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Overview

• Basics
– Motion Field, Applications, Key Problems, Motion Estimation Techniques

• Matching
– Block Matching, Brightness Constancy, 2D Motion vs. Optical Flow  

• Gradient-based approaches
– Optical Flow Equation, Aperture Problem, Lucas-Kanade, Horn-Schunck

• Challenges
– Large Motion, Illumination Changes, ...

• Evaluation
– Ground Truth, Middlebury Data Set
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Basics
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Optical Flow (OF)

• Goal of Optical Flow Estimation
The goal of OF estimation is to compute an approximation of the motion field 
(optical flow field) from a video sequence.

• Motion Field
A vector field, which vectors indicate direction (orientation) and velocity
(length) of movement.

Frame 1 Frame 2 Motion Field
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Applications

• Why estimate visual motion?

– Motion detection (e.g., surveillance)

– Video understanding (e.g., video segmentation)

– Compositing (e.g., retiming)

– Interactive 2D-to-3D conversion

– Video compression (e.g., MPEG)

– Obstacle avoidance

– Image registration

– …

[8]

[7][12]
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Key Problems

• Motion representation

– E.g. Pixel, sub-pixel

– E.g. Regions, blocks, segments, …

• Choose motion estimation criteria & formulate it as function

– E.g. Intensities / colors are conserved

– E.g. Intensity / color changes are conserved

– E.g. Smooth vector fields

• Minimize function with an optimization method

– Exhaustive search / continuous / discrete / variational

– Depends on function
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Motion estimation techniques

• Block- / Feature- Matching

simply searches for the block/patch/feature which fits best.

• Gradient-based methods

formulates equation(s) and solves for the estimates.

• Variational Methods

• Spatiotemporal Methods

• Segmentation-based Methods

• Probabilistic Methods

• Learning-based Methods

• ...
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Block- / Feature-
Matching
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Block Matching

costs, which should 
be minimized

Frame 0 Frame 1

B B+d
d = (5,0)

d ... OF vector
B .. block
p .. pixel

c(.) .... Similarity measure 
e.g., squared differences

Brightness Constancy 
Assumption• Representation: Blocks centred at a pixel

• Constraint: Intensities are shifted -> values are conserved

• Optimization: Exhaustive search of block with minimal difference
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Block Matching 

• Advantages: 
– Easy :)

• Disadvantages:
– Block artifacts 

– Edges inside a block are smoothed

– Not accurate

– Not efficient (define search windows, ... )

– Dependent of block size

– Problems caused by the brightness constancy 
assumption.

VS..

Block Matching 

Gradient-based
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Consequences of Brightness Constancy

• 2D motion is the projection of 3D motion. It depends on 3D object motion and 
projection operator.

• Optical Flow is the pattern of apparent motion of objects, surfaces and edges 
in a visual scene caused by the relative motion between a camera and the 
scene. It depends on illumination and object surface texture. 

[6]
Barber‘s pole        motion field      optical flow

1 2 3
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Gradient-Based 
Approaches
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Optical Flow Equation (OFE)

Brightness (Color) Constancy: Pixel intensities (colors) don’t change!

x

y

t I(x,y,t)

(u,v)

I(x,y,t+1)
gradient constraint equation
(a.k.a. brightness constancy constraint equation)
(a.k.a. image brightness constancy equation)
(a.k.a. intensity flow equation)

I … intensity
(x,y) … pixel
(u,v) .. flow vector
t … time

u and v are small, I is smooth -> linearize with Taylor expansion:
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Aperture Problem

e.g. correct (u,v)
... constraint linebrightness 

gradient ....

• For each pixel (x,y) we have one equation with two unknowns d=(u,v).

Correct solution lies on the constraint line p

– Regions with constant brightness -> flow is indeterminate!

– To solve both unknowns we need additional constrains or have to include 
the neighbourhood!
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Lucas-Kanade

• Basic Idea: Constrain velocity locally using gradient constraints from nearby 
pixels  

-> overdetermined system of equations, 

can be solved by Least-Squares Estimation (LSE)

• Energy function which is minimized by using LSE:

x,y

x1,y1 x,y1 x2,y1

x2,yx1,y

x1,y2 x,y2 x2,y2
…
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Lucas-Kanade

v

u

Constraint lines from nearby pixels 
cluster around a point in this area.

-> The correct (u,v) must be somewhere 
here!
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Lucas-Kanade

v

u

LSE finds the ‚optimal‘ interception point, 
concerning the distances from all 
constraint lines.
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Lucas-Kanade

Frame 0 Frame 1 Correct Solution

Estimation Result Error

OF-vectors are 
color coded

[1]
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Lucas-Kanade

• Advantages
– Dense vector field, no block artifacts

– More efficient and reliable than block matching

– Noise is smoothed, but still noisy result!

– Good results in textured regions

– Easy and fast calculation

• Disadvantages
– Useless in textureless regions

– Underestimation of large displacement

– Errors at boundaries

– Problems caused by the brightness constancy assumption
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Horn-Schunck

• Basic Idea: Assume overall smoothness of the resulting flow field.

Local Constraint vs. Global Constraint

constrains the vector for a 
pixel by constrains of 
neighbors

e.g. Lucas-Kanade

constrains the vector for a 
pixel by average vector of 
all other pixels

e.g. Horn-Schunck
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Horn-Schunck

Data Term:

• Applies brightness constancy 
assumption

• Optical flow equation  

• Large for large deviations from 
brightness constancy assumption

• Small if brightness constancy 
assumption holds

Smoothness Term:

• Applies smoothness assumption
• First derivatives

• Large if flow field is not smooth
• Small if flow field is smooth

By minimizing this function, solutions which are true for both constrains are 
favored above others. Wrong solutions are penalized with large values.

regularization parameter 
for degree of smoothnessquadric penalty functions

partial derivatives
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Horn-Schunck / Energy Function



Slide-25VO Video Analysis (188.329) WS 2016/17

Horn-Schunck / Minimization

Solved iteratively. 
Gets more precise 
with every iteration.

E(.) is a convex  
function.

Euler-Lagrange Equations: The first variation of the energy functional (≈first 
derivate) must vanish.

Δ … Laplace Gradient can be 
approximated by nearby pixels:L1:

L2:

L1:

L2:
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Horn-Schunck 

smoothness  term

v

u
data term

(u,v)

(u,v)
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Horn-Schunck 

smoothness  term

v

u
data term

(u,v)
(u,v)
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Horn-Schunck

Frame 0 Frame 1 Correct Solution

Estimation Result Error

OF-vectors are 
color coded

[1]
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Horn-Schunck

• Advantages
– Incorporates global information (“filling-in”)

– Smooth flow

– Good results for untextured regions

• Disadvantages

– Oversmoothing of motion boundaries

– Underestimation of large displacements

– Iterative: slow

– Problems caused by the brightness constancy assumption
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Challenges
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Large displacements

• Problem: Approximation of image derivatives does not work for large 
movement. HS and LK work only for small movements.

• Solution:  Coarse-to-fine estimation using image pyramids

Pyramid of Frame 0J Pyramid of Frame 1

Frame 1Frame 0

estimate initial (u,v)

refine (u,v)
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Large displacements

• Problem: Approximation of image derivatives does not work for large 
movement. HS and LK work only for small movements.

• Solution:  Use a different optimization method, e.g., Cost-Volume Filtering.

– Labels: Vectors that represent the motion (i.e., x,y displacement).

– Costs-Volume: Cost being moved according to a specific vector.

– Result: Motion vectors.
Input: Frame 1 Frame 2 Output: Motion [7]

x,y displacement
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Large displacements

• Problem: Approximation of image derivatives does not work for large 
movement. HS and LK work only for small movements.

• Solution:  Use a different optimization method, e.g., Cost-Volume Filtering.

– Labels: Vectors that represent the motion (i.e., x,y displacement).

– Costs-Volume: Cost being moved according to a specific vector.

– Result: Motion vectors.
Input: Frame 1 Frame 2 Output: Motion [7]

x,y displacement

New problem: Scalability of the optical flow estimation algorithm.

• Cost computation for a huge amount of labels (motion vectors).
• Filtering of many cost-volumes!
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Illumination Changes

• Problem: Illumination Changes, e.g., caused by:

– Shadows

– Different viewing angles

– Light source flickering

– Self-adaptive cameras

• Solution 1: Gradient Constancy Assumption 

• Solution 2: Descriptive Features

• Solution 3: HSV Color Model
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Illumination Changes: Gradient Constancy Assumption 

spatial gradient:

Frame 0 Frame 1

The gradient constancy assumption is used the same way as the brightness
constancy assumption.
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Illumination Changes: Gradient Constancy Assumption 
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Illumination Changes: Descriptive Features

• Solution 2 : Descriptive Features

– e.g. SIFT-Features: Scale Invariant Features

Points, that can be extracted to provide a description of an object.

This description can be used to locate the object in another image.

e.g., SIFT-Matching: These are corresponding SIFT keypoints.

-> compute (u,v) from their locations in Frame 0 and Frame 1.

Frame 0 Frame 1
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Illumination Changes: Descriptive Features

• Advantages:
– Less sensitive to image deformations

– Large motion is possible

– Parts of the object can be occluded

• Disadvantages:
– We don‘t get a dense flow field! 

One Flow vector per SIFT point. If we interpolate these vectors over the   
whole image -> low accuracy, especially at motion boundaries.

– Combination with common methods: Descriptive features would need 
special treatment in optimization process.
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Illumination Changes: HSV Color Model

Invariant to multiplicative illumination changes 
(e.g. shadows, shading)



Slide-45VO Video Analysis (188.329) WS 2016/17

Evaluation
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Evaluation

• Ground Truth (GT)

Ground Truth: The correct solution (e.g., flow field) for a given problem

• The absence of GT data has represented a major problem in computer vision

• Computer-generated GT images do often not reflect the challenges of real 
data recorded with a camera.

• It is difficult to measure the progress in a field if there is no commonly agreed 
data set with GT solution.

Frame 0 Frame 1 GT 

[1]
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Middlebury Data Set

• Ground truth (GT) for 12 image sequences 
– 3 computer generated sequences

– 9 recorded sequences

• Quality Evaluation in the Middlebury Benchmark
– Error metrics:

• Angular error (AE): angle between GT-vector and result

• Endpoint error (EE): Euclidean distance between vectors – more reliable!

• Interpolation error (IE): difference GT and intermediate image

• Normalized interpolation error (NE) : normalized IE

– Region Masks 
• All not occluded pixels

• Untextured regions 

• Pixels near motion discontinuities

– Statistics (accuracy, robustness, …) 
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Middlebury Data Set / Online Evaluation

[1]

http://vision.middlebury.edu/flow/

http://vision.middlebury.edu/flow/
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Middlebury Data Set / GT

• How do they generate GT data? 
– Hidden fluorescent texture / splatter pattern in scene

• High resolution images in UV + ambient light, motion < 2 pixels

• Test sequences: Every 40th ambient light-frame, downsample images

• GT: Tracking of small windows in original UV sequence

Setup for obtaining GT flow

Setup under visible illumination

Setup under UV illumination [1]
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Middlebury Data Set / GT

• How do they generate GT data? 
– Realistic Synthetic Imagery

• Generated with Renderman

• Test sequence: Downsampled images

• GT: Project to 3D motion of the scene to 2D

[1]

Frame 0 Frame 1 GT, flow field
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Middlebury Data Set / GT

• How do they generate GT data? 
– Frame interpolation imagery

• Record scene with a high-speed camera: 60 frames / second

• Test sequences: skip some frames from recorded sequence

• GT: consists of image frames, use skipped frames as GT

• Own frame interpolation algorithm to compare performance at same 
conditions 

[1]

Frame 0 Frame 1 GT, interpolated frame
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MPI-Sintel Flow Dataset

The Sintel Flow Dataset provides naturalistic synthetic videos that are 
challenging for current methods. It is designed to encourage research on long-
range motion, motion blur, multi-frame analysis, non-rigid motion. 

http://sintel.is.tue.mpg.de/

http://sintel.is.tue.mpg.de/
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Summary

• Optical Flow is the movement of intensity patterns in the image.

• Techniques: There are various approaches to estimate optical flow, which 
differ in how they handle the three key problems of motion estimation. 

e.g. Block Matching e.g. Feature Matching

e.g. Gradient-based Methods e.g. Local Methods

e.g. Global Methods

• Challenges: Optical Flow estimation poses many challenges, which several 
approaches try to overcome.

e.g. Illumination changes e.g. Noise and occlusions

e.g. Oversmoothing e.g. Large/fast motion

e.g. Untextured regions

• Evaluation: The Middlebury Dataset offers test sequences and their GT, 
which can be used to evaluate Optical Flow Estimation algorithms.
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Sample Exam Questions

• How are the key problems solved for e.g., the HS method?

• What is the brightness constancy? What is the Optical Flow Equation?

• Explain the relationship of 2D motion and OF. Give examples.

• Compare the HS and LK method.

• Explain a challenge and a possible solution for it.

• Where and how can you evaluate an OF algorithm?

• What is the aperture problem?

• List three applications of optical flow.
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