
Heterogeneous System-on-Chip (SoC): On-chip Interconnect

Daniel Müller-Gritschneder

16.05.2024

Motivation

• Most chips feature a range of processing elements (PEs) / multi-cores

• PEs needs to communicate with each other

• On-chip Interconnect architecture and type play crucial role in performance.

• Chips and devices are connected via different types of interconnects

16.05.2024 Computer Systems 2

Agenda

• Interconnect types

• On-chip buses

• Networks-on-chip (NoC)

• A look at real on-chip interconnects

16.05.2024 Computer Systems 3

Optional, not relevant for exam

Interconnect Types

Interconnect Types

• On-Chip: Connects modules that are integrated into the same chip (IC: integrated circuit)

• PCB-level: Connects different ASICs + connectors and other component all mounted on
one Printed Circuit Board (PCB).

• Many other interconnects (board to board, rack to rack): PCIe, Ethernet, CAN, UART, I2C,
SPI, GPIO, …

16.05.2024 Computer Systems 5

Different Scales of Interconnects

16.05.2024 Computer Systems 6

Processor

Chip2Chip

Main Memory

PCB Board

On-chip
Interconnect

Bumps

Chip Package

Board2Board

Rack2Rack

Sources: Pulp, SpiNNCloud

Source AMD

Chip2Chip (3D Stacked)

On-chip Buses

Memory-mapped Buses

• Purpose:
• Read or write a value from or to a certain address

• Value can be data or peripheral control information

• Memory-mapped Bus has several (sub-)buses (group of signals) and a defined bus
protocol
• Address bus

• Data bus for reading data

• Data bus for writing data

• Control signals: Indicate if access is read or write, bust length, ID, bus grant, …

• Modules on the bus can either act as initiators or targets
• Typical initiators: CPUs, DSPs, DMAs, bus bridges, …

• Typical targets: Memory, accelerators, interface peripheral, bus bridges, …

16.05.2024 Computer Systems 8

Classes of Memory-mapped Buses

• Single-initiator bus:
• One initiator component can address different target components, which are mapped to different

addresses

• Shared bus:
• There are several initiators on the bus

• An arbiter decides which initiator module is granted access to the bus

• Only one initiator can access one slave via the bus at a time

• Layered bus:
• There is more than one arbiter such that more than one initiator is granted access on the bus

• Only one target component on each layer can be accessed at a time

• Crossbar/ bus matrix
• Each target component has its own arbiter

• Each target component can be accessed by one initiator at a time

16.05.2024 Computer Systems 9

Single-Initiator Bus

• Target knows
• if it is addressed by observing the address bus ADDR

• or decoder generates SEL signal for targets based on address bus ADDR

• Target can receive data on write data bus WDATA

• Decoder forwards the data from the addressed target by multiplexing it to the read data
bus RDATA

• Additional control bus CTRL for signals related to bus protocol (e.g. WR, SEL, RDY)

16.05.2024 Computer Systems 10

Target1

Target2

Target3

Init

B
u
s

I I

T T

T T

T T

I I

T T

Initiator Mirrored

initiator

Mirrored

Target
Target

ADDR

WDATA

HRDATA

Target1

Target2

Target3

M

u

x

Decoder

RDATA,RDY

Init

SEL,WR

Simple Write Access

1. Initiator places address and data on the ADDR and WDATA bus
Initiator indicates write by setting signal WR to high
Initiator indicates that access is started by setting SEL signal to high

2. Target acknowledges write access by RDY signal

16.05.2024 Computer Systems 11

SEL Target1Init

ADDR

WR

WDATA

RDY

SEL

ADDR

WR

WDATA

RDY

C1 C2 C3 C4

addr

data

ADDR

WDATA

RDY

WR

C1 C2 C3 C4

addr

data

ADDR

WDATA

RDY

WR

C5 C6

No wait cycles Two wait cycles

SELSEL

Simple Read Access

1. Initiator places address on the ADDR bus
Initiator indicates read access by setting signal WR to low
Initiator indicates that access is started by setting SEL signal to high

2. Target places data on RDATA bus
Target acknowledges write access by RDY signal

16.05.2024 Computer Systems 12

SEL Target1Init

ADDR

WR

RDATA

RDY

SEL

ADDR

WR

RDATA

RDY

C1 C2 C3 C4

addr

data

ADDR

RDATA

RDY

WR

C1 C2 C3 C4

addr

data

ADDR

RDATA

RDY

WR

C5 C6

No wait cycles Two wait cycles

SEL SEL

Performance of Simple Accesses

• Each access takes minimally two cycles

• Maximal bus bandwidth is:

16.05.2024 Computer Systems 13

C1 C2

addr1

data1

ADDR

RDATA

RDY

WR

Two read accesses

SEL

C3 C4

addr2

data2

ADDR

RDATA

addr1

C1 C2 C3 C4

Two read accesses (bus access diagram)

addr2

data1 data2

Pipelined Accesses

• The next address can be placed on the bus while the data is read

• Maximal bandwidth supported by bus is equal to:

• Additional control signals and logic required to support pipelined accesses.

16.05.2024 Computer Systems 14

ADDR

RDATA

addr1

C1 C2 C3 C4

Three pipelined read accesses

addr2

data1 data2

addr3

data3

Burst Accesses

• A burst accesses a consecutive row of addresses

• Version 1: the addresses for all accesses must be given and a control signal that indicates
that this is a burst access of a certain size

• Version 2: Only the start address must be given and a control signal that indicates that
this is a burst access of a certain size

16.05.2024 Computer Systems 15

ADDR

RDATA

addr1

C1 C2 C3 C4

Four data values are returned for one start address (burst4)

data1 data2 data3 data4

C5

BURST b4

ADDR

RDATA

addr1

C1 C2 C3 C4

data1 data2 data3 data4

C5

BURST b4

addr2 addr3 addr4

Multiple Outstanding Transactions

• A address may be placed on the bus before the data of the previous access has been read
or be written

• This improves performance in case of wait cycles.

16.05.2024 Computer Systems 16

ADDR

RDATA

addr1

C1 C2 C3 C4

No outstanding transactions (two wait cycles)

data1

C5

addr2

C6 C7

data2

addr3

ADDR

RDATA

addr1

C1 C2 C3 C4

With multiple outstanding transactions (two wait cycles)

data1

C5

addr2

C6 C7

data2

addr3

data3

Out of order Completion with Interleaving

• A address may be placed on the bus before the data of the previous access has been read
or be written

• In case of wait cycles, the order of data reads may be changed

16.05.2024 Computer Systems 17

ADDR

RDATA

addr1

C1 C2 C3 C4

No out of order completion with interleaving

data1

C5

addr2

C6 C7

data2

addr3

ADDR

RDATA

addr1

C1 C2 C3 C4

With out of order completion with interleaving

data1

C5

addr2

C6 C7

data2

addr3

data3

data3

Shared Bus

• Arbiter grants access to the initiator:

• Only the address and data of one initiator is forwarded to the targets

16.05.2024 Computer Systems 18

ADDR

WDATA

M

u

x

Decoder

RDATA

Init1

Init2

Init3

RDATA

RDATA

M

u

x

M

u

x

HRDATA

Target1

Target2

Target3

ADDR

ADDR

WDATA

WDATA

Arbiter

REQ1-REQ3

GRANT

Bus Arbitration

• The arbiter grants access to initiator that request the bus

• Round-robin: Access granted to initiators in pre-defined order that is repeated

• FIFO: First initiator requesting the bus is granted access

• Priority: Initiator with highest priority is granted access to the bus

16.05.2024 Computer Systems 19

ADDR1

Req

C1 C2 C3 C4

Round-robin: No pipelining

data1

REQ1

REQ2

GRANT

RDATA1

ADDR2

RDATA2

I1

addr1

Req

I2

data2

addr2

C5 C6

Req

Req

I1

addr3 ADDR1

Req

C1 C2 C3 C4

data1

REQ1

REQ2

GRANT

RDATA1

ADDR2

RDATA2

I1

addr1

Req

I2

data3

addr3

C5

Req

Req

I1

data2

addr2

Req

I1

addr4

Round-robin: With pipelining

Split Accesses

• Slave can allow a split of an access if it was many wait cycles

• Access of initiator I1 is split by issuing a start of split by slave

• I2 is granted the bus and access of initiator I2 is performed
Then access of initiator I1 is finished by issuing an end of split

16.05.2024 Computer Systems 20

ADDR1

Req

C1 C2 C3 C4

data1

REQ1

REQ2

GRANT

RDATA

1

ADDR2

RDATA

2

I1

addr1

Req

I2

data2

addr2

C5 C6

SPLIT_

S

Start

I1

addr1

C8 C9

End

C7

Crossbar / Bus Matrix

16.05.2024 Computer Systems 21

ADDR

WDATA

RDATA

HRDATA

Target1
M

u

x

M

u

x

M

u

x

Arbiter1

Decoder1

Init1

ADDR

WDATA

RDATA M

u

x

Decoder2

Init2

ADDR

WDATA

RDATA M

u

x

Decoder3

Init3

HRDATA

Target2
M

u

x

M

u

x

Arbiter2

HRDATA

Target3
M

u

x

M

u

x

Arbiter3

• All targets can be accessed individually

• Only conflict when two initiators access same target

• GRANT/REQ omitted.

Layered Bus

• Targets are on different layers

• Initiator can connect to targets on different layers simultaneously

16.05.2024 Computer Systems 22

ADDR

WDATA

RDATA

HRDATA

Target1M

u

x

M

u

x

M

u

x

ArbiterLayer1

Decoder1

Init1

ADDR

WDATA

RDATA M

u

x

Decoder2

Init2

ADDR

WDATA

RDATA M

u

x

Decoder3

Init3

HRDAT

ATarget2M

u

x

M

u

x

ArbiterLayer2

HRDATA

Target3

M

u

x

Decoder

Some Bus Standards

• AMBA Bus (ARM)
• AHB: Advanced High Performance Bus

• APB: Advanced Peripheral Bus

• AXI: Advanced eXetendible Interface

• Wishbone (Open)

• TileLink (Open)

16.05.2024 Computer Systems 23

ARM AMBA Standard

• Different Versions e.g., AMBA 2,0, AMBA 3.0,…

• AHB: Advanced High Performance Bus
• High performance
• Pipelined operation
• Multiple bus initiators
• Burst transfers
• Split transactions

• APB: Advanced Peripheral Bus
• Low power
• Simple Interface
• Suitable for many peripherals
• One initiator (APB Bridge)

• AXI: Advanced eXetendible Interface
• Configurable channel-based specification

16.05.2024 Computer Systems 24

Typical On-Chip Interconnect for Smaller Embedded Devices

• High-performance near the processor cores, low-performance near the slow I/O devices

16.05.2024 Computer Systems 25

Memory

Controller

L2

Cache

Bridge

Target

Processor

Pipeline

A
X

I4
 I
n
te

rc
o

n
n
e

c
t

T T

T T

T T
Bridge

Initiator

UART

GPIO

CAN

A
P

B

I I

T T

T T

T T

Event Unit

TimerT T

T T

Instruction

Cache

Data

Cache

I I

I I

I I

T T

Initiator Mirrored initiator

Mirrored

Target
Target

To main
memory

Several
Initiators

Several
Targets

One
Initiator

Several
Targets

UART

GPIO

CAN

DMA

I I

TT

Example – Layered Bus

• Given is the following architecture for a shared layered bus:
• There are two initiator components, CPU and DMA.

• There are three target components, MEM, HWacc and IO.
The MEM, is on layer 1, the Hwacc and IO component is on layer 2.

16.05.2024 Computer Systems 26

Example – Layered Bus

16.05.2024 Computer Systems 27

ADDR

WDATA

RDATA

HRDATA
MEMM

u
x

M
u
x

M
u
x

ArbiterLayer1

Decoder1

CPU

ADDR

WDATA

RDATA M
u
x

Decoder2

DMA

HRDATA

HWaccM
u
x

M
u
x

ArbiterLayer2

HRDATA

IO
M
u
x

Decoder

Example – Layered Bus - Access

• Assume that the CPU wants to read access the IO slave component in the bus cycle 1 and that the DMA
wants to read access the HWacc in the same bus cycle 1. Draw the bus access diagram for the data and
address bus of the two bus masters as well as the control request and grant signals for the two layers
assuming that the bus does not support pipelining. The IO component inserts two wait cycles. The HWacc
component inserts no wait cycles. The arbitration order is CPU first, then DMA. There is no pipelining.

16.05.2024 Computer Systems 28

ADDR-Layer1

L1

C1 C2 C3 C4

Round-robin: No pipelining

data1

REQ-CPU

REQ-DMA

GRANT-Layer1

RDATA-Layer1

CPU

addr-IO

L1

data2

addr-HWacc

C5 C6

GRANT-Layer2

ADDR-Layer2

RDATA-Layer2

C7

DMA

wait cycles

Network-on-Chip (NoC)

Sources

• Principles and Practices of Interconnection Networks
Authors: William James Dally, Brian Patrick Towles
ISBN: 978-0-08-049780-8

• Slides inspired by the „On-Chip Networks I/II“ (L-15/L-16) lectures of Ryan Lee and Tushar
Krishna: http://csg.csail.mit.edu/6.5900/lecnotes.html

16.05.2024 Computer Systems 30

Motivation

• Need for scalability and reduced cost
• Avoid long interconnects/delays caused by increased system complexity

• Reduce wiring overhead caused by increasing number of system components

• Performance demands
• Goal: high bandwidth and low latency

• Concurrent communication required due to increased traffic

• Solution: Network-on-Chip (NoC)
• Move from bus to network (small-scale networks on chip-/system-level)

• Larger-scale networks in later lectures

• Broadcast can be avoided, but still possible via multiple messages (when required)

• Serialization achievable, e.g., by forcing the same path or via sequence numbers

16.05.2024 Computer Systems 31

Motivation: Scalability

• Scalability: How to connect hundreds of processor cores / memory interfaces?

16.05.2024 Computer Systems 32

L2

Cache

S
y
s
te

m
 I
n
te

rc
o
n

n
e

c
t

T T

Processor

Core 1

Instruction

Cache

Data

Cache

I I

I I

Processor

Core 2

Instruction

Cache

Data

Cache

I I

I I

…

Processor

Core N

Instruction

Cache

Data

Cache

I I

I I

Processor

Core N-1

Instruction

Cache

Data

Cache

I I

I I L2

Cache
T T

…

Memory

Controller
T T Memory

Controller

Compute PE

L2

Cache

S
y
s
te

m
 I
n

te
rc

o
n

n
e

c
t

T TProcessor

Core 1

Instruction

Cache

Data

Cache

I I

I I

Processor

Core 2

Instruction

Cache

Data

Cache

I I

I I

Network

Interface
T T

Network

InterfaceMemory PE

L2

Cache

S
y
s
te

m
 I
n
te

rc
o
n
n
e
c
t

T TProcessor

Core 1

Instruction

Cache

Data

Cache

I I

I I

Processor

Core 2

Instruction

Cache

Data

Cache

I I

I I

Network

Interface
T T

Compute PE

N
et

w
o

rk
-o

n
-C

h
ip

 (
N

o
C

)

L2

Cache
S

ys
te

m
 I

n
te

rc
o

n
n

e
c
t

T TProcessor

Core 1

Instruction

Cache

Data

Cache

I I

I I

Processor

Core 2

Instruction

Cache

Data

Cache

I I

I I

Network

Interface
T T

Compute PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE
Buffer

Buffer

Buffer

Buffer

Allocators

Crossbar

Switch

Network-on-Chip Basics

16.05.2024 Computer Systems 33

• Objective: Connect nodes with each other via routers and wires, so that messages can be
sent from source to destination

• Building blocks:
• Node: any component, e.g., processor, memory, or a combination of them

• Network interface: module connecting a node to the network

• Router: forwards data from inputs to outputs (network interfaces or other routers)

• Link: physical set of wires, e.g., connecting two routers

• Channel: logical connection between routers

• Message: unit of transfer for the nodes

• Packet: unit of transfer for the network

NoC Router

Design

• Topology: What is the connection pattern of the nodes?

• Routing: Which path should a message take?

• Flow control: Which network resources are granted to a message over time?

• Traffic analogy
• Topology: defines roadmap, i.e., streets and intersections

• Routing: steering of the car, i.e., where to turn at each intersection

• Flow control: traffic light control, i.e., when a car can advance over the next part of the road

16.05.2024 Computer Systems 34

Topology

• Topology: arrangement of nodes and channels
• Determines e.g., number of hops, number of alternative paths, cost

• Properties for comparison
• Degree: number of links at each node

• Distance: number of links in the shortest route

• Diameter: maximum distance between any two nodes

• Bisection bandwidth: available bandwidth from one partition to the other, when cutting the network
into two equal parts (minimum for multiple possible cuts)

16.05.2024 Computer Systems 35

Topology

• Direct networks: each terminal node is associated with a router; routers are sources/sinks
and switches for traffic from other nodes

• Indirect networks: terminal nodes are connected via intermediate stages of switch nodes;
terminal nodes are sources/sinks, intermediate nodes only switch traffic

16.05.2024 Computer Systems 36

Mesh TorusRingFully Connected

Butterfly TreeCrossbar

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7
0 1 2 3 4 5 6 7

Fully Connected Networks

• Every node connected to every other node with a direct link

• N nodes, N∙(N-1)/2 links

• Degree: N-1

• Diameter: 1

• Bisection width: 𝑁/2 ∙ 𝑁/2

• Pros: high fault tolerance, low contention, low latency

• Cons: high costs for large N, limited scalability

16.05.2024 Computer Systems 37

Fully Connected

Ring (k-ary 1-cube)

• Each node connected to two other nodes

• N nodes, N links

• Degree: 2

• Diameter: 𝑁/2

• Bisection width: 2

• Pros: simple, low link costs

• Cons: high latency for large N, limited path diversity

16.05.2024 Computer Systems 38

Ring

Mesh

• k-ary n-cube: N=kn nodes in a regular n-dimensional grid
• k nodes in each dimension

• Links between nearest neighbors

• For n=2 (i.e., 𝑘 × 𝑘 grids)
• N=k2 nodes, 2𝑘 ∙ 𝑘 − 1 links

• Degree: 4

• Diameter: 2k-1

• Bisection width: k

• Pros: path diversity, regular and equal-length links

• Cons: large diameter, asymmetric (higher demand for center links)

16.05.2024 Computer Systems 39

Mesh
(here: 4-ary 2-cube)

Torus

• k-ary n-cube: N=kn nodes in a regular n-dimensional grid
• k nodes in each dimension

• Links between nearest neighbors, adds wrap-around links at the edges
compared to mesh

• For n=2 (i.e., 𝑘 × 𝑘 grids)
• N=k2 nodes, 2N links

• Degree: 4

• Diameter: k

• Bisection width: 2k

• Pros: avoids asymmetry and improves path diversity compared to mesh

• Cons: unequal link lengths and higher cost compared to mesh

16.05.2024 Computer Systems 40

Torus

Crossbar

• Connects n inputs to m outputs via 𝑛 ×𝑚 switches

• Switches enable concurrent communication between
disjoint input/output pairs without blocking

• 𝑁 = 𝑛 ∙ 𝑚 nodes, 𝑛 ∙ 𝑚 links

• Diameter: 1

• Pros: non-blocking, latency (for small n, m)

• Cons: high cost, limited scalability

16.05.2024 Computer Systems 41

Crossbar

Butterfly

• k-ary n-flies: kn nodes connected via n stages of kn-1 intermediate
𝑘 × 𝑘 switches
• k: switch degree

• n: number of stages of switches

• Pros: lower cost compared to crossbar

• Cons: blocking, lack of path diversity, locality not exploitable

16.05.2024 Computer Systems 42

Butterfly
(2-ary 3-fly)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Trees

• k-ary tree with N nodes and logk N stages

• Nodes are the leaves of the tree, switches at intermediate stages

• Messages are sent up to common ancestor, then sent down to
destination

• Pro: simple, cheap

• Cons: Bottleneck towards root
• Alternative: Fat tree, where links between switches closer to the root

are increased

16.05.2024 Computer Systems 43

Tree

0 1 2 3 4 5 6 7

Fat tree

0 1 2 3 4 5 6 7

Application-Specific Network-on-Chip Architectures

• Custom tailored NoC
topology for chips with very
unbalanced traffic demand
for different PEs

• Example: NoC for a 3G
Modem Chip (2014)

16.05.2024 Computer Systems 44

Messages

• Message: logically continuous group of bits, may be arbitrarily long

• Packet: basic unit of routing and sequencing, restricted maximum length
• Consists of header + segment of a message

• Flit (flow control digit): basic unit of bandwidth and storage allocation
• Contain no separate routing/sequencing information and therefore follow the same path in-order

• Subdivision allows for low overhead (large packets) and fine-grained resource utilization (small flits)

• Phit (physical transfer digit): information transferred over a channel in a single clock cycle

16.05.2024 Computer Systems 45

Message

Packet

Head flit Body flit

Phit

Body flit Tail flit

Header

Phit Phit Phit

Packet

Flit

Flow Control vs. Routing

• Flow control: Allocates resources (channels, control state, buffers) to packets
• Alternative view: resolve contention during packet transmission

• Contention: What happens if two packets want to use the same channel at the same time?

• Routing: Selects the path a packet takes from source to destination
• Determines how well the potential of the given topology is exploited

• Should balance load across network channels

16.05.2024 Computer Systems 46

Flow Control

• Bufferless
• Dropping

• Misrouting

• Circuit switching

• Buffered
• Store-and-forward

• Cut-through

• Wormhole

• Virtual channel

16.05.2024 Computer Systems 47

Bufferless Flow Control: Dropping

• Competing packets: No buffers available, therefore drop “losing” packets, “winning”
packet is allowed to proceed

• Example:

• Complete effort already invested in packet B is lost

• Source needs to be informed to about successful transmission or need for retransmission

16.05.2024 Computer Systems 48

Two packets A and B arriving,
both requesting channel 0

Packet A “wins”, B is dropped and
must be retransmitted from source

A A A A A 0

B B B B B 0

A A 0A A A
0

B B B

• Time-space diagram with negative acknowledgements (nacks)
• Example: five-flit packets, four-hop route

• Alternative: no nacks, resend packet if ack is not received before a timeout

• Dropping: simple, wastes resources

H B B B T
N

H B B B TF
R

0

H B B B
N

H B B B TF
R

1

H B
N

H B B B TF
R

2

H B B B TF
R

3

C
h

an
n

e
l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A

A

A

A

Cycle

Bufferless Flow Control: Dropping

16.05.2024 Computer Systems 49

Forward

Reverse

Header
Body

Tail nack
Retransmission

Fail to get channel 3

ack received

Bufferless Flow Control: Misrouting

• Competing packets: No buffers available, therefore misroute “losing” packets, “winning”
packet gets the requested channel

• Example:

• Requires sufficient path diversity
• Routing needs to ensure that packet reaches its destination despite misrouting

• Misrouting: no packet dropping, packets sent in wrong direction, livelock possible (need
to guarantee forward progress)

16.05.2024 Computer Systems 50

Two packets A and B arriving,
both requesting channel 0

Packet A “wins”, B is misrouted to
channel 1

A A A A A 0

B B B B B 0

A A 0A A A
0

B B B
1

B B 0

• First allocate channels to build a circuit from source to destination, then send packets
along the circuit, deallocate circuit after packets are sent

• Example: four-flit packets, five-hop route
• 1. Send request (R) to destination allocating channels along the way

• 2. Destination returns acknowledgement (A) to source

• 3. Data flits (D) are sent

• 4. Tail flit (T) deallocates the channel

• Circuit switching: simple, high latency, high overhead for circuits with short duration

R
R

A

A
A0

1
R

R
R

A
A2

3
4

C
h

an
n

e
l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D

Cycle

D D D
D D D D

D D D D
D D D D

D D D D
18 19

D D D D
D D D D

D D D D
D D D D

D D D D
20 21 22 23 24 25 26 27 28 29 30

T
T

T
T

T

Bufferless Flow Control: Circuit Switching

16.05.2024 Computer Systems 51

Reservation
Acknowledgement

Deallocation

Buffered Flow Control

• Buffers allow to store data while waiting for the following channel
• Without buffers data arriving at cycle i had to be transmitted at cycle i+1 (or dropped)

• Flow control now needs to allocate channels and buffers
• Allocation at packet or flit granularity

• Packet granularity: store-and-forward, cut-through

• Flit granularity: wormhole

16.05.2024 Computer Systems 52

• Each node waits until packet is received completely before transmission to the next node

• Need to allocate channel and sufficient buffer space for the packet in the next node

• Example: five-flit packet, four-hop route without contention

• Store-and-forward: channels not held idle, only small buffers required, high latency due
to serialization

H B0
1

B B T

2
3C

h
an

n
e

l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Cycle
18 19

H B B B T
H B B B T

H B B B T

Buffered Flow Control: Store-and-forward (Packet-based)

16.05.2024 Computer Systems 53

Could also be transmitted later if channel/buffer space is not available

Buffered Flow Control: Cut-through (Packet-based)

• Flits are forwarded as soon as they are received and the following channel and buffer
space is acquired (allocation still at packet granularity)

• Avoids waiting for receiving the complete packet before transmission

• Example: five-flit packet, four-hop route without/with contention

• Cut-through: high channel utilization, low latency, inefficient use of buffer storage and
long contention latency due to packet-based allocation

16.05.2024 Computer Systems 54

No contention Three-cycle contention before channel 2

H B0
1

B B T

2
3C

h
an

n
e

l

0 1 2 3 4 5 6 7

Cycle

H B B B T
H B B B T

H B B B T

H B0
1

B B T

2
3C

h
an

n
e

l

0 1 2 3 4 5 6 7 8 9 10

Cycle

H B B B T
H B B B T

H B B B T

No breaks within
packet transmission

Buffered Flow Control: Wormhole (Flit-based)

• Similar to cut-through, but allocates channels and buffers to flits instead of packets
• Head flit requests channel state (virt. channel) for the packet, buffer for one flit and channel for one flit
• Body flits use virtual channel to follow head flit, request buffer for one flit and channel for one flit
• Tail flit treated like body flit, but additionally releases virtual channel

• Blocking might occur as the single virtual channel belongs to a packet, while buffers are
allocated to flits
• Channel set to idle if buffer cannot be acquired (it cannot be used by other packet)

• Wormhole: Saves buffer space, may block a channel mid-packet

• Improvement: virtual-channel flow control
• Associate multiple virtual channels (channel state and flit buffers) with single physical channel
• Other packets can use channel when one packet is blocked
• Competition for transmitting flits over single physical channel
• Reduces blocking, more complex routers

16.05.2024 Computer Systems 55

Buffered Flow Control: Wormhole vs. Virtual-channel

• Wormhole flow control: When B blocks, channel p and q are idle

• Virtual-channel flow control: A can use channel p and q using a second virtual channel

16.05.2024 Computer Systems 56

B

A

Node 1

B

Node 2 Node 3

idle

chan. p

idle

chan. q

blocked

Virtual channel

Node 1 Node 2 Node 3

chan. p chan. q

blocked

A
B

A

B A

Routing

• Selects the path a packet takes from source to destination in a given topology

• Determines how well the potential of the given topology is exploited

• Balance load across the network channels to avoid hotspots and contention
• Difficult, particularly with non-uniform traffic patterns causing load misbalances

16.05.2024 Computer Systems 57

Routing Algorithms

• Properties
• Minimal or non-minimal

• Minimal: select shortest paths
• Non-minimal: not limited to shortest paths only

• Oblivious or adaptive
• Oblivious: select route without considering information about current network state

• Deterministic: Subset of oblivious; always select same path between source and destination
• Adaptive: select route based on current network state

• Design aspects
• Table-based or algorithmic

• Table-based: Table lookup of the entire route (source-table routing) or at each node along the route (node-
table routing)

• Algorithmic: Compute route using an algorithm usually implemented via combinational logic

• Deadlocks
• Situations where packets cannot make progress as they are waiting on one another to release resources

16.05.2024 Computer Systems 58

Routing Example

• Routing decision in ring network: clockwise or counter-clockwise?

• Potential routing algorithms
• Greedy (deterministic, minimal): always pick the shortest direction

• Uniform random (oblivious, non-minimal): randomly pick a direction with equal probability

• Weighted random (oblivious, non-minimal): randomly pick a direction with a higher weight for shorter
direction

• Adaptive (adaptive, non-minimal): pick direction based on load of the local channels

16.05.2024 Computer Systems 59

Dimension-order Routing

• First move towards x-dimension, then move towards y-dimension (XY)
• To increase the clarity, we will focus on 2D meshes in the following

• Example: 2D Mesh

• Dimension-order routing: simple, minimal, can cause load imbalance, doesn‘t exploit path
diversity

16.05.2024 Computer Systems 60

Dimension-order routing:
Deterministic and minimal

Alternate route:
non-minimal

Valiant‘s Algorithm

• Packet from source s to destination d is routed via an intermediate node d‘
• Randomly select intermediate node d‘

• Phase I: Route packet from s to d‘

• Phase II: Route packet from d‘ to d

• Use arbitrary routing algorithm for Phase I+II,
e.g., dimension order routing for tori and meshes

• Can use arbitrary routing algorithm for the two phases
• For tori and meshes: Dimension-order routing as appropriate choice

• Valiant‘s Algorithm: Randomizes traffic, balances network load, non-minimal, doesn‘t
exploit locality

16.05.2024 Computer Systems 61

s

d‘

d

Valiant‘s Algorithm

• Minimal version of Valiant‘s algorithm for k-ary n-cubes:
• Restrict intermediate node: d‘ lies in minimal quadrant

between s and d (subnetwork with s and d as corner nodes)

• Randomly selects among minimal routes

• Steps:
• Identify quadrant

• Select intermediate node d‘ from quadrant

• Route from s to d‘

• Route from d‘ to d

• With dimension-order routing (either XY or YX): Doesn‘t use all paths
• Idea: Select randomly whether to use XY or YX (but: deadlock problem arises)

• Preserves locality, improves load balancing (compared to deterministic routing)

16.05.2024 Computer Systems 62

s

d‘

d

Deadlocks

16.05.2024 Computer Systems 63

• Deadlock: Situation where packets cannot make progress as they are waiting on each
other to release resources (buffers or channels)

• Example:
• Nodes: 0, 1, 2, 3; Channels: u, v, w, x

• A holds u and waits for v

• B holds v and waits for w

• C holds w and waits for x

• D holds x and waits for u

• Observation: Cycles pose a problem

u

v

w

x

D A

BC

Deadlock Avoidance: Restrict Routing

16.05.2024 Computer Systems 64

• Dimension Order Routing (k-ary n-meshes)
• E.g., first x then y (we have seen this approach already)

• Deadlock-free, but restricts path diversity

• Turn Model: Focuses on the turns allowed and the cycles they can form
• 2D mesh: 8 possible turns forming two abstract cycles

• XY Routing removes four turns (prevents deadlocks)

Deadlock Avoidance: Restrict Routing

16.05.2024 Computer Systems 65

• Turn Model: Focuses on the turns allowed and the cycles they can form
• Removing one (carefully selected) turn from each abstract cycle also prevents deadlocks

• Removing any two turns does not prevent deadlocks

west-first: traveling west
only allowed at the start

north-last: traveling north
only allowed as last direction

negative-first: traveling first
west and south, then east

and north

≡ ≡

d

s

d

s

d

s

Examples: West-First

16.05.2024 Computer Systems 66

• Example 1

• Example 2

s

d

s

d

west-first: traveling west
only allowed at the start

N

E

S

W

s

d

Channel Dependence Graph (CDG)

• Network topology:

• Channel Dependence Graph:
• One vertex for each channel

• Edges denote dependences

• Dependence exists if it is possible for channel i to wait for channel i+1

• 180° turns not allowed (e.g., AB → BA)

16.05.2024 Computer Systems 67

A

F

B

E

C

D

FE

ED

DC CB
BE

BA

EF
FA

AB BC
CD

DE
EB

AF

A

F

B

E

C

D

Cycles in the CDG

• Channel Dependence Graph may contain cycles

• Route through AB, BE, EF and route through EF, FA, AB → Deadlock

16.05.2024 Computer Systems 68

→ Remove selected
edges in the CDG

FE

ED

DC CB
BE

BA

EF
FA

AB BC
CD

DE
EB

AFA

F

B

E

C

D

Acyclic CDG

• Example: Remove Edges in the CDG (West-first turn model)

16.05.2024 Computer Systems 69

A

F

B

E

C

D

FE

ED

DC CB
BE

BA

EF
FA

AB BC
CD

DE
EB

AF

Cyclic CDG

FE

ED

DC CB
BE

BA

EF
FA

AB BC
CD

DE
EB

AF

Acyclic CDG

A

F

B

E

C

D

A look at real Systems-on-Chip

PULP 2016, PULP 2022, SpiNNaker2

Optional, not relevant for exam

Simple SoC Architecture for IoT / Wearables – Example - PULPino 2016

16.05.2024 Computer Systems 71

Source: CNX Software
https://www.cnx-software.com/2016/04/06/pulpino-open-source-risc-v-mcu-is-designed-
for-iot-and-wearables/

• SoC: System-on-chip

• PULPino Architecture 2016:
All memories are on the same chip as
the processor core

• SoC Modules:
• Processor Core
• Instruction memory
• Data memory
• Input/output devices: UARR, SPI, GPIO
• Timer
• Programming and Debug Devices: SPI

Slave and Debug Unit
• Connected by on-chip interconnect:

AHB, AXI4

Complex Multi-core SoC – Example PULP 2022

16.05.2024 Computer Systems 72

Source: https://iis-projects.ee.ethz.ch/index.php/PULP

• More complex architecture

• Different On-chip Interconnects

• DMA: Direct Memory Access –
Module to offload data
movements from the CPU

• Multi-Core with shared caches

• All these modules are physically
integrated in one integrated circuit
(IC).

SpiNNaker2 Chip

• Brain-inspired Chip designed for Spiking Neural Netwoks (SNNs)

16.05.2024 Computer Systems 73

Source: SpinnCloud

Mesh NoC

Summary

Conclusion

• Bus-based On-chip Interconnect

• Network on-Chip

• Next Sessions: Specialized Cores

16.05.2024 Computer Systems 75

Thank you for your attention

Heterogeneous Systems-on-Chip 2 – Vector Processors

Computer Systems

Daniel Mueller-Gritschneder

23.05.2024

Heterogene Systems-on-Chip (SoCs)

• SoCs are often multi-core systems

• General-purpose SoCs may have many replications of general-purpose processors
(e.g. many ARM or standard RISC-V cores)

• To improve energy-efficiency many SoC use specialized cores (heterogeneity).

25.04.2024 Computer Systems 2

Types of Specialized Cores

• Vector Processors:
• Introduced in the 70ties (Cray)
• Got new attention recently especially due to machine learning workloads

(x86, ARM and RISC-V Vector Instructions)

• GPUs:
• GPUs were initially introduced for rendering graphics in real time especially for video games.
• General Purpose (GP-GPU): Programming Language such as CUDA from NVIDIA allowed to use GPUs for

other compute besides rendering (also a lot for machine learning)

• HW Accelerators:
• Processing Cores that are specialized for a certain task (with very limited programmability)
• Usually faster and more energy efficient than software running on programmable core
• Different types:

• Deep Learning: Tensor Processing Units / Neural Processing Units
• Security: Encryption & Decryption
• Video En/Decoders

• Application-specific Instruction Set Processors (ASIPs)
• Between general-purpose programmable cores and accelerators
• Some programmability but tailored towards a certain application
• Example: Audio/Video Digital Signal Processors (DSPs)

25.04.2024 Computer Systems 3

Agenda

• Flynn’s Taxonomy

• Vector Units

• RISC-V Vector Instruction Set

• Vectorization

• Packed SIMD

• A look at a real vector unit: ARA

16.05.2024 Computer Systems 4

Optional, not relevant for exam

Flynn’s Taxonomy

Flynn’s Taxonomy

22.04.2024 Computer Systems 6

Multiple Instruction stream,
Multiple Data stream (MIMD)

Multiple Instruction stream,
Single Data stream (MISD)

• Classification of Computing Cores

Single Instruction stream,
Multiple Data stream (SIMD)

Single Instruction stream,
Single Data stream (SISD)

Vector

Packed SIMD

Multi-Threaded

Multi-Core

GPUs
(Multi-threaded

SIMD)

ScalarSuperscalar

VLIW Systolic Arrays

Vector Units

Vector Instruction Sets

• One instruction operates on several data values (SIMD)

• The data values are independent

• Operation use the same type of functional unit for all data

• Data values are stored in separate registers

• Data values are arranged in uniform structure (vector)

• Load/Stores access

a continuous range of memory

use a regular pattern (strided load/store)

• One instruction stream for parallel pipelines (so called lanes)

22.04.2024 Computer Systems 8

Functional Units (FUs) for Vector Arithmetic

• Input and Output are an array (vector)
v1= [v1[0] v1[1] v1[2]… v1[n]]

• FUs operate on one element of vector
e.g. Multiplier: v3[i] = v1[i]*v2[i]

• FUs exist for different data types
(integer, floating point)

• FUs often use deep pipeline for high frequency

• Initialization Interval usually = 1
• R: Red Operands
• O: Operation
• W: Wreite Result

22.04.2024 Computer Systems 9

v1[0] v2[0] v3[0]

Six-stage Pipelined FU
Latency = 6

1 2 3 4 5 6

R O O O O W

Clock Cycle

Vector Instruction Execution on FUs

22.04.2024 Computer Systems 10

vadd.vv v3, v1, v2

v1[6]

v1[5]

v1[4]

v1[3]

v2[6]

v2[5]

v2[4]

v2[3]

v3[0]

v3[1]

v3[2]

v1[24]

v1[20]

v1[16]

v1[12]

v2[24]

v2[20]

v2[16]

v2[12]

v3[0]

v3[4]

v3[8]

v1[25]

v1[21]

v1[17]

v1[13]

v2[25]

v2[21]

v2[17]

v2[13]

v3[1]

vd[5]

vd[9]

v1[26]

v1[22]

v1[18]

v1[14]

v2[26]

v2[22]

v2[18]

v2[14]

v3[2]

v3[6]

v3[10]

v1[27]

v1[23]

v1[19]

v1[15]

v2[27]

v2[23]

v2[19]

v2[15]

v3[3]

v3[7]

v3[11]

Execution using
one FU

Execution using
four FUs

Basic Structure of a Vector Unit

22.04.2024 Computer Systems 11

Elements

0,4,8,…

Memory Subsystem

Elements

1,5,9,…

Elements

2,6,10,…

Elements

3,7,11,…

Array of Functional Units (e.g. MUL)

Lane

Vector

Registers

Array of Functional Units (e.g. ADD)

Example – Timing for Single Vector Instruction

• Execution on Vector Unit
• with four lanes (L0-L3)

• FUs with 4 stages

• Vector size is 12

• Lanes are used in pipelined fashion
(no dependencies between elements)

• Full result is ready after 6 cycles

• 4 cycles ramp-up to fill the pipeline

22.04.2024 Computer Systems 12

L0 R O O W v3[0]

L1 R O O W v3[1]

L2 R O O W v3[2]

L3 R O O W v3[3]

L0 R O O W v3[4]

L1 R O O W v3[5]

L2 R O O W v3[6]

L3 R O O W v3[7]

L0 R O O W v3[8]

L1 R O O W v3[9]

L2 R O O W v3[10]

L3 R O O W v3[11]

1 2 3 4 5 6Clock Cycle

vmul.vv v3, v1, v2

Ramp-up time

Example – Timing for Sequence of Vector Instructions

• Full result only ready after last
cycle of vector instruction

• An instruction using the result
needs to wait until completed

• Causes a dead time (also called
recovery time) – delay until next vector
instruction can start down pipeline

22.04.2024 Computer Systems 13

R O O W

R O O W

R O O W

R O O W

1 2 3 4 5 6Clock Cycle

vmul.vv v3, v1, v2

vadd.vv v5, v3, v4

7 8 9 10 11 12

Dead time

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

MUL
Unit

ADD
Unit

Vector Chaining

• Vector version of forwarding paths

• Results are forwarded element-wise to next FU via chaining

22.04.2024 Computer Systems 14

vmul.vv v3, v1, v2

vadd.vv v5, v3, v4

Chaining

(single

lane)

v1[9]

v1[8]

v1[7]

v1[6]

v2[9]

v2[8]

v2[7]

v2[6]

v3[3]
v3[4]

v3[5]

v3[0]

v3[1]

v3[2]

v3[3]

v4[6]

v4[5]

v4[4]

v4[3]

v5[0]

v5[1]

v5[2]

v3[3]

MUL ADD

Example – Timing for Sequence of Vector Instructions with Chaining

• Chain: Forward results from all lanes
between the FUs

• No dead time

22.04.2024 Computer Systems 15

1 2 6Clock Cycle 7 8 9 10 11 12

Chaining (4 lanes)

vmul.vv v3, v1, v2

vadd.vv v5, v3, v4

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

MUL
Unit

ADD
Unit

3 4 5

Example – Timing for Sequence of Vector Instructions with Chaining and Interleaving

• Interleaving can overlap
independent vector instructions
as soon as FUs become available

• Example:

22.04.2024 Computer Systems 16

1 2 6 7 8 9 10 11 12

vmul.vv v3, v1, v2

vadd.vv v5, v3, v4

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

MUL
Unit

ADD
Unit

3 4 5

vmul.vv v3, v1, v2

vadd.vv v5, v3, v4

vmul.vv v8, v6, v7

vadd.vv v10, v8, v9

vmul.vv v8, v6, v7

vadd.vv v10, v8, v9

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

The RISC-V Vector Instruction Set

RISC-V Vector Programming Model

22.04.2024 Computer Systems 18

• RISC-V “V” Vector Extension
• Standard extension to the RISC-V ISA

• Version 1.0: https://github.com/riscv/riscv-v-spec

• Memory-register vector instructions (operations on registers)

• Vector and vector element sizes are configurable
(Vectors can be longer than one vector register)

• CSR: Specialized registers to save configuration and status of processor

https://github.com/riscv/riscv-v-spec

RISC-V Vector Programming Model

22.04.2024 Computer Systems 19

• Vector Registers and vector length
• 32 vector data registers (v0~v31) : each VLEN bits long

• Vector length register vl
• defines on how many elements will the next vector operations be executed

• Vector type register vtype (see next slide)

x0

x31

v0

v31

[0] [1] [2] [VLEN-1]

Scalar Registers Vector Registers

VlVector Length Register

Vector CSRs

• Vector type register: vtype
• Used to define vector length via parameters SEW and LMUL

• Used to define tail and mask policy via vta and vma

• See next slide for details

• Vector Byte Length: vlenb
• Read-only; Holds the value VLEN/8 (a design-time constant)

• Used to define the vector register length VLEN (fixed)

• Vector Length Register: vl
• Read-only; Can be updated by the vset{i}vl{i} instructions (see slide 25)

• Used to define on how many elements will the next vector operations be executed

• vl is limited by VLMAX=LMUL * VLEN / SEW

• Vector Start Index: vstart
• Used to define the index of first element to be executed by a vector instruction

22.04.2024 Computer Systems 20

CSR: Vector type register vtype

22.04.2024 Computer Systems 21

• CSR: Vector type register vtype layout:

vill reserved (write 0) vma vta vsew[2:0] vlmul[2:0]

02356783031

vsew[2:0] SEW

0 0 0 8

0 0 1 16

0 1 1 32

1 0 0 64

1 0 1 128

1 0 1 256

1 1 0 512

1 1 1 1024

• vsew[2:0] field encodes selected element width(SEW)
• the elementary size (in bits) of an element in the input and output

vectors

• SEW = 8 *2𝑣𝑠𝑒𝑤

• vlmul[2:0] encodes vector register length multiplier

• LMUL = 2𝑣𝑙𝑚𝑢𝑙 = 1/8 … 8

• defines the size of the vector group for vector operation input and
output operands, that is the number of vector register(s) forming the
group

• vta specifies tail-agnostic/tail-undisturbed policy

• vma specifies mask-agnostic/mask-undisturbed policy

RISC-V Vector Programming Model - Vector Layouts

22.04.2024 Computer Systems 22

• Example vector register data layouts

0 1 2 3 4 5 6 tail

element index

LMUL=2

SEW=32bits
VLEN=128bits

vl=7

VLMAX=8

0 1 2 tail

VLEN=128bits

vl=3

VLMAX=4

SEW=64bits

LMUL=2

element index

• vl is limited by VLMAX=LMUL * VLEN / SEW

• Tail : the elements past the vector length vl; not affected by the current operation

• Two tail policies: undisturbed & agnostic
• undisturbed : the tail elements are left unmodified

• agnostic : the tail elements are left undisturbed or fill in with all 1s

RISC-V Vector Programming Model - Vector Layouts in Vector Registers

22.04.2024 Computer Systems 23

• Example vector register data layouts

0 1 2 3 4 5 6 tail

element index

LMUL=2

SEW=32bits
VLEN=128bits

vl=7

VLMAX=8

0 1 2 tail

VLEN=128bits

vl=3

VLMAX=4

SEW=64bits

LMUL=2

element index

0 1 2 3v0

v1

[0] [1] [2] [3]

VLEN=128bits
SEW=32bits

0 1v0

v1

[0] [1]

VLEN=128bits
SEW=64bits

2 tail4 5 6 tail

Vector Masking

• The mask value used to control execution of a masked vector instruction is always
supplied by vector register v0

• Where available, masking is encoded in a single-bit vm field in the instruction word

• vadd.vv vd, vs2, vs1 #unmasked vector operation, vm=1 in instruction

vadd.vv vd, vs2, vs1, v0.t #enabled masking, mask supplied in v0, vm=0 in instruction

22.04.2024 Computer Systems 24

v0 mask

n-th mask bit v0.mask[n] is the
n-th bit of the vector register v0

vm Description

0 vector result, only where v0.mask[i] = 1

1 unmasked

RISC-V Vector Programming Model

22.04.2024 Computer Systems 25

• Masking
• This bitmask defines which of the result element should be actually modified by the operation

• Two mask policies : undisturbed & agnostic
• undisturbed : mask-off elements keep the value they had before the operation

• agnostic : mask-off elements can either be undisturbed or written with all 1s.

Simple Implementation
Execute all N operations, turn off result writeback according to mask

Density-Time Implementation
Scan mask vector and only execute elements with non-zero masks

v1[7]

v1[6]

v1[5]

v1[4]

v1[3]

v2[7]

v2[6]

v2[5]

v2[4]

v2[3]

v3[0]

v3[1]

v3[2]

v0.mask[7]=1

v0.mask[6]=0

v0.mask[5]=1

v0.mask[4]=1

v0.mask[3]=0

v0.mask[2]=0

v0.mask[1]=1

v0.mask[0]=0

Write Enable Write data port

v2[7]v1[7]

v3[1]

v3[4]

v3[5]

v0.mask[7]=1

v0.mask[6]=0

v0.mask[5]=1

v0.mask[4]=1

v0.mask[3]=0

v0.mask[2]=0

v0.mask[1]=1

v0.mask[0]=0

Write data port

mask[n] = 1
activates

Write
Enable

RISC-V Vector Programming Model

22.04.2024 Computer Systems 26

• Setting the vector configuration via vsetvli

• The vsetvli configuration instructions set the vtype register, and also set the vl register,
returning the vl value in a scalar register

• Resulting machine vector length in rd: vl = min (LMUL*VLEN / SEW , rs1)

vsetvli rd , rs1, e32, m2, ta, ma

Resulting machine
vector length setting Requested application vector length (AVL)

If register x0(zero) is provided then AVL is
requested to 8 (We do not need to load 8 into
register)

RISC-V Vector Programming Model

22.04.2024 Computer Systems 27

• Setting vector configuration, vsetvli

• The vsetvli configuration instructions set the vtype register, and also set the vl register,
returning the vl value in a scalar register

vsetvli rd , rs1, e32, m2, ta, ma

vtype parameters (SEW, LMUL, VTA, VMA)

encoded as immediate in instruction

e8 #SEW = 8bits
e16 #SEW = 16bits
e32 #SEW = 32bits
e64 #SEW = 64bits
mf8 #LMUL =1/8
mf4 #LMUL = 1/4
mf2 #LMUL =1/2
m1 #LMUL = 1, default
m2 # LMUL =2
m4 #LMUL=4
m8 #LMUL=8
tu #tail undisturbed, default
ta #tail agnostic
mu #mask undisturbed, default
ma #mask agnostic

RISC-V Vector Programming Model

22.04.2024 Computer Systems 28

• Vector Load and Store
• If set VLEN=128 & vsetvli t0, zero ,e32, m2, ta, ma

• vl2re32.v v0, (a0)

Load v0-v1 with 2*VLEN/32 words(32bits) held at address in a0 0 1 2 3v0

v1

[0] [1] [2] [3]

VLEN=128bits
SEW=32bits

4 5 6 7

LMUL=2

v1 4 5 6 70 1 2 3v0

0 1 2 3 4 5 6 7memory

32bits
a0

vl=8

vle32.v v0 , (a0)

32-bit unit-stride load

0 1 2 3v0

0 1 2 3 4 5 6 7memory

32bits
a0

32bits

RISC-V Vector Programming Model

22.04.2024 Computer Systems 29

• Vector Load and Store:
• If set VLEN=128 & vsetvli t0, zero ,e32, m2, ta, ma

• vs2r.v v0, (a0) # Store v0-v1 to address in a0
0 1 2 3v0

v1

[0] [1] [2] [3]

VLEN=128bits
SEW=32bits

4 5 6 7

LMUL=2

v1 4 5 6 70 1 2 3v0

0 1 2 3 4 5 6 7memory

32bits
a0

vl=8

vse32.v v0 , (a0)

32-bit unit-stride store

0 1 2 3v0

0 1 2 3 4 5 6 7memory

32bits
a0

32bits

RISC-V Vector Programming Model

22.04.2024 Computer Systems 30

0 1 2 Tailvl=3

vs1

vs2

0 1 0 Xmask

masked off
vs1[1] op

vs2[1]
masked off tailvd

Masked-off and tail elements
follow mask and tail policies :
which are parameters defined in
the vtype CSR register

vstart=0

vstart :

• specifies the first active vector element

• vstart is also saved in a CSR

X 1 0 X

vstart
masked

vs1[1] op
vs2[1]

masked off tail

Masked-off and tail elements
follow mask and tail policies :
which are parameters defined in
the vtype CSR register

0 1 2 Tailvl=3

vstart=1

vs1

vs2

mask

vd

RISC-V Vector Programming Model

Vector-Vector Operation:

• Addition: vadd.vv

• Multiplication: vmul.vv

Operation is conducted
element-wise between the
two vectors.

Without/with masking.

22.04.2024 Computer Systems 31

+ + + +

vs2

vs1

vd

[0] [1] [2] [vl-1]

vadd.vv vd, vs2, vs1, v0.t

mask

+ + + +

vs2

vs1

vd

[0] [1] [2] [vl-1]

vadd.vv vd, vs2, vs1

+ +

…

RISC-V Vector Programming Model

Vector-Scalar Operation:

Operation is conducted between
each unmasked element of the
vector and a scalar register value.

Vector Immediate Operation:

Operation is conducted between
each unmasked element of the
vector and a constant value.

22.04.2024 Computer Systems 32

vs2

rs1

vd

[0] [1] [2] [vl-1]

mask

vs2

vd

[0] [1] [2] [vl-1]

mask

imm

vadd.vx vd, vs2, rs1, v0.t

vadd.vi vd, vs2, imm, v0.t

Vector Code Example

22.04.2024 Computer Systems 33

C code
for (i = 0; i < 8; i++)

C[i] = A[i] + B[i];

Scalar Code
li a0, 8

loop:
lw a4, 0(a1)
lw a5, 0(a2)
add a4, a4, a5
sw a4, 0(a3)
addi a3, a3, 4
addi a2, a2, 4
addi a1, a1, 4
addi a0, a0, -1
bnez a0, loop

Vector Code
vsetvli t0, zero ,e32, m2,
ta, ma # t0 = 8
vl2re32.v v8, (a1)
vl2re32.v v10, (a2)
vadd.vv v8, v10,v8
vs2r.v v8, (a3)

(a1) A
(a2) B
(a3) C

Vector Code Example

22.04.2024 Computer Systems 34

C code
for (i = 0; i < 8 ; i++)

C[i] = A[i] * B[i];

Scalar Code
li a0, 8

loop:
lw a4, 0(a1)
lw a5, 0(a2)
mul a4, a5, a4
sw a4, 0(a3)
addi a3, a3, 4
addi a2, a2, 4
addi a1, a1, 4
addi a0, a0, -1
bnez a0, loop

Vector Code
vsetvli t0, zero ,e32, m2,
ta, ma # t0 = 8
vl2re32.v v8, (a1)
vl2re32.v v10, (a2)
vmul.vv v8, v10,v8
vs2r.v v8, (a3)

(a1) A
(a2) B
(a3) C

Vector Code Example

22.04.2024 Computer Systems 35

C code
for(i=0; i<8; i++)

y[i]=a*x[i]+y[i];

Scalar Code
li a0, 8

loop:
lw a4, 0(a2)
lw a5, 0(a3)
mul a4, a4, a1
add a4, a4 ,a5
sw a4, 0(a3)
addi a0, a0, -1
addi a3, a3, 4
addi a2, a2, 4
bnez a0, loop

Vector Code
vsetvli t0, zero, e32, m2,
ta, ma # t0 = 8
vl2re32.v v8, (a2)
vl2re32.v v10, (a3)
vmacc.vx v10, a1, v8
vs2r.v v10, (a3)

(a2) x
(a3) y
a1 a

Vector Code Example

22.04.2024 Computer Systems 36

C code
#set mask
for(i=0;i<8;i++)

mask[i] = i % 2;
for(i=0; i<8; i++){

if(mask[i])
y[i]=a*x[i]+y[i];

}

Scalar Code
li a0, 8

loop:
lw a4, 0(a2)
lw a5, 0(a3)
lw t1, 0(a4)
beqz t1, skip #if mask[i]=0
mul a4, a4, a1
add a4, a4 ,a5
sw a4, 0(a3)

skip:
addi a0, a0, -1
addi a3, a3, 4
addi a2, a2, 4
bnez a0, loop

Vector Code
vsetvli t0, zero, e32, m2,
ta, ma # t0 = 8
vl2re32.v v8, (a2)
vl2re32.v v10, (a3)
vl2re32.v v12, (a4)
vmsne.vx v0, v12, zero
Set the v0, enabling the
mask if mask[i] is not zero
vmacc.vx v10, a1, v8, v0.t
vs2r.v v10, (a3)

(a2) x
(a3) y
(a4) mask
a1 a

Vectorization

Automatic Code Vectorization

22.04.2024 Computer Systems 38

for (i=0; i<N; i++)
C[i] = A[i] + B[i] ;

load

load

add

store

load

load

add

store

Scalar Sequential Code

Iter.1

Iter.2

load

load

add

store

load

load

add

store

T
i
m
e

Iter.1 Iter.2

Vectorization is a massive compile-time reordering of operation sequencing

requires extensive loop-dependence analysis

Vectorized Code

Vector Instruction

Packed SIMD

Packed SIMD Extensions

• Very short vectors added to existing ISAs for microprocessors

• Use existing (32) 64-bit registers split into 2x32b or (2x16b) 4x16b or (4x8b) 8x8b

• Single instruction operates on all elements within register

• Examples:

• RISC-V P Extension (not ratified)

• CoreV Extension (Custom Vendor extension of Open HW Group, not official)

22.04.2024 Computer Systems 40

64b

32b 32b

8b 8b 8b 8b 8b 8b 8b 8b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

⨁ ⨁ ⨁ ⨁4x16b adds

x11

x12

x13

Packed SIMD vs. Vector

• Pros of Packed SIMD
• No extra HW Co-processor

• SIMD unit can share resources in pipeline (ALU and SIMD ALU)

• Cons of Packed SIMD
• No configurable vector length

• Usually no wider load/store unit

• Limited by scalar register sizes

22.04.2024 Computer Systems 41

A look at a real vector unit: ARA

Optional, not relevant for exam

ARA Vector Unit

22.04.2024 Computer Systems 43

Source: Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector
Processor With Multiprecision Floating-Point Support in 22-nm FD-SOI
https://ieeexplore.ieee.org/abstract/document/8918510

Vector Unit for the Ariane (now CVA6)
Open source: https://github.com/pulp-platform/ara

https://ieeexplore.ieee.org/abstract/document/8918510
https://github.com/pulp-platform/ara

Summary

Conclusion

• Vector Units: Data Level Parallelism

• RISC-V Vector Instruction Set

• Next Session:
• GPUs

• Accelerators

16.05.2024 Computer Systems 45

Thank you for your attention!

Heterogene Systeme – GPGPUs, TPUs, NPUs

Computer Systems

Daniel Mueller-Gritschneder

27.05.2024

Content

• Motivation: Era of Deep Learning

• GP GPUs

• TPUs / NPUs

25.04.2024 Computer Systems 2

Optional, not relevant for exam

Motivation: Era of Deep Learning

Use of Data-level Parallelism (DLP)

Optional, not relevant for exam

ML Plattforms are Heterogeneous

Cloud

Datacenter:
Multi-Servers
with Multi-GPUs

Desktop/Workstation
/Fog:
PC with GPU

Edge/Mobile:
Mobile Phone
Raspberry PI
Embedded GPU
Specialized SoCs

Extreme Edge / TinyML:
MCU
Specialized low-power SoC

• Large computing continuum with possibly connectivity:

Hundreds of CPUs
Hundreds of GBs of DRAM
Several GPUs with
Tens of GB of DRAM
Several TB of Storage

2-128 CPUs
Tens of GBs of DRAM
1-2 GPUs with Tens of GB of DRAM
A few TB of Storage

1-4 CPUs
1-4 GBs of DRAM
1 GPUs with a few GB of DRAM
Specialized Accelerators
Tens to Hundreds of GB of Storage

1 CPU
Hundreds of kB to a few MB of
embedded SRAM
Low-power Acceleration / Co-proccesors
A few MB of Storage, e.g. embedded Flash

Embedded Machine Learning / Edge AICloud ML Desktop ML

Deep Learning Models are Heterogeneous

• In type: Deep Neural Networks, Convolutional Neural Networks, Transformers, Graph
Neural Networks, Recursive Neural Networks

• In computing demand: often measured in MAC operations

• In size: often measured in number of parameters

• Examples:

• Large Language Models (LLMs) -produces human-like text
• GPT-4: 170 trillion (10e12) parameters

• GPT-3: 175 billion (10e9) parameters

• ResNet18 – 11 million (10e6) parameters – Image classification e.g. for
autonomous driving

• Keyword Spotting (KWS): 16k-300k (10e3) parameters – Detects keyword in an
audio stream, e.g. for Audio wakeup (TinyML)

Example: Convolutional Neural Network

• Consists of layers (structure reprented by
data flow graph)

Image to Column (Img2Col) Transformation

• For many targets there exist a very optimized implementation of matrix-matrix-
multiply computation e.g. accelerators, for CPUs with some SIMD support, GPUs, but
also single-issue CPUs

• Img2Col transforms a convolution operation into a matrix-matrix-multiply operation

• Img2Col requires to build up a batch matrix, which is larger than the original
activation tensor, because it holds duplicates of some values

 Usually Img2Col is not done on the full input activation tensor but inside the
convolution loop on some part of the tensor in order to avoid building up the full
batch matrix

Example for Img2Col (1/5)

• For reference: This is the Standard Convolution

a0,0,0 a0,1,0
…

a0,1,0 a0,2,0
…

a1,0,0 a1,1,0
…

a1,1,0 a1,2,0
…

a0,0,1 a0,1,1
…

a0,1,1 a0,2,1
…

a1,0,1 a1,1,1
…

a1,1,1 a1,2,1
…

Example for Img2Col (2/5)

• Step 1 for Img2Col: Create col-based batch matrix

• Each line holds the activation values under one kernel position for all channels

Input channel 1

batch 1 batch 2

img2col

a0,0,1 a0,1,1 a0,2,1 a0,3,1

a1,0,1 a1,1,1 a1,2,1 a1,3,1

a2,0,1 a2,1,1 a2,2,1 a2,3,1

a3,0,1 a3,1,1 a3,2,1 a3,3,1

Input channel 0

a0,0,0 a0,1,0 a0,2,0 a0,3,0

a1,0,0 a1,1,0 a1,2,0 a1,3,0

a2,0,0 a2,1,0 a2,2,0 a2,3,0

a3,0,0 a3,1,0 a3,2,0 a3,3,0

Example for Img2Col (3/5)

• Step 2: Create a row-based filter matrix. (Can be done already offline, is already existing
with just storing weight tensor in ROM memory)

25.04.2024 Computer Systems 10

w0,0,0,0 w0,1,0,0 w1,0,0,0 w1,1,0,0 w0,0,1,0 w0,1,1,0 w1,0,1,0 w1,1,1,0

w0,0,0,1 w0,1,0,1 w1,0,0,1 w1,1,0,1 w0,0,1,1 w0,1,1,1 w1,0,1,1 w1,1,1,1

Example for Img2Col (4/5)

• Step 3: Run a matrix-matrix multiplication with target-specific
optimized GEMM kernel

a0,0,0 a0,1,0
…

a0,1,0 a0,2,0
…

a1,0,0 a1,1,0
…

a1,1,0 a1,2,0
…

a0,0,1 a0,1,1
…

a0,1,1 a0,2,1
…

a1,0,1 a1,1,1
…

a1,1,1 a1,2,1
…

batch 1 batch 2

W

A

w1,1,1,1 a1,1,1 + w1,2,1,1 a1,2,1

+ w2,1,1,1 a2,1,1 + w2,2,1,1

a2,2,1 +
w1,1,2,1 a1,1,2 + w1,2,2,1 a1,2,2

+ w2,1,2,1 a2,1,2 + w2,2,2,1

a2,2,2 +
w1,1,3,1 a1,1,3 + w1,2,3,1 a1,2,3

+ w2,1,3,1 a2,3,1 + w2,2,3,1

a2,3,1

… …

w1,1,1,2 a1,1,1 + w1,2,1,2 a1,2,1

+ w2,1,1,2 a2,1,1 + w2,2,1,2

a2,2,1 +
w1,1,2,2 a1,1,2 + w1,2,1,2 a1,2,2

+ w2,1,2,2 a2,1,2 + w2,2,2,2

a2,2,2 +
w1,1,3,2 a1,1,3 + w1,2,3,2 a1,2,3

+ w2,1,3,2 a2,3,1 + w2,2,3,2

a2,3,1

… …

Z

=

Example for Img2Col (5/5)

• Step 4: Reshape the output to recover the output feature maps using the inverse col2img
transformation.

w1,1,1,1 a1,1,1 + w1,2,1,1 a1,2,1 +
w2,1,1,1 a2,1,1 + w2,2,1,1 a2,2,1 +
w1,1,2,1 a1,1,2 + w1,2,2,1 a1,2,2 +
w2,1,2,1 a2,1,2 + w2,2,2,1 a2,2,2 +
w1,1,3,1 a1,1,3 + w1,2,3,1 a1,2,3 +
w2,1,3,1 a2,3,1 + w2,2,3,1 a2,3,1

… …

w1,1,1,2 a1,1,1 + w1,2,1,2 a1,2,1 +
w2,1,1,2 a2,1,1 + w2,2,1,2 a2,2,1 +
w1,1,2,2 a1,1,2 + w1,2,1,2 a1,2,2 +
w2,1,2,2 a2,1,2 + w2,2,2,2 a2,2,2 +
w1,1,3,2 a1,1,3 + w1,2,3,2 a1,2,3 +
w2,1,3,2 a2,3,1 + w2,2,3,2 a2,3,1

… …

GEMM Algorithm

• Basic linear algebra algorithm for matrix-matrix-multiply

• Optimized versions exist for many hardware platforms e.g.

• Considering block-wise computation depending on cache sizes

• Exploiting data-level parallelism (DLP)

•GEMM is seen as „at the heart of deep learning“ especially when acceleration is
considered.

Further reading:
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

General-Purpose Graphics Processor Units (GPGPUs)

Source

Inspired by:

• Book: Aamodt, Fung & Rogers – Generap-Purpose
Graphics Processor Architectures

• Book: Hennesy &Patterson: Computer
Architecture – A Qualitative Approach

• CA Course: Sophia Shao, UC Berkeley

25.04.2024 Computer Systems 15

GPUs

• GPUs were initially introduced for rendering in real time especially for video games.

• Nowadays GPUs can be found in many devices (Data Centers, PCs, Laptop, Phones,
Embedded GPUs...)

• General Purpose (GP-GPU): Programming Language CUDA from NVIDIA allowed to use
GPUs for other compute besides rendering (now especially used for ML)

25.04.2024 Computer Systems 16

GPU (Discrete vs. Integrated)

• GPUs are combined with a CPU either on a single chip or by inserting an additional card
(e.g. via PCIe).

• The CPU is responsible for initiating computation on the GPU and transferring data to and
from the GPU. The CPU is often called “the host”.

25.04.2024 Computer Systems 17

Host CPU GPU

Graphics
Memory

System
Memory

CPU GPU

System
Memory

Cache

Discrete GPU: Own memory

Integrated GPU:
Shared memory

Basic Programming Model

• CPU (Example Code):

25.04.2024 Computer Systems 18

void saxpy_serial(int n, float a, float *x, float *y) {
for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];
}

…
saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY kernel
…

Basic Programming Model

25.04.2024 Computer Systems 19

…
float *d_x, *d_y;
int nblocks = (n + 255) / 256;
cudaMalloc(&d_x, n * sizeof(float));
cudaMalloc(&d_y, n * sizeof(float));
cudaMemcpy(d_x, h_x, n * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, h_y, n * sizeof(float), cudaMemcpyHostToDevice);
saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);
cudaMemcpy(h_x, d_x, n * sizeof(float), cudaMemcpyDeviceToHost);
...

__global__ void saxpy(int n, float a, float *x, float *y)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i<n)
y[i] = a*x[i] + y[i];
}

• GPU (CUDA):

Compute
Kernel

Setup and call kernel
from CPU program

Threads, Warps, Thread block

• The threads that make up a compute kernel are organized into a hierarchy composed of a
grid of thread blocks consisting of warps.

• In the CUDA programming model, individual threads execute instructions whose
operands are scalar values (e.g., 32-bit floating-point).

• To improve efficiency typical GPU hardware executes groups of threads together in lock-
step (SIMD). These groups are called warps, which consist of 32 threads

• Warps are grouped into a larger unit called thread block by NVIDIA.

25.04.2024 Computer Systems 20

Thread Block 1

Example:

Wrap 0

Thread 0 y[0] = a*x[0] + y[0];

….

Thread 31 y[31] = a*x[31] * y[31];

25.04.2024 Computer Systems 21

Wrap 1

Thread 32 y[32] = a*x [32] * y[32];

….

Thread 63 y[63] = a*x [63] * y[63];

Wrap 7

Thread 224 y[244] = a*x [244] * y[244];

….

Thread 255 y[255] = a*x [255] * y[255];

…

saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);

• Launch a single grid, consisting of nblocks thread blocks

• Each thread block contains 256 threads (8 warps).

…

nblock
Thread
blocks

GRID

Thread Block L

Example:

Wrap K

Thread (n-2)*32 y[n-2] = a*x[n-2] + y[n-2];

Thread (n-1)*32 y[n-1] = a*x[n-1] + y[n-1];

….

….

25.04.2024 Computer Systems 22

…

saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);

• Threads with thread_idx.x > n are deactivated

…

nblock
Thread
blocks

GRID

Wrap K+1

….

….

….

….

Deactivated
(>n)

Single Instruction, Multiple Thread (SIMT)

• GPUs uses the Single Instruction, Multiple Thread (SIMT) model

• Scalar instruction streams for each CUDA thread are grouped together for SIMD execution
on hardware

• Loads and stores are scatter-gather, as threads perform scalar loads and stores

25.04.2024 Computer Systems 23

Instr. 1 Instr. 2 Instr. 3 Instr. 4 Instr. 5Scalar instruction stream

SIMD
execution
across
warp

Divergence and Reconvergence of Threads

• Warps execute in lock-step SIMD fashion

• Threads may diverge/reconverge due to control flow

• Simplified illustration (arrows are threads in a thread block):

25.04.2024 Computer Systems 24

doX();

doX();
if (threadIdx.x < 4) {

doA();
} else {

doB();
}
doY();

d
iv

er
ge doA();

doB();

re
co

n
ve

rg
e

doY();

Mask =
1 1 1 1 1 1 1 1

Mask =
1 1 1 1 0 0 0 0

Mask =
0 0 0 0 1 1 1 1

Mask =
1 1 1 1 1 1 1 1

GPU

SIMD Core

Hardware Execution Model

• GPU is built from multiple parallel cores, each core contains a multithreaded SIMD processor with
multiple lanes but with no scalar processor

• CPU sends whole “grid” over to GPU, which distributes thread blocks among cores
(each thread block executes on one core)

25.04.2024 Computer Systems 25

La
n

e
0

La
n

e
1

La
n

e
2

…
.

SIMD Core

La
n

e
0

La
n

e
1

La
n

e
2

…

SIMD Core

La
n

e
0

La
n

e
1

La
n

e
2

…
.

….

La
n

e
0

La
n

e
1

La
n

e
2

…
.

GPU Memory

Host CPU

System
Memory

Multithreading on SIMD Processor

• SIMD cores execute instructions of independent warps in multithreaded fashion

• E.g. can hide memory latencies

25.04.2024 Computer Systems 26

Warp 1
Instr. 5Scalar instruction stream

SIMD
execution
across
warp

SIMD Core

La
n

e
0

La
n

e
1

La
n

e
2

…
.

SIMD Thread (Warp) Scheduler

Warp 1
Instr. 6

Warp 2
Instr. 8

Warp 3
Instr. 45

Warp 4
Instr. 15

Multithreaded SIMD Processor

25.04.2024 Computer Systems 27

Source H&P: Computer
Architecture – A
Qualitative Approach

Look at a Real GPU: A100

Optional, not relevant for exam

A100 GPU -128 Streaming Multiprocessor

25.04.2024 Computer Systems 29

Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

NVIDEA calls
SIMD processors
Streaming Multiprocessors
(SMs)

SM

• “A100 has four Tensor Cores per
SM, which together deliver 1024
dense FP16/FP32 FMA operations
per clock”

• “432 Third-generation Tensor Cores
per GPU” (108 SMs)

25.04.2024 Computer Systems 30
Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

Accelerators - Systolic Array

Systolic Array

Concept:

• Functional Units (FUs) are chained to implement a fixed type of computation

• Flow inside systolic array needs to be carefully orchestrated

• Intermediate results are directly moved to next FU

• 2D systolic arrays often used for deep learning for Matrix-matrix multiply (GEMM),
called Tensor Cores, GEMM Core, Matrix Multiply Unit

• Systolic arrays can be designed for many other computations

25.04.2024 Computer Systems 32

Example: 1D Convolution

• Simple 1D convolution (A1x12)*(1x3):

25.04.2024 Computer Systems 33

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

w0 w1 w2

a0w0

+

a1w1

+

a2w2

a1w0

+

a2w1

+

a3w2

a2w0

+

a3w1

+

a4w2

a3w0

+

a4w1

+

a5w2

a4w0

+

a5w1

+

a6w2

a5w0

+

a6w1

+

a7w2

a6w0

+

a7w1

+

a8w2

a7w0

+

a8w1

+

a9w2

a8w0

+

a9w1

+

a10w2

a9w0

+

a10w1

+

a11w2

*

=

void conv1D_12_3(int* x, int* w, int* y) {
for (i=0; i<10;i++) {
y[i]=0;
for (j=0;j<3;j++) {
y[i] += x[i+j] * w[j];

}
}
}

y0
y9

Moving
window

…

Example: 1D Convolution

• Code

25.04.2024 Computer Systems 34

void conv1D_12_3(int* x, int* w, int* y) {
for (i=0; i<10;i++) {

y[i]=0;
for (j=0;j<3;j++) {

y[i] += x[i+j] * w[j];
}

}
}

conv1D_12_3:
LW t1,0(a1) # w0
LW t2,4(a1) # w1
LW t3,8(a1) # w2
LI t4,0

conv1D_12_3_loop:
LW a4,0(a0) # x[i+0]
LW a4,4(a0) # x[i+1]
MUL a1,a4,t1 # x[i+0] * w[0]
MUL a4,a4,t2 # x[i+1] * w[1]
LW a5,8(a0) # x[i+2]
ADD a1,a1,a4
MUL a5,a5,t3 # x[i+2] * w[2]
ADD a1,a1,a5
SW a1,0(a2) # Store y[i]
ADDI a0,a0,4
ADDI a1,a1,4
ADDI t4,t4,1
BNE t4,10, conv1D_12_3_loop

RET

Example: 1D Convolution - Systolic Array (1D) - Structure

• Structure:

25.04.2024 Computer Systems 35

MUL MUL MUL

A
D

D

FIFO

FIFO

FIFO

A
D

D

MUL+ ADD FU is called
Multiply-Accumulate (MAC) Unit

Example: 1D Convolution - Systolic Array (1D) - Structure

• Step 1: Load Weights

25.04.2024 Computer Systems 36

MUL MUL MUL

A
D

D

FIFO

FIFO

FIFO

w1 w0

A
D

D

w2

x1 x0

x2

Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 3:

25.04.2024 Computer Systems 37

MUL MUL MUL

A
D

D

FIFO

FIFO

FIFO

w2 w1 w0

A
D

D

x0x1x2

x3x4

x2w2

x5

Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 4:

25.04.2024 Computer Systems 38

MUL MUL MUL

A
D

D

FIFO

FIFO

FIFO

w2 w1 w0

A
D

D

x0x1x2x3

x4

x2w2

x1w1 +
x2w2

x1w1

x3w2

x5

x6

Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 5:

25.04.2024 Computer Systems 39

MUL MUL MUL

A
D

D

y0

FIFO

FIFO

FIFO

w2 w1 w0

A
D

D

x0x1x2x3x4

x3w2

x2w1 +
x3w2

x2w1

x4w2

x0w0 +
x1w1 +
x2w2

x0w0

x1w1 +
x2w2

x5

1st result

x6

x7

Latency=5

Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 6:

25.04.2024 Computer Systems 40

MUL MUL MUL

A
D

D

y1 y0

FIFO

FIFO

FIFO

w2 w1 w0

A
D

D

x1x2x3x4x5

x4w2

x3w1 +
x4w2

x3w1

x5w2

x1w0 +
x2w1 +
x3w2

x1w0

x2w1 +
x3w2

x6

2nd result

x7

x8

One result in each cycle
Only one load of data

(Initialization interval = 1)

Systolic Arrays Pros-Cons

• Advantages:
• Move intermediate results between FUs to reduce memory access

• Balance between computation and memory bandwidth

• Simple design to exploit data-level parallelism (DLP)

• Different systolic arrays can be combined for multi-stage computations

• Disadvantage
• Specialized: computation needs to fit FU arrangement

25.04.2024 Computer Systems 41

A look at Real ML Accelerators

Google Tensor Processing Unit (TPU)

VTA Neural Processing Unit (NPU)

Optional, not relevant for exam

TPU V1: Tensor Processing Unit (2017)

• Application-specific Integrated Circuit (ASIC) – Chip from Google

• Specialized to accelerate Deep Neural Network (DNN) computations

• PCB board with PCIe Interface to Host processor

25.04.2024 Computer Systems 43

Source: https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu?hl=en

TPU Data Rates

25.04.2024 Computer Systems 44

Source: https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu?hl=en

Weight FIFO

DDR 3
Interface

TPU V1 Dataflow and ISA

Instructions:

• Read Weights
• Reads weights from the

DDR into the Weight FIFO

• Read from Host Memory:
• Reads data from the CPU

(Host) memory into the
unified TPU buffer

• Execute Matrix Matrix
Multiply for Convolution +
Activation + Pooling

• Write to Host Memory

• Writes data from unified
buffer into CPU memory

25.04.2024 Computer Systems 45

PCIe
PCIe

Interface
Unified
Buffer

Matrix
Multiply

Activations

Accumulators

Pooling

Control
(Instructions)

• Dataflow:

To Host
CPU

To DDR memory chips

D
D

R

TPU: Matrix Matrix Multiply

• Core of the TPU is matrix-matrix-multiply

• 2D Systolic Array:
• Input 1: Matrix size Sx256 (Unified buffer)

• Input 2: Constant matrix 256x256 (Weight FIFO)

• Output: Input1 multiplied Input 2

• Latency: S cycles

• Initialization interval: 1

25.04.2024 Computer Systems 46

Google TPU V4 for Cloud

25.04.2024 Computer Systems 47

Source: https://cloud.google.com/tpu/docs/v4

Key specifications v4 Pod values

Peak compute per chip 275 teraflops (bf16 or int8)

HBM2 capacity and bandwidth 32 GiB, 1200 GBps

Measured min/mean/max power 90/170/192 W

TPU Pod size 4096 chips

Interconnect topology 3D mesh

Peak compute per Pod 1.1 exaflops (bf16 or int8)

All-reduce bandwidth per Pod 1.1 PB/s

Bisection bandwidth per Pod 24 TB/s

Chips can be arranged in Twisted Torus
interconnect

Embedded NPU: Versatile Tensor Accelerator (VTA)

• Source: http://arxiv.org/pdf/1807.04188

• Open Source: https://github.com/apache/tvm-vta

25.04.2024 Computer Systems 48

http://arxiv.org/pdf/1807.04188
https://github.com/apache/tvm-vta

Summary

Covered Topics

• General-Purpose Processor Cores
• Pipelining

• Speculation and Branch Prediction

• Instruction-Level Parallelism: Superscalar, VLIW

• Thread-Level Parallelism: Multi-threading, Multi-Core

• Data-Level Parallelism: Vector

• Specialized Cores :
• GP-GPUs

• Accelerators: TPU, NPU

25.04.2024 Computer Systems 50

Thank you for your attention!

	16_HeterogeneousSoC-Interconnect2
	17_HeterogeneousSoC-Vector2
	18_HeterogeneousSoC-GPU-TPU

