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What happened so far

▶ How bugs come into being:
▶ Fault – cause of an error (e.g., mistake in coding)
▶ Error – incorrect state that may lead to failure
▶ Failure – deviation from desired behaviour

▶ To locate bug, find transition from correct to incorrect states
▶ How can we know what is incorrect or desired?

Requirement documents
(Formal) specification
Test cases
Documentation

 not at instruction level

▶ Want to detect deviation when it happens!
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Recall very first lecture: Assertions



What would John von Neumann do?
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What would John von Neumann do?

“an assertion box never requires that any specific
calculations be made, it indicates only that certain
relations are automatically fulfilled whenever [the
program] gets to the region which it occupies”

“The contents of an assertion box are one or more
relations. These may be equalities, inequalities, or
any other logical expressions.”



What we know about assertions so far

▶ Relations over program variables
▶ Evaluate to true or false
▶ Have no side effect (purely theoretical construct)



What is the purpose of assertions?
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What is the purpose of assertions?

“In order that the man who checks may not have too diffi-
cult a task the programmer should make a number of definite
assertions which can be checked individually, and from which
the correctness of the whole program easily follows.”

before (s ≤ r < n) and (u = s · r !) and (v = r !)
instruction u := u + v

after (s ≤ r < n) and (u = (s + 1) · r !) and (v = r !)



Assertions and Program Semantics

Assigning Meanings to Programs (1967)

Robert W. Floyd



Assertions and Program Semantics

“To prevent an interpretation from being chosen arbitrarily, a
condition is imposed on each command of the program. This
condition guarantees that whenever a command is reached
by way of a connection whose associated proposition is then
true, it will be left (if at all) by a connection whose associated
proposition will be true at that time.”

command

pre-condition post-condition



Assertions and Program Semantics

▶ Pre- and post-conditions mathematically rigorous
▶ This fixes the meaning of the instruction in between

▶ Will cover this in more detail in May!
▶ For now, focus on more pragmatic use of assertions



Assertions and Program Semantics

▶ Pre- and post-conditions mathematically rigorous
▶ This fixes the meaning of the instruction in between
▶ Will cover this in more detail in May!
▶ For now, focus on more pragmatic use of assertions



Using Assertions for Debugging

#include <assert.h>

#include <stdio.h>

#include <string.h>

int findlast (char* str , char elem)

{

int i;

for (i = strlen(str) -1; i >= 0; i--)

{

if (str[i] == elem)

break;

}

assert (i == -1 || str[i] == elem);

return i;

}

int main(int argc , char** argv)

{

printf ("%d\n", findlast ("xyz", ’x’));

printf ("%d\n", findlast ("abc", ’x’));

}



Using Assertions for Debugging

▶ We use assertion to state our intention:
▶ either the result is -1
▶ or the returned index points to the element in question

▶ Does not restrict how result is computed
▶ The assertion is not a complete specification

▶ doesn’t assert that i points to last occurrence!
▶ -1 is actually always a correct answer



Assertions as Specifications

▶ “Light weight” specifications
▶ Immediate benefit for debugging
▶ But: do not guarantee (full) correctness of program



Assertions are Specifications

▶ Assertions are partial specifications
▶ Not a complete description of program behaviour

▶ Simpler than full specification:

(i = −1) ∧ (̸ ∃j ∈ [0, strlen(s)) . str[j] = elem)

∨ (0 ≤ i < strlen(s)) ∧

 str[i] = elem

∧
∀j ∈ (i, strlen(s)) . str[j] ̸= elem


▶ Requires more expressive logic (and educated programmers)
▶ (Almost) as complicated as implementation

▶ Which logical language is used?
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Specification Language in Assertions

▶ Expressions of the programming language
▶ C, C++, Java, . . .

▶ Expressions defined by ISO/IEC 14882:2011, §5
▶ e.g., syntax for multiplicative expressions:

multiplicative-expression:
pm-expression (e.g., a variable)
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

▶ semantics (meaning) of multiplicative operators:
▶ “3 The binary * operator indicates multiplication”
▶ “4 The binary / operator yields the quotient, and the binary %

operator yields the remainder from the division of the first
expression by the second. If the second operand of / or % is
zero the behavior is undefined. [. . . ]”
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Specification Language in Assertions

▶ Expressions in assertions are predicates
▶ Map values of variables to Boolean values (true, false)

▶ In fact, I just lied to you. . .
▶ pm-expression can be a unary-expression (§5.3):

unary-expression:
postfix-expression
++cast-expression
--cast-expression
. . .
new-expression
delete-expression

▶ unary-expressions can have side effects!
▶ Expression maps program state to a new state and a value
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Specification Language in Assertions

Examples of expressions with side-effects
▶ Increment:

assert(

++value

)

▶ Allocation:

assert(

p=(char*)malloc(5*sizeof(char))

)

▶ Function call:

assert(

fwrite(str, 1, sizeof(str), fp)

)
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Examples of expressions with side-effects
▶ Increment: assert( ++value )
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Specification Language in Assertions

#include <stdlib.h>

#include <assert.h>

int main(int argc , char** argv)

{

char *p;

assert (p = malloc (5 * sizeof (char)));

char i;

for (i=0; i < 5; i++)

*(p+i) = i;

return 0;

}

▶ Assertions can be turned off: gcc -DNDEBUG badassert.c

▶ Result: Segmentation fault
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Specification Language in Assertions

▶ Side effects in assertions are bad idea
▶ T.f., we assume assertions are side-effect free predicates



Other Examples of Assertions

int x;

...

if (x % 2 == 0)

{

...

}

else

{

assert (x % 2 == 1);

...

}

▶ Makes assumption explicit (x % 2 can only be 0 or 1)
▶ Note: this assertion may fail (how?)



Other Examples of Assertions

▶ But: not every assertion is useful
▶ The following one is redundant and a sign of paranoia:

do {

x--;

} while (x > 0);

assert (x <= 0);



Other Examples of Assertions

▶ Not redundant in the following setting:

do {

...

if (x == 42)

break;

...

} while (x > 0);

assert (x <= 0);



Asserting Unreachability

enum gender { MALE , FEMALE };

...

switch (gender) {

case MALE:

...

break;

case FEMALE:

...

break;

default:

assert (0);

}

▶ Assertion fails if uncovered case is reached

▶ e.g., after type change
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Assertions in a constantly changing world. . .

▶ Assertions document your assumptions
▶ Changes in the program may break them!

▶ (turn them on for regression testing)



Asserting Correctness of Results

▶ Previously used assertions to ensure correct results:

assert (i == -1 || str[i] == elem);

function

post-condition

▶ But result may depend on input!
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Asserting Correctness of Results

float sqrt (float x)

{

float result;

...

assert (abs(( result * result) - x) < EPSILON);

return result;

}

▶ Asserts expected result, now how it is computed!

▶ But what if x is changed?
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Asserting Correctness of Results

float sqrt (float x)

{

float result;

...

x = x / 2; // this causes a problem

...

assert (abs(( result * result) - x) < EPSILON);

return result;

}

▶ Solution: store x in “history” variable
▶ Also known as “shadow” or “auxiliary” variables
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Asserting Correctness of Results

float sqrt (float x)

{

const float h_x = x;

float result;

...

x = x / 2; // this causes a problem

...

assert (abs(( result * result) - h_x) < EPSILON);

return result;

}

▶ Stores original value of x before execution of sqrt



History Variables

▶ Memorise the past of the program execution
▶ Should have no side effect on

▶ control flow
▶ data flow

of the original program!

▶ Control flow: history variables must never influence branching
▶ history variables must never occur in conditions (other than

assertions)
▶ Data flow: values must never “flow” from history variables to

program variables
▶ history variables must never occur on right-hand side of

assignments

▶ Program must still function correctly if eliminate auxiliary
variables + assertions
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Data Dependencies

Let stmtj be an instruction in a program, and let
R(stmtj) . . . memory locations read by stmtj

W (stmtj) . . . memory locations written by stmtj

Assume there is a feasible execution path from stmti to stmtj

Flow (data) dependence (RAW) W (stmti) ∩ R(stmtj) ̸= ∅
Anti-dependence (WAR) R(stmti) ∩ W (stmtj) ̸= ∅
Output-dependence (WAW) W (stmti) ∩ W (stmtj) ̸= ∅



Control Dependencies

stmtj is control-dependent on a preceding stmti

if stmti determines whether stmtj is executed.

▶ Let G be a control-flow graph with unique entry point entry
and exit point exit

▶ stmtj post-dominates stmti if stmtj appears on every path
from stmti to exit

Statement stmtj is control-dependent on stmti if
▶ there exists an edge from stmti to stmtk

▶ stmtj post-dominates stmtk

▶ stmtj does not post-dominate stmti
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History Variables

▶ Also possible to use “helper” code:

// assert: integer array a is sorted

bool sorted = true;

for (unsigned i = 1;

i < sizeof(a)/sizeof(int);

i++)

sorted &= (a[i-1] < a[i]);

assert(sorted);

▶ Conditions:
▶ must not change original control flow
▶ must not change original data flow
▶ auxiliary code must terminate

▶ Primary objective: minimise probe effect!
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Asserting Correctness of Results (Revisited)

Let’s have another look at the sqrt function!

float sqrt (float x)

{

float result;

...

assert (abs(( result * result) - x) < EPSILON);

return result;

}

Isn’t there a problem with this assertion?

▶ What if x < 0?
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Asserting Correctness of Results

▶ sqrt works only for certain inputs!

function

|result2 − x | < ε
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Asserting Correctness of Results

▶ sqrt works only for certain inputs!

function

x ≥ 0 |result2 − x | < ε



Design by Contract [Bertrand Meyer]

▶ Pre- and post-conditions represent a “contract”
▶ Caller must establish pre-condition
▶ Callee guarantees post-condition if pre-condition holds
▶ If pre-condition does not hold

▶ callee released from contractual obligations!



Design by Contract

Violation of pre-condition releases callee from
contractual obligations!

▶ Radical, but:
▶ Enforces clear distribution of responsibilities
▶ No “double-checking”

▶ The Eiffel programming language supports contracts directly:
▶ require – ensure



Design by Contract

Is it a good idea to assert the pre-condition?

float sqrt (float x)

{

assert (x >= 0);

float result;

...

assert (abs(( result * result) - x) < EPSILON);

return result;

}

▶ If we have full control over caller, yes
▶ In general, however, no.
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Design by Contract

Rule of thumb:

Use assertions if you can control whether they hold or not

▶ Assertions are a debugging tool!
▶ Use it to find your own bugs

▶ For everything else use exceptions/error codes
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Design by Contract

float sqrt (float x)

{

if (x < 0)

return nanf(); // Not a number

float result;

const float h_x = x;

...

assert (abs(( result * result) - h_x) < EPSILON);

return result;

}



Design by Contract in Java/C++

Notes on Java:
▶ Java provides

▶ IllegalArgumentException
▶ NullPointerException
▶ IllegalStateException

▶ C++ provides instances of logic error (in <stdexcept>):
▶ domain error
▶ invalid argument
▶ length error
▶ out of range

▶ Assert pre-conditions (only) in private methods



Design by Contract in Java

/**

* @param value Percentage between 0 and 100

*/

public setPercentage (int value)

{

if (value < 0 || value > 100) {

throw new

IllegalArgumentException

(Integer.toString(value));

}

this.value = value;

}

▶ Question for Java specialists: why no throws clause?

▶ Unchecked exception
▶ Unlikely to be caught (indicates severe bug in program)
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Assert Results of Library Calls

▶ Assertions can be used to check result of external library
▶ e.g., if we don’t trust the library

library call

pre-condition post-condition

▶ Assert that
▶ we satisfy the pre-condition of the library function
▶ that the library function returns a correct result



Assert Results of Library Calls

▶ For example: We still don’t trust sqrt

...

float x = sqrt (y); // square root of x

assert (x >= 0);



Weakening and Strengthening Assertions

function

pre-condition post-condition

▶ Pre-condition can be strengthened to allow fewer states
▶ e.g., (x ≥ 10) instead of (x ≥ 0)

▶ Post-condition can be weakened to allow more states
▶ e.g., (|result2 − x| < ε) ||(result == NaN)

▶ Contract will still be satisfied!



Conditional Assertions

▶ Assertion could also be conditional

if (h_x > 0)

assert (abs(( result * result) - h_x) < EPSILON);

▶ Can also be written just as an assertion:

h x <= 0 || abs((result * result) - h x) < EPSILON

▶ Note that (¬A ∨ B) corresponds to (A ⇒ B).



Invariant Assertions

▶ Assertions checked at individual points during execution
▶ If assertions occur in loops, they must hold repeatedly



Invariant Assertions

// compute q = x / y, r = x % y

unsigned q = 0; unsigned r = x;

while (r >= y)

{

r = r - y;

q = q + 1;

assert (x == q * y + r);

}

▶ x == q * y + r holds throughout the loop!
▶ After termination: (x == q * y + r) && (r < y)



Invariant Assertions

▶ We can even prove this!

assert (x == (q + 1) * y + (r - y));

r = r - y;

assert (x == (q + 1) * y + r);

q = q + 1;

assert (x == q * y + r);

▶ Assertion holds throughout the loop!
▶ Assertion holds at the end of the loop!



Invariant Assertions

▶ We can even prove this!

assert (x == (q + 1) * y + (r - y));

r = r - y;

assert (x == (q + 1) * y + r);

q = q + 1;

assert (x == q * y + r);

▶ Assertion holds throughout the loop!
▶ Assertion holds at the end of the loop!



Invariant Assertions

▶ We can even prove this!
assert (x == (q + 1) * y + (r - y));

r = r - y;

assert (x == (q + 1) * y + r);

q = q + 1;

assert (x == q * y + r);

▶ Assertion holds throughout the loop!
▶ Assertion holds at the end of the loop!



Invariant Assertions

▶ We can even prove this!
assert (x == (q + 1) * y + (r - y));

r = r - y;

assert (x == (q + 1) * y + r);

q = q + 1;

assert (x == q * y + r);

▶ Assertion holds throughout the loop!

▶ Assertion holds at the end of the loop!



Invariant Assertions

▶ We can even prove this!
assert (x == (q + 1) * y + (r - y));

r = r - y;

assert (x == (q + 1) * y + r);

q = q + 1;

assert (x == q * y + r);

▶ Assertion holds throughout the loop!
▶ Assertion holds at the end of the loop!



Proofs with Assertions

What just happened? (Once more, a bit slower)
▶ (x == q * y + r) holds after assignment q = q + 1

▶ But the “new” q is the “old” q plus 1!
▶ Therefore, (x == (q + 1) * y + r) holds for the “old” q
▶ If

(x == (q + 1) * y + r)

holds before assignment q = q + 1, then

(x == q * y + r)

holds afterwards!
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Invariant Assertions

▶ Does the assertion hold at the beginning of the loop, too?

assert (x == 0 * y + x);

q = 0;

assert (x == q * y + x);

r = x;

assert (x == q * y + r);

▶ If

x == x

holds before q = 0; r = x; then

(x == q * y + r)

holds afterwards!
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Inductive Invariant Assertions

Robert W. Floyd, “Assigning Meanings to Programs”, 1967

“Then, by induction on the number of
commands executed, one sees that if
a program is entered by a connection
whose associated proposition is then
true, it will be left (if at all) by a connec-
tion whose associated proposition will
be true at the time. By this means,
we may prove certain properties of pro-
grams, . . . ”



Induction

Mathematical induction proves that a statement involving a natural
number n holds for all values of n.
▶ Base case. Show that claim holds for n = 0.
▶ Induction hypothesis. Assume claim holds for n.
▶ Induction step. Show: claim holds for n ⇒ it holds for n + 1

▶ Conclusion. Claim holds for all n ∈ N.

In our case: n is the number of loop iterations.
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Inductive Invariant Assertions

loop body

(x == q * y + r)(x == q * y + r)

(x == q * y + r)

▶ (x == q * y + r) is an inductive invariant of the loop

▶ (x == q * y + r) && (r < y) holds after loop
▶ We have an inductive correctness proof!
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Another Invariant Assertions

▶ Division? Meh. Let’s try something more interesting.
▶ How many bits of a variable x are set to 1?

unsigned y = x;

unsigned c = 0;

while (y != 0)

{
y = y & (y-1);

c = c+1;

}

▶ How does this work?
▶ y = y & (y-1)

deletes least
significant bit

▶ But how??
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Peter Wegener’s Bit-Counting Trick

y = y & (y-1);

▶ We know: y > 0 (because of loop exit condition)

▶ Assume y is binary bn . . . b2b11
▶ then (y-1) is binary bn . . . b2b10
▶ (bn . . . b2b11 & bn . . . b2b10) = bn . . . b2b10

▶ Assume y is binary bn . . . bi100
▶ then (y-1) is

bn . . . bi 1 0 0
+ 1 . . . 1 1 1 1 (-1 in 2’s complement)

bn . . . bi 0 1 1

▶ (bn . . . bi100 . . . & bn . . . bi011 . . .) = bn . . . bi000 . . .
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Wegener’s Bit-Counting Algorithm

▶ Let’s add an assertion!

▶ Assertion holds in first iteration
▶ (y & (y -1)) < x, since y != 0

But is the assertion inductive?

unsigned y = x;

unsigned c = 0;

while (y != 0)

{

assert (x != (y & (y-1)));

y = y & (y-1);

assert (x != y);

c = c+1;

}
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Wegener’s Bit-Counting Algorithm

▶ Assertion holds in every iteration of the program!
▶ But is not an inductive invariant!

▶ Is there something wrong with the program?

unsigned y = x;

unsigned c = 0;

while (y != 0)

{
assert (x != (y & (y-1)));

y = y & (y-1);

assert (x != y);
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unsigned y = x;

unsigned c = 0;

while (y != 0)

{

assert ((x != 0) && ((y & (y-1)) <= (x-1)));
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▶ Does this hold in the first iteration?
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yes, since y!=0

yes, since x == y



Wegener’s Bit-Counting Algorithm

▶ Does this hold in the first iteration?

unsigned y = x;

unsigned c = 0;

while (y != 0)

{
assert ((x != 0) && ((y & (y-1)) <= (x-1)));

y = y & (y-1);

assert ((x != 0) && (y <= (x-1)));

c = c+1;

}

yes, since y!=0

yes, since x == y



Wegener’s Bit-Counting Algorithm

▶ Does this hold in the first iteration?

unsigned y = x;

unsigned c = 0;

while (y != 0)

{
assert ((x != 0) && ((y & (y-1)) <= (x-1)));

y = y & (y-1);

assert ((x != 0) && (y <= (x-1)));

c = c+1;

}

yes, since y!=0

yes, since x == y



Wegener’s Bit-Counting Algorithm

▶ What about subsequent iterations?

▶ Does
(y != 0) and (x != 0) && (y <= (x-1))

imply
(x != 0) && ((y & (y-1)) <= (x-1))

while (y != 0)

{
assert ((x != 0) && ((y & (y-1)) <= (x-1)));

y = y & (y-1);

assert ((x != 0) && (y <= (x-1)));

c = c+1;

}



Wegener’s Bit-Counting Algorithm

▶ What about subsequent iterations?
▶ Does

(y != 0) and (x != 0) && (y <= (x-1))

imply
(x != 0) && ((y & (y-1)) <= (x-1))

while (y != 0)

{
assert ((x != 0) && ((y & (y-1)) <= (x-1)));

y = y & (y-1);

assert ((x != 0) && (y <= (x-1)));

c = c+1;

}



Wegener’s Bit-Counting Algorithm

▶ What about subsequent iterations?
▶ Does

(y != 0) and (x != 0) && (y <= (x-1))

imply
(x != 0) && ((y & (y-1)) <= (x-1))

▶ We know: ((y & (y-1)) < y unless y == 0

(since the assignment deletes a bit)

▶ But y is already smaller or equal x-1!

▶ Therefore ((y & (y-1)) <= (x-1)

▶ And x doesn’t change, so x != 0
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Wegener’s Bit-Counting Algorithm

▶ (x != 0) && (y <= (x-1)) is an inductive invariant

unsigned y = x;

unsigned c = 0;

while (y != 0)

{
assert ((x != 0) && ((y & (y-1)) <= (x-1)));

y = y & (y-1);

assert ((x != 0) && (y <= (x-1)));

c = c+1;

}



Wegener’s Bit-Counting Algorithm

▶ (x != 0) && (y <= (x-1)) is an inductive invariant
▶ But so is (y <= (x-1)). So what’s (x != 0) for?

▶ If y ≤ (x− 1) then y < x
▶ unless x = 0, in which case x− 1 underflows

▶ If y < x then y ̸= x

The new assertion implies the original one!

This proves that (x ̸= y) holds throughout the loop
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Summary Inductive Invariants

▶ Loop invariants hold in every loop iteration
▶ Inductive loop invariants:

▶ if it holds in one iteration, we can deduce that it holds in the
next one, too

▶ Any consequence of an inductive invariant is an invariant
▶ but not vice versa!



Summary

▶ Assertions express intent of the programmer
▶ Powerful debugging technique
▶ Enable “design by contract”
▶ Can even be used to prove programs correct


