction of rules r w.r.t. Sis as before, i.e., B(r) CSV H(r) € S

Idea

m Some atoms, like @ and b in P = {a < b, b < a, ¢ + —a} can not be
derived to be true; they can be safely set to false

m Making a false may trigger further rules: derive here ¢
m Aim to set as many atoms to false as safely possible,
m Derive new positive atoms, and repeat setting safely false, etc.

image46.png
Definition
For any datalog™ program P and J, K € inst(sch(P)), let

Tp j(K) = {A | A is an immediate consequence for K and P under negation J}

image47.png
Definition
Define for P and J € inst(sch(P)) the operator f]:] on inst(sch(P)) by
Tra(K) = Ifp(Trx(J))
i.e., the least fixpoint under negation as by K which includes J.
Notice:
[] ’EB(K) is computable by fixpoint iteration of Tp k starting from J.

[] ’f;, is anti-monotonic, i.e., K C K’ implies that 'l/‘;_](K’) C ’f;,(K).

—2 —
m Therefore, the “square operator” Tp y (K) := Tp 5(Tp(K)) is monotonic
(in fact continuous).

—2 —2
m Thus, Tpy has a least fixpoint, Ifp(Tp.y), which can be obtained by
fixpoint iteration from) .

image48.png
Let PZ = {S C HB(P,I) U —.HB(P,I) | S is consistent }.

Define for program P operators on the lattice (PZ, C)

T,: PI — PI (in fact, P(HB(P,1))

S — {A|some ground instance

A<+ By,...,B,ofarulein Pis satisfied by S }

Up: PI — PI (in fact, P(HB(P,1))

S — U,
Wp: PL — PI

S — Tp(S)U-.Up(S).

Lemma

Ty, Up Wp are monotonic operators.

Hence: each of these operators has a least fixpoint

image49.png
Definition (Unfounded Set)

A set U C HB(P,I) is an unfounded set with respect to a program P and an
interpretation S, if for each A € U and for each ground instance A <— By, ..., By,
n >0, of arule in P at least one of the following holds:

~ B; € Sfor 1 <i < n, where ~ B; is the opposite of B; (B; is falsified in S)
B; € U for some positive B; with 1 < i < n. (B; is unfounded)

A literal B; fulfilling one of the two conditions is a witness of unusability for the
ground instance of a rule

Example

P={a<b,b<+a,c< —a}

m U = () is a trival unfounded set for P w.r.t. S = {a, b}
m U = {a,b} is an unfounded set for P w.rt. S = {a, b}

image50.png
Definition (Maximal Unfounded Set)

An unfounded set U for P w.r.t. S is maximal, if no unfounded set U’ for P w.r.t. S
exists such that U C U'.

Example (cont'd)
P={a<b,b<+a,c< —a}
m U = {a,b,c} is a maximal unfounded set for P w.r.t. § = {a, b}

Proposition

For each program P and interpretation S, a unique maximal (= greatest)
unfounded set U, denoted U(P,S), exists.

Note: for a program P, we can safely set each atom in U(P,S) for S = () to false,
as U(P,S) CU(P,S")ifSCS

image51.png
Theorem
For any datalog™ program P and inputI € inst(edb(P)), under well-founded
semantics a factA € HB(P,1) is
m true iffA € ifp(Wp(p)),
m false iff —A € lfp(Wp(py)), and
m unknown otherwise,
where P(P,1) = PU {R(7) | R € edb(P),7 € I(R)}.

m The unfounded set characterization was one of the original definitions [van
Gelder et al., 1991]

m Less “engineering” style than square-operators

m The greatest unfounded set U(P, S) is in the ground case computable in
polynomial time (cycle tests)

m Unfounded sets play a role in characterizing stable model semantics
m The notion is generalizable to some datalog extensions

image52.png
m Idea: try to construct a (minimal) fixpoint by iteration from input
m If the construction succeeds, the result is the semantics
m Problem: application of rules might be compromised

image53.png
Reason: Tp is not monotonic.

Solution
Keep negation throughout fixpoint-iteration fixed.
m Evaluate negation w.r.t. a fixed candidate fixpoint model J.
m Recall for datalog™ program and J € inst(sch(P)) the immediate
consequence operator:
Try(K) = {AcK|A=R(@),R € edb(P)}U

A | some ground instance r of a rule in P exists
st. H(r)=A,B"(r) CK, and B~ (r)NnJ =0

image54.png
Using Tp j, stable models are defined by requiring that J is reproduced by the
program:

Definition 4 (stable model)
Let P be a datalog™ program P and I € inst(edb(P)). Then, a stable model for P
and Lis any J € inst(sch(P)) such that

@ Jledb(P) =1, and

J = Ifp(Tp (1))

Notice:
m Monotonicity of Tp y ensures that at no point in the construction of
Ifp(Tp 5)(I) using fixpoint iteration from I, the application of a rule can be
compromised later.

image55.png
m Solution: Define stable semantics of P as the intersection of all stable
models

For a datalog™ program P and I € inst(edb(P)) denote by SM (P, I) the set of all
stable models for I and P.
Definition 6 (certain semantics)

The stable models semantics of a datalog™ program P for I € inst(edb(P)),
denoted Py, (I), is given by

oy | NSMEPD, i SMP.D) 0,
A= B(P,I), otherwise.

image56.png
General idea: stable models are solutions!
Reduce solving a problem instance I to computing stable models of a LP

Problem ine: Model(s
A — ASP Solver %,()
Instance 7/ Program P Solution(s)

Encode I as a (non-monotonic) logic program P, such that solutions of 1
are represented by models of P

Compute some model M of P, using an ASP solver
Extract a solution for I from M.

Variant: Compute multiple models (for multiple / all solutions)

image57.png
m Compared to SAT solving, ASP offers more features:

® transitive closure
® negation as failure

® predicates and variables

m Generic problem solving by separating the

® specification of solutions (“logic” PS)

® concrete instance of the problem (data D)

Problem

- =

Spec. PS
Data D

[

Encoding:
Program B¢

Encoding:
Program A,

ASP Solver|

Model(s)

—
Solution(s)

image58.png
Definition 8 (answer set program)

A (disjunctive) answer set program P is a set of rules of the form
aV---Va < by,...,by,notcy,...,note,

where all g;, bj, ¢, are first-order atoms over a first-order vocabulary.

m not is called default negation, weak negation, or negation as failure (NAF)
m Notation: body(r) = {by,...,bu,notci,...,notc,} and
head(r) = {ai,...,ax}
m In practice, function symbols are often restricted or disregarded =
“Datalog”

m Generalizes normal programs (single literal head, i.e. I = 1)

= Notation: HB, is the Herbrand base of P, i.e., the set of all ground
(variable-free) atoms p with predicates and ground terms induced by P.

m Technical condition (by many solvers): Each variable in a rule r must occur
in body(r) unnegated (safety).

image59.png
m Answer Sets are based on Herbrand interpretations
m They are also called stable models and reflect a closed world perspective

Definition 9 (Satisfaction)
Consider interpretation I C HBp: I satisfies
m a (resp. nota) ifa € I (a ¢ I) for a ground atom a;
m a ground (variable-free) rule r,
aV---Vag< by,...,by,not cy,...,not ¢,

if either (i) 7 does not satisfy some literal b; or notc; in Body(r), or (ii) I
satisfies some a; € Head(r);

m a ground program P, if I satisfies each r € P;
m arule r (resp. program P), if I satisfies each r’ € grnd(r) (resp. grnd(P)).

image60.png
m For not-free (“positive”) programs, minimal model semantics is intuitive:

Definition 10 (Minimal Model)

An interpretation I C HBp is a minimal model of P, if (i) I satisfies P and (ii) no
I' C I satisfies P.

= Key idea for programs with negation: eliminate not

® use [as an assumption on how negation finally evaluates
® incorporate assumption — simplify P to positive program

Definition 11 (Gelfond-Lifschitz (GL) reduct P!)

Given a program P and an interpretation , remove from grnd(P)
everyrulea,; V---Va, < by,...,b,,not cy,...,not ¢, where some c; is
in 7, and
all literals not ¢; from the remaining rules.

image61.png
Definition 12 (Answer Set)

I is an answer set (or stable model) of an answer set program P, if I is a minimal
model of P'.

AS(P) denotes the set of all answer sets of program P.

Note:
m [satisfies all rules of P
m Moreover, P “reproduces” I with the assumption on how negation finally
evaluates (stability)
m For disjunction-free P, “a minimal” = “the least”
= fixpoint construction via operator Tpu

image62.png
Example 17

P={p<+notp.}
NO answer set is possible (“derive p if it is not derivable”)
Is this bad?? Russell’s Barber Paradox:

shaves(X,Y) < barber(X),man(Y), not shaves(Y,Y).
man(bertrand). barber(bertrand).

image63.png
Programs with not might lack answer sets.
Example 17
P={p<+notp.}
NO answer set is possible (“derive p if it is not derivable”)
Is this bad?? Russell’s Barber Paradox:

shaves(X,Y) < barber(X),man(Y), not shaves(Y,Y).
man(bertrand). barber(bertrand).

= Adding P4 qi;--.,qm,n0t ry,...,not r,,not p.

to P, where p is fresh, “kills” all answer sets of P that:
(1) contain gy, . .., g, and (2) do not contain ry, ..., r,.

m Short: < qi,...,gm,notry,...,notr,. (constraint)

image64.png
m Answer sets are minimal models of P’.
m What about P itself?

Proposition 3 (Incomparability)

If 1 is an answer set of a program P, then I |= P and no answer setI’ C I of P
exists (i.e., withl' C1s.t.1I' #1).

Example

m P = {a < not b}, answer set] = {a}

®m P={a <+ noth; b+ nota;},answersets], = {a}, L = {b}
In fact, answer sets satisfy a stronger property in the spirit of CWA:
Proposition 4 (Minimality)

Every answer set I of a program P is a minimal model of P.

image65.png
Answer sets violate the monotonicity of classical logic
Proposition 5 (Non-monotonicity)

Given some programs P, P' and an atom a, that I = a for every answer set of P
does not imply that I |= a for every answer set of P U P'.

Example: Plain Restaurant

m restaurant program P:
restaurant(osteria).

indoor(osteria) <— restaurant(osteria), notoutdoor(osteria).

answer set I = {restaurant(osteria), indoor(osteria)} k= indoor(osteria)

u P U {outdoor(osteria) } has the answer set
I = {restaurant(osteria), outdoor(osteria) } W indoor(osteria)

Can be exploited to declare default behaviour!

image66.png
Presence of atoms in answer sets must be supported by rules

Example

mrule r: a < b,notc, model I = {a,b}
m a is supported by the “firing” rule r

Proposition 6 (Supportedness)

Any answer set I of a program P is a supported model, i.e., for each a € I some

rule r € grmd(P) exists s.t. I

k= body(r) and I N head(r) ={a}.

image67.png
m In classical logic, if T |= ¢, then T U {¢} have the same models
m Thus we can prove “lemmas” and add them to 7'

m This property does not hold for answer set programs

Proposition 7 (Failure of Cumulativity)

From a € 1, for each answer set I of P, it does not follow that P and PU {a « }
have the same answer sets (even if P has answer sets).

Example 18
P:{b(—notc; a< b; }
c ¢ not b; a<nota
m P has the single answer set I; = {a,b}
m P U {a} has another answer set I, = {a,c}

For answer set programs, a different notion of inference is needed for lemmas!

image68.png
Proposition 8 (Generalization of Stratified Semantics)

If a normal program P is stratified, then P has a unique answer setI*(P) , which
coincides with the perfect model (SQL3).

I*(P) is characterized by an iterative fixpoint construction

image69.png
m The well-founded semantics (WFS) “approximates” the answer set
semantics
m For every normal program P over I (viewing — as not),
e if an atom A is true in the WFS of P w.rt. I (A € P,s(I)), then A is true
in every answer set of P(P,I) (A € Pyu(I));
e if an atom A is false in the WFS of P w.r.t. I (A ¢ ’f;l(ow(I))), then
not A is true in every answer set of P(P,[);

image70.png
m However, If P has a single answer set, then WFS need not coincide with it

Example 22

single(X) <— man(X), not husband(X)
P =< husband(X) < man(X), not single(X)
husband(X) <— man(X), not husband(X)
m For edb I = {man(dilbert)}, the single answer set is {man(dilbert),
husband(dilbert)}, while P,,s(I) = {man(dilbert)}

m Recall: WFS can be characterized as the least fixpoint of Wp

image71.png
Important element of ASP: Guess and Check methodology (also called
Generate-and-Test [Lifschitz, 2002])

Guess: use unstratified negation or disjunctive heads to create candidate
solutions to a problem (program part G), and

Check: use further rules and/or constraints to test candidate solution if it is
a proper solution for our problem (program part C).
This part may also involve auxiliary predicates (if needed)

From another perspective:
m G: defines the search space
m C: prunes illegal branches.

image72.png
Example: 3-Coloring

Problem specification PS: 3-coloring condition

Problem specification Ppg
8(X) V r(X) V b(X) + node(X) } Guess

< b(X),b(Y), edge(X, Y)
<« r(X),r(Y),edge(X,Y) } Check
— 8(X), 8(Y), edge(X, Y)

Data Pp: Graph G = (V,E)
Pp = {node(v) | v € V} U {edge(v,w) | (v,w) € E}.

Correspondence 3-colorings = models:
v € Vis colored with ¢ € {r, g, b} iff ¢(v) is in the model of Pps U Pp.

image1.png
Different approaches for defining the semantics exist:

Model-theoretic approach:
View rules as logical sentences, which state the query result

Operational (fixpoint) approach:
Obtain query result by applying an inference procedure, until
a fixpoint is reached.

Proof-theoretic approach:
Obtain proofs of facts in the query result, following a proof
calculus (based on resolution)

image73.png
m ASP: rich representation language, efficient solvers
® well-positioned for declarative search in industry
® explain inconsistencies of specs, diagnosis, etc
® executability eases tuning with stakeholders (Gioia Tauro)

image74.png
Application Areas

configuration

information integration
inconsistency management
planning, reasoning about actions
routing, scheduling
diagnosis, repair

security, verification
Semantic Web

games, puzzles

algorithm design
argumentation
classification

image75.png
m constructs: some syntactic sugar, others strictly add expressiveness

strong negation (“classical negation”) —p or —p
weak constraints, weight constraints, minimize,
choice, aggregates

conditional literals

preferences, ordered disjunction e.g., PLP
functions, lists, sets

templates (for macros)

external functions

uncertainty (probabilities, fuzziness) ...

m standard syntax ASP-Core-2 [Calimeri et al., 2012]

e.g. disjunction V is written as |
choice construct m < {ei;ez;...; e} < nto select nto m elements

m combinations/interfaces with/to other formalisms

m front-ends e.g., for diagnosis, planning, inheritance reasoning

image76.png
m Strong negation “—” (also written as “~") is provided as possibility to
express that something is provably false.

m This is different from negation as failure.

w_m

Example 1

“At a railroad crossing, cross the rails if no train approaches.”
walk < at(L), crossing(L), not train_approaches(L).

walk < at(L), crossing(L), ~train_approaches(L).
m “—” is syntactic sugar, easily compiled away: for each predicate p,

® replace —p by a fresh predicate p-..
® add the constraint «+ p(X), p-(X).

image77.png
General Choice Expression
= A ground choice expression has the form

where k1 <y {el;e:z;...,em} <2 kp
® ¢;=aj:l,...1; with a; an atom and the /;,'s atoms or negated atoms
° <, <inf=,<,<,>,>}
® ki, k, are natural numbers (<; k;, <, k, may be omitted)
m in the non-ground case, variable bindings from the body to the head of a
rule must exist (safety):
® each variable in a¢; must occur in some positive body atom, or in some
positive atom /;;;
e variables in a negative literal ; must occur in a; or some positive lj, or
some positive body atom

image78.png
m Unstratified or disjunctive rules might be used to select an atom
green(X) V red(X) V blue(X) < node(X)

m The choice construct allows to select a certain number of atoms:

® exactly one element

1 = {green(X); red(X); blue(X)} < node(X)
® atleast one element

1 < {green(X); red(X); blue(X)} < node(X)
® any number of elements

{green(X); red(X); blue(X)} < node(X)
® between 2 and 3 elements
2 < {green(X); red(X); blue(X)} < 3 < node(X)

image79.png
m Allow to formalize optimization problems In an easy and natural way.
m Integrity constraints vs. weak constraints:

* integrity constraints “kill” unwanted models;

® weak constraints express desiderata to satisfy if possible.

Weak Constraints: Syntax (DLV)
i~ bi,...,bx, notbxyi1,..., notby . [Weight : Level]
where

m all b; are atoms (resp. “classical” literals)
m Weight, Level are numbers (or vars in some b;, i < k, instantiate to such)

m ASP-Core-2 has slightly varied syntax

m Informally: for (P, WC), where P is a program and WC is a set of weak
constraints, each answer set / of P with least violation of WC is an optimal
(best) answer set

image80.png
Optimal Model Semantics of (P, WC)
Given: program P, set WC = {wcy, ..., wc,} of weak constraints of form
wei t i~ b, bk, notbl, ..., notb, . [Weight : Level]

m as usual, consider the grounding grnd(wc) of we

m Interpretation 7 violates a ground we; (I = we;), if {b},...,bi} C I and
In{b;c+l7"' bi}:m
m The cost of I atlevel Lis c(I,€) = Y1 3 g) ev,,0) W Where

Vi(I,£) = {(0,w) | weif = :~ B. [w,{] € grnd(wc;), I = wcif}

m [is safe, if each c(1, £) is well-defined (all w’s are numbers)

m asafe I € AS(P) dominates a safe I' € AS(P), if ¢(I,£) < c(I', £) for some ¢
and ¢(I,0') = c(I',¢') forall ¢/ > ¢

m asafe I € AS(P) is best (optimal), if no I’ € AS(P) dominates /

image81.png
Weak Constraints with Weights

m A single weak constraint in some layer n is more important than all weak
constraints in lower layers (n — 1, n — 2, ...) together!

m Weak constraints are weighted to make finer distinctions among elements
of the same priority: :~B1.[3.5:1] :~B2.[4.6:1]

m The weights of violated weak constraints are summed up for each layer.

image82.png
m Extends the natural “Guess and Check” methodology
m Use weak constraints to filter out best (optimal) solutions
m Divide P into three main parts:

Guess: use unstratified negation or disjunctive heads to create candidate
solutions to a problem (program part G), and

Check: use further rules and/or constraints to test candidate solution if it is a
proper solution for our problem (program part C).

Optimize: use weak constraints O and to define an objective function
f:AS(GUC) > Q
The answer sets minimizing f are selected.
m As usual, the guessing / checking part might be divided into a data and
generic part

image2.png
Methods to evaluate Datalog program P on database instance I, derived from
the different equivalent definitions of the semantics:

m Model-theoretic definition:
® Enumerate all subsets J C B(P,I) and check modelhood
® pick smallest such J
m Fixpoint definition:
Augment I using operator Tp until a fixpoint is reached.

m Proof-theoretic definition:
Use SLD resolution (bottom-up or top-down)

image83.png
m Allow arithmetic operations over a set of elements, as e.g. in SQL:
select count (x) from empl;
m ASP providem#Cz)unt7 Fsum, #min, #max
#count{Emp, Dept, Job : empl(Emp, Dept, Job) }
m these aggregate functions occur in aggregate atoms in rule bodies
small_dept(D) < #count{E,D : empl(E,D,J)} < 10, dept(D)

m aggregates as first-class citizen: need no auxiliary computations
® linear ordering, successor relation, smallest and largest element, and
® recursion needed to count the employees

m challenge: semantics of aggregates (problem: recursion)

® still under debate, see Alviano et al. [2021,2018]
m consider here non-recursive aggregates, DLV (general: ASP-Core2)

image84.png
Aggregate Function Expression

7{s}

where
m S is a symbolic set, and
m fis a function among {#count, #sum, #times, #min, #max}

image85.png
Symbolic Set Expression
{Vars : Conj}
where
m Vars is a set of variables, and
m Conj is a conjunction of standard literals, i.e.

image86.png
Aggregate Atom Syntax
Lg < f{S} <2 Rg
where
m Lg and Ug are terms, called left guard and right guard, respectively,
mand <, <z in{=,<,<,>,>};
m one of the guards can be omitted (assuming “0 <” and “< +o00”

Example 18 (#sum{s, X : emp1(X,s)} < 3800)
Informal Meaning: True if sum of salaries < 3800, false otherwise.

m If the argument of an aggregate function does not belong to its domain,
then false and warning.

image87.png
Generalized Gelfond-Lifschitz Reduct
Given a set M of literals and a ground program P, the reduct (or
Gelfond-Lifschitz reduct) PM is now as follows:

= remove rules from P

® with nota in the body, such that a is true wrt. M, or
® with a in the body, such that a is an aggregate atom that is false wrt. M; and

m remove all nota and aggregate atoms from the remaining rules.

= limitations (dlv release 21-12-2012):
® #min, #max just on integer constants like #sum and #times

® no recursion through aggregates (aggregate stratification)
m recursion through aggregates: use instead GL-reduct P the
Definition 19 (FLP-reduct)

Given a (ground) program P and an interpretation M, the FLP-reduct is
fP" ={reP|r= H< Be€P, M}B}.

image88.png
m Data Management perspective
An ontology is a conceptualization of a domain, which
* separates the conceptual level from the actual data
® provides a common view of possibly heterogeneous data sources
® can be shared by different task-specific applications

m Description Logics (DLs) are prominent languages for writing ontologies

image89.png
m Semantic Web (OWL)
m Enterprise Application Integration (EAI)
m Data Modelling (UML)

= Knowledge Representation for life sciences: SNOMED Clinical Terms,
Gene ontology, UniProtKB/Swiss-Prot protein sequence database, GALEN
medical concepts for e-healthcare

= Ontology-Based Data Access (OBDA)

image90.png
SNOMED CT (Systematized Nomenclature of Medicine -
Clinical Terms)

m > 300,000 organized terms: diseases, findings, pharmaceuticals, etc.

m Property of the International Health Terminology Standards Development
Organization (http://www.ihtsdo.org/)

m Basis for electronic health records that can be shared by clinicians,
researchers and patients worldwide

= In use in many countries: the US, Canada, the UK, Sweden, also in Austria!

image91.png
m Most DLs are fragments of classical first order logic (FOL)
¢ in fact, of function-free FOL with two variables (plus perhaps counting
quantifiers), with a restricted ((guarded) quantification)
® very closely related to modal logic and extensions
m In contrast to (full) FOL, Description Logics:
 are decidable
® their syntax is tailored for describing structured knowledge
* no explicit variables
® representation at the predicate level
® may 'abbreviate’ common KR constructs cumbersome to write in FOL

Note: A few DLs allow constructs not expressible in FOL (e.g., transitive closure)

image92.png
A vocabulary consisting of concept names, role names, and individuals

A set of concept constructors and role constructors, to build more complex
concepts and roles from the basic names

Rules for writing Knowledge Bases (KBs)
(more precisely, for writing so-called TBoxes and ABoxes)

Note: KB is a DL-specific name for theories (sets of formulas), and it is
often interchanged with ontology
(although sometimes ontology is used to refer to the TBox only)

