
AMRC Exam Questions Answered

Florian D.

September 2023

1 Regression / Linear Methods

Question 1: Explain Ridge and Lasso Regression. What are the differences? How do
they differ from OLS? Show all formulas, explain the λ parameter and also explain
why Lasso sets coefficients exactly to zero and Ridge does not.

The ordinary least squares regression (OLS) is BLUE (best linear unbiased estimator) if we
assume that the error terms ε are normally distributed with a mean of zero and equal variance σ2.
It has the following form:

y = β0 +

p∑
j=1

βjxij

The residual sum of squares is the minimization criterion:

RSS(β) =

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2

However it is not always the best idea to keep the model unbiased. We could reduce the sampling
variance by increasing the bias. Ridge and Lasso penalize the parameter size.

β̂Ridge = argmax
β

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

β2
j

We can see in the formula above that the size of the parameters βj is penalized by taking their
square. This leads to a smoother model and prevents overfitting. How much the model is penalized
for large betas depends on the regularization parameter λ.

β̂Lasso = argmax
β

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

|βj |

For Lasso we use the L1 norm instead of the L2 norm. This means that the acceptable region is
(visually speaking) diamond-shaped, rather than a circle. Thus we end up at zero values much easier.

Question 2: Explain PCR and PLS.

PCR stands for Principal Component Regression. The idea is to reduce the dimensionality of
the inputs by transforming the data into a new set of uncorrelated variables, which are ranked
according to their variance size. These are the principal components. Here it is important to center
and scale the data first. PCR is not scale-invariant.

Z = XV

1

Z are the principal components, which are the result of multiplying the inputs X by an eigenvector
matrix V. The shape of X is (n x p), the shape of V is (p x p), which results in Z having the shape
(n x p). It is important to mention that PCR does not take the latent variables yi into account.

y = Xβ + ε

= XV V ⊤β + ε

= Zθ + ε̃

If we only use q < p principal coponents:

y = Z1:qθ1:q + ε̃

The estimator θ can be back-transformed to be interpreted in terms of the original variables:

˜̂
β = V1:q θ̂1:q

It is important to mention that
˜̂
β is no longer the original estimator unless the first q principal

components explain all information of X.

PLS on the other hand stands for partial least squares. Here we also construct a set of linear
combinations of the input for regression but we also use y in addition to X for this.

yi = t⊤i γ + ε̃i

The formula above shows the form on a PLS regression model. Here instead of using the inputs
X, we have a score matrix T, which has the shape (n x q), where q is less or equal to p. We don’t
know the content of T but we obtain each column of it sequentially by using the PLS criterion:

wk = argmax
w

Cov(y,Xw)

We obtain the columns of the matrix W by applying this criterion. Then the score matrix T is
obtained by:

T = XW

It is important to mention that we have the following constraints:

||wk|| = 1 to make sure these are just directions

Cov(Xwk
, Xwj

) = 0

to make sure that all directions are orthogonal. Our goal is to find the direction in which we
can project X so that the covariance with the output y is maximized.

Question 3: Explain for multiple regression models the OLS solution, how to arrive
at it and what to do in the case of near singularity of X⊤X

For the least squares regression model, we have the following solution for the estimator β̂:

β̂ = (X⊤X)−1X⊤y

For the prediction ŷ we can write:

ŷ = Xβ̂

= X(X⊤X)−1X⊤y

2

So X(X⊤X)−1X⊤ is called the hat matrix because it puts a hat on the y.

A problem that we have is that X⊤X can become nearly singular when the input variables are
highly correlated. This would mean the matrix would almost be not of full rank. And almost not
invertible. Practically speaking, this makes the model extremely sensitive to changes in the input.
The solution would be to use a regularized method like Ridge or Lasso.

2 Classification Methods

Question 4: Explain LDA, QDA and RDA. What is the idea of LDA? What is the
Bayesian Theorem, what are its assumptions? Specify the φ formula. Also provide
the formula for LDA and QDA. What are the components of LDA and how do you
estimate them? Why can you estimate them?

LDA stands for Linear Discriminant Analysis. The goal here is to find a linear combination
of the input which best separates the two classes. The following formula gives us the conditional
probability that given an observation x, the random variable G is k:

P (G = k|x) = hk(x)πk∑K
l=1 hl(x)πl

In this formula above, hk(x) is the density function of x in class G = k. The probability of any
observation belonging to class k is πk.

Oftentimes it is assumed that hk(x) is the density of a multivariate normal distribution:

φk(x) =
1√

(2π)p|Σk|
e−

(x−µk)⊤Σ
−1
k

(x−µk)

2

LDA arises when we assume that all classess have a common covariance Σk.
Then the linear discriminant function is:

δk(x) = x⊤Σ−1µk − 1

2
µ⊤
k Σ

−1µk + logπk

The decision rule is then:

G(x) = argmax
k

δk(x)

In QDA, which is quadratic discriminant analysis, we do not assume equal covariance matrices.
Then the discriminant function becomes:

δk(x) = −1

2
log|Σk| −

1

2
(x− µk)

⊤Σ−1
k (x− µk) + logπk

Finallyu there is the special case of the regularized discriminant analysis (RDA). Here we have
a parameter α, which provides are compromise between LDA and QDA.

Σ̂k(α) = αΣ̂k + (1− α)Σ̂

If α is 0, we have LDA, if it is 1 we have QDA. Everything in between is a compromise.

3

Question 5: Explain logistic regression. Provide all formulas, including the log-
likelihood function.

Logistic regression is a classification algorithm. Its output also contains an inference statistic,
which provides information about which variables are well suitable for separating the groups. The
model looks like this (for two classes):

log
P (G = 1|x)
P (G = 2|x)

= β0 + β⊤
1 x = z

We can rewrite it like this:

log
P1

P2
= z

P1

P2
=

P1

1− P1
= ez

P1 = ez − P1e
z → P1 + P1e

z = P1(1 + ez) = ez

P1 =
ez

1 + ez

For P2 we can say:

P2 = 1− P1 = 1− ez

1 + ez
=

1

1 + ez

The log-likelihood function is:

l(β) =

n∑
i=1

log pgi(xi, β)

3 Basis Expansions / Splines

Question 6: Explain what splines are in general. What is the criterion to optimize
and what are the solutions (provide formulas). How do you determine lambda and the
degrees of freedom. What do degrees of freedom mean in this context? Why do we
care about it? Talk about knots, penalization of curvature and how to minimize it.

In general splines are piecewise polynomials. A spline of order M with k knots ξi where i goes
from 1 to k is a piecewise polynomial of order M, which has continuous derivatives up to order M-2
(needed for curvature later on). The general form of the basis functions is:

hj(x) = xj−1, j = 1,...,M

hM+l(x) = (x− ξl)
M−1
+ , l = 1,...,k

Here it is important to notice that M=1 means constant, M=2 means linear, M=3 means
quadratic and M=4 means cubic splines.

For splines, we have to choose the order M of the splines, the number of knots |ξ| and the
placement of the knots.

The polynomials we use for the regions tend to be erratic near the lower and upper data range.
This can result in poor approximations. In natural cubic splines we thus also add an extra condition
that the function has to be linear beyound the boundary knots. By doing this we also win back 4

4

degrees of freedom (since cubic and now linear in both boundary regions).

With smoothing splines we can avoid to choose the number and placement of knots. We do this
by controlling the complexity of the fit through regularization. We minimize the following residual
sum of squares:

RSS(f, λ) =

n∑
i=1

{yi − f(xi)}2 + λ

∫
f ′′(t)2dt

The first term measures the closeness to the data and the second term penalizes curvature of
the function. We basically sum up the squared curvatures of the function at all points. By setting
λ to 0, f can be any function that interpolates the data. By setting λ to ∞ we get the simple least
square fit, where no second derivative can be tolerated.

The solution to this minimization problem is a unique minimizer, which is a natural cubic spline
with knots at the values xi with i going from 1 to n. It seems like this solution is over-parameterized,
since n knots correspond to n degrees of freedom. However, these degrees of freedom are reduced
by the penalty term, since the spline coefficients are shrunk towards the linear fit.

Since the solution is a natural cubic spline, we can write it as:

f(x) =

n∑
j=1

Nj(x)θj

where Nj is the j-th spline basis function.

So the criterion is reduced to:

RSS(θ, λ) = (y −Nθ)⊤(y −Nθ) + λθ⊤ΩNθ

with {N}ij = Nj(xi) and {ΩN}jk =
∫
N ′′

j (t)N
′′
k (t)dt

The solution is:

θ̂ = (N⊤N + λΩN)−1N⊤y

This is a generalized form of the ridge regression. Choosing λ can be done using cross-validation.

4 Generalized Additive Models (GAMs)

Question 7: What are GAMs? What does the model look like? What is the minimiza-
tion criterion? How do we find a solution?

Instead of having a weighted sum (linear combination) of regressor variables in GAMs we have a
weighted sum (linear combination) of transformed regressor variables. The general form of a GAM
looks like this:

g[µ(x)] = α+ f1(x1) + ...+ fp(xp)

In general, we have a conditional expectation of the target value y, given the corresponding data.
This expectation is µ(x). We take this expectation and feed it into a so-called link function g on
the left side. Examples are the identity link, the logit function or just the log.

We can also write the model like this:

5

yi = α+

p∑
j=1

fj(xij) + εi

To find the functions fj , we minimize the penalized residual sum of squares criterion:

PRSS(α, f1, ..., fp) =

n∑
i=1

{yi − α−
p∑

j=1

fj(xij)}2 +
p∑

j=1

λj

∫
f ′′
j (tj)

2dt

Here tj is the domain along which the smoothing is applied. Independent of the choice of the
smoothing parameters λj an additive model with cubic splines minimizes the PRSS. The solution
can be found using the backfitting algorithm.

The general idea is to start with an initial guess for each component (smoothed function) of the
model. Then we pick one of the components and keep all others fixed. We fit this component to the
residuals from the other components. We update our guess based on the information that the other
components have not explained yet. We repeat this process for all components. We do all of this
until the estimates stop changing (or change very little). Once, converged, our GAM is estimated.

5 Tree-Based Methods

Question 8: What are regression and classification trees? Explain the general idea
and provide the criterion to be minimized for both cases. Also explain the different
measures of node impurity. Furthermore, explain how trees are split (splitting criteria
and formula), how to grow a tree, when to stop and how to prevent overfitting?

In general, tree-based methods partition the feature space into rectangular regions. The goal is
for them to be as homogeneous as possible. In the context of the lecture, we limited the decision rules
and thus the splits to binary splits, meaning we always only have two branches. The split is based
on a split variable (which feature to look at) and a split point (what is the cutoff value for the split).

Our tree partitions our feature space into M Regions R1, ..., RM and we model the response for
each region as a constant cm (meaning every input combination that lies in this region will produce
the same result). This can be written as:

f(x) =

M∑
m=1

cmI(x ∈ Rm)

Here I is the indicator function, which returns 1 if x is part of Rm and 0 otherwise. If our
minimization criterion is the sum of squares, the best choice of ĉm is just the average of the yi
values within each region.

ĉm = ave(yi|xi ∈ Rm)

Finding the best partition for this problem is computationally infeasible, thus we approximate
a solution. For this we consider a split variable xj and a split point s. A split based on these is
defined by two half planes:

R1(j, s) = {x|xj ≤ s}; R2(j, s) = {x|xj > s}

We then define the following minimization criterion and search for the splitting variable xj and
the split point s that solve it:

6

min
j,s

[
min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

]
Put into words, we are basically looking for a splitting variable and a split point so that the sum

of the errors of the two resulting regions are minimized. The inner part of this problem is easily
solved because:

ĉ1 = ave(yi|xi ∈ R1(j, s) and ĉ2 = ave(yi|xi ∈ R2(j, s)

Because this is so trivial, we can scan through all the inputs to determine the best pair (j, s).

To avoid overfitting here, we use a tuning parameter, which tries to regulate the model’s com-
plexity. First we grow a large tree T0. We stop growing this tree when a minimum node size is
reached. Then we prune this tree using cost complexity pruning. By doing this, we get a sub-tree T .

For the cost complexity criterion we index the leaf nodes by m representing the Region Rm. |T |
denotes the number of leaf nodes in our sub-tree T and

ĉm =
1

nm

∑
xi∈Rm

yi

(this is just the average of the region since nm is the number of observations in Rm)

as well as

Qm(T) =
1

nm

∑
xi∈Rm

(yi − ĉm)2

(which just denotes the impurity of the node).

With this, we can now define the cost complexity criterion as

cα(T) =

|T |∑
m=1

nmQm(T) + α|T |

We want to minimize this criterion, which means that we want to reduce the impurity as well as
the size of the tree as much as possible. To find the optimal sub-tree Tα for a given α, we eliminate
the internal node which yields the smallest increase of

∑
m nmQm(T) per node. We do this until

no node is left. This sequence of sub-trees must include Tα.

For classification, we partition the x-variables into K classes based on their y-values, which range
from 1 to K. In a node m representing a region Rm with nm observations, we define the proportion
of the class k in this node like this:

p̂mk =
1

nm

∑
xi∈Rm

I(yi = k)

Every node m is assigned a class like this:

k(m) = argmax
k

p̂mk

In other words, we assign the most common class in a node to this node.

7

Three example measures that can be used for the impurity measure Qm(T) are:

• Misclassification error: 1
nm

∑
xi∈Rm

I(yi ̸= k(m)) = 1− p̂mk

• Gini Index: Σk ̸=k′ p̂mkp̂mk′ =
∑K

k=1 p̂mk(1− p̂mk)

• Cross-entropy:
∑K

k=1 p̂mklog p̂mk

Question 9: What are Random Forests? What is the basic idea behind them? Ex-
plain the algorithm step-by-step.

Decision trees are very sensitive to small changes in the data. A small change in the data can
lead to a completely different tree. What random forests do is they train many trees in an ensem-
ble. These trees are generated randomly by using only bootstrapped samples and by only using a
random selection of variables to be available for splitting at each knot.

The algorithm works as follows:

• Step 1: Bootstrap Sampling (random sample with replacement of size n)

• Step 2: Grow tree based on this first sample

– At each knot choose a random selection of p variables to be available for splitting

– For classification choose
√
p variables and for regression choose p

3 variables

• Step 3: Use the OOB data (not used for training, i.e. not part of the bootstrapped sample)
to compute feature importance

– Compute the impurity of the whole tree Tb as πb =
∑|Tb|

m=1 Qm(Tb) (sum of impurity of
all nodes)

– Shuffle each variable xj randomly and compute how impure the tree is after this as πbj

– The feature importance is δbj = πb − πbj

• Step 4: Repeat steps 1-3 for B number of trees and combute for each the feature importances
δbj for all b and all j

• Step 5: Compute the overall feature importance score for the j-th variable as follows:

θ̂j =
1

B

B∑
b=1

δbj

To make decisions with the random forest we just take the average of all tree responses for
regression and the majority for classification.

6 Support Vector Machines (SVMs)

Question 10: What are SVMs? How do they work? What is the criterion for the lin-
early separable case and for the non-separable case? Explain the optimization formula
and how you get there for both. Explain Lp and Ld with constraints.

Support Vector Machines aim to separate groups of data using hyperplanes. In the lectore we
focused on the two class case (K=2). The classification returns a sign (positive or negative) for the
group membership.

8

In general a hyperplane L is defined by:

f(x) = β0 + β⊤x = 0

As a distance measure for any point x to L we can use the following:

β∗⊤(x− x0) =
1

||β||
(β⊤x+ β0) =

1

||f ′(x)||
f(x)

Here x0 is a point on L and x is any point. By subtracting them, we get a distance vector and
then we project it onto the direction of β∗.

If all points are completely separable by a hyperplane we can always find a function f : Rp → R
so that gif(xi) > 0 for all i. In other words all instances will be classified correctly. The product of
the class gi ∈ {−1, 1} and the function result will always be positive.

We define the distance M as the minimal distance of a point to the hyperplane taken over all
observations. So the distance to the closest point from the hyperplane.

M = min
i=1,...,n

gif(xi)

Our goal is to find a hyperplane that maximizes the margin, which is 2M wide (one M on each
side). So we end up with the following maximization problem:

max
β,β0,||β||=1

M

so that

gi(x
⊤
i β + β0) ≥ M

Put into words, we are just aiming so maximize the margin under the condition that all points
are on or beyond the margin. Nothing is within it. We can re-write this further as a minimization
problem to remove the constraint that β has to be normed.

min
β,β0

||β||

so that

gi(x
⊤
i β + β0) ≥ 1

In our distance measure before we had ||β|| in the denominator. It has an inversely proportional
relationship to the margin. The smaller β, the larger the margin. Keeping gi(x

⊤
i β + β0) greater or

equal to one ensures that the instances are all on the correct side of the hyperplane.

This minimization problem is a convex optimisation problem. This means that we are looking
for the minimum of a function that looks like a bowl. We cannot get stuck in a local minimum.
We can use the Lagrange method to solve it. For this we have to minimize the Lagrange Primal
Function:

Lp =
1

2
||β||2 −

n∑
i=1

αi[gi(x
⊤
i β + β0)− 1]

Here we minimize 1
2 ||β||

2 due to mathematical convenience. Derivation is easier like this. The
second part is the inequality condition which we bring into the objective function using the Lagrange
multipliers αi.

9

Setting the derivatives of this function with respect to β and β0 to zero, results in the Lagrange
dual function:

Ld =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjgigjx
⊤
i xj

This now results in the final maximization problem:

max
αi

[
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjgigjx
⊤
i xj

]
so that αi ≥ 0 for all i.

To be optimal, we also need to satisfy the Karush-Kuhn-Tucker conditions:

n∑
i=1

αigixi = β

n∑
i=1

αigi = 0

αi[gi(x
⊤
i β + β0)− 1] = 0 for all i

In the non-separable case, where the data points of the two classes overlap, we introduce a
so-called slack variable ξi ≥ 0 for each side condition. Its value is the violation of the corresponding
side condition. When it is positive it means that the point x is on the wrong side of the margin by
the amount Mξi. For correctly classified points xj the slack variables ξj are zero.

We can formulate the following minimization problem:

min
β,β0

[
1

2
||β||2 + C

n∑
i=1

ξi

]
so that {

gi(x
T
i β + β0) ≥ 1− ξi for all i

ξi ≥ 0 for all i
(1)

We again maximize the margin as before by minimizing 1
2 ||β||

2. Then we also penalize misclas-
sified observations by adding C

∑n
i=1 ξi to the problem. Here C is the cost parameter. For this

problem we again have a Lagrange primal function:

Lp =
1

2
||β||2 + C

n∑
i=1

ξi −
n∑

i=1

αi[gi(x
T
i β + β0)− (1− ξi)]−

n∑
i=1

λiξi

Again we put our minimization problem first and then we add the side conditions with Lagrange
multipliers αi and λi. After taking the derivatives with respect to β, β0 and ξi, we get the following
Lagrange dual function:

Ld =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjgigjx
⊤
i xj

This leads to the maximization problem:

10

max
αi

[
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjgigjx
⊤
i xj

]
so that 0 ≤ αi ≤ C for all i.

To be optimal, we also need to satisfy the Karush-Kuhn-Tucker conditions:

n∑
i=1

αigixi = β

n∑
i=1

αigi = 0

C = αi + λi

λiξi = 0

αi[gi(x
⊤
i β + β0)− (1− ξi)] = 0

gi(x
⊤
i β + β0)− (1− ξi) ≥ 0

for all i.

Question 11: Explain the kernel trick and kernel functions.

We can use transformations of our original data and then fit a linear model on these transformed
inputs. Let hm(x) be the mth transformation of x for M transformations. A linear basis expansion
of x is defined as:

H(x) =

M∑
m=1

αmhm(x)

Instead of using the function f as before, we re-define it as follows:

f(x) = h(x)Tβ + β0

This is still a linear model in the variables h(x) but these variables themselves can be non-linear
transformations. The Lagrangian dual function can be written as:

Ld =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjgigj⟨h(xi), h(xj)⟩

Here ⟨h(xi), h(xj)⟩ denotes the inner product. It is important to notice that the transformations
h(x) only occur as an inner product. This means that there is no need to actually evaluate them. It
is enough if we know a symmetric positive (semi-) definite function K, the so-called kernel function:

K(u, v) = ⟨h(u), h(v)⟩

The kernel function K computes the inner product in the transformed feature space without us
having to first compute the transformations. The following kernel functions are important:

Linear kernel:

K(u, v) = ⟨u, v⟩ = u⊤v

Polynomial kernel (degree d):

11

K(u, v) = (c0 + γ⟨u, v⟩)d for constant c0 and with γ > 0

Radial Basis kernel (RBF):

K(u, v) = e−γ||u−v||2 with γ > 0

Sigmoid kernel:

K(u, v) = tanh(γ⟨u, v⟩+ c0) for constant c0 and with γ > 0

This is what the kernel trick is about. We don’t choose transformations h(x), which we then
use in a linear model. Instead we work with the kernel functions, which directly compute the inner
product in the transformed feature space.

12

