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Motivation

• Most chips feature a range of processing elements (PEs) / multi-cores

• PEs needs to communicate with each other

• On-chip Interconnect architecture and type play crucial role in performance. 

• Chips and devices are connected via different types of interconnects
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Agenda

• Interconnect types

• On-chip buses

• Networks-on-chip (NoC)

• A look at real on-chip interconnects
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Interconnect Types



Interconnect Types

• On-Chip: Connects modules that are integrated into the same chip (IC: integrated circuit)

• PCB-level: Connects different ASICs + connectors and other component all mounted on 
one Printed Circuit Board (PCB). 

• Many other interconnects (board to board, rack to rack): PCIe, Ethernet, CAN, UART, I2C, 
SPI, GPIO, …
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Different Scales of Interconnects
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On-chip Buses



Memory-mapped Buses

• Purpose: 
• Read or write a value from or to a certain address

• Value can be data or peripheral control information 

• Memory-mapped Bus has several (sub-)buses (group of signals) and a defined bus 
protocol
• Address bus

• Data bus for reading data

• Data bus for writing data

• Control signals: Indicate if access is read or write, bust length, ID, bus grant,  …

• Modules on the bus can either act as initiators or targets
• Typical initiators: CPUs, DSPs, DMAs, bus bridges, …

• Typical targets: Memory, accelerators, interface peripheral, bus bridges, … 
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Classes of Memory-mapped Buses

• Single-initiator bus:
• One initiator component can address different target components, which are mapped to different 

addresses

• Shared bus:
• There are several initiators on the bus 

• An arbiter decides which initiator module is granted access to the bus

• Only one initiator can access one slave via the bus at a time

• Layered bus:
• There is more than one arbiter such that more than one initiator is granted access on the bus

• Only one target component on each layer can be accessed at a time

• Crossbar/ bus matrix
• Each target component has its own arbiter

• Each target component can be accessed by one initiator at a time
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Single-Initiator Bus

• Target knows 
• if it is addressed by observing the address bus ADDR 

• or decoder generates SEL signal for targets based on address bus ADDR 

• Target can receive data on write data bus WDATA

• Decoder forwards the data from the addressed target by multiplexing it to the read data 
bus RDATA

• Additional control bus CTRL for signals related to bus protocol (e.g. WR, SEL, RDY )
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Simple Write Access

1. Initiator places address and data on the ADDR and WDATA bus
Initiator indicates write by setting signal WR to high
Initiator indicates that access is started by setting SEL signal to high

2. Target acknowledges write access by RDY signal
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Simple Read Access

1. Initiator places address on the ADDR bus
Initiator indicates read access by setting signal WR to low
Initiator indicates that access is started by setting SEL signal to high

2. Target places data on RDATA bus
Target acknowledges write access by RDY signal
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Performance of Simple Accesses

• Each access takes minimally two cycles

• Maximal bus bandwidth is:
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Pipelined Accesses

• The next address can be placed on the bus while the data is read

• Maximal bandwidth supported by bus is equal to:

• Additional control signals and logic required to support pipelined accesses.
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Burst Accesses

• A burst accesses a consecutive row of addresses

• Version 1: the addresses for all accesses must be given and a control signal that indicates 
that this is a burst access of a certain size

• Version 2: Only the start address must be given and a control signal that indicates that 
this is a burst access of a certain size
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Multiple Outstanding Transactions

• A address may be placed on the bus before the data of the previous access has been read 
or be written

• This improves performance in case of wait cycles.
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Out of order Completion with Interleaving

• A address may be placed on the bus before the data of the previous access has been read 
or be written

• In case of wait cycles, the order of data reads may be changed
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Shared Bus

• Arbiter grants access to the initiator: 

• Only the address and data of one initiator is forwarded to the targets
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Bus Arbitration

• The arbiter grants access to initiator that request the bus 

• Round-robin: Access granted to initiators in pre-defined order that is repeated

• FIFO: First initiator requesting the bus is granted access

• Priority: Initiator with highest priority is granted access to the bus
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Split Accesses

• Slave can allow a split of an access if it was many wait cycles

• Access of initiator I1 is split by issuing a start of split by slave

• I2 is granted the bus and access of initiator I2 is performed
Then access of initiator I1 is finished by issuing an end of split
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Crossbar / Bus Matrix
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Layered Bus

• Targets are on different layers

• Initiator can connect to targets on different layers simultaneously
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Some Bus Standards

• AMBA Bus (ARM)
• AHB: Advanced High Performance Bus

• APB: Advanced Peripheral Bus

• AXI: Advanced eXetendible Interface

• Wishbone (Open)

• TileLink (Open)
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ARM AMBA Standard

• Different Versions e.g.,  AMBA 2,0, AMBA 3.0,…

• AHB: Advanced High Performance Bus
• High performance
• Pipelined operation
• Multiple bus initiators
• Burst transfers
• Split transactions

• APB: Advanced Peripheral Bus
• Low power
• Simple Interface
• Suitable for many peripherals
• One initiator (APB Bridge)

• AXI: Advanced eXetendible Interface
• Configurable channel-based specification
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Typical On-Chip Interconnect for Smaller Embedded Devices

• High-performance near the processor cores, low-performance near the slow I/O devices
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Example – Layered Bus

• Given is the following architecture for a shared layered bus: 
• There are two initiator components, CPU and DMA. 

• There are three target components, MEM, HWacc and IO. 
The MEM, is on layer 1, the Hwacc and IO component is on layer 2. 
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Example – Layered Bus
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Example – Layered Bus - Access

• Assume that the CPU wants to read access the IO slave component in the bus cycle 1 and that the DMA 
wants to read access the HWacc in the same bus cycle 1. Draw the bus access diagram for the data and
address bus of the two bus masters as well as the control request and grant signals for the two layers
assuming that the bus does not support pipelining. The IO component inserts two wait cycles. The HWacc
component inserts no wait cycles. The arbitration order is CPU first, then DMA.  There is no pipelining.

16.05.2024 Computer Systems 28

ADDR-Layer1

L1

C1 C2 C3 C4

Round-robin: No pipelining

data1

REQ-CPU

REQ-DMA

GRANT-Layer1

RDATA-Layer1

CPU

addr-IO

L1

data2

addr-HWacc

C5 C6

GRANT-Layer2

ADDR-Layer2

RDATA-Layer2

C7

DMA

wait cycles



Network-on-Chip (NoC)



Sources

• Principles and Practices of Interconnection Networks
Authors: William James Dally, Brian Patrick Towles
ISBN: 978-0-08-049780-8

• Slides inspired by the „On-Chip Networks I/II“ (L-15/L-16) lectures of Ryan Lee and Tushar 
Krishna: http://csg.csail.mit.edu/6.5900/lecnotes.html
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Motivation

• Need for scalability and reduced cost
• Avoid long interconnects/delays caused by increased system complexity

• Reduce wiring overhead caused by increasing number of system components

• Performance demands
• Goal: high bandwidth and low latency

• Concurrent communication required due to increased traffic

• Solution: Network-on-Chip (NoC)
• Move from bus to network (small-scale networks on chip-/system-level)

• Larger-scale networks in later lectures

• Broadcast can be avoided, but still possible via multiple messages (when required)

• Serialization achievable, e.g., by forcing the same path or via sequence numbers
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Motivation: Scalability

• Scalability: How to connect hundreds of processor cores / memory interfaces?

16.05.2024 Computer Systems 32

L2 

Cache

S
y
s
te

m
 I
n
te

rc
o
n

n
e

c
t

T T

Processor

Core 1

Instruction 

Cache

Data 

Cache

I I

I I

Processor

Core 2

Instruction 

Cache

Data 

Cache

I I

I I

…

Processor

Core N

Instruction 

Cache

Data 

Cache

I I

I I

Processor

Core N-1

Instruction 

Cache

Data 

Cache

I I

I I L2 

Cache
T T

…

Memory

Controller
T T Memory

Controller

Compute PE

L2 

Cache

S
y
s
te

m
 I
n

te
rc

o
n

n
e

c
t

T TProcessor

Core 1

Instruction 

Cache

Data 

Cache

I I

I I

Processor

Core 2

Instruction 

Cache

Data 

Cache

I I

I I

Network

Interface
T T

Network

InterfaceMemory PE

L2 

Cache

S
y
s
te

m
 I
n
te

rc
o
n
n
e
c
t

T TProcessor

Core 1

Instruction 

Cache

Data 

Cache

I I

I I

Processor

Core 2

Instruction 

Cache

Data 

Cache

I I

I I

Network

Interface
T T

Compute PE

N
et

w
o

rk
-o

n
-C

h
ip

 (
N

o
C

)



L2 

Cache
S

ys
te

m
 I

n
te

rc
o

n
n

e
c
t

T TProcessor

Core 1

Instruction 

Cache

Data 

Cache

I I

I I

Processor

Core 2

Instruction 

Cache

Data 

Cache

I I

I I

Network

Interface
T T

Compute PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE
Buffer

Buffer

Buffer

Buffer

Allocators

Crossbar 

Switch

Network-on-Chip Basics

16.05.2024 Computer Systems 33

• Objective: Connect nodes with each other via routers and wires, so that messages can be 
sent from source to destination

• Building blocks:
• Node: any component, e.g., processor, memory, or a combination of them

• Network interface: module connecting a node to the network

• Router: forwards data from inputs to outputs (network interfaces or other routers)

• Link: physical set of wires, e.g., connecting two routers

• Channel: logical connection between routers

• Message: unit of transfer for the nodes

• Packet: unit of transfer for the network

NoC Router



Design

• Topology: What is the connection pattern of the nodes?

• Routing: Which path should a message take?

• Flow control: Which network resources are granted to a message over time?

• Traffic analogy
• Topology: defines roadmap, i.e., streets and intersections

• Routing: steering of the car, i.e., where to turn at each intersection

• Flow control: traffic light control, i.e., when a car can advance over the next part of the road
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Topology

• Topology: arrangement of nodes and channels
• Determines e.g., number of hops, number of alternative paths, cost

• Properties for comparison
• Degree: number of links at each node

• Distance: number of links in the shortest route

• Diameter: maximum distance between any two nodes

• Bisection bandwidth: available bandwidth from one partition to the other, when cutting the network 
into two equal parts (minimum for multiple possible cuts)
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Topology

• Direct networks: each terminal node is associated with a router; routers are sources/sinks 
and switches for traffic from other nodes

• Indirect networks: terminal nodes are connected via intermediate stages of switch nodes; 
terminal nodes are sources/sinks, intermediate nodes only switch traffic

16.05.2024 Computer Systems 36

Mesh TorusRingFully Connected

Butterfly TreeCrossbar

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7
0 1 2 3 4 5 6 7



Fully Connected Networks

• Every node connected to every other node with a direct link

• N nodes, N∙(N-1)/2 links

• Degree: N-1

• Diameter: 1

• Bisection width: 𝑁/2 ∙ 𝑁/2

• Pros: high fault tolerance, low contention, low latency

• Cons: high costs for large N, limited scalability
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Ring (k-ary 1-cube)

• Each node connected to two other nodes

• N nodes, N links

• Degree: 2

• Diameter: 𝑁/2

• Bisection width: 2

• Pros: simple, low link costs

• Cons: high latency for large N, limited path diversity
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Mesh

• k-ary n-cube: N=kn nodes in a regular n-dimensional grid
• k nodes in each dimension

• Links between nearest neighbors

• For n=2 (i.e., 𝑘 × 𝑘 grids)
• N=k2 nodes, 2𝑘 ∙ 𝑘 − 1 links

• Degree: 4

• Diameter: 2k-1

• Bisection width: k

• Pros: path diversity, regular and equal-length links

• Cons: large diameter, asymmetric (higher demand for center links)
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Torus

• k-ary n-cube: N=kn nodes in a regular n-dimensional grid
• k nodes in each dimension

• Links between nearest neighbors, adds wrap-around links at the edges
compared to mesh

• For n=2 (i.e., 𝑘 × 𝑘 grids)
• N=k2 nodes, 2N links

• Degree: 4

• Diameter: k

• Bisection width: 2k

• Pros: avoids asymmetry and improves path diversity compared to mesh 

• Cons: unequal link lengths and higher cost compared to mesh
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Crossbar

• Connects n inputs to m outputs via 𝑛 ×𝑚 switches

• Switches enable concurrent communication between 
disjoint input/output pairs without blocking

• 𝑁 = 𝑛 ∙ 𝑚 nodes, 𝑛 ∙ 𝑚 links

• Diameter: 1

• Pros: non-blocking, latency (for small n, m)

• Cons: high cost, limited scalability
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Butterfly

• k-ary n-flies: kn nodes connected via n stages of kn-1 intermediate 
𝑘 × 𝑘 switches
• k: switch degree

• n: number of stages of switches

• Pros: lower cost compared to crossbar

• Cons: blocking, lack of path diversity, locality not exploitable
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Trees

• k-ary tree with N nodes and logk N stages

• Nodes are the leaves of the tree, switches at intermediate stages

• Messages are sent up to common ancestor, then sent down to
destination

• Pro: simple, cheap

• Cons: Bottleneck towards root
• Alternative: Fat tree, where links between switches closer to the root 

are increased
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Application-Specific Network-on-Chip Architectures

• Custom tailored NoC
topology for chips with very 
unbalanced traffic demand 
for different PEs

• Example: NoC for a 3G 
Modem Chip (2014)
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Messages

• Message: logically continuous group of bits, may be arbitrarily long

• Packet: basic unit of routing and sequencing, restricted maximum length
• Consists of header + segment of a message

• Flit (flow control digit): basic unit of bandwidth and storage allocation
• Contain no separate routing/sequencing information and therefore follow the same path in-order

• Subdivision allows for low overhead (large packets) and fine-grained resource utilization (small flits)

• Phit (physical transfer digit): information transferred over a channel in a single clock cycle
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Flow Control vs. Routing

• Flow control: Allocates resources (channels, control state, buffers) to packets
• Alternative view: resolve contention during packet transmission

• Contention: What happens if two packets want to use the same channel at the same time?

• Routing: Selects the path a packet takes from source to destination
• Determines how well the potential of the given topology is exploited

• Should balance load across network channels
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Flow Control

• Bufferless
• Dropping

• Misrouting

• Circuit switching

• Buffered
• Store-and-forward

• Cut-through

• Wormhole

• Virtual channel

16.05.2024 Computer Systems 47



Bufferless Flow Control: Dropping

• Competing packets: No buffers available, therefore drop “losing” packets, “winning” 
packet is allowed to proceed

• Example:

• Complete effort already invested in packet B is lost

• Source needs to be informed to about successful transmission or need for retransmission
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• Time-space diagram with negative acknowledgements (nacks)
• Example: five-flit packets, four-hop route

• Alternative: no nacks, resend packet if ack is not received before a timeout

• Dropping: simple, wastes resources
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Bufferless Flow Control: Misrouting

• Competing packets: No buffers available, therefore misroute “losing” packets, “winning” 
packet gets the requested channel

• Example:

• Requires sufficient path diversity
• Routing needs to ensure that packet reaches its destination despite misrouting

• Misrouting: no packet dropping, packets sent in wrong direction, livelock possible (need 
to guarantee forward progress)
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• First allocate channels to build a circuit from source to destination, then send packets 
along the circuit, deallocate circuit after packets are sent

• Example: four-flit packets, five-hop route
• 1. Send request (R) to destination allocating channels along the way

• 2. Destination returns acknowledgement (A) to source

• 3. Data flits (D) are sent

• 4. Tail flit (T) deallocates the channel

• Circuit switching: simple, high latency, high overhead for circuits with short duration
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Buffered Flow Control

• Buffers allow to store data while waiting for the following channel
• Without buffers data arriving at cycle i had to be transmitted at cycle i+1 (or dropped)

• Flow control now needs to allocate channels and buffers
• Allocation at packet or flit granularity

• Packet granularity: store-and-forward, cut-through

• Flit granularity: wormhole
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• Each node waits until packet is received completely before transmission to the next node

• Need to allocate channel and sufficient buffer space for the packet in the next node

• Example: five-flit packet, four-hop route without contention

• Store-and-forward: channels not held idle, only small buffers required, high latency due 
to serialization

H B0
1

B B T

2
3C

h
an

n
e

l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Cycle
18 19

H B B B T
H B B B T

H B B B T

Buffered Flow Control: Store-and-forward (Packet-based)
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Could also be transmitted later if channel/buffer space is not available



Buffered Flow Control: Cut-through (Packet-based)

• Flits are forwarded as soon as they are received and the following channel and buffer 
space is acquired (allocation still at packet granularity)

• Avoids waiting for receiving the complete packet before transmission

• Example: five-flit packet, four-hop route without/with contention

• Cut-through: high channel utilization, low latency, inefficient use of buffer storage and 
long contention latency due to packet-based allocation
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No contention Three-cycle contention before channel 2
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Buffered Flow Control: Wormhole (Flit-based)

• Similar to cut-through, but allocates channels and buffers to flits instead of packets
• Head flit requests channel state (virt. channel) for the packet, buffer for one flit and channel for one flit
• Body flits use virtual channel to follow head flit, request buffer for one flit and channel for one flit
• Tail flit treated like body flit, but additionally releases virtual channel

• Blocking might occur as the single virtual channel belongs to a packet, while buffers are 
allocated to flits
• Channel set to idle if buffer cannot be acquired (it cannot be used by other packet)

• Wormhole: Saves buffer space, may block a channel mid-packet

• Improvement: virtual-channel flow control
• Associate multiple virtual channels (channel state and flit buffers) with single physical channel
• Other packets can use channel when one packet is blocked
• Competition for transmitting flits over single physical channel
• Reduces blocking, more complex routers
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Buffered Flow Control: Wormhole vs. Virtual-channel

• Wormhole flow control: When B blocks, channel p and q are idle

• Virtual-channel flow control: A can use channel p and q using a second virtual channel
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Routing

• Selects the path a packet takes from source to destination in a given topology

• Determines how well the potential of the given topology is exploited

• Balance load across the network channels to avoid hotspots and contention
• Difficult, particularly with non-uniform traffic patterns causing load misbalances
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Routing Algorithms

• Properties
• Minimal or non-minimal

• Minimal: select shortest paths
• Non-minimal: not limited to shortest paths only

• Oblivious or adaptive
• Oblivious: select route without considering information about current network state

• Deterministic: Subset of oblivious; always select same path between source and destination
• Adaptive: select route based on current network state

• Design aspects
• Table-based or algorithmic

• Table-based: Table lookup of the entire route (source-table routing) or at each node along the route (node-
table routing)

• Algorithmic: Compute route using an algorithm usually implemented via combinational logic

• Deadlocks
• Situations where packets cannot make progress as they are waiting on one another to release resources
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Routing Example

• Routing decision in ring network: clockwise or counter-clockwise?

• Potential routing algorithms
• Greedy (deterministic, minimal): always pick the shortest direction

• Uniform random (oblivious, non-minimal): randomly pick a direction with equal probability

• Weighted random (oblivious, non-minimal): randomly pick a direction with a higher weight for shorter 
direction

• Adaptive (adaptive, non-minimal): pick direction based on load of the local channels
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Dimension-order Routing

• First move towards x-dimension, then move towards y-dimension (XY)
• To increase the clarity, we will focus on 2D meshes in the following

• Example: 2D Mesh

• Dimension-order routing: simple, minimal, can cause load imbalance, doesn‘t exploit path 
diversity
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Dimension-order routing:
Deterministic and minimal

Alternate route:
non-minimal



Valiant‘s Algorithm

• Packet from source s to destination d is routed via an intermediate node d‘
• Randomly select intermediate node d‘

• Phase I: Route packet from s to d‘

• Phase II: Route packet from d‘ to d

• Use arbitrary routing algorithm for Phase I+II, 
e.g., dimension order routing for tori and meshes

• Can use arbitrary routing algorithm for the two phases
• For tori and meshes: Dimension-order routing as appropriate choice

• Valiant‘s Algorithm: Randomizes traffic, balances network load, non-minimal, doesn‘t 
exploit locality
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Valiant‘s Algorithm

• Minimal version of Valiant‘s algorithm for k-ary n-cubes:
• Restrict intermediate node: d‘ lies in minimal quadrant

between s and d (subnetwork with s and d as corner nodes)

• Randomly selects among minimal routes

• Steps:
• Identify quadrant

• Select intermediate node d‘ from quadrant

• Route from s to d‘

• Route from d‘ to d

• With dimension-order routing (either XY or YX): Doesn‘t use all paths
• Idea: Select randomly whether to use XY or YX (but: deadlock problem arises)

• Preserves locality, improves load balancing (compared to deterministic routing)
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Deadlocks
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• Deadlock: Situation where packets cannot make progress as they are waiting on each 
other to release resources (buffers or channels)

• Example:
• Nodes: 0, 1, 2, 3; Channels: u, v, w, x

• A holds u and waits for v

• B holds v and waits for w

• C holds w and waits for x

• D holds x and waits for u

• Observation: Cycles pose a problem

u

v

w

x

D A

BC



Deadlock Avoidance: Restrict Routing
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• Dimension Order Routing (k-ary n-meshes)
• E.g., first x then y (we have seen this approach already)

• Deadlock-free, but restricts path diversity

• Turn Model: Focuses on the turns allowed and the cycles they can form
• 2D mesh: 8 possible turns forming two abstract cycles

• XY Routing removes four turns (prevents deadlocks)



Deadlock Avoidance: Restrict Routing
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• Turn Model: Focuses on the turns allowed and the cycles they can form
• Removing one (carefully selected) turn from each abstract cycle also prevents deadlocks

• Removing any two turns does not prevent deadlocks

west-first: traveling west 
only allowed at the start

north-last: traveling north 
only allowed as last direction

negative-first: traveling first 
west and south, then east 

and north

≡ ≡



d

s

d

s

d

s

Examples: West-First
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• Example 1

• Example 2

s

d

s

d

west-first: traveling west 
only allowed at the start

N

E

S

W

s

d



Channel Dependence Graph (CDG)

• Network topology:

• Channel Dependence Graph:
• One vertex for each channel

• Edges denote dependences

• Dependence exists if it is possible for channel i to wait for channel i+1

• 180° turns not allowed (e.g., AB → BA)
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D

Cycles in the CDG

• Channel Dependence Graph may contain cycles

• Route through AB, BE, EF and route through EF, FA, AB → Deadlock
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→ Remove selected 
edges in the CDG
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Acyclic CDG

• Example: Remove Edges in the CDG (West-first turn model)
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A look at real Systems-on-Chip

PULP 2016, PULP 2022, SpiNNaker2

Optional, not relevant for exam



Simple SoC Architecture for IoT / Wearables – Example - PULPino 2016
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Source: CNX Software 
https://www.cnx-software.com/2016/04/06/pulpino-open-source-risc-v-mcu-is-designed-
for-iot-and-wearables/

• SoC: System-on-chip

• PULPino Architecture 2016: 
All memories are on the same chip as 
the processor core

• SoC Modules:
• Processor Core
• Instruction memory
• Data memory
• Input/output devices: UARR, SPI, GPIO 
• Timer
• Programming and Debug Devices: SPI 

Slave and Debug Unit
• Connected by on-chip interconnect: 

AHB, AXI4



Complex Multi-core SoC – Example PULP 2022 
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Source: https://iis-projects.ee.ethz.ch/index.php/PULP

• More complex architecture

• Different On-chip Interconnects 

• DMA: Direct Memory Access –
Module to offload data 
movements from the CPU

• Multi-Core with shared caches

• All these modules are physically 
integrated in one integrated circuit 
(IC).



SpiNNaker2 Chip

• Brain-inspired Chip designed for Spiking Neural Netwoks (SNNs)
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Source: SpinnCloud

Mesh NoC



Summary



Conclusion

• Bus-based On-chip Interconnect

• Network on-Chip

• Next Sessions: Specialized Cores
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Thank you for your attention



Heterogeneous Systems-on-Chip 2 – Vector Processors

Computer Systems

Daniel Mueller-Gritschneder

23.05.2024



Heterogene Systems-on-Chip (SoCs)

• SoCs are often multi-core systems

• General-purpose SoCs may have many replications of general-purpose processors 
(e.g. many ARM or standard RISC-V cores)

• To improve energy-efficiency many SoC use specialized cores (heterogeneity).
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Types of Specialized Cores

• Vector Processors:
• Introduced in the 70ties (Cray)
• Got new attention recently especially due to machine learning workloads 

(x86, ARM and RISC-V Vector Instructions)

• GPUs: 
• GPUs were initially introduced for rendering graphics in real time especially for video games. 
• General Purpose (GP-GPU): Programming Language such as CUDA from NVIDIA allowed to use GPUs for 

other compute besides rendering (also a lot for machine learning)

• HW Accelerators: 
• Processing Cores that are specialized for a certain task (with very limited programmability)
• Usually faster and more energy efficient than software running on programmable core
• Different types:

• Deep Learning: Tensor Processing Units / Neural Processing Units
• Security: Encryption & Decryption
• Video En/Decoders

• Application-specific Instruction Set Processors (ASIPs)
• Between general-purpose programmable cores and accelerators
• Some programmability but tailored towards a certain application  
• Example: Audio/Video Digital Signal Processors (DSPs)
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Agenda

• Flynn’s Taxonomy

• Vector Units

• RISC-V Vector Instruction Set

• Vectorization

• Packed SIMD

• A look at a real vector unit: ARA
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Optional, not relevant for exam



Flynn’s Taxonomy



Flynn’s Taxonomy
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Multiple Instruction stream, 
Multiple Data stream (MIMD)

Multiple Instruction stream, 
Single Data stream (MISD)

• Classification of Computing Cores

Single Instruction stream, 
Multiple Data stream (SIMD)

Single Instruction stream, 
Single Data stream (SISD)

Vector

Packed SIMD

Multi-Threaded

Multi-Core

GPUs
(Multi-threaded

SIMD)

ScalarSuperscalar

VLIW Systolic Arrays



Vector Units



Vector Instruction Sets

• One instruction operates on several data values (SIMD)

• The data values are independent

• Operation use the same type of functional unit for all data

• Data values are stored in separate registers

• Data values are arranged in uniform structure (vector)

• Load/Stores access 

a continuous range of memory 

use a regular pattern (strided load/store)

• One instruction stream for parallel pipelines (so called lanes)
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Functional Units (FUs) for Vector Arithmetic

• Input and Output are an array (vector)  
v1= [v1[0] v1[1] v1[2]… v1[n]]

• FUs operate on one element of vector
e.g. Multiplier: v3[i] = v1[i]*v2[i]

• FUs exist for different data types
(integer, floating point) 

• FUs often use deep pipeline for high frequency

• Initialization Interval usually = 1 
• R: Red Operands
• O: Operation
• W: Wreite Result 
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v1[0] v2[0] v3[0]

Six-stage Pipelined FU
Latency = 6

1 2 3 4 5 6

R O O O O W

Clock Cycle



Vector Instruction Execution on FUs
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vadd.vv v3, v1, v2

v1[6]

v1[5]

v1[4]

v1[3]

v2[6]

v2[5]

v2[4]

v2[3]

v3[0]

v3[1]

v3[2]

v1[24]

v1[20]

v1[16]

v1[12]

v2[24]

v2[20]

v2[16]

v2[12]

v3[0]

v3[4]

v3[8]

v1[25]

v1[21]

v1[17]

v1[13]

v2[25]

v2[21]

v2[17]

v2[13]

v3[1]

vd[5]

vd[9]

v1[26]

v1[22]

v1[18]

v1[14]

v2[26]

v2[22]

v2[18]

v2[14]

v3[2]

v3[6]

v3[10]

v1[27]

v1[23]

v1[19]

v1[15]

v2[27]

v2[23]

v2[19]

v2[15]

v3[3]

v3[7]

v3[11]

Execution using 
one FU

Execution using 
four FUs



Basic Structure of a Vector Unit
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Elements

0,4,8,…

Memory Subsystem

Elements

1,5,9,…

Elements

2,6,10,…

Elements

3,7,11,…

Array of Functional Units (e.g. MUL)

Lane

Vector

Registers

Array of Functional Units (e.g. ADD)



Example – Timing for Single Vector Instruction

• Execution on Vector Unit 
• with four lanes (L0-L3) 

• FUs with 4 stages

• Vector size is 12

• Lanes are used in pipelined fashion
(no dependencies between elements)

• Full result is ready after 6 cycles

• 4 cycles ramp-up to fill the pipeline  
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L0 R O O W v3[0]

L1 R O O W v3[1]

L2 R O O W v3[2]

L3 R O O W v3[3]

L0 R O O W v3[4]

L1 R O O W v3[5]

L2 R O O W v3[6]

L3 R O O W v3[7]

L0 R O O W v3[8]

L1 R O O W v3[9]

L2 R O O W v3[10]

L3 R O O W v3[11]

1 2 3 4 5 6Clock Cycle

vmul.vv v3, v1, v2

Ramp-up time



Example – Timing for Sequence of Vector Instructions

• Full result only ready after last
cycle of vector instruction

• An instruction using the result
needs to wait until completed

• Causes a dead time (also called 
recovery time) – delay until next vector 
instruction can start down pipeline  
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R O O W

R O O W

R O O W

R O O W

1 2 3 4 5 6Clock Cycle

vmul.vv v3, v1, v2

vadd.vv v5, v3, v4

7 8 9 10 11 12

Dead time

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

MUL
Unit

ADD
Unit



Vector Chaining

• Vector version of forwarding paths

• Results are forwarded element-wise to next FU via chaining
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vmul.vv v3, v1, v2

vadd.vv v5, v3, v4

Chaining

(single 

lane)

v1[9]

v1[8]

v1[7]

v1[6]

v2[9]

v2[8]

v2[7]

v2[6]

v3[3]
v3[4]

v3[5]

v3[0]

v3[1]

v3[2]

v3[3]

v4[6]

v4[5]

v4[4]

v4[3]

v5[0]

v5[1]

v5[2]

v3[3]

MUL ADD



Example – Timing for Sequence of Vector Instructions with Chaining

• Chain: Forward results from all lanes
between the FUs

• No dead time  
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1 2 6Clock Cycle 7 8 9 10 11 12

Chaining (4 lanes)

vmul.vv v3, v1, v2

vadd.vv v5, v3, v4
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R O O W
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R O O W

R O O W

MUL
Unit

ADD
Unit

3 4 5



Example – Timing for Sequence of Vector Instructions with Chaining and Interleaving

• Interleaving can overlap 
independent vector instructions
as soon as FUs become available

• Example: 
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1 2 6 7 8 9 10 11 12

vmul.vv v3, v1, v2

vadd.vv v5, v3, v4

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W

R O O W
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vmul.vv v3, v1, v2

vadd.vv v5, v3, v4
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vadd.vv v10, v8, v9

vmul.vv v8, v6, v7

vadd.vv v10, v8, v9
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R O O W
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R O O W

R O O W



The RISC-V Vector Instruction Set



RISC-V Vector Programming Model
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• RISC-V “V” Vector Extension
• Standard extension to the RISC-V ISA

• Version 1.0: https://github.com/riscv/riscv-v-spec

• Memory-register vector instructions (operations on registers)

• Vector and vector element sizes are configurable 
(Vectors can be longer than one vector register)

• CSR: Specialized registers to save configuration and status of processor

https://github.com/riscv/riscv-v-spec


RISC-V Vector Programming Model
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• Vector Registers and vector length
• 32 vector data registers ( v0~v31) : each VLEN bits long

• Vector length register vl
• defines on how many elements will the next vector operations be executed

• Vector type register vtype (see next slide)

x0

x31

v0

v31

[0] [1] [2] [VLEN-1]

Scalar Registers Vector Registers

VlVector Length Register



Vector CSRs

• Vector type register: vtype
• Used to define vector length via parameters SEW and LMUL

• Used to define tail and mask policy via vta and vma

• See next slide for details

• Vector Byte Length: vlenb
• Read-only; Holds the value VLEN/8 ( a design-time constant )

• Used to define the vector register length VLEN (fixed)

• Vector Length Register: vl
• Read-only; Can be updated by the vset{i}vl{i} instructions (see slide 25)

• Used to define on how many elements will the next vector operations be executed

• vl is limited by VLMAX=LMUL * VLEN / SEW

• Vector Start Index: vstart
• Used to define the index of first element to be executed by a vector instruction
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CSR: Vector type register vtype
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• CSR: Vector type register vtype layout: 

vill reserved (write 0) vma vta vsew[2:0] vlmul[2:0]

02356783031

vsew[2:0] SEW

0 0 0 8

0 0 1 16

0 1 1 32

1 0 0 64

1 0 1 128

1 0 1 256

1 1 0 512

1 1 1 1024

• vsew[2:0] field encodes selected element width(SEW)
• the elementary size (in bits) of an element in the input and output 

vectors

• SEW = 8 *2𝑣𝑠𝑒𝑤

• vlmul[2:0] encodes vector register length multiplier

• LMUL = 2𝑣𝑙𝑚𝑢𝑙 = 1/8 … 8

• defines the size of the vector group for vector operation input and 
output operands, that is the number of vector register(s) forming the 
group

• vta specifies tail-agnostic/tail-undisturbed policy

• vma specifies mask-agnostic/mask-undisturbed policy



RISC-V Vector Programming Model - Vector Layouts
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• Example vector register data layouts

0 1 2 3 4 5 6 tail

element index

LMUL=2

SEW=32bits
VLEN=128bits

vl=7

VLMAX=8

0 1 2 tail

VLEN=128bits

vl=3

VLMAX=4

SEW=64bits

LMUL=2

element index

• vl is limited by VLMAX=LMUL * VLEN / SEW

• Tail : the elements past the vector length vl; not affected by the current operation

• Two tail policies: undisturbed & agnostic
• undisturbed : the tail elements are left unmodified

• agnostic : the tail elements are left undisturbed or fill in with all 1s



RISC-V Vector Programming Model - Vector Layouts in Vector Registers
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• Example vector register data layouts

0 1 2 3 4 5 6 tail

element index

LMUL=2

SEW=32bits
VLEN=128bits

vl=7

VLMAX=8

0 1 2 tail

VLEN=128bits

vl=3

VLMAX=4

SEW=64bits

LMUL=2

element index

0 1 2 3v0

v1

[0] [1] [2] [3]

VLEN=128bits
SEW=32bits

0 1v0

v1

[0] [1]

VLEN=128bits
SEW=64bits

2 tail4 5 6 tail



Vector Masking

• The mask value used to control execution of a masked vector instruction is always 
supplied by vector register v0

• Where available, masking is encoded in a single-bit vm field in the instruction word

• vadd.vv vd, vs2, vs1               #unmasked vector operation, vm=1 in instruction

vadd.vv vd, vs2, vs1, v0.t #enabled masking, mask supplied in v0, vm=0 in instruction
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v0 mask

n-th mask bit v0.mask[n] is the
n-th bit of the vector register v0

vm Description

0 vector result, only where v0.mask[i] = 1

1 unmasked



RISC-V Vector Programming Model
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• Masking
• This bitmask defines which of the result element should be actually modified by the operation

• Two mask policies : undisturbed & agnostic
• undisturbed : mask-off elements keep the value they had before the operation

• agnostic : mask-off elements can either be undisturbed or written with all 1s.

Simple Implementation
Execute all N operations, turn off result writeback according to mask

Density-Time Implementation
Scan mask vector and only execute elements with non-zero masks

v1[7]

v1[6]

v1[5]

v1[4]

v1[3]

v2[7]

v2[6]

v2[5]

v2[4]

v2[3]

v3[0]

v3[1]

v3[2]

v0.mask[7]=1

v0.mask[6]=0

v0.mask[5]=1

v0.mask[4]=1

v0.mask[3]=0

v0.mask[2]=0

v0.mask[1]=1

v0.mask[0]=0

Write Enable Write data port

v2[7]v1[7]

v3[1]

v3[4]

v3[5]

v0.mask[7]=1

v0.mask[6]=0

v0.mask[5]=1

v0.mask[4]=1

v0.mask[3]=0

v0.mask[2]=0

v0.mask[1]=1

v0.mask[0]=0

Write data port

mask[n] = 1 
activates

Write 
Enable



RISC-V Vector Programming Model
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• Setting the vector configuration via vsetvli

• The vsetvli configuration instructions set the vtype register, and also set the vl register, 
returning the vl value in a scalar register

• Resulting machine vector length in rd: vl = min (LMUL*VLEN / SEW , rs1)

vsetvli rd ,    rs1, e32, m2, ta, ma

Resulting machine 
vector length setting Requested application vector length (AVL)

If register x0(zero) is provided then AVL is
requested to 8 (We do not need to load 8 into
register) 



RISC-V Vector Programming Model
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• Setting vector configuration, vsetvli

• The vsetvli configuration instructions set the vtype register, and also set the vl register, 
returning the vl value in a scalar register

vsetvli rd ,    rs1, e32, m2, ta, ma

vtype parameters (SEW, LMUL, VTA, VMA)

encoded as immediate in instruction

e8 #SEW = 8bits
e16 #SEW = 16bits
e32 #SEW = 32bits
e64 #SEW = 64bits
mf8 #LMUL =1/8
mf4 #LMUL = 1/4
mf2 #LMUL =1/2
m1 #LMUL = 1, default
m2 # LMUL =2
m4 #LMUL=4
m8 #LMUL=8
tu #tail undisturbed, default
ta #tail agnostic
mu #mask undisturbed, default
ma #mask agnostic



RISC-V Vector Programming Model
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• Vector Load and Store
• If set VLEN=128 & vsetvli t0, zero ,e32, m2, ta, ma  

• vl2re32.v v0, (a0)  

# Load v0-v1 with 2*VLEN/32 words(32bits) held at address in a0 0 1 2 3v0

v1

[0] [1] [2] [3]

VLEN=128bits
SEW=32bits

4 5 6 7

LMUL=2

v1 4 5 6 70 1 2 3v0

0 1 2 3 4 5 6 7memory

32bits
a0

vl=8

vle32.v v0 ,  (a0)

# 32-bit unit-stride load

0 1 2 3v0

0 1 2 3 4 5 6 7memory

32bits
a0

32bits



RISC-V Vector Programming Model
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• Vector Load and Store:
• If set VLEN=128 & vsetvli t0, zero ,e32, m2, ta, ma  

• vs2r.v v0, (a0)      # Store v0-v1 to address in a0
0 1 2 3v0

v1

[0] [1] [2] [3]

VLEN=128bits
SEW=32bits

4 5 6 7

LMUL=2

v1 4 5 6 70 1 2 3v0

0 1 2 3 4 5 6 7memory

32bits
a0

vl=8

vse32.v v0 ,  (a0)

# 32-bit unit-stride store

0 1 2 3v0

0 1 2 3 4 5 6 7memory

32bits
a0

32bits



RISC-V Vector Programming Model
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0 1 2 Tailvl=3

vs1

vs2

0 1 0 Xmask

masked off
vs1[1] op 

vs2[1]
masked off tailvd

Masked-off and tail elements 
follow mask and tail policies : 
which are parameters defined in 
the vtype CSR register

vstart=0

vstart : 

• specifies the first active vector element

• vstart is also saved in a CSR

X 1 0 X

vstart
masked

vs1[1] op 
vs2[1]

masked off tail

Masked-off and tail elements 
follow mask and tail policies : 
which are parameters defined in 
the vtype CSR register

0 1 2 Tailvl=3

vstart=1

vs1

vs2

mask

vd



RISC-V Vector Programming Model

Vector-Vector Operation:

• Addition: vadd.vv

• Multiplication: vmul.vv

Operation is conducted
element-wise between the
two vectors.

Without/with masking.
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+ + + +

vs2

vs1

vd

[0] [1] [2] [vl-1]

vadd.vv vd, vs2, vs1, v0.t

mask

+ + + +

vs2

vs1

vd

[0] [1] [2] [vl-1]

vadd.vv vd, vs2, vs1

+ +

…



RISC-V Vector Programming Model

Vector-Scalar Operation:

Operation is conducted between 
each unmasked element of the 
vector and a scalar register value.

Vector Immediate Operation:

Operation is conducted between 
each unmasked element of the 
vector and a constant value.
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vs2

rs1

vd

[0] [1] [2] [vl-1]

mask

vs2

vd

[0] [1] [2] [vl-1]

mask

imm

vadd.vx vd, vs2, rs1, v0.t

vadd.vi vd, vs2, imm, v0.t



Vector Code Example
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# C code
for ( i = 0; i < 8; i++)

C[i] = A[i] + B[i];

# Scalar Code
li    a0,   8

loop:
lw a4, 0(a1)
lw a5, 0(a2)
add a4, a4, a5
sw a4, 0(a3)
addi a3, a3, 4
addi a2, a2, 4
addi a1, a1, 4
addi a0, a0, -1
bnez a0, loop

# Vector Code
vsetvli t0, zero ,e32, m2, 
ta, ma   # t0 = 8
vl2re32.v v8, (a1)
vl2re32.v v10, (a2)
vadd.vv v8, v10,v8
vs2r.v v8, (a3)

# (a1)     A
# (a2)     B
# (a3)     C



Vector Code Example
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# C code
for ( i = 0; i < 8 ; i++)

C[i] = A[i] * B[i];

# Scalar Code
li   a0, 8   

loop:
lw a4, 0(a1)
lw a5, 0(a2)
mul a4, a5, a4
sw a4, 0(a3)
addi a3, a3, 4
addi a2, a2, 4
addi a1, a1, 4
addi a0, a0, -1
bnez a0, loop

# Vector Code
vsetvli t0, zero ,e32, m2, 
ta, ma   # t0 = 8
vl2re32.v v8, (a1)
vl2re32.v v10, (a2)
vmul.vv v8, v10,v8
vs2r.v v8, (a3)

# (a1)     A
# (a2)     B
# (a3)     C



Vector Code Example
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# C code
for(i=0; i<8; i++)

y[i]=a*x[i]+y[i];

# Scalar Code
li       a0, 8

loop:
lw a4, 0(a2)
lw a5, 0(a3) 
mul a4, a4, a1
add  a4, a4 ,a5
sw a4, 0(a3)
addi a0,  a0, -1
addi a3,  a3,  4
addi a2,  a2,  4
bnez a0, loop

# Vector Code
vsetvli t0, zero, e32, m2, 
ta, ma   # t0 = 8
vl2re32.v v8,   (a2)
vl2re32.v v10, (a3)
vmacc.vx v10, a1,  v8
vs2r.v v10,  (a3)

# (a2)    x
# (a3)     y
# a1 a



Vector Code Example
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# C code
#set mask
for(i=0;i<8;i++)

mask[i] = i % 2;
for(i=0; i<8; i++){

if(mask[i])
y[i]=a*x[i]+y[i];

}

# Scalar Code
li       a0, 8

loop:
lw a4, 0(a2)
lw a5, 0(a3) 
lw t1,  0(a4)
beqz t1,  skip #if mask[i]=0
mul a4, a4, a1
add  a4, a4 ,a5
sw a4, 0(a3)

skip:
addi a0,  a0, -1
addi a3,  a3,  4
addi a2,  a2,  4
bnez a0, loop

# Vector Code
vsetvli t0, zero, e32, m2, 
ta, ma   # t0 = 8
vl2re32.v v8,   (a2)
vl2re32.v v10, (a3)
vl2re32.v v12,   (a4)
vmsne.vx v0, v12, zero
# Set the v0, enabling the 
mask if mask[i] is not zero
vmacc.vx v10, a1,  v8, v0.t
vs2r.v v10,  (a3)

# (a2)    x
# (a3)    y
# (a4)    mask
# a1 a



Vectorization



Automatic Code Vectorization
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for (i=0; i<N; i++)
C[i] = A[i] + B[i] ;

load

load

add

store

load

load

add

store

Scalar Sequential Code

Iter.1

Iter.2

load

load

add

store

load

load

add

store

T
i
m
e

Iter.1 Iter.2

Vectorization is a massive compile-time reordering of operation sequencing

requires extensive loop-dependence analysis

Vectorized Code

Vector Instruction



Packed SIMD



Packed SIMD Extensions

• Very short vectors added to existing ISAs for microprocessors

• Use existing (32) 64-bit registers split into 2x32b or ( 2x16b) 4x16b or (4x8b) 8x8b

• Single instruction operates on all elements within register

• Examples: 

• RISC-V P Extension (not ratified)

• CoreV Extension (Custom Vendor extension of Open HW Group, not official)
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64b

32b 32b

8b 8b 8b 8b 8b 8b 8b 8b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

⨁ ⨁ ⨁ ⨁4x16b adds

x11

x12

x13



Packed SIMD vs. Vector 

• Pros of Packed SIMD
• No extra HW Co-processor

• SIMD unit can share resources in pipeline (ALU and SIMD ALU)

• Cons of Packed SIMD
• No configurable vector length

• Usually no wider load/store unit

• Limited by scalar register sizes
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A look at a real vector unit: ARA

Optional, not relevant for exam



ARA Vector Unit
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Source: Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector 
Processor With Multiprecision Floating-Point Support in 22-nm FD-SOI
https://ieeexplore.ieee.org/abstract/document/8918510

Vector Unit for the Ariane (now CVA6)
Open source: https://github.com/pulp-platform/ara

https://ieeexplore.ieee.org/abstract/document/8918510
https://github.com/pulp-platform/ara


Summary



Conclusion

• Vector Units: Data Level Parallelism

• RISC-V Vector Instruction Set

• Next Session:
• GPUs

• Accelerators
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Thank you for your attention!



Heterogene Systeme – GPGPUs, TPUs, NPUs

Computer Systems

Daniel Mueller-Gritschneder

27.05.2024



Content 

• Motivation: Era of Deep Learning

• GP GPUs

• TPUs / NPUs
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Optional, not relevant for exam



Motivation: Era of Deep Learning

Use of Data-level Parallelism (DLP)

Optional, not relevant for exam



ML Plattforms are Heterogeneous

Cloud

Datacenter:
Multi-Servers 
with Multi-GPUs

Desktop/Workstation
/Fog:
PC with GPU

Edge/Mobile:
Mobile Phone
Raspberry PI
Embedded GPU
Specialized SoCs

Extreme Edge / TinyML:
MCU
Specialized low-power SoC

• Large computing continuum with possibly connectivity:

Hundreds of CPUs 
Hundreds of GBs of DRAM
Several GPUs with 
Tens of GB of DRAM
Several TB of Storage

2-128 CPUs 
Tens of GBs of DRAM
1-2 GPUs with Tens of GB of DRAM
A few TB of Storage

1-4 CPUs 
1-4 GBs of DRAM
1 GPUs with a few GB of DRAM
Specialized Accelerators
Tens to Hundreds of GB of Storage

1 CPU 
Hundreds of kB to a few MB of 
embedded SRAM
Low-power Acceleration / Co-proccesors
A few MB of Storage, e.g. embedded Flash

Embedded Machine Learning / Edge AICloud ML Desktop ML



Deep Learning Models are Heterogeneous

• In type: Deep Neural Networks, Convolutional Neural Networks, Transformers, Graph 
Neural Networks, Recursive Neural Networks 

• In computing demand: often measured in MAC operations

• In size: often measured in number of parameters

• Examples:

• Large Language Models (LLMs) -produces human-like text 
• GPT-4: 170 trillion (10e12) parameters

• GPT-3: 175 billion (10e9) parameters 

• ResNet18 – 11 million (10e6) parameters – Image classification e.g. for 
autonomous driving

• Keyword Spotting (KWS): 16k-300k (10e3) parameters – Detects keyword in an 
audio stream, e.g. for Audio wakeup (TinyML)



Example: Convolutional Neural Network 

• Consists of layers (structure reprented by
data flow graph)



Image to Column (Img2Col) Transformation

• For many targets there exist a very optimized implementation of matrix-matrix-
multiply computation e.g. accelerators, for CPUs with some SIMD support, GPUs, but 
also single-issue CPUs

• Img2Col transforms a convolution operation into a matrix-matrix-multiply operation

• Img2Col requires to build up a batch matrix, which is larger than the original 
activation tensor, because it holds duplicates of some values

 Usually Img2Col is not done on the full input activation tensor but inside the 
convolution loop on some part of the tensor in order to avoid building up the full 
batch matrix



Example for Img2Col (1/5)

• For reference: This is the Standard Convolution



a0,0,0 a0,1,0
…

a0,1,0 a0,2,0
…

a1,0,0 a1,1,0
…

a1,1,0 a1,2,0
…

a0,0,1 a0,1,1
…

a0,1,1 a0,2,1
…

a1,0,1 a1,1,1
…

a1,1,1 a1,2,1
…

Example for Img2Col (2/5)

• Step 1 for Img2Col: Create col-based batch matrix

• Each line holds the activation values under one kernel position for all channels

Input channel 1

batch 1 batch 2

img2col

a0,0,1 a0,1,1 a0,2,1 a0,3,1

a1,0,1 a1,1,1 a1,2,1 a1,3,1

a2,0,1 a2,1,1 a2,2,1 a2,3,1

a3,0,1 a3,1,1 a3,2,1 a3,3,1

Input channel 0

a0,0,0 a0,1,0 a0,2,0 a0,3,0

a1,0,0 a1,1,0 a1,2,0 a1,3,0

a2,0,0 a2,1,0 a2,2,0 a2,3,0

a3,0,0 a3,1,0 a3,2,0 a3,3,0



Example for Img2Col (3/5)

• Step 2: Create a row-based filter matrix. (Can be done already offline, is already existing
with just storing weight tensor in ROM memory) 

25.04.2024 Computer Systems 10

w0,0,0,0 w0,1,0,0 w1,0,0,0 w1,1,0,0 w0,0,1,0 w0,1,1,0 w1,0,1,0 w1,1,1,0

w0,0,0,1 w0,1,0,1 w1,0,0,1 w1,1,0,1 w0,0,1,1 w0,1,1,1 w1,0,1,1 w1,1,1,1



Example for Img2Col (4/5)

• Step 3: Run a matrix-matrix multiplication with target-specific
optimized GEMM kernel

a0,0,0 a0,1,0
…

a0,1,0 a0,2,0
…

a1,0,0 a1,1,0
…

a1,1,0 a1,2,0
…

a0,0,1 a0,1,1
…

a0,1,1 a0,2,1
…

a1,0,1 a1,1,1
…

a1,1,1 a1,2,1
…

batch 1 batch 2

W

A

w1,1,1,1 a1,1,1 + w1,2,1,1 a1,2,1

+ w2,1,1,1 a2,1,1 + w2,2,1,1

a2,2,1  +
w1,1,2,1 a1,1,2 + w1,2,2,1 a1,2,2

+ w2,1,2,1 a2,1,2 + w2,2,2,1

a2,2,2  +
w1,1,3,1 a1,1,3 + w1,2,3,1 a1,2,3

+ w2,1,3,1 a2,3,1 + w2,2,3,1

a2,3,1  

… …

w1,1,1,2 a1,1,1 + w1,2,1,2 a1,2,1

+ w2,1,1,2 a2,1,1 + w2,2,1,2

a2,2,1  +
w1,1,2,2 a1,1,2 + w1,2,1,2 a1,2,2

+ w2,1,2,2 a2,1,2 + w2,2,2,2

a2,2,2  +
w1,1,3,2 a1,1,3 + w1,2,3,2 a1,2,3

+ w2,1,3,2 a2,3,1 + w2,2,3,2

a2,3,1  

… …

Z

=



Example for Img2Col (5/5)

• Step 4: Reshape the output to recover the output feature maps using the inverse col2img 
transformation.

w1,1,1,1 a1,1,1 + w1,2,1,1 a1,2,1 + 
w2,1,1,1 a2,1,1 + w2,2,1,1 a2,2,1  +
w1,1,2,1 a1,1,2 + w1,2,2,1 a1,2,2 + 
w2,1,2,1 a2,1,2 + w2,2,2,1 a2,2,2  +
w1,1,3,1 a1,1,3 + w1,2,3,1 a1,2,3 + 
w2,1,3,1 a2,3,1 + w2,2,3,1 a2,3,1  

… …

w1,1,1,2 a1,1,1 + w1,2,1,2 a1,2,1 + 
w2,1,1,2 a2,1,1 + w2,2,1,2 a2,2,1  +
w1,1,2,2 a1,1,2 + w1,2,1,2 a1,2,2 + 
w2,1,2,2 a2,1,2 + w2,2,2,2 a2,2,2  +
w1,1,3,2 a1,1,3 + w1,2,3,2 a1,2,3 + 
w2,1,3,2 a2,3,1 + w2,2,3,2 a2,3,1  

… …



GEMM Algorithm

• Basic linear algebra algorithm for matrix-matrix-multiply

• Optimized versions exist for many hardware platforms e.g. 

• Considering block-wise computation depending on cache sizes

• Exploiting data-level parallelism (DLP)

•GEMM is seen as „at the heart of deep learning“ especially when acceleration is
considered.

Further reading: 
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/


General-Purpose Graphics Processor Units (GPGPUs)



Source

Inspired by:

• Book: Aamodt, Fung & Rogers – Generap-Purpose
Graphics Processor Architectures

• Book: Hennesy &Patterson: Computer 
Architecture – A Qualitative Approach

• CA Course: Sophia Shao, UC Berkeley
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GPUs

• GPUs were initially introduced for rendering in real time especially for video games. 

• Nowadays GPUs can be found in many devices (Data Centers, PCs, Laptop, Phones, 
Embedded GPUs...)

• General Purpose (GP-GPU): Programming Language CUDA from NVIDIA allowed to use
GPUs for other compute besides rendering (now especially used for ML)
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GPU (Discrete vs. Integrated)

• GPUs are combined with a CPU either on a single chip or by inserting an additional card 
(e.g. via PCIe). 

• The CPU is responsible for initiating computation on the GPU and transferring data to and 
from the GPU. The CPU is often called “the host”.
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Host CPU GPU

Graphics 
Memory

System 
Memory

CPU GPU

System 
Memory

Cache

Discrete GPU: Own memory

Integrated GPU:
Shared memory



Basic Programming Model

• CPU (Example Code):
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void saxpy_serial(int n, float a, float *x, float *y) {
for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];
}

…
saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY kernel
… 



Basic Programming Model
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…
float *d_x, *d_y;
int nblocks = (n + 255) / 256;
cudaMalloc( &d_x, n * sizeof(float) );
cudaMalloc( &d_y, n * sizeof(float) );
cudaMemcpy( d_x, h_x, n * sizeof(float), cudaMemcpyHostToDevice );
cudaMemcpy( d_y, h_y, n * sizeof(float), cudaMemcpyHostToDevice );
saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);
cudaMemcpy( h_x, d_x, n * sizeof(float), cudaMemcpyDeviceToHost );
...

__global__ void saxpy(int n, float a, float *x, float *y)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i<n)
y[i] = a*x[i] + y[i];
}

• GPU (CUDA):

Compute
Kernel

Setup and call kernel
from CPU program



Threads, Warps, Thread block

• The threads that make up a compute kernel are organized into a hierarchy composed of a 
grid of thread blocks consisting of warps. 

• In the CUDA programming model, individual threads execute instructions whose 
operands are scalar values (e.g., 32-bit floating-point). 

• To improve efficiency typical GPU hardware executes groups of threads together in lock-
step (SIMD). These groups are called warps, which consist of 32 threads 

• Warps are grouped into a larger unit called thread block by NVIDIA.
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Thread Block 1

Example:

Wrap 0

Thread 0 y[0] = a*x[0] + y[0];

….

Thread 31 y[31] = a*x[31] * y[31];
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Wrap 1

Thread 32 y[32] = a*x [32] * y[32];

….

Thread 63 y[63] = a*x [63] * y[63];

Wrap 7

Thread 224 y[244] = a*x [244] * y[244];

….

Thread 255 y[255] = a*x [255] * y[255];

…

saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);

• Launch a single grid, consisting of nblocks thread blocks

• Each thread block contains 256 threads (8 warps). 

…

nblock
Thread 
blocks

GRID



Thread Block L

Example:

Wrap K

Thread (n-2)*32 y[n-2] = a*x[n-2] + y[n-2];

Thread (n-1)*32 y[n-1] = a*x[n-1] + y[n-1];

….

….
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…

saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);

• Threads with thread_idx.x > n are deactivated

…

nblock
Thread 
blocks

GRID

Wrap K+1

….

….

….

….

Deactivated
(>n)



Single Instruction, Multiple Thread (SIMT)

• GPUs uses the Single Instruction, Multiple Thread (SIMT) model

• Scalar instruction streams for each CUDA thread are grouped together for SIMD execution 
on hardware

• Loads and stores are scatter-gather, as threads perform scalar loads and stores
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Instr. 1     Instr. 2    Instr. 3   Instr. 4    Instr. 5Scalar instruction stream

SIMD
execution
across
warp



Divergence and Reconvergence of Threads

• Warps execute in lock-step SIMD fashion

• Threads may diverge/reconverge due to control flow

• Simplified illustration (arrows are threads in a thread block):
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doX();

doX();
if (threadIdx.x < 4) {

doA();
} else {

doB();
}
doY();

d
iv

er
ge doA();

doB();

re
co

n
ve

rg
e

doY();

Mask =
1 1 1 1 1 1 1 1 

Mask =
1 1 1 1 0 0 0 0

Mask =
0 0 0 0 1 1 1 1 

Mask =
1 1 1 1 1 1 1 1 



GPU

SIMD Core

Hardware Execution Model

• GPU is built from multiple parallel cores, each core contains a multithreaded SIMD processor with 
multiple lanes but with no scalar processor

• CPU sends whole “grid” over to GPU, which distributes thread blocks among cores 
(each thread block executes on one core)
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Multithreading on SIMD Processor

• SIMD cores execute instructions of independent warps in multithreaded fashion

• E.g. can hide memory latencies
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Multithreaded SIMD Processor
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Source H&P: Computer 
Architecture – A 
Qualitative Approach



Look at a Real GPU: A100

Optional, not relevant for exam



A100 GPU -128 Streaming Multiprocessor
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Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf 

NVIDEA calls
SIMD processors
Streaming Multiprocessors
(SMs)



SM

• “A100 has four Tensor Cores per 
SM, which together deliver 1024 
dense FP16/FP32 FMA operations 
per clock”

• “432 Third-generation Tensor Cores 
per GPU” (108 SMs)
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Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf 



Accelerators - Systolic Array



Systolic Array

Concept: 

• Functional Units (FUs) are chained to implement a fixed type of computation

• Flow inside systolic array needs to be carefully orchestrated

• Intermediate results are directly moved to next FU

• 2D systolic arrays often used for deep learning for Matrix-matrix multiply (GEMM), 
called Tensor Cores, GEMM Core, Matrix Multiply Unit

• Systolic arrays can be designed for many other computations 
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Example: 1D Convolution

• Simple 1D convolution (A1x12)*(1x3):
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=

void conv1D_12_3(int* x, int* w, int* y) { 
for (i=0; i<10;i++) {
y[i]=0;
for (j=0;j<3;j++) {
y[i] += x[i+j] * w[j];

}
}
}

y0
y9

Moving
window

…



Example: 1D Convolution

• Code
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void conv1D_12_3(int* x, int* w, int* y) { 
for (i=0; i<10;i++) {

y[i]=0;
for (j=0;j<3;j++) {

y[i] += x[i+j] * w[j];
}

}
}

conv1D_12_3:
LW t1,0(a1)   # w0
LW t2,4(a1)   # w1
LW t3,8(a1)   # w2
LI t4,0

conv1D_12_3_loop:
LW a4,0(a0)    # x[i+0] 
LW a4,4(a0)    # x[i+1] 
MUL a1,a4,t1  # x[i+0] * w[0]
MUL a4,a4,t2  # x[i+1] * w[1]
LW a5,8(a0)    # x[i+2] 
ADD a1,a1,a4
MUL a5,a5,t3  # x[i+2] * w[2]
ADD a1,a1,a5
SW a1,0(a2)  # Store y[i]
ADDI a0,a0,4
ADDI a1,a1,4
ADDI t4,t4,1
BNE t4,10, conv1D_12_3_loop

RET



Example: 1D Convolution - Systolic Array (1D) - Structure

• Structure: 
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Example: 1D Convolution - Systolic Array (1D) - Structure

• Step 1: Load Weights
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Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 3: 
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Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 4: 
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Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 5: 
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Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 6: 
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Systolic Arrays Pros-Cons

• Advantages:
• Move intermediate results between FUs to reduce memory access

• Balance between computation and memory bandwidth

• Simple design to exploit data-level parallelism (DLP)

• Different systolic arrays can be combined for multi-stage computations

• Disadvantage
• Specialized: computation needs to fit FU arrangement
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A look at Real ML Accelerators

Google Tensor Processing Unit (TPU)

VTA Neural Processing Unit (NPU)

Optional, not relevant for exam



TPU V1: Tensor Processing Unit (2017)

• Application-specific Integrated Circuit (ASIC) – Chip from Google

• Specialized to accelerate Deep Neural Network (DNN) computations

• PCB board with PCIe Interface to Host processor
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Source: https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu?hl=en



TPU Data Rates
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Source: https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu?hl=en



Weight FIFO

DDR 3
Interface

TPU V1 Dataflow and ISA

Instructions:

• Read Weights
• Reads weights from the 

DDR into the Weight FIFO

• Read from Host Memory:
• Reads data from the CPU 

(Host) memory into the 
unified TPU buffer

• Execute Matrix Matrix
Multiply for Convolution + 
Activation + Pooling

• Write to Host Memory

• Writes data from unified 
buffer into CPU memory
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TPU: Matrix Matrix Multiply

• Core of the TPU is matrix-matrix-multiply

• 2D Systolic Array: 
• Input 1: Matrix size Sx256 (Unified buffer)

• Input 2: Constant matrix 256x256 (Weight FIFO)

• Output: Input1 multiplied Input 2

• Latency: S cycles

• Initialization interval: 1
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Google TPU V4 for Cloud
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Source: https://cloud.google.com/tpu/docs/v4

Key specifications v4 Pod values

Peak compute per chip 275 teraflops (bf16 or int8)

HBM2 capacity and bandwidth 32 GiB, 1200 GBps

Measured min/mean/max power 90/170/192 W

TPU Pod size 4096 chips

Interconnect topology 3D mesh

Peak compute per Pod 1.1 exaflops (bf16 or int8)

All-reduce bandwidth per Pod 1.1 PB/s

Bisection bandwidth per Pod 24 TB/s

Chips can be arranged in Twisted Torus 
interconnect



Embedded NPU: Versatile Tensor Accelerator (VTA) 

• Source: http://arxiv.org/pdf/1807.04188

• Open Source: https://github.com/apache/tvm-vta
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http://arxiv.org/pdf/1807.04188
https://github.com/apache/tvm-vta


Summary



Covered Topics

• General-Purpose Processor Cores
• Pipelining 

• Speculation and Branch Prediction

• Instruction-Level Parallelism: Superscalar, VLIW

• Thread-Level Parallelism: Multi-threading, Multi-Core

• Data-Level Parallelism: Vector

• Specialized Cores : 
• GP-GPUs

• Accelerators: TPU, NPU
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Thank you for your attention!
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