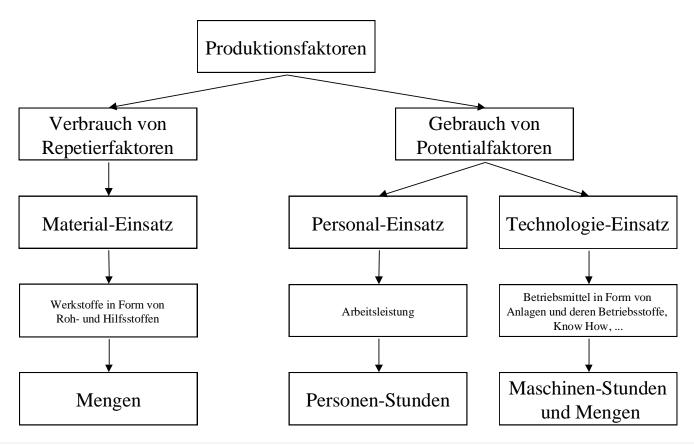
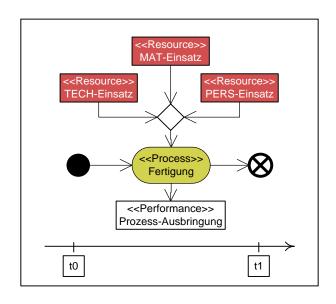
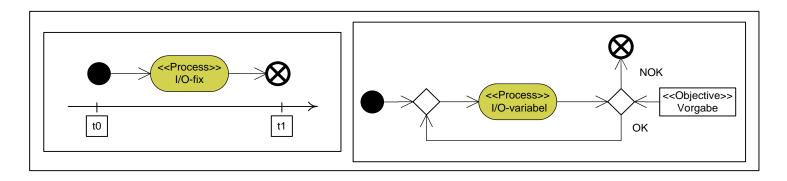

Agenda


- Ökonomische Begriffe und Konzepte
- Klassische Kostenrechnung: Kostenartenrechnung
- Klassische Kostenrechnung: Kostenstellenrechnung
- Klassische Kostenrechnung: Kostenträgerrechnung
- Prozessorientierte Kostenrechnung
- Integrierte Kostenrechnung
- Plankostenrechnung
- Literatur

Produktionsfaktoren


Unterscheidung der Ressourcen: Produktionsfaktoren und deren Maßgrößen

Modellierung der REAL-Ressourcen-Transformation


Aus ökonomisch-rationalen Überlegungen gilt es die zwischen den Ressourcen herrschende Limitationalitäten zu berücksichtigen. Eine Mehrleistung lässt sich nur erzielen, wenn alle Faktoren in den jeweiligen Verhältnissen, d.h. linear erhöht werden. → linear-limitationales Input/Output-Modell

Input/Output-Prozesse

Modellierung der REAL-Ressourcen-Transformation: I/O-fix vs. I/O-variabel

- I/O-fixe Prozesse: "einmaliger Prozess"
- I/O-variable Prozesse: "laufender Prozess" Darstellung als "Prozessschleife"

Generische Produktionsfunktion

Konstruktion als 3-Ressourcen-Modell

Produktionsfunktion: Input → Output

$$x(r_M, r_P, r_T) = f(r_M, r_P, r_T)$$

x(r) gibt die erbrachte Leistung x in Abhängigkeit vom Einsatz der Material- r_M , Personal- r_P und Technologiefaktoren r_T an.

Faktoreinsatzfunktion: Output → Input

$$r_i(x) = f^{-1}(x)$$

 $r_i(x)$ wird durch Inversion der Produktionsfunktion abgeleitet und gibt den Einsatz des Produktionsfaktors i r_i in Abhängigkeit von der Ausbringung x an.

Einsatzfunktion

Lineare Einsatzfunktion von Produktionsfaktor i:

$$r_i = a_i \cdot x$$

Spezialfall: Gutenberg-Produktionsfunktion (1951)

	wobei	
$r_i = a_i(d_i) \cdot x$	r_i	Periodeneinsatz von Faktor i
	a_i	Produktionskoeffizient von i
	X	Periodenausbringung
sodass	$a_i(d_i)$	Ökonomisch (ME/ZE) vs. technische (TLE/ZE)
		Verbrauchsfunktion
	d_i	Intensität: ME/ZE vs. TLE/ZE
r_i	TLE	Technische Leistungseinheit
$\frac{r_i}{x} = a_i(d_i)$	ZE	Zeiteinheit
X	ME	Mengeneinheit

Leontief-Produktionsfunktion (1/2)

linear-limitationales I/O-Modell: Konstruktion aus der generischen Produktionsfunktion

Partielle Ausbringungsfunktionen für die MAT-, PERS- und TECH-Ressourcen:

$$x(r_M) = a_M^{-1} \cdot r_M = \frac{r_M}{a_M}$$
$$x(r_P) = a_P^{-1} \cdot r_P = \frac{r_P}{a_P}$$
$$x(r_T) = a_T^{-1} \cdot r_T = \frac{r_T}{a_T}$$

wobei

a_M^{-1}	MAT-Produktivität
a_P^{-1}	PERS-Produktivität
a_T^{-1}	TECH-Produktivität

Leontief-Produktionsfunktion (2/2)

Zusammenführung der ressourcenspezifischen Output-Funktionen über die min-Funktion, der zufolge das Minimum der drei Funktionsargumente das Output-Niveau bestimmt

$$x(r_M, r_P, r_T) = \min(x(r_M); x(r_P); x(r_T))$$

$$= \min\left(\frac{r_M}{a_M}; \frac{r_P}{a_P}; \frac{r_T}{a_T}\right)$$

$$= \min\left(\frac{1}{a_M} \cdot r_M; \frac{1}{a_P} \cdot r_P; \frac{1}{a_T} \cdot r_T\right)$$

$$= \min\left(\frac{1}{a_M} \cdot r_M; d_P \cdot r_P; d_T \cdot r_T\right)$$

$$= d_T \cdot \min\left(\frac{1}{a_M \cdot d_T} \cdot r_M; \frac{1}{c_{PT}} \cdot r_P; r_T\right)$$

$$= 65 \cdot \min\left(\frac{r_M}{1 \cdot 65}; \frac{r_P}{2}; r_T\right)$$

wobei

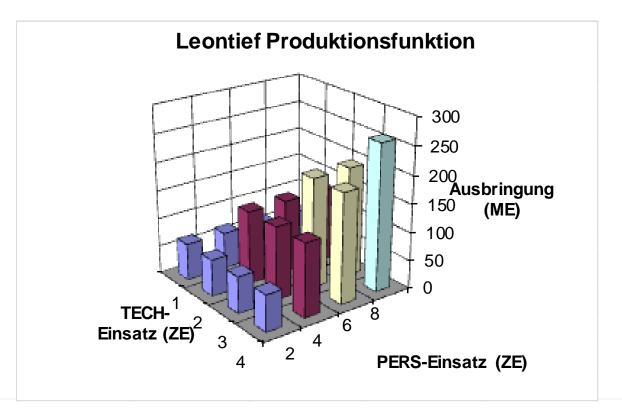
d_i Intensität von Faktor i

 c_{PT} Faktoreinsatzverhältnis von PERS zu TECH, für den gilt:

$$\frac{r_P}{r_T} = c_{PT}$$

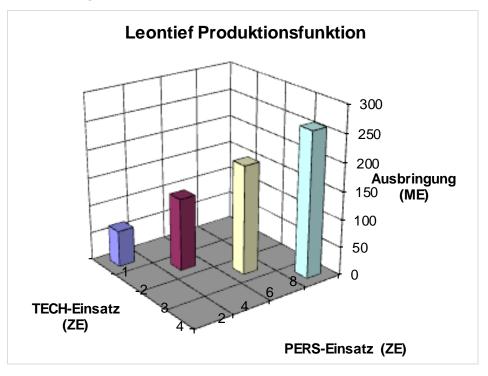
Guss-Prozess (1/3)

Leontief-Produktionsfunktion:
$$x(r_M, r_P, r_T) = 65 \cdot \min\left(\frac{r_M}{1.65}; \frac{r_P}{2}; r_T\right)$$


r _{T1} \ r _P	2	4	6	8	
1	65	65	65	65	
2	65	130	130	130	
3	65	130	195	195	
4	65	130	195	260	
					• • •

Guss-Prozess (2/3)

Leontief-Produktionsfunktion: $x(r_M, r_P, r_T) = 65 \cdot \min\left(\frac{r_M}{1.65}; \frac{r_P}{2}; r_T\right)$



Guss-Prozess (3/3)

Effiziente Potenzialfaktorkombination durch Elimination aller ökonomisch ineffizienter Kombinationen, welche Ressourcenverschwendungen darstellen:

r _{T1} \ r _P	2	4	6	8	
1	65				
2		130			
3			195		
4				260	

Prozesskostenmodell: Konstruktion

Partielle Prozesskosten (variable ressourcenspezifische Prozesskosten):

$$\kappa_{vi,j} = r_{i,j} \cdot q_{i,j}$$

wobei

$\kappa_{vi,i}$	variable Prozesskosten der Ressource i im Prozess j
$r_{i,i}$	Einsatz der Ressource i im Prozess j (Faktoreinsatz)
$q_{i,j}$	Preis der Ressource i (Faktorpreis) im Prozess j

Variable Prozesskosten:

$$\kappa_{v,j} = \sum_{i} \kappa_{vi,j}$$
$$= \kappa_{M,j} + \kappa_{vP,j} + \kappa_{vT,j}$$

wobei

$K_{v,i}$	variablen Prozesskosten im Prozess j
$\kappa_{M,i}$	MAT-Prozesskosten im Prozess j
$\kappa_{vP,i}$	variable PERS-Prozesskosten im Prozess j
$K_{\cdot,T}$	variable TECH-Prozesskosten im Prozess i

Prozesskostenmodell: Kalibrierung (1/2)

Partielle Prozesskosten (variable ressourcenspezifische Prozesskosten):

$$\kappa_{M,Guss} = r_{M,Guss} \cdot q_{M,Guss}$$

= 389,89 \cdot 1,5448 = 602,32

Variable Prozesskosten:

$$\kappa_{v,Guss} = \kappa_{M,Guss} + \kappa_{vP,Guss} + \kappa_{vT,Guss}$$

$$= 602,32 + 90,36 + 68,44 = 761,02$$

Prozesskostenmodell: Kalibrierung (2/2)

		Guss (=G)	Press (=P)	Zug (=Z)
MAT-Einsatz	$r_{M,j}$	389,89	543,18	217,08
PERS-Einsatz	$r_{vP,j}$	12,00	3,50	3,50
TECH-Einsatz	$r_{vT,j}$	6,00	3,50	6,90
MAT-Faktorpreis	$q_{M,j}$	1,5448	1,0769	1,3422
PERS-Faktorpreis	$q_{vP,j}$	7,5213	7,5213	7,5213
TECH-Faktorpreis	$q_{vT,j}$	11,4068	11,4068	11,4068
MAT-Prozesskosten	$k_{M,j}$	602,32	584,96	291,36
PERS-Prozesskosten	$k_{vP,j}$	90,26	26,32	26,32
TECH-Prozesskosten	$k_{vT,j}$	68,44	39,92	78,71
var. Prozesskosten	$k_{v,j}$	761,02	651,21	396,39

Bestimmung der Faktorpreise:

- MAT-Ressource und Fremdleistungen werden vielfach marktmäßig bestimmt;
- PERS- und TECH-Ressourcen werden zumeist historisch bestimmt.

Prozesskostenmodell: Aggregation (1/2)

Partielle Periodenkosten (mittels zeitlicher Aggregation – Längsschnittaggregation):

$$K_{vi,j} = \kappa_{vi,j} \cdot w_j \qquad \qquad K_{vi,j} \qquad \text{variable Periodenkosten der Ressource i im Prozess j} \\ w_j \qquad \qquad \text{Wiederholungen des Prozesses j}$$

Variable Periodenkosten:

$$K_{v,j} = \sum_i K_{vi,j}$$
 wobei $K_{v,j} = K_{vi,j} + K_{vi,j}$ variable Periodenkosten im Prozess j

Gesamte variable Periodenkosten (mittels Querschnittaggregation):

$$K_{v} = \sum_{j} K_{v,j}$$
 wobei K_{v} gesamten variablen Periodenkosten

Prozesskostenmodell: Aggregation (2/2)

		Guss (=G)	Press (=P)	Zug (=Z)	Ges	amt
MAT-Prozesskosten	$k_{M,j}$	602,32	584,96	291,36		
PERS-Prozesskosten	$k_{vP,j}$	90,26	26,32	26,32		
TECH-Prozesskosten	$k_{vT,j}$	68,44	39,92	78,71		
var. Prozesskosten	$k_{v,j}$	761,02	651,21	396,39		
Wiederholungen	W_j	228	125	68		
MAT-Periodenkosten	$K_{M,j}$	137.329	73.120	19.812	K_{M}	230.261
var. PERS-Periodenkosten	$K_{vP,j}$	20.578	3.291	1.790	K_{vP}	25.659
var. TECH-Periodenkosten	$K_{vT,j}$	15.604	4.990	5.352	K_{vT}	25.947
var. Periodenkosten	$K_{v,j}$	173.512	81.401	26.954	K_{v}	281.867

$$K_{M,Guss} = \kappa_{M,Guss} \cdot w_{M,Guss} = 602,32 \cdot 228 \neq 137.329$$

$$K_{v,Guss} = K_{M,Guss} + K_{vP,Guss} + K_{vT,Guss} = 137.329 + 20.578 + 15.604 = 173.512$$

$$K_v = K_{v,Guss} + K_{v,Press} + K_{v,Zug} = 173.512 + 81.401 + 26.954 \neq 281.867$$

Prozesskostenfunktion: Ausbringungsbezogene Kostenfunktion (1/3)

$$K_{j}(X_{j}) = K_{f,j} + k_{v,j} \cdot X_{j}$$
 wobei
$$K_{j}$$
 gesamte PeriodenKosten des Prozesses j periodische Ausbringung des Prozesses j fixe Periodenkosten des Prozesses j variable Einheitskosten des Prozesses j

$$k_{v,j} = rac{\kappa_{v,j}}{x_j}$$
 wobei $\kappa_{v,j}$ variable Prozesskosten des Prozesses j Losgröße des Prozesses j

Berechnung von prozessbezogenen Gesamtkosten über die Betrachtungsperiode für unterschiedliche Ausbringungsmengen möglich. Setzt man für X_j die tatsächlich erbrachte Ist-Ausbringung ein, so liefert die ausbringungsbezogene Kostenfunktion die Istkosten.

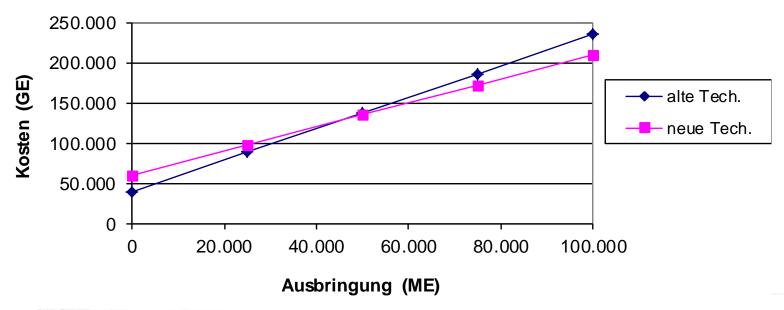
Prozesskostenfunktion: Ausbringungsbezogene Kostenfunktion (2/3)

		Guss (=G)	Press (=P)	Zug (=Z)
var. Prozesskosten	$k_{v,j}$	761,02	651,21	396,39
fixe Periodenkosten	$K_{f,j}$	42.829	26.458	13.266
Losgröße	X_j	389,9	543,2	217,1
var. Einheitskosten	$k_{v,j}$	1,9519	1,1989	1,8260

$$k_{v,Guss} = \frac{\kappa_{v,Guss}}{x_{Guss}} = \frac{761,02}{389,9} = 1,9519$$

$$K_{Guss}(X_{Guss}) = K_{f,Guss} + k_{v,Guss} \cdot X_{Guss} = 42.829 + 1,9519 \cdot X_{Guss}$$

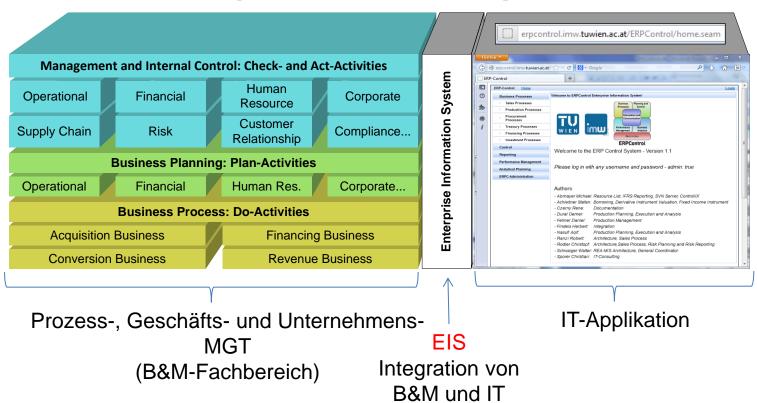
Berechnung der Fixkosten des Prozesses j $(K_{f,j})$ aus den beiden Potenzialfaktoren (PERS und TECH) – einfachster Fall: Division der periodischen Fixkosten durch die Anzahl der periodischen Prozessdurchführungen.



Prozesskostenfunktion: Ausbringungsbezogene Kostenfunktion (3/3)

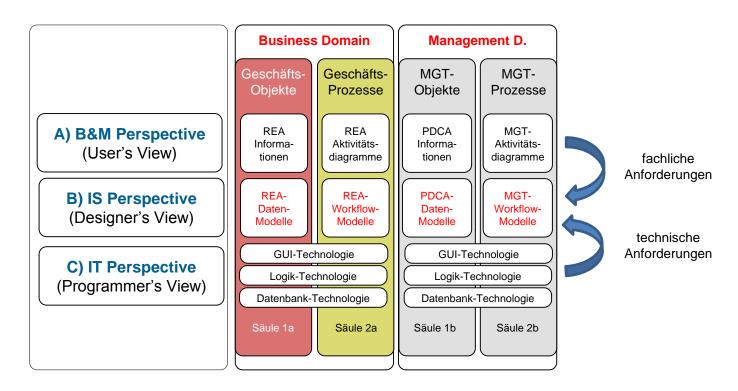
Ökonomische Bewertung - Vergleich der Kostenfunktionen der alten und der neuen Technologie:

Kostenfunktion


Agenda

- Ökonomische Begriffe und Konzepte
- Klassische Kostenrechnung: Kostenartenrechnung
- Klassische Kostenrechnung: Kostenstellenrechnung
- Klassische Kostenrechnung: Kostenträgerrechnung
- Prozessorientierte Kostenrechnung
- Integrierte Kostenrechnung
- Plankostenrechnung
- Literatur

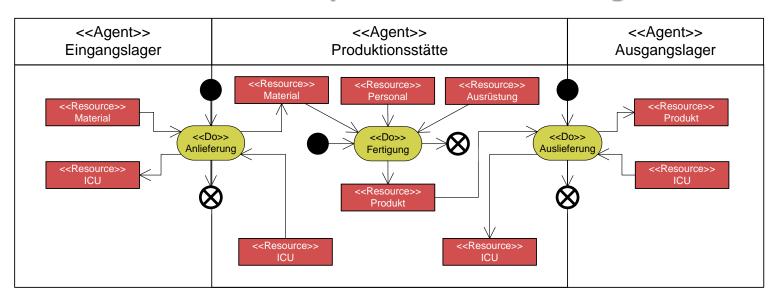
Enterprise Information System



ERP-Control ist ein Prototyp einer semantisch integrierten EIS-Applikation

Betrachtung im B&M-semantischen Integrationsrahmen

 Umsetzung des Grundsatzes "IT follows Business and Management": Betrachtung der Geschäfts- und Managementbereiche aus 3 Perspektiven


Produktionsprozess: Beschreibung

- Ein Produktionsprozess besteht aus drei Arbeitsschritten:
 - 1. Schritt: Die Materialien werden vom Eingangslager in die Produktionsstätte geliefert.
 - 2. Schritt: In der Produktionsstätte wird der Fertigungsprozess durchgeführt.
 - 3. Schritt: Die erstellten Produkte werden in das Ausgangslager geliefert.
- Aufgabe: Modellieren Sie den Produktionsprozess
 - Welches Diagramm ist zu verwenden?
 - Welche Ereignisse finden statt?
 - Welche Ressourcen sind involviert?
 - Welche Agenten sind beteiligt?

Produktionsprozess: Modellierung

- Modellierung des Produktionsprozesses: REA-Aktivitätsdiagramm
 - Modellierung der drei Agenten (Eingangslager, Produktionsstätte, Ausgangslager),
 - Modellierung der drei Aktivitäten (Anlieferung, Fertigung und Auslieferung),
 - Modellierung der Ressourcenflüsse (Material, Produkt, und Internal Currency Unit) und der Einsätze der Potenzialfaktoren (Personal und Ausrüstung)

Fertigungsprozess: Produktionstheoretische Modellierung (1/2)

		Guss (=G)	Press (=P)	Zug (=Z)
Perioden-Ausbringung	X_{j}	88.896	67.898	14.761
Intensität (ökonomische)	d _j			
I/O-variabel		65,0	155,2	
I/O-fix				31,5
Dauer	$r_{T,j}$			
I/O-variabel		6	3,5	
I/O-fix				6,9
Losgrößen	x _j			
I/O-variabel		389,9	543,2	
I/O-fix				217,1
Wiederholungen	W_j	228	125	68

- Fertigungsprozesse werden aus produktionstheoretischer Sicht mit dem Input/Output-Modell betrachtet
- Industrielle Fertigungsprozesse werden mit limitationalen Produktionsfunktionen modelliert, wenn sie keine Substitution zwischen den Potenzialfaktoren Personal und Technologie (Ausrüstung) zulassen

Fertigungsprozess: Produktionstheoretische Modellierung (2/2)

$$X_{Zug}(R_{M,Zug}, R_{P,Zug}, R_{T,Zug}) = d_{T,Zug} \cdot \min\left(\frac{r_{P,Zug}}{c_{PT,Zug}}; r_{T,Zug}\right) \cdot w_{Zug}$$

$$= 31.5 \cdot \min\left(\frac{3.45}{0.5}; 6.9\right) \cdot w_{Zug}$$

$$x_{Zug} = 217.1$$

wobei	
$C_{PT,j}$	Faktoreinsatzverhältnis zwischen Personal und Technologie im Prozess j
$d_{i,i}$	Prozess-Intensität (ME/ZE) der Ressource i im Prozess j
,	(Produktionsgeschwindigkeit bzw. Produktivität)
$R_{i,j}$	Periodischer Einsatz (in ZE) der Ressource i im Prozess j
$r_{i,j}$	Dauer (Maschinen- oder Betriebsstunden) der Ressource i im Prozess j
3	(PERS- bzw. TECH-Einsatz pro Prozess-Durchführung)
w_i	Wiederholungen des Prozesses j
X_i	Periodische Ausbringung (Output in ME) des Prozesses j
X_{j}	Losgröße (Output in ME) des Prozesses j

Zug-Prozess: Input/Output-fixer Prozess – limitationale Produktionsfunktion

Fertigungsprozess: Mehrstufige Modellierung im ECSI-Standard

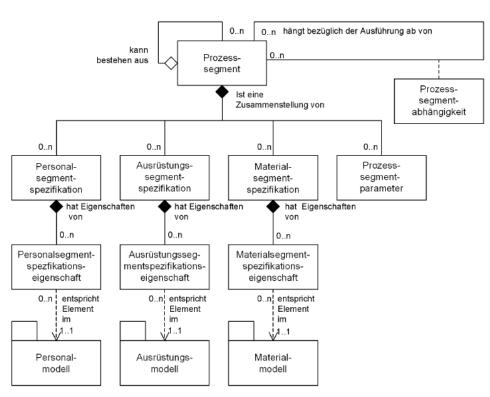


Bild 17 - Prozesssegmentmodell

 Ein Prozesssegment umfasst die notwendigen Klassen von Personal, Ausrüstung und benötigtem Material und/oder es legt spezifische Ressourcen fest, wie erforderliche Ausrüstungen. Ein Prozesssegment darf auch die Anzahl der benötigten Ressourcen definieren. [ECSI08, S. 421

Fertigungsprozess: 3-Stufiges Prozessdatenmodell

- Prozessdatenmodell: 3-stufige Modellierung
 - 1. Stufe: Spezifikation von Prozessperformancedaten anhand der Input/Output-Variabilität, der Prozessdauer und der Produktionsintensität (Produktions-geschwindigkeit, Produktivität)
 - 2. Stufe: Spezifikation der im Fertigungsprozess benötigten Ressourcenkategorien inklusive Produktionskoeffizienten
 - 3. Stufe: Spezifikation der im Fertigungsprozess benötigten Ressourceneigenschaften (properties)
- Vorteile der mehrstufigen Modellierung
 - Erweiterbarkeit hinsichtlich zusätzlicher Ressourcenkategorien und -eigenschaften
 - Verfügbarkeit unterschiedlich granularer Informationen für die Planung

Fertigungsprozess: 1) Spezifikation der Prozessperformancedaten

	ProcessSegment							
id	description	duration	durUoM	processIO				
1	Pull process	6,9	machineH/run	fixed				
2	Press process	3,5	machineH/run	variable				
3	Mold process	6,0	machineH/run	variable				

	ProcessParameters						
id	description	value	UoM	procSegID			
1	Production intensity	31,4638	kg/machineH	1			
2	Production intensity	65,0000	kg/machineH	2			
3	Production intensity	155,2000	kg/machineH	3			

- ProcessSegment-Klasse enthält Input/Output-Spezifikation (processIO), wobei
 - I/O-fixe (fixed) und
 - I/O-variable (variable) Fertigungsprozesse unterschieden werden
- Zug-Prozess ist I/O-fix, zumal die Prozessdauer (duration) eine fixe Größe ist
- ProcessParameters-Klasse enthält die Produktionsintensität (production intensity)

Fertigungsprozess: 2) Spezifikation der Ressourcenkategorien

	EquipmentSegmentSpecification						
id	description	prodCoeff	coeffUoM	procSegID			
1	Pull machine	0,0318	machineH/kg	1			
2	Mold machine	0,0154	machineH/kg	3			
3	Press machine	0,0064	machineH/kg	2			

	PersonnelSegmentSpecification						
id	description	inputRatio	ratioUoM	procSegID			
1	Pull worker	0,5	workH/machH	1			

	MaterialSegmentSpecification					
id	description	prodCoeff	coeffUoM	procSegID		
1	Paraffin material	0,9960	kg/kg	1		
2	Wick material	0,0040	kg/kg	1		

- Equipment-, Personnel- und MaterialSegmentSpecification-Klassen benennen die im Fertigungsprozess benötigen Ressourcenkategorien
- Produktionskoeffizienten spezifizieren den ressourcenbezogenen Einsatz pro erstellter Leistungseinheit
- Limitationalität der Potenzialfaktoren: Faktoreinsatzverhältnis (inputRatio)

Fertigungsprozess: 3) Spezifikation der Ressourceneigenschaften

	EquipmentSpecificationProperty					
id	description	property	propValue	equSegSpecID	equID	
1	Pull machine	capability	pull	1	1	

	PersonnelSpecificationProperty						
id	description	property	propValue	persSegSpecID	persID		
1	Pull worker	competence	pull	1	1		

	MaterialSpecificationProperty						
id	description	property	propValue	matSegSpecID	matID		
1	Paraffin material	firmness	medium	1	1		
2	Wick material	thickness	thick	2	2		

- Equipment-, Personnel- und MaterialSpecificationProperty-Klassen benennen die Ressourceneigenschaften (property), welche zur Fertigung von konkreten Produkten benötigt werden
- Weitere enthalten sie die Verknüpfungen zu den konkreten Ressourcen, womit die Prozess- mit den Ressourcen-Datenmodellen verbunden werden

Fertigungsprozess: Ressourcendatenmodelle für Potenzialfaktoren

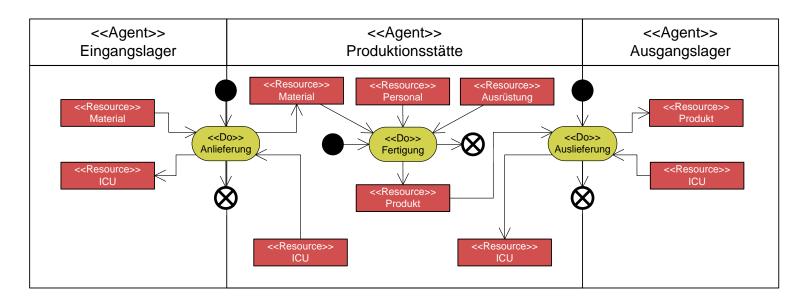
	Equipment						
id	description	property	propValue	pricePerUnit	priceUoM		
1	Pull machine	capability	pull	11,4068	EUR/machineH		
2	Mold machine	capability	mold	11,4068	EUR/machineH		
3	Press machine	capability	press	11,4068	EUR/machineH		

	Personnel						
id	description	property	propValue	pricePerUnit	priceUoM		
1	Peter Meter	competence	pull	7,5213	EUR/workingH		
2	Sabine Mueller	competence	press	7,5213	EUR/workingH		
3	Han Solo	competence	mold	7,5213	EUR/workingH		

- Potenzialressourcen-Datenmodelle spezifizieren Eigenschaften und Preise der Potenzialfaktoren Personal (personnel) und Ausrüstung (equipment)
- Eigenschaften werden über das Prozessdatenmodell angefordert
- Ressourcenpreise werden zur Kostenkalkulation benötigt
- Kalibrierung der Ressourcenpreise erfordert eine ressourcenbasierte Kostenrechnung

Fertigungsprozess: Ressourcendatenmodelle für Repetierfaktoren

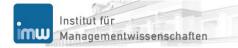
	Material						
id	description	property	propValue	pricePerUnit	priceUoM	actualStock	stockUoM
1	Paraffin	firmness	medium	1,2000	EUR/kg	512,40	kg
2	Wick	thickness	thick	33,2600	EUR/kg	6,81	kg
3	Color	color	red	24,1500	EUR/kg	13,76	kg
4	Container	size	large	0,5177	EUR/kg	189,58	kg
5	Pull Candle	size	regular	1,8260	EUR/kg	7.579,25	kg


	Financial						
id	description	property	propValue	pricePerUnit	priceUoM	actualStock	stockUoM
1	Cash	currency	EUR	1,0000	EUR	3.945,85	EUR
2	ICU	currency	EUR	1,0000	EUR	0,00	EUR

- Repetierressourcen-Datenmodelle spezifizieren Eigenschaften und Preise des Repetierfaktors Material (material)
- Finanzressourcen (financial) werden zur REA-konformen Verbuchung der im Produktionsprozesses fließenden Materialen und Produkte benötigt

Produktionsprozess: Tausch- und Transformationsprozesse

- Kategorisierung der drei Arbeitsschritte des Produktionsprozesses:
 - 1. Schritt: Anlieferung der Materialien = REA-Tauschprozess
 - 2. Schritt: Durchführung des Fertigungsprozesses = REA-Transformationsprozess
 - 3. Schritt: Auslieferung der Produkte = REA-Tauschprozess



Produktionsprozess: Involvierte Agenten

	Agent				
id	description				
1	Entry warehouse				
2	Exit warehouse				
3	Production facility				

- Agent-Klasse spezifiziert die 3 Agenten im Produktionsprozess involvierten Agenten:
 - Eingangslager (entry warehouse)
 - Ausgangslager (exit warehouse)
 - Produktionsstätte (production facility)

Produktionsprozess: 1) Anlieferung der Materialien (1/2)

Event					
id	description	timestamp	fromAgent	toAgent	dualEvent
1	EntryWarehouseToProductionFacility	30.04.20XX 08:30	1	3	2
2	ProductionFacilityToEntryWarehouse	30.04.20XX 08:30	3	1	1

- Materialanlieferung: Am 30.04. um 08.30 Uhr werden die im Fertigungs-prozess benötigten Materialien in Form von Paraffin (paraffin) und Docht (wick) vom Eingangslager (agentID = 1) in die Produktionsstätte (agentID = 3) geliefert
- REA-Tauschprozess: Der Materialanlieferung steht ein gleichwertiger
 Finanzressourcenfluss gegenüber (dualEvent = 2), welcher von der Produktionsstätte
 (agentID = 3) ins Eingangslager (agentID = 1) fließt
- Beide Ressourcenflüsse in werden in der Event-Klasse aufgezeichnet

Produktionsprozess: 1) Anlieferung der Materialien (2/2)

	MaterialFlow						
id	quantity	value	value matID				
1	216,22	259,47	1	1			
2	0,88	29,16	2	1			

FinancialFlow					
id	quantity	value	finID	eventID	
1	288,63	288,63	2	2	

- Materialanlieferung: In der MaterialFlow-Klasse werden die beiden für den Zug-Fertigungsprozess angelieferte Ressourcen in Form von Paraffin (matID = 1) und Docht (matID = 2) mengen- (quantity) und wertmäßig (value) erfasst
- Finanzressourcenfluss: In der FinancialFlow-Klasse werden die Verrechnungspreise für die beiden angelieferten Materialen anhand der Internal Currency Unit (finID = 2) mengen- und wertmäßig erfasst
- Menge und Wert sind bei der ICU aufgrund des Preises von 1 ident

Produktionsprozess: 2) Durchführung der Fertigung (1/2)

SegmentResponse						
id	startTime		endTime	segReqID		
1	30.04.20XX	09:00:00	30.04.20XX 15:54:00	1		

SegmentRequirement					
id	startTimeS	cheduled	endTimeSo	procSegID	
1	30.04.20XX	09:00:00	30.04.20XX	15:54:00	1

- Durchführung des Fertigungsprozesses ist ein REA-Transformationsprozess, wobei aus Potenzial- und Repetierfaktoren Produkte erzeugt werden
- Produktionsleitsystem: Zeitliche Aufzeichnung der Durchführung des Fertigungsprozesses erfolgt in der SegmentResponse-Klasse
- Aufgezeichnete SegmentResponse-Instanz bezieht sich auf einen offenen Auftrag, welcher zeitlich vor der Durchführung in der Produktionsplanung geplant und in der SegmentRequirement-Klasse angelegt wurde

Produktionsprozess: 2) Durchführung der Fertigung (2/2)

	GoodsProducedActual					
id	id description matID producedQuantity segRespID					
1	Pull candle	5	217,10	1		

	EquipmentUsedActual						
id	id description equID usedQuantity segRespID						
1	Pull machine	1	6,90	1			

	PersonnelUsedActual						
id description persID usedQuantity segResp				segRespID			
1	Peter Meter	1	3,45	1			

RawMaterialConsumedActual						
id description matID consumedQuantity segResp						
1	Paraffin	1	216,22	1		
2	Wick	2	0,88	1		

- Produktionsleitsystem: Mengenaufzeichnung von Leistungen und Einsätzen
 - Ausbringung (Output) in der GoodsProducedActual-Klasse
 - Potenzialfaktor-Einsätze (Input) in EquipmentUsedActual und PersonnelUsedActual
 - Repetierfaktor-Einsätze (Input) in RawMaterialConsumedActual

Produktionsprozess: 3) Auslieferung der Produkte (1/2)

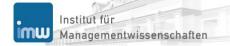
	Event								
id	description	timestamp	fromAgent	toAgent	dualEvent				
1	EntryWarehouseToProductionFacility	30.04.20XX 08:30	1	3	2				
2	ProductionFacilityToEntryWarehouse	30.04.20XX 08:30	3	1	1				
3	ProductionFacilityToExitWarehouse	30.04.20XX 16:00	3	2	4				
4	ExitWarehouseToProductionFacility	30.04.20XX 16:00	2	3	3				

- Produktauslieferung: Nach Beendigung der Fertigung werden am 30.04. um 16.00 Uhr die erzeugten Produkte in Form von Zugkerzen (pull candle) von der Produktionsstätte (agentID = 3) in das Ausgangslager (agentID = 2) geliefert
- REA-Tauschprozess: Der Produktauslieferung steht ein gleichwertiger
 Finanzressourcenfluss gegenüber (dualEvent = 4), welcher vom Ausgangslager
 (agentID = 2) zur Produktionsstätte (agentID = 3) fließt

Produktionsprozess: 3) Auslieferung der Produkte (2/2)

MaterialFlow						
id quantity value matID event						
1	216,22	259,47	1	1		
2	0,88	29,16	2	1		
3	217,10	396,43	5	3		

FinancialFlow						
id quantity value finID				eventID		
1	288,63	288,63	2	2		
2	396,43	396,43	2	4		


- Produktauslieferung: In der MaterialFlow-Klasse werden die ausgelieferten Zugkerzen (matID = 5) mengen- und wertmäßig erfasst
- Finanzressourcenfluss: In der FinancialFlow-Klasse werden die Verrechnungspreise für die ausgelieferten Zugkerzen anhand der Internal Currency Unit (finID = 2) mengenund wertmäßig erfasst
- Produktionsstätte erzielt einen ICU-Gewinn, da ICU-Zufluss > ICU-Abfluss

Agenda

- Ökonomische Begriffe und Konzepte
- Klassische Kostenrechnung: Kostenartenrechnung
- Klassische Kostenrechnung: Kostenstellenrechnung
- Klassische Kostenrechnung: Kostenträgerrechnung
- Prozessorientierte Kostenrechnung
- Integrierte Kostenrechnung
- Plankostenrechnung
- Literatur

Begriffserklärungen

Planungsperiode:

am Anfang: Plankosten

am Ende: Istkosten

- Dynamische Betrachtung, da man die Kosten im Zeitablauf betrachtet
- Sollkosten: kalibrierte Plan-Kostenfunktion, welche an der Stelle der Istleistung ausgewertet wird
- Vergleich von Soll- und Istkosten: Realisationskontrolle bzw. Soll/Ist-Vergleich
- Ursachen für Abweichungen beim Soll/Ist-Vergleich:
 - Ausführungsursache
 - Planungsursache
 - Erfassungsursache

Analytische Gemeinkosten-Planung (1/3)

Konstruktion und Kalibrierung der GK-Kostenfunktion

- 1. Schritt der analytischen Planung: Spezifikation des zur Planung verwendeten Modells
- Modellkonstruktion (hier: ausbringungsbezogene Gemeinkosten-Kostenfunktion):

$$K_{G,S}(X_S) = k_{vG,S} \cdot X_S + K_{f,S}$$

$$= (k_{vPG,S} + k_{vTG,S}) \cdot X_S + K_{f,S}$$

$$= (a_{P,S} \cdot q_{P,S} + a_{T,S} \cdot q_{T,S}) \cdot X_S + K_{f,S}$$

wobei

 $K_{G,s}(X_s)$ GK der KOST s in Abhängigkeit von X_s

 X_s Ausbringung der KOST s $k_{vG.s}$ variabler GKS der KOST s

 $k_{vPG,s}$ variable PERS-GKS der KOST s $k_{vTG,s}$ variable TECH-GKS der KOST s

 a_{Ps} PERS-Produktionskoeffizient der KOST s

 q_{Ps} PERS-Faktorpreis der KOST s

 a_{Ts} TECH-Produktionskoeffizient der KOST s

 q_{Ts} TECH-Faktorpreis der KOST s

Analytische Gemeinkosten-Planung (2/3)

Konstruktion und Kalibrierung der GK-Kostenfunktion

2. Schritt der analytischen Planung: Kalibrierung der Modellgleichung (exemplarische Darstellung für den variablen GKS $k_{vGK,s}$):

Naive Kalibrierung – Extrapolation von historischen Werten:

$$k_{vG,s}^{Plan} = \frac{K_{vG,s}^{Plan}}{X_s^{Plan}} = \frac{K_{vG,s}^{Ist}}{X_s^{Ist}}$$

Ausbringungsbezogene GK-Kostenfunktion für die Fertigungskostenstelle:

$$K_{G,F}^{Plan}(X_F^{Plan}) = k_{vG,F}^{Plan} \cdot X_F^{Plan} + K_{f,F}^{Plan}$$
 mit $k_{vG,F}^{Plan} = \frac{K_{vG,F}^{Plan}}{X_F^{Plan}} = \frac{K_{vG,F}^{Plan}}{X_F^{Plan}} = \frac{K_{vG,F}^{Plan}}{X_F^{Ist}} = 0,3008$

Analytische Gemeinkosten-Planung (3/3)

Konstruktion und Kalibrierung der GK-Kostenfunktion

2. Schritt der analytischen Planung: Kalibrierung der Modellgleichung (exemplarische Darstellung für den variablen GKS $k_{vGK,s}$):

GKS auf Basis variabler Kosten:

	Material-KOST		Fertigung-KOST		Produktion	
Perioden-Ausbringung	$X_{\!F}$	171.555	$X_{\!F}$	171.555	X_{F}	171.555
period. f.KOST-GK	$K_{fG,M}$	16.801	$K_{fG,F}$	82.553	$K_{f,FM}$	99.354
period. v.KOST-GK	$K_{vG,M}$	33.438	$K_{vG,F}$	51.607	$K_{vG,FM}$	85.046
period. KOST-GK	$K_{G,M}$	50.239	$K_{G,F}$	134.160	$K_{G,FM}$	184.400
f.KOST-GKS	$k_{fG,M}$	0,0979	$k_{fG,F}$	0,4812	$k_{f,FM}$	0,5791
v.KOST-GKS	$k_{vG,M}$	0,1949	$k_{vG,F}$	0,3008	$k_{vG,FM}$	0,4957
KOST-GKS	$k_{G,M}$	0,2928	$k_{G,F}$	0,7820	$k_{G,FM}$	1,0749

Verbrauchsabweichung (1/2)

Die Kostenplanung wird am Anfang der Planungsperiode durchgeführt. Während der Planungsperiode werden die Istkosten erfasst, sodass sie am Periodenende bekannt sind. Durch den Vergleich der Plan- und der Istkosten werden Abweichungen bestimmt.

Beim Vergleich der Sollkosten K^{Soll} (Plankostenfunktion ausgewertet bei der Istbeschäftigung) mit den Istkosten wird die Verbrauchsabweichung VA bestimmt.

Soll-Kostenfunktion:
$$K^{Soll}(X^{Ist}) = K_v^{Soll} + K_f^{Plan}$$

= $k_v^{Plan} \cdot X^{Ist} + K_f^{Plan}$

Verbrauchsabweichung:
$$VA = K_v^{Ist} - K_v^{Soll}$$
 $= K_v^{Ist} - k_v^{Plan} \cdot X^{Ist}$



Verbrauchsabweichung (2/2)

Exemplarische Darstellung der Berechnung der Verbrauchsabweichung der Fertigungskostenstelle:

Kosten- kategorie	KOST	Plan-EKS/-GKS bzw. Plan- Fixkosten der Kostenfunktion		Plan-Beschäf- tigung X ^{Plan}	Plan-Kosten K ^{Plan}	Ist-Kosten K ^{Ist}	Ist-Beschäf- tigung X ^{lst}	Soll-Kosten K ^{Soll}	Verbauchsab- weichung = VA = K ^{Ist} - K ^{Soll}	
v.FertGK	Fert.	$k_{vG,F}$	0,3008	173.449	52.177	53.784	170.000	51.139	2.645	
f.FertGK	Fert.	$k_{fG,F}$	0,4812		82.553	82.553		82.553		
FertGK		$k_{G,F}$	0,7820		134.730	136.337		133.693		

$$K_F^{Soll}(X_F^{Ist}) = K_{vG,F}^{Soll} + K_{f,F}^{Plan}$$
 $VA_F = K_{vG,F}^{Ist} - K_{vG,F}^{Soll}$
 $= k_{vG,F}^{Plan} \cdot X_F^{Ist} + K_{f,F}^{Plan}$ $= K_{vG,F}^{Ist} - k_{vG,F}^{Plan} \cdot X_F^{Ist}$
 $= 0,3008 \cdot X_F^{Ist} + 82.553$ $= 53.784 - 0,3008 \cdot 170.000 = 2.645$

Risikonormierte Verbrauchsabweichung (1/3)

Einheitsbezogene Verbrauchsabweichung va:

$$va = \frac{VA}{X^{Ist}} = \frac{K_v^{Ist}}{X^{Ist}} - \frac{K_v^{Soll}}{X^{Ist}} = k_v^{Ist} - k_v^{Plan}$$

Durchführung aller Verbrauchsabweichungen bereits in einem mittelgroßen Unternehmen führt zu einem unvertretbar hohen Arbeitsaufwand → Überprüfung der Verbrauchsabweichungen auf ihre statistische Signifikanz mittel z-Test (Einheitskosten sind normalverteilte Zufallsvariable)

Risikonormierte Verbrauchsabweichung (standard normalverteilte Zufallsvariable) *va^{RA}*:

$$va^{RA} = \frac{va}{StdAbw[\tilde{k}]} = z$$

Risikonormierte Verbrauchsabweichung (2/3)

Zur Beurteilung der statistischen Signifikanz wird der aus der z-Test-Statistik ermittelte z-Wert in den entsprechenden p-Wert umgerechnet. Exemplarische Darstellung der Berechnung des z-Wert für den variablen Gemeinkostensatz der Fertigungskostenstelle:

$$va_{vG,F}^{RA} = \frac{va_{vG,F}}{StdAbw[\tilde{k}_{vG,F}]} = z_{vG,F}$$

$$= \frac{0,0156}{0,011} = 1,41$$

Kosten- kategorie	KOST	Plan-EKS/-GKS bzw. Plan-	coste	Plan-Beschäf- tigung X ^{Plan}	Plan-Kosten K ^{Plan}	Ist-Kosten K ^{Ist}	Ist-Beschäf- tigung X st	Soll-Kosten K ^{Soll}	Verbauchsab- weichung = VA = K ^{Ist} - K ^{Soll}	Verbrauchsab- weichg. pro X ^{lst} va=VA/X st	Volatilitäten der Einheitskosten	risikonormierte Verbr. Abw. $va^{RN} = z$	p-Wert p(Z~N<=z)
v.FertGK	Fert.	$k_{vG,F}$	0,3008	173.449	52.177	53.784	170.000	51.139	2.645	0,0156	0,011	1,41	92,13%
f.FertGK	Fert.	$k_{fG,F}$	0,4812		82.553	82.553		82.553					
FertGK		$k_{G,F}$	0,7820		134.730	136.337		133.693					

Risikonormierte Verbrauchsabweichung (3/3)

In MS-Excel: NORMVERT-Funktion:

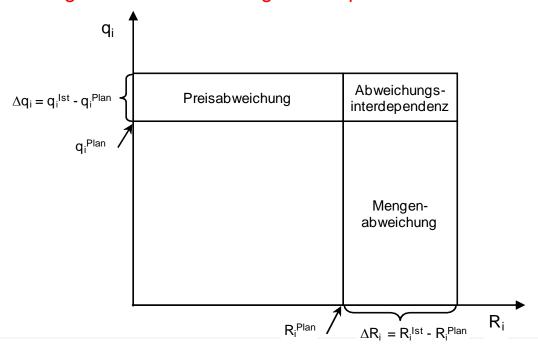
$$\Pr[Z_{vG,F} \le z_{vG,F}] = 0.9213$$

Da der p-Wert über 90% liegt, hat die Verbrauchsabweichung eine bereits als kritisch einzustufende Höhe erreicht.

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	50,00%	50,40%	50,80%	51,20%	51,60%	51,99%	52,39%	52,79%	53,19%	53,59%
0,1	53,98%	54,38%	54,78%	55,17%	55,57%	55,96%	56,36%	56,75%	57,14%	57,53%
0,2	57,93%	58,32%	58,71%	59,10%	59,48%	59,87%	60,26%	60,64%	61,03%	61,41%
0,3	61,79%	62,17%	62,55%	62,93%	63,31%	63,68%	64,06%	64,43%	64,80%	65,17%
0,4	65,54%	65,91%	66,28%	66,64%	67,00%	67,36%	67,72%	68,08%	68,44%	68,79%
0,5	69,15%	69,50%	69,85%	70,19%	70,54%	70,88%	71,23%	71,57%	71,90%	72,24%
0,6	72,57%	72,91%	73,24%	73,57%	73,89%	74,22%	74,54%	74,86%	75,17%	75,49%
0,7	75,80%	76,11%	76,42%	76,73%	77,04%	77,34%	77,64%	77,94%	78,23%	78,52%
0,8	78,81%	79,10%	79,39%	79,67%	79,95%	80,23%	80,51%	80,78%	81,06%	81,33%
0,9	81,59%	81,86%	82,12%	82,38%	82,64%	82,89%	83,15%	83,40%	83,65%	83,89%
1,0	84,13%	84,38%	84,61%	84,85%	85,08%	85,31%	85,54%	85,77%	85,99%	86,21%
1,1	86,43%	86,65%	86,86%	87,08%	87,29%	87,49%	87,70%	87,90%	88,10%	88,30%
1,2	88,49%	88,69%	88,88%	89,07%	89,25%	89,44%	89,62%	89,80%	89,97%	90,15%
1,3	90,32%	90,49%	90,66%	90,82%	90,99%	91,15%	91,31%	91,47%	91,62%	91,77%
1,4	91,92%	92,07%	92,22%	92,36%	92,51%	92,65%	92,79%	92,92%	93,06%	93,19%
1,5	93,32%	93,45%	93,57%	93,70%	93,82%	93,94%	94,06%	94,18%	94,29%	94,41%
1,6	94,52%	94,63%	94,74%	94,84% <	94,95%	95,05%	95,15%	95,25%	95,35%	95,45%
1,7	95,54%	95,64%	95,73%	95,82%	95,91%	95,99%	96,08%	96,16%	96,25%	96,33%
1,8	96,41%	96,49%	96,56%	96,64%	96,71%	96,78%	96,86%	96,93%	96,99%	97,06%
1,9	97,13%	97,19%	97,26%	97,32%	97,38%	97,44%	97,50%	97,56%	97,61%	97,67%
2,0	97,72%	97,78%	97,83%	97,88%	97,93%	97,98%	98,03%	98,08%	98,12%	98,17%
2,1	98,21%	98,26%	98,30%	98,34%	98,38%	98,42%	98,46%	98,50%	98,54%	98,57%
2,2	98,61%	98,64%	98,68%	98,71%	98,75%	98,78%	98,81%	98,84%	98,87%	98,90%
2,3	98,93%	98,96%	98,98%	99,01%	99,04%	99,06%	99,09%	99,11%	99,13%	99,16%
2,4	99,18%	99,20%	99,22%	99,25%	99,27%	99,29%	99,31%	99,32%	99,34%	99,36%
2,5	99,38%	99,40%	99,41%	99,43%	99,45%	99,46%	99,48%	99,49%	99,51%	99,52%
2,6	99,53%	99,55%	99,56%	99,57%	99,59%	99,60%	99,61%	99,62%	99,63%	99,64%
2,7	99,65%	99,66%	99,67%	99,68%	99,69%	99,70%	99,71%	99,72%	99,73%	99,74%
2,8	99,74%	99,75%	99,76%	99,77%	99,77%	99,78%	99,79%	99,79%	99,80%	99,81%
2,9	99,81%	99,82%	99,82%	99,83%	99,84%	99,84%	99,85%	99,85%	99,86%	99,86%
3,0	99,87%	99,87%	99,87%	99,88%	99,88%	99,89%	99,89%	99,89%	99,90%	99,90%

Analyse der Verbrauchsabweichung

Die ausbringungsbezogene Kostenfunktion ist nur zur Ermittlung der Sollkosten geeignet. Die Offenlegung der Ursachen erfordert den Übergang zu einsatzbezogenen Kostenfunktionen. Die Verbrauchsabweichung lässt sich zerlegen in die Preisabweichung, die Mengenabweichung und die Abweichungsinterdependenz.


$$\begin{split} VA &= K_{v}^{Ist} - K_{v}^{Soll} \\ &= \sum_{i} R_{i}^{Ist} \cdot q_{i}^{Ist} - \sum_{i} R_{i}^{Plan} \cdot q_{i}^{Plan} \\ &= \sum_{i} \left(R_{i}^{Ist} \cdot q_{i}^{Ist} - R_{i}^{Plan} \cdot q_{i}^{Plan} \right) \\ &= \sum_{i} \left(\left(R_{i}^{Plan} + \Delta R_{i} \right) \cdot \left(q_{i}^{Plan} + \Delta q_{i} \right) - R_{i}^{Plan} \cdot q_{i}^{Plan} \right) \\ &= \sum_{i} \left(\underbrace{R_{i}^{Plan} \cdot \Delta q_{i}}_{Preisabweichung} + \underbrace{q_{i}^{Plan} \cdot \Delta R_{i}}_{Mengenabweichung} + \underbrace{\Delta R_{i} \cdot \Delta q_{i}}_{Abweichungs-interdependenz} \right) \end{split}$$

Analyse der Verbrauchsabweichung

Die ausbringungsbezogene Kostenfunktion ist nur zur Ermittlung der Sollkosten geeignet. Die Offenlegung der Ursachen erfordert den Übergang zu einsatzbezogenen Kostenfunktionen. Die Verbrauchsabweichung lässt sich zerlegen in die Preisabweichung, die Mengenabweichung und die Abweichungsinterdependenz.

Verrechnungskosten

Bei den Verrechnungskosten *K*^{verr} handelt es sich um die am Jahresanfang in der Kostenplanung ermittelten Plankosten, welche aliquot zu der in der Periode abgesetzten Leistung verrechnet werden.

$$K^{verr}(X^{Ist}) = k^{verr} \cdot X^{Ist}$$

Der Verrechnungskostensatz k^{verr} wird auf Vollkostenbasis berechnet, d.h:

$$k^{verr} = k_v^{Plan} + k_f^{Plan}$$

Gesamtabweichung

Beim Vergleich der Istkosten und der Verrechnungskosten wird die Gesamtabweichung GA bestimmt:

$$GA = K^{Ist} - K^{verr}$$

Ist GA>0 so spricht man von einer *Unterdeckung*, bei GA<0 von einer *Überdeckung*.

Verbrauchs- und Beschäftigungsabweichung (1/2)

Die Gesamtabweichung lässt sich in zwei Teile aufspalten – Verbrauchs- und Beschäftigungsabweichung *BA*.

$$GA = VA + BA$$

sodass

$$BA = GA - VA$$

$$= K^{Ist} - K^{verr} - (K^{Ist} - K^{Soll})$$

$$= K^{Soll} - K^{verr}$$

Verbrauchs- und Beschäftigungsabweichung (2/2)

$$BA = K^{Soll} - K^{verr}$$


$$= (k_v^{Plan} \cdot X^{Ist} + K_f^{Plan}) - k^{verr} \cdot X^{Ist}$$

$$= (k_v^{Plan} - k^{verr}) \cdot X^{Ist} + K_f^{Plan}$$

$$= (k_v^{Plan} - k_v^{Plan} - k_f^{Plan}) \cdot X^{Ist} + K_f^{Plan}$$

$$= K_f^{Plan} - k_f^{Plan} \cdot X^{Ist}$$

Die Nutzkosten sind die aliquoten Fixkosten, welcher mit der Istleistung genutzt werden. Sie werden vom gesamten Fixkostenblock K_f abgezogen, woraus sie die nicht genutzten Kosten ergeben, welche als Leerkosten bezeichnet werden.

Ermittlung und Analyse der Gesamt- und Beschäftigungsabweichung (1/3)

Exemplarische Darstellung anhand der kalibrierten HK-Verrechnungskosten-Funktion:

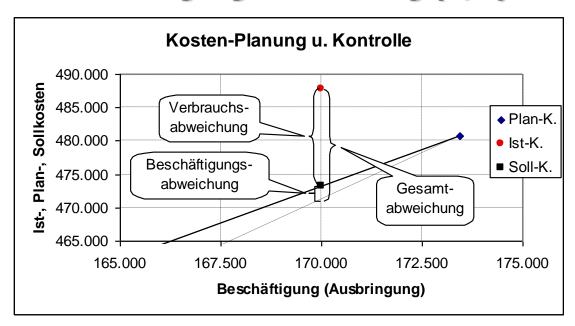
$$K_{HK}^{verr}(X_F^{lst}) = k_{HK}^{verr} \cdot X_F^{lst} = 2,7780 \cdot X_F^{lst}$$

mit

$$k_{HK}^{verr} = \frac{K_{M,F}^{Plan} + K_{P,F}^{Plan} + K_{vG,FM}^{Plan} + K_{f,FM}^{Plan}}{X_{F}^{Plan}} \stackrel{!}{=} \frac{K_{M,F}^{Ist} + K_{P,F}^{Ist} + K_{vG,FM}^{Ist} + K_{f,FM}^{Ist}}{X_{F}^{Ist}}$$
$$= \frac{230.261 + 61.914 + 85.046 + 99.354}{171.555} = 2,7780$$

Ermittlung und Analyse der Gesamt- und Beschäftigungsabweichung (2/3)

$$BA_{HK} = K_{HK}^{Soll} - K_{HK}^{verr} = (k_{vHK}^{Plan} \cdot X_F^{Ist} + K_{f,FM}^{Plan}) - k_{HK}^{verr} \cdot X_F^{Ist}$$
$$= (2,1988 \cdot 170.000 + 99.354) - 2,7780 \cdot 170.00 = 901$$


$$GA_{HK} = VA_{HK} + BA_{HK}$$

= 14.628 + 901 = 15.528

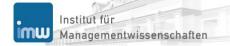
	Kosten- kategorie	KOST	S/-(Pla	Fixkosten der Kostenfunktion k bzw. K _f	Ist-Kosten K ^{Ist}	Ist-Beschäf- tigung X ^{lst}	Soll-Kosten K ^{Soll}	Verbauchsab- weichung = VA = K ^{Ist} - K ^{Soll}	verrechnete Plankosten K ^{verr} (= VK)	Beschäftigungs- abweichg. = BA = K ^{Soll} - K ^{verr}	$GA = VA + BA$ $= K^{lst} - K^{verr}$
TK	v.HK		k_{vHK}	2,1988	388.429	000	373.801	14.628			
	Fixkosten	FM	$K_{f,FM}$	99.354	99.354	170.000	99.354	0			
	FIXKOSTEII	FIVI	$k_{f,FM}$	0,5791		1,					
VK	HK		k_{HK}	2,7780	487.783		473.156	14.628	472.255	901	15.528

Ermittlung und Analyse der Gesamt- und Beschäftigungsabweichung (3/3)

Gesamtabweichung: Differenz zwischen den Istkosten und den Verrechnungskosten – welche auf der Verrechnungskosten-Funktion liegen; Verbrauchsabweichung: Differenz zwischen den Istkosten und den Sollkosten; Beschäftigungsabweichung: Differenz zwischen den Sollkosten und den Verrechnungskosten

Negative Beschäftigungsabweichung

Negative Leerkosten: aufgrund der über die Planleistung hinausgehenden Istleistung


	Kosten- kategorie	KOST	Plan-EKS/-GKS bzw. Plan-	Kostenfunktio n k bzw. Kf	lst-Kosten K ^{lst}	Ist-Beschäf- tigung X ^{Ist}	Soll-Kosten K ^{Soll}	Verbauchsab- weichung = VA = K ^{lst} - K ^{Soll}	verrechnete Plankosten K ^{verr} (= VK)	Beschäftigungs- abweichg. = BA = K ^{Soll} - K ^{verr}	GA = VA + BA = K ^{lst} - K ^{verr}
	MAT-EK	Fert.	$k_{M,F}$	1,3422	248.711		244.280	4.431			
품	PERS-EK	ERS-EK Fert.	$k_{P,F}$	0,3609	68.346	0	65.684	2.662			
	MP-EK		$k_{MP,F}$	1,7031	317.057	00.	309.964	7.093			
v. GK	v.Fert-GK	Fert.	$k_{vG,F}$	0,3008	<i>57.739</i>	182.000	54.749	2.990			
>	v.Mat-GK	Mat.	$k_{vG,M}$	0,1949	42.194	• • •	35.474	6.720			
TK	v.HK		k_{vHK}	2,1988	416.990		400.187	9.710			
	Fixkosten	FM	$K_{f,FM}$	99.354	99.354		99.354	0			
	rixkosten	FIVI	$k_{f,FM}$	0,5791							
VK	НК		k _{HK}	2,7780	516.344		499.541	9.710	505.590	-6.049	10.754

Agenda

- Ökonomische Begriffe und Konzepte
- Klassische Kostenrechnung: Kostenartenrechnung
- Klassische Kostenrechnung: Kostenstellenrechnung
- Klassische Kostenrechnung: Kostenträgerrechnung
- Prozessorientierte Kostenrechnung
- Prozesskostenrechnung
- Plankostenrechnung
- Literatur

Literatur

- Enterprise Control System Integration-Standard [ECSI08-1] (IEC 62264-1:2003;
 German version EN 62264-1:2008): Integration von Unternehmens-EDV und Leitsystemen – Teil 1: Modelle und Terminologie
- Ewert R./Wagenhofer A. [EwWa03]: Interne Unternehmensrechnung, 5. Auflage, Springer, Berlin et al. 2003
- Garrison R./Noreen E. [GaNo00]: Managerial Accouting, 9th Edition, Irwin McGraw-Hill, Boston et al., 2000
- Haberstock L. [Habe08a]: Kostenrechnung I Einführung, 13., neu bearbeitete Auflage (bearbeitet von Volker Breithecker), Erich Schmidt Verlag, Berlin, 2008
- Haberstock L. [Habe08b]: Kostenrechnung II (Grenz-)Plankostenrechnung mit Fragen, Aufgaben und Lösungen, 10., neu bearbeitete Auflage (bearbeitet von Volker Breithecker), Erich Schmidt Verlag, Berlin, 2008
- Hoitsch H.J./Lingnau V. [HoLi07]: Kosten- und Erlösrechnung Eine controllingorientierte Einführung, 6. Auflage, Springer, Berlin/Heidelberg, 2007
- Horsch J. [Horsch10]: Kostenrechnung Klassische und neue Methoden in der Unternehmenspraxis, Gabler, Wiesbaden, 2010
- Horváth P. [Horv02]: Controlling, 8. Auflage, Vahlen Verlag, München, 2002

Literatur

- Internationale Group of Controlling (Hrsg.) [IGoC05]: Controller-Wörterbuch: Die zentralen Begriffe der Controllerarbeit mit ausführlichen Erläuterungen Deutsch-Englisch/Englisch-Deutsch, 3. Überarbeitete und erweiterte Auflage, Schäffer-Poeschel Verlag, Stuttgart, 2005
- Kilger W./Pampel J./Vikas K. [KPVi07]: Flexible Plankostenrechnung und Deckungsbeitragsrechnung, Gabler Verlag, 12. Auflage, Wiesbaden, 2007
- Kistner K.-P., Steven M. [KiSt94]: Betriebswirtschaftslehre im Grundstudium, 1 Produktion, Absatz, Finanzierung, Physica Verlag, Heidelberg, 1994
- McCarthy W. [McCa82]: The REA Accounting Model A Generalized Framework for Accounting Systems in a Shared Data Environment, The Accounting Review, Vol. LVII, No. 3, July, 1082, S. 554-578
- Schweitzer M./Küpper H.-U. [ScKü08]: Systeme der Kosten- und Erlösrechnung, 9.
 Auflage, Vahlen, München, 2008
- Unified Modeling Language [UML07]: Superstructure, Version 2.1.1, 2007-02-03, www.uml.org

