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TU 1 Overview

WIEN u

Image and Video Filtering

— A brief recap: linear filtering process, examples

Guided Filter

— Definitions, parameter, implementation, extension to video

Applications Beyond Smoothing

— Feathering, denoising, haze removal, ...

Cost-Volume Filtering

— Basic idea, interactive video segmentation, other label-based problems
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a brief recap on

Image & Video
Filtering
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Linear Filtering

« What is linear image filtering?

filter kernel

A filter modifies a pixel of the input image based on its neighbor values.

If the modification is linear, we speak of linear image filtering. In this case
the transformation can be written in matrix form:

output at position of e

_a+b+c+d+e+ f+g+h+i

) 9
! window centered at e,

part of the input image

A filter kernel provides weights for the linear transformation.

The transformation is applied by centering a window at each pixel of the
input image. This process is called convolution.
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Convolution

Filter Kernel * -
/\
F B
Input Image Output Image
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Convolution

Filter Kernel * -
/\
mm £
Input Image Output Image
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Convolution

Filter Kernel * -
/\
= Eom

Input Image Output Image
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Convolution

Filter Kernel * =0

T\

Input Image Output Image
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 Unwanted Effects:
— Edges are not preserved (too smooth).

— We want the filter to selectively smooth the image.

- The filter kernel has to be a function of the input image!
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U 1 Example: Bilateral Filter

WIEN u

Averaging Filter: O(1) Bilateral Filter: O(N)
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Guided Image
Filtering
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TU 1 Guidance Image

WIEN u

» Incorporate additional information during the filtering process using a
guidance image (e.g., the input image).
* Weights depend on intensity similarities in the guidance image.

» Filtering output is a linear transform of the guidance image.

Filter = W( H ) * =
= =
Input Image Guidance Image Output Image

given searched

Slide-14
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TU | Example: Edge-Preserving Smoothing

WIEN

Source and Guidance Image Guided Filter Result Box Filter

o E— —
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- 1

Edges are preserved Oversmoothed edges
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TU 1 Example: Guided Feathering

Source Image Filtering Result
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TU 1 Definitions

WIEN u

Key assumption:

The filtering output is the result of a local linear tranfsorm between guidance image

and output image: / ... guidance
image
_ . p... inputimage
qi o akli + bk Vie Wk g ... output image
L] ... pixel
W ... window

 Why linear model? g should only have an edge when / has an edge.

 Why local? The values of the filter kernel change for each window w, centred
at a pixel k.

« What are aand b? a,, b, are linear coefficients assumed to be constant in the
window w,. We need them to define the filter.
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TU 1 Definitions

WIEN u

How do | get these values?

« Extended assumption: Filter is the result of a local linear transform between
guidance and output image AND output and source image are similar.

*  Express these assumptionsin an energy function:

2"d assumption:
(g-p)? -> min!

E(akn bk) = Z ((akli + q‘ N p’)2 + gai) regularization,

few prevents a from
being too large

1st assumption:
qi=ay I;+by,

« Smallif assumptions are satisfied. Large if assumptions are not satisfied. ->

minimizal
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Linear Regression

How do | get these values?

E(a,.b,)= Z (@ +b,— pi)2 +ga,2() —> min

iEWk

« This energy function can be minimized by simple linear regression:
— Models the relationship between two variables: |, p

— Fit aline (linear) through the given data. The squared distance of all points (I, p) to
this line is minimized (set partial derivatives to zero).

] I iP; — My Py

_\M

bk = Py — Aty

o, te

My ... mean of [ in w,
o, ... variance of | in w,
D,..- mean of p in w,

.. humber of pixels in w,
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Linear Regression

How do | get these values?

E(a,.b,)= Z (@ +b,— pi)2 +ga,2() —> min

iEWk

» This energy function can be minimized by linear regression:

A\
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Linear Regression

How do | get these values?

E(a,,b,)= Z (@ l; +b,— pi)2 +ga,2() —> min

iEWk

» This energy function can be minimized by linear regression:
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Linear Regression

How do | get these values?

E(a,.b,)= Z (@ +b,— pi)2 +ga,2() —> min

iEWk

» This energy function can be minimized by linear regression:

p A . , aka + bk
Oy
[ ]
(]
COoV, ‘
[ ]
Px
(] COVk
‘ My ... mean of 1in w,
e 5 o, ... variance of I in w,
* Ok D,... mean of pin w,
... number of pixels in w,
> | COV,... covariance in w,
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Linear Regression

How do | get these values?

E(a,.b,)= Z (@ l; +b,— pi)2 +ga,2() —> min

iEWk

» This energy function can be minimized by linear regression:

p A . , aka + bk
Oy
COoV, ‘
[ ]
Px
(] COVk
> My ... mean of 1in w,
e B o, ... variance of | in w,
s Ok D, meanofpinw,
... number of pixels in w,

> | COV,... covariance in w,
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Linear Regression

How do | get these values?

1 _
W few, ;0 — 1, Py
ak =

bk = Py — Al

2
O té (slope) (intercept)

» This energy function can be minimized by linear regression:

A ayly + by
p O-kz /

My ... mean of [ in w,
o, ... variance of | in w,
D,..- mean of p in w,
... number of pixels in w,
> | COV,... covariance in w,
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TU | Apply Linear Model

WIEN
qg=al +b, View,

 The linear model is then applied to each local window in the image.

« We have a a,, b, at every pixel position: A pixel i is part of more than one
window and thus involved in the computation of multiple a,, b, -> multiple
output value per pixel!

 Simple solution: The final output value for a pixel is the average of all
possible results for a pixel.
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Apply Linear Model

Wi
Wi Z (@l +b,)
| Wk ‘M kiew,

Averaging the results of a pixel over the blocks in which it is contained is equivalent
to averaging the coefficients a and b in one window.

1 |
w; a-—>ya . =— ) b,
i i Wz
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iU Recap: Guided Filtering Computations

WIEN u

The guided filter is a linear filter that assumes a local linear transformation
between the output and the guidance image.

1. Local linear regression: Describe linear transformation (coefficients).

1. Average coefficents per window.

2. Compute output Apply linear transformation.
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Final Filter Kernel

Is the Guided Filter a linear filter?

_ Yes, these equations can be
. |"‘4 cw I, — 14 Ps b.=p.—au, [ﬁw;i’ltten k’[o gelt an expression for
e = olre » e filter kernel.
This is done this way:
=(— Z a)l, +( D.b) - initiate by into q;
‘ ke w, ‘ kew, - take partial derivative w.r.t p;
Expression for the filter kernel ‘

)__ Z (l_l_(li_/uk)(lj_/uk)) q; = ZWij(I)pj

‘VVi k(i,j)ew; O-I% +é&

every window w, that contains
pixel i and its neighbour pixel j result for pixel i~ neighbors j in source p
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Edge-Preserving Property

z (I — we) U — Mk))

1
Wij(1)=w—|2 (1+ P

k:(i,)EW

How does the guided filter preserve edges?

Guidance and source Filter kernel
« iandjareonthe same side of an edge

(Ii-u) and (I;-y,) have the same sign
term 1 is not close to zero
W;p; is large, j and i are averaged

 iand jare on different sides of an edge
(I-u) and (li-u,) have different signs
term 1 very small and close to zero
W;p; is small, j has almost no influence on g
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TU 1 Parameter

input and
guidance image
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Implementation

« How can we implement this filter?

Recap: Guided Filter Computation

1. Local linear regression to solve energy function

‘M I iP — Py B
b= D — 8y,

o, +e

2. Average coefficents per window

— 1
A= 2 b= fa D

3. Compute output image by applying linear model

—= = pk . mean of I in w,
g = akl,' + bk . variance of I in w,

P . mean of p in w,
V\/f number of pixels in w,
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Implementation

« How can we implement this filter?

Recap: Guided Filter Computation

1. Local linear regression to solve energy function

‘M Z,ewk ”mk
o be

2. Average coefficents per window

— 1
A= 2 b= fa D

3. Compute output image by applying linear model

bk = P agy

. mean of I in w,

= u
= y,. bk o, ... variance of | in W

P . mean of p in w,
V\/f number of pixels in w,
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Implementation

. _ P _ _
How can we implement this filter” average in a window

Recap: Guided Filter Computation

1. Local linear regression to solve energy function

‘M I iB = HPy B
b= P — a4

o, +eE

2. Average coefficents per window

- 1
R B &h

3. Compute output image by applying linear model

= — pk . mean of I in w,
g = akl,' + bk . variance of I in w,

P . mean of p in w,
V\/f number of pixels in w,
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TU | Implementation
WIEN

« How can we implement this filter? . .
average in a window

Recap: Guided Filter Computation

1. Local linear regression to solve energy function

‘M Z,ewkb‘ﬂxpk

bk = D@,

Only point-wise and averaging operations:
» efficient implementation
e runtime independent of filter kernel

For images with N pixels:
Point-wise operations: O(N)
Averaging (Sliding-Window-Technique): O(N)

q'=a @b,
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Implementation

o— . _
mean_| = boxfilter(l, r); box filter e.g., r=1

mean_p = boxfilter(p, r); i i i 1
mean_Ip = boxfilter(l.*p, r); 111 )°

get mean for each
cov_Ip = mean_Ip - mean_| .* mean_p; window

get covariance of (I, p) in each window

mean_ Il = boxfilter(1.*1, r);
var_| = mean_Il - mean_| .* mean_lI; get variance in each window
a=cov_Ip ./ (var_| +eps); % Ean. (5)in[1]; get coefficients a,b

and average them
b=mean p-a.*mean_I; % tan (6)in[1]; g

mean_a = boxfilter(a, r);

mean_b = boxfilter(b, r);

g =mean_a .*l+mean_b; % tqn. () in[1];

[1]
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TU | Extension: Guided Video Filtering

WIEN

» Guided video filtering is done analogue to guided image filtering. The main
difference is that we now use 3D instead of 2D windows.

[ ... guidance video
. p... inputvideo
g = akl,- +bk VI e W, g ... output video
.. pixel
w ... 3D window

» Solve for the linear coefficients a and b and average them to get one result
per pixel.

) w Iipi_ﬂkpk

b, = P —au

2
oL t+e

LS a)l+(= Y by
‘M kew; |M/1 kew;
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TU ] Extension: Guided Video Filtering

WIEN u

2D Box Filter
2D filter kernel is multiplied by a 2D window of the source image.

y [ L1
* 111 |-
T_r 111 )°
%X
e 3D Box Filter
( \

[a—

3D filter kernel is multiplied by a 3D window of the source video. trny,
111

[a—

3~ Y

( \
Window contains neighborhood 1 |
in several frames t of the video. § 1 —
* 11 )%

t=1 t=2 t=3 \ J

( \
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Applications Beyond
Smoothing
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TU 1| Applications Beyond Smoothing

WIEN u

Guided Feathering
» Foreground (bright pixels) / background (dark pixels) segmentation

» Grey values express the percentage to which a pixel belongs to the
foreground (alpha value).

Guidance / Binary Mask p Guided Filter Output g
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TU 1| Applications Beyond Smoothing

WIEN u

Guided Feathering

» Alpha-values can be used to obtain “soft” object borders.

https://www.youtube.com/watch?v=7{a8Zr6 WHEA [9]
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https://www.youtube.com/watch?v=7ja8Zr6WHFA

TU 1| Applications Beyond Smoothing

WIEN u

Flash/No-Flash Denoising

Remove noise in a no-flash image.

Source image: Image of a scene, no flash used.

Guidance image: Image of the same scene, flash used.

Source Image Guidance Image Result Image [1]
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TU 1| Applications Beyond Smoothing

WIEN u

Single Image Haze Removal
Refinement of raw haze map.

Source image: Estimated haze map. Guidance image: Hazy image.

Haze map
Hazy image dark ... more haze Refined map Recovered image

VO Video Analysis (188.329) WS 2016/17 Slide-51



TU 1| Applications Beyond Smoothing

WIEN u

Joint Upsampling

Upsample an image under the guidance of another image.

upsampled version

low resolution image

[1] NN IBF GF NN IBF GF
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Cost-Volume Filtering
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What is a Cost-Volume?

General label-based optimization problems:

— Given: Finite, fixed set of labels. Data: e.g., video.

input video
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What is a Cost-Volume?

General label-based optimization problems:
— Given: Finite, fixed set of labels. Data: e.g., video.

— Goal: Assign each pixel in the video to a label.

result of a labeling-problem
Label 1

Label 2

Label 3 ﬁ

Label 4
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What is a Cost-Volume?

General label-based optimization problems:
— Given: Finite, fixed set of labels. Data: e.g., video.
— Goal: Assign each pixel in the video to a label.

— First step: Compute cost/probability for each pixel to belong to a label, e.g., to
Label 1

Cost-Volume for Label 1

E (Label 1)

)

| e

A\

I oood fit, low cost (= high probability)
bad fit, high costs (= low probability)

VO Video Analysis (188.329) WS 2016/17 Slide-58



What is a Cost-Volume?

General label-based optimization problems:
— Given: Finite, fixed set of labels. Data: e.g., video.
— Goal: Assign each pixel in the video to a label.

— First step: Compute cost/probability for each pixel to belong to a label, e.g., to
Label 2

Cost-Volume for Label 2

E (Label 1)
—

L

A\

I oood fit, low cost (= high probability)
[ ] bad fit, high costs (= low probability)
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What is a Cost-Volume?

Interactive Image/Video Segmentation:
— Given: User input that defines foreground and background pixels.

— Goal: Assign each pixel in the video to the foreground or to the background.

cl e —

input video
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What is a Cost-Volume?

Interactive Image/Video Segmentation:
— Given: User input that defines foreground and background pixels.

— Describe labels: From the marked pixels a foreground color model and a
background color model are defined.

color models: e.g., binned color histogram

L > colors
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What is a Cost-Volume?

Interactive Image/Video Segmentation:
— Assumption:
* Pixels with similar colors as the marked foreground belong to the foreground.

* Pixels with similar colors as the marked background belong to the background.

L > colors
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What is a Cost-Volume?

Interactive Image/Video Segmentation:

— Assumption:
* Pixels with high counts in the foreground histogram belong to the foreground.

* Pixels with high counts in the background histogram belong to the background.

20 pixel 0 pixel background

L > colors

N
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What is a Cost-Volume?

Interactive Image/Video Segmentation:

— Assumption:
* Pixels with high counts in the foreground histogram belong to the foreground.

* Pixels with high counts in the background histogram belong to the background.

0 pixel 20 pixel foreground

L > colors

N
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What is a Cost-Volume?

Interactive Image/Video Segmentation:

— Cost computation:

¢, = HalD o = He
He(n)+Hpg(1) H(1)+Hpg (1)
i
. Hg() =0 H.(i) = 20 foreground
Cri 0
CBi = 1
N N
u
3
... pixel **
H ... foreground histogram &&=
Hg ... background histogram § " S col
Ci ... cost Lmma
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What is a Cost-Volume?

Interactive Image/Video Segmentation:

— Cost-Volume: cost for each pixels that it belongs to the one of the labels.

— Special case segmentation: ¢c_. = 1- ¢

Cg > 0.5

Cost-Volume cg; Segmentation Result
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What is a Cost-Volume?

Interactive Image/Video Segmentation:
— The Cost-Volume is already a good cue for segmentation, but:
* Itis not spatially or temporally coherent (“holes”, flickering).
* Does not result in a smooth labeling!
— Cost edges are not aligned with color edges.

— Unwanted regions far away from the foreground object.
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What is a Cost-Volume?

Interactive Image/Video Segmentation:

— The Cost-Volume is already a good cue for segmentation, but:
e Itis not spatially or temporally coherent (*holes”, flickering).

e Does not result in a smooth labeling!

Implement a smoothness assumption!

Similar pixels in a local neighborhood have similar costs.

-> Smooth the Cost-Volume with the Guided Filter!
(Guidance: Original color image/video. Input: Cost-Volume.)
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Cost-Volume Filtering

Interactive Image/Video Segmentation:
e The filtering process ...

— smoothes “holes” and removes flickering.

— reduces noise.

— aligns cost edges with color edges.

Filtered Cost-Volume Segmentation Result

VO Video Analysis (188.329) WS 2016/17
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* The video shows the binary maps (cost > 0.5), not the cost-volume.




1LY, ! Example: Cost-Volume for Segmentation
WIEN

Interactive Image/Video Segmentation:

— Unwanted regions far away from the foreground object.

Filtered Cost-Volume Segmentation Result
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1LY, ! Example: Cost-Volume for Segmentation
WIEN

Interactive Image/Video Segmentation:
— Unwanted regions far away from the foreground object.
Only keep connected components!

Foreground regions that in the binary segmentation map are not spatially
or temporally connected to the foreground scribble are removed.

Binary Map (Cost-Volume > 0.5) Segmentation Result
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U 1 Example: Video Segmentation

WIEN u

» Soft Segmentation: Apply Guided Filter to Binary Segmentation Map to get transparencies.
https://www.youtube.com/watch?v=7ja8Zr6 WHFA [9]
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U 1 Example: Video Segmentation

WIEN u

[9]

VO Video Analysis (188.329) WS 2016/17 Slide-74



Supplementary Material
for CVPR Submission #276

Fast Cost Volume Filtering for Visual Correspondance and Beyond

This video is not necessary to understand the submitted paper

https://www.ims.tuwien.ac.at/publications/tuw-202088/downloads/cvpr-supmat.rar



https://www.ims.tuwien.ac.at/publications/tuw-202088/downloads/cvpr-supmat.rar

iU 1 General Cost-Volume Filtering Pipeline

WIEN u

1. Define labels

« Finite, fixed set of labels (e.g., “foreground” and “background”)

2. Cost-Volume generation
« Define an energy function that evaluates the quality of a solution.
« For each label: Compute costs for each pixel

(e.g., special case segmentation: ¢_=1-c)

3. Filter the Cost-Volume with the Guided Filter

« Spatio-temporally smooth labeling. Cost edges are aligned with color edges.

4. Winner-takes-it-all

* For each pixel: Pick the label with the lowers cost.
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TU 1 Example: Scribble Propagation

WIEN u

Scribble Propagation (e.g., re-coloring or 2D-to-3D conversions)

— Labels: Colors (or depths)
— Costs-Volume: Color models, for each scribble.

— Result: New color (or depth) at each pixel.

Input video &
scribbles

Re-colored
output video

e - A
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TU 1 Example: Stereo Matching

WIEN u

Stereo Matching (“Depth Estimation”)

— Labels: Depths (i.e., x displacement)
— Costs-Volume: Cost belonging to a particular depth layer.

— Result: Depth at each pixel in viewl.

Output: depth
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Example: Optical Flow

Motion Estimation in Videos

— Labels: Vectors that represent the motion (i.e., X,y displacement).
— Costs-Volume: Cost being moved according to a specific vector.

— Result: Motion vectors.

Input: Frame 1 Frame 2 Output: Motion [7]

X,y-displacement
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Summary

A Guided Filter is an efficient, edge-preserving, linear filter.

* The guided filter can be applied to various computer vision applications
(edge-preserving smoothing, alpha matting, flash/no-flash denoising, ... )

* By extending the concept of guided image filtering to video these applications
are also possible for videos!

 Cost-Volume Filtering is a general concept that can be used efficiently to
solve a variety of label-based optimization problems, e.g., segmentation.

* In cost-volume filtering the guided filter is used to implement a smoothness
assumption and, hence, improve the spatial and temporal coherence.
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Sample Exam Questions

 What are the two main assumptions used in Guided Filtering?
 Why can the Guided Filter be implemented efficiently?

 How can the Guided Image Filter be extended for videos? Why / when would
you prefer this extension over a per-frame filtering?

« Explain the differences between the Guided Filter and the Bilateral Filter and
their relative advantages and disadvantages.

» List at least three applications of the Guided Filter.
» Explain the basic Cost-Volume Filtering pipeline and discuss one application.

 What is the role of the Guided Filter in Cost-Volume Filtering?
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LI Exercise 1: Interactive Segmentation

WIEN u

What is a binned color histogram?

* Color histogram: Count the number of pixels for each color.

s R
- ©
I -

255 >0 —

combination of all R,G,B values

\

>colors

255 *255*255 colors

* Binning: Merge colors, e.g., 5 bins per channel. Count pixels for each bin.
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combination of bins
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> colors

5*5*5 bins
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