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Most chips feature a range of processing elements (PEs) / multi-cores

PEs needs to communicate with each other

On-chip Interconnect architecture and type play crucial role in performance.

Chips and devices are connected via different types of interconnects

16.05.2024 Computer Systems 2



Agenda

Interconnect types

On-chip buses

Networks-on-chip (NoC)

A look at real on-chip interconnects Optional, not relevant for exam
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Interconnect Types




Interconnect Types

* On-Chip: Connects modules that are integrated into the same chip (IC: integrated circuit)

* PCB-level: Connects different ASICs + connectors and other component all mounted on
one Printed Circuit Board (PCB).

* Many other interconnects (board to board, rack to rack): PCle, Ethernet, CAN, UART, 12C,

S P I’ G P I O’ LN
Memories
Embedded e = Micro-Controller /
processor 'ig' L] System-on-chip
Other
Integrated modules
Cireuit (IC) Printed Circuit Board (PCB)
16.05.2024
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Different Scales of Interconnects

On-chip e
Interconnect f5i0se i Chip Package

Processor Main Memory

Bumps S AMD
PCB Board ource

Chip2Chip

Board2Board

Rack2Rack

Sources: Pulp, SpiNNCloud
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Memory-mapped Buses

* Purpose:
* Read or write a value from or to a certain address
* Value can be data or peripheral control information

 Memory-mapped Bus has several (sub-)buses (group of signals) and a defined bus
protocol
* Address bus
e Data bus for reading data
* Data bus for writing data
* Control signals: Indicate if access is read or write, bust length, ID, bus grant, ...

 Modules on the bus can either act as initiators or targets
* Typical initiators: CPUs, DSPs, DMAs, bus bridges, ...
* Typical targets: Memory, accelerators, interface peripheral, bus bridges, ...
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Classes of Memory-mapped Buses

Single-initiator bus:

* One initiator component can address different target components, which are mapped to different
addresses

Shared bus:

* There are several initiators on the bus
* An arbiter decides which initiator module is granted access to the bus
* Only one initiator can access one slave via the bus at a time

Layered bus:

* There is more than one arbiter such that more than one initiator is granted access on the bus
* Only one target component on each layer can be accessed at a time

Crossbar/ bus matrix
* Each target component has its own arbiter
* Each target component can be accessed by one initiator at a time

16.05.2024 Computer Systems 9



Single-Initiator Bus

e Target knows
 if it is addressed by observing the address bus ADDR
» or decoder generates SEL signal for targets based on address bus ADDR

e Target can receive data on write data bus WDATA

e Decoder forwards the data from the addressed target by multiplexing it to the read data
bus RDATA

* Additional control bus CTRL for signals related to bus protocol (e.g. WR, SEL, RDY )

SEL,WR
T Targetl l ‘
ADDR 1
Init | l ;
] WDATA Target2
Init I:> DATA,RDY - >
I:T . Target2

L) g] | rargets
Initiator Mirrored [
initiator ——
Target3
L :
) Decoder |«
Mirrored Target

Target
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Simple Write Access

1. |Initiator places address and data on the ADDR and WDATA bus ADDR ADDR
Initiator indicates write by setting signal WR to high WR_ P WR
Initiator indicates that access is started by setting SEL signal to high it (SEL_, R SEL_,j Target

WDATA M

2. Target acknowledges write access by RDY signal RDY | | RDY |

No wait cycles Two wait cycles
cL c2 3 (4 ! Cl1 2 ©3 4 (€5 (6 |
aobR | Wadd X AbbR L X aadr X
P s U s o B
s Y T N s TN
WDATA b(dat;él >( woATA L X data 1 X
roy | i N | RDY I m
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Simple Read Access

1. Initiator places address on the ADDR bus ADDR ADDR
Initiator indicates read access by setting signal WR to low WR WR
Initiator indicates that access is started by setting SEL signal to high mt |SEL | |SEL | Tawgetl
RDATA RDATA
2. Target places data on RDATA bus RDY RDY |
Target acknowledges write access by RDY signal N
No wait cycles Two wait cycles
cL 2 3 c4 ! cl C2 (€3 C4 (5 (6
L L L L

ADDR | Xaddr X | ADDR i X ! addr
WR oL N b/ b wrR o N
SEL L/ 1 N__ SEL L/ i
RDATA ©  ©  XdaaX : RDATA | | | | >(ata
RDY i i i/ i\_i RDY | | | :

L0

il
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Performance of Simple Accesses

e Each access takes minimally two cycles
 Maximal bus bandwidth is: BWy,s = 0.5 - buswidth - [y

Two read accesses Two read accesses (bus access diagram)
C1 2 c3 4 c1ic2icsica !
ADDR :>(adcir1 >(add:r2 I ADDR | addrl addr2
wr . T
SEL o I
RDATA E %ataf( E%ratazi RDATA E datal data2
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Pipelined Accesses

* The next address can be placed on the bus while the data is read

 Maximal bandwidth supported by bus is equal to:
BWi,s = buswidth - fpys

* Additional control signals and logic required to support pipelined accesses.

Three pipelined read accesses

' C1 1C2 1C3 :C4 .

ADDR addrl |addr2 |addr3

RDATA ! datal|data2|data3
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Burst Accesses

e A burst accesses a consecutive row of addresses

* Version 1: the addresses for all accesses must be given and a control signal that indicates
that this is a burst access of a certain size

* Version 2: Only the start address must be given and a control signal that indicates that
this is a burst access of a certain size

Four data values are returned for one start address (burst4)

Cl1 iC2 iC3 iCc4 5 | ! Cl i C2 iC3 iC4 (5
ADDR addrl addr2 [addr3 |addr4 ADDR hAddrl
BURST [ba4 | BURST | b4
RDATA E datal| data?| data3| datadl RpATA E datal| data?| data3| data4
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Multiple Outstanding Transactions

* A address may be placed on the bus before the data of the previous access has been read
or be written

* This improves performance in case of wait cycles.

No outstanding transactions (two wait cycles)

' Cl1 1C2 1C3 :C4 C5 6 C7

ADDR  &ddrl i hddr2 i hddr3
RDATA E E E datal E data2

With multiple outstanding transactions (two wait cycles)

i Cl1 iC2 iC3 ic4 L5 L6 C7

ADDR addrl |addr2 addr3

RDATA datal| data2| data3
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Out of order Completion with Interleaving

* A address may be placed on the bus before the data of the previous access has been read
or be written

* |In case of wait cycles, the order of data reads may be changed

No out of order completion with interleaving

ic1 ic2 {c3 ica t5 C6 L7

ADDR addrl i addr2 faddr3

RDATA E E E datal| data2 data3

With out of order completion with interleaving

iCl ic2 ic3 ic4 L5 €6 C7

ADDR addrl [addr2 gddr3

data?2| datal| data3

RDATA
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Shared Bus

* Arbiter grants access to the initiator:

* Only the address and data of one initiator is forwarded to the targets

REQ1-REQ3
> Arbiter
GRANT
ADDR —
Init1 _—DATA ~ Targetl
> iDATA
I | v | >
. WOATA > Target2
> iDATA 5
>
ADDR | Target3
. WDATA
Init3
> FDATA .
Decoder (g
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Bus Arbitration

The arbiter grants access to initiator that request the bus
Round-robin: Access granted to initiators in pre-defined order that is repeated

FIFO: First initiator requesting the bus is granted access

Priority: Initiator with highest priority is granted access to the bus

Round-robin: No pipelining Round-robin: With pipelining
1 C1 1C2 +C3 1C4 :1C5 :C6 ! 1 C1 1 C2 iC3 :C4 :C5
REQ1 Req . Req . i REQ1 Req | Req Req '
REQ2 E E Req Req REQ2 E E Req | Req
GRANT ! 11 2 11 GRANT ! 11 ]| 12]|n
ADDR1 ! addrl i addr3 ADDRL ! addr|addr2 addr4
RDATAL | datal : i RDATAL datal| data2 '
ADDR2 | | | addr2 | ADDR2 | i addrs .
RDATA2 | | | | data2 | RDATA2 | | | data3
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Split Accesses

 Slave can allow a split of an access if it was many wait cycles
* Access of initiator 11 is split by issuing a start of split by slave

* |2 is granted the bus and access of initiator |12 is performed
Then access of initiator |1 is finished by issuing an end of split

' C1 1C2 }C3 [C4 |C5 C6 ICT |C8 |C9 |
REQl Req 1 1 1 1 : 1 1 !
REQ2 E E Req

GRANT 11 2 11
ADDR1 ! addrl i Iaddri
RDATA | ! ! ! ' ' ! '
1 ! ! !
ADDR2 | addr2
RDATA . . . . . data2
2 | | | | | | 1

SPLIT_ ! ! ! Start End

S

datal
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Crossbar / Bus Matrix

* All targets can be accessed individually

* Only conflict when two initiators access same target

« GRANT/REQ omitted.

Decoderl

Arbiterl

ADDR |

v

16.05.2024

Computer Systems

Init1 Targetl
DATA
i 15 Arbiter2
Decoder2 *
- [
Init2 ‘“““—* = Target2
g
.5 Arbiter3
Decoder3 {
[
Initg 4 = Target3
o .5
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Layered Bus

e Targets are on different layers

* |nitiator can connect to targets on different layers simultaneously

ArbiterLayerl

r Decoderl *
ADDR

WDATA

Targetl

Initl

PR .:
ArbiterLayer2
Decoder2 *
. [ " mmra N
. WDATA N Target2
R . u —
Decoder3
oo r I Decoder | qgm
Init3 WRATA * Target3
DATA
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Some Bus Standards

 AMBA Bus (ARM)

* AHB: Advanced High Performance Bus
* APB: Advanced Peripheral Bus
* AXI: Advanced eXetendible Interface

* Wishbone (Open)
 TileLink (Open)
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ARM AMBA Standard

Different Versions e.g., AMBA 2,0, AMBA 3.0,...

AHB: Advanced High Performance Bus
* High performance
* Pipelined operation
* Multiple bus initiators
e Burst transfers
e Split transactions

APB: Advanced Peripheral Bus
* Low power
* Simple Interface
e Suitable for many peripherals
* One initiator (APB Bridge)

AXl: Advanced eXetendible Interface
* Configurable channel-based specification
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Typical On-Chip Interconnect for Smaller Embedded Devices

* High-performance near the processor cores, low-performance near the slow 1/O devices

Several Several

Initiators Targets -
T Event Unit

: Memory To main

Instruction I
N Cache | Controller memory
Pipeline Data I:T ! et
Cache !

L2
L Cache

Brid Brid EP'[
I: Inirtlia%oer |:>
E GPIO GPIO

AXl4 Interconnect
'

Initiator  Mirrored initiator “ CAN
i One

!\I_A;:rogted Target A Several
9 Initiator Targets

25
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Example — Layered Bus

e Given is the following architecture for a shared layered bus:
* There are two initiator components, CPU and DMA.

* There are three target components, MEM, HWacc and 10.
The MEM, is on layer 1, the Hwacc and |10 component is on layer 2.
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Example — Layered Bus

ArbiterLayerl

x c 2/

Decoderl
ADDR I
WDATA I
CPU ¥
RDATA M
u
X
Decoder2
ADDR
WDATA
DMA

x c L /<=

16.05.2024

RDATA

% € <\ le—

Computer Systems

MEM
ArbiterLayer2
>
HWacc
-
Decoder | g
10

c
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Example — Layered Bus - Access

e Assume that the CPU wants to read access the 10 slave component in the bus cycle 1 and that the DMA
wants to read access the HWacc in the same bus cycle 1. Draw the bus access diagram for the data and
address bus of the two bus masters as well as the control request and grant signals for the two layers
assuming that the bus does not support pipelining. The 10 component inserts two wait cycles. The HWacc
component inserts no wait cycles. The arbitration order is CPU first, then DMA. There is no pipelining.

Round-robin: No pipelining

C1 iC2 |{C3 {C4 iC5 iC6 |C7
REQ-CPU L1 ' ' ' ' ‘
REQ-DMA L1

GRANT-layerl cPU § DMA
GRANT-Layer2 | | | | |

_ 5 addr-l Wacc!
ADDR-Layer1 Leddilo . H

RDATA-Layerl j datall idataz

ADDR-Layer2 | |
RDATA-Layer2 ’ ’ f ’ f ’

wait cycles
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Network-on-Chip (NoC)



Sources

* Principles and Practices of Interconnection Networks
Authors: William James Dally, Brian Patrick Towles
ISBN: 978-0-08-049780-8

* Slides inspired by the ,,On-Chip Networks I/11“ (L-15/L-16) lectures of Ryan Lee and Tushar
Krishna: http://csg.csail.mit.edu/6.5900/lecnotes.html
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Motivation

* Need for scalability and reduced cost

* Avoid long interconnects/delays caused by increased system complexity
* Reduce wiring overhead caused by increasing number of system components

* Performance demands
* Goal: high bandwidth and low latency
* Concurrent communication required due to increased traffic

 Solution: Network-on-Chip (NoC)

* Move from bus to network (small-scale networks on chip-/system-level)

* Larger-scale networks in later lectures
* Broadcast can be avoided, but still possible via multiple messages (when required)
 Serialization achievable, e.g., by forcing the same path or via sequence numbers
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Motivation: Scalability

* Scalability: How to connect hundreds of processor cores / memory interfaces?

: Compute PE !
Instruction i Instruction - !
Cache ! | | Y © |
Processor i Processor Cache g I T C;_czhe i
Core 1 e | | ! Core 1 Data 3 |
Cache i cache | |/ & :
i = i
Instruction : i e !
| | : Instruction I Y&l T ) Network , .
Cache 1 Cache L - U
Processor ] Processor (5‘ Interface | e}
Core 2 Data i Core 2 Data i
cache L' | /5 ! ' ' ! =
(B} i Cache i ~—
8 i i S
qJ ] 1
= ] Memory Network ' [
= I: i Memo ry PE Controller Interface : 8
L i ! 1
(% :l:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::E %
Instruction i Compute PE : g
Cache i | =
Processor | _ ; Q
Core N-1 Data ! Instruc;]tlon ~ s | =
i Cache o !
Cae i Processor g[ Cache |
Instruction i Core l Data S |
Cache ! Cache g |
Processor ] £ :
Core N | Instruction e ]
! ol T Network “I
i Processor Cache Q Interface :
i Core 2 Data L i
i Cache !
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Network-on-Chip Basics

* Objective: Connect nodes with each other via routers and wires, so that messages can be
sent from source to destination

* Building blocks:
 Node: any component, e.g., processor, memory, or a combination of them
* Network interface: module connecting a node to the network
* Router: forwards data from inputs to outputs (network interfaces or other routers)
* Link: physical set of wires, e.g., connecting two routers
* Channel: logical connection between routers

* Message: unit of transfer for the nodes NoC Router

* Packet: unit of transfer for the network oE oF - - /[ euter J—]
,"/ Buffer g Crossbar

—>| Buffer [ > Switch
Compute PE {* >

\
\
A y Buff >
\|PE|| |PE| |PE|||PE|]} uer .
A ‘\
A 5\ Allocators
AY \\

PE PE PE PE

R

Processor
Core 1

Network

Processor Interface

Core 2

PE PE PE PE
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* Topology: What is the connection pattern of the nodes?

* Routing: Which path should a message take?

* Flow control: Which network resources are granted to a message over time?

* Traffic analogy
* Topology: defines roadmap, i.e., streets and intersections
* Routing: steering of the car, i.e., where to turn at each intersection
* Flow control: traffic light control, i.e., when a car can advance over the next part of the road
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Topology

* Topology: arrangement of nodes and channels
* Determines e.g., number of hops, number of alternative paths, cost

* Properties for comparison
* Degree: number of links at each node
e Distance: number of links in the shortest route
* Diameter: maximum distance between any two nodes

* Bisection bandwidth: available bandwidth from one partition to the other, when cutting the network
into two equal parts (minimum for multiple possible cuts)
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Topology

* Direct networks: each terminal node is associated with a router; routers are sources/sinks

and switches for traffic from other nodes ~ ~

Fully Connected

i

o

lechoch

=

ol dicd

o

CaltaCh

Ring Mesh Torus

D

* Indirect networks: terminal nodes are connected via intermediate stages of switch nodes;
terminal nodes are sources/sinks, intermediate nodes only switch traffic

16.05.2024
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Fully Connected Networks

Every node connected to every other node with a direct link
N nodes, N:(N-1)/2 links
Degree: N-1

Diameter: 1
Bisection width: |[N /2| - [N /2]

Fully Connected

Pros: high fault tolerance, low contention, low latency

Cons: high costs for large N, limited scalability
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Ring (k-ary 1-cube)

Each node connected to two other nodes
N nodes, N links

Degree: 2

Diameter: |[N /2]

Bisection width: 2

Ring

Pros: simple, low link costs

Cons: high latency for large N, limited path diversity
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* k-ary n-cube: N=k" nodes in a regular n-dimensional grid
* k nodes in each dimension
* Links between nearest neighbors

For n=2 (i.e., k X k grids)
* N=k?nodes, 2k - (k — 1) links
* Degree: 4
e Diameter: 2k-1
e Bisection width: k

Mesh
(here: 4-ary 2-cube)

Pros: path diversity, regular and equal-length links

* Cons: large diameter, asymmetric (higher demand for center links)
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Torus

k-ary n-cube: N=k" nodes in a regular n-dimensional grid
* k nodes in each dimension

* Links between nearest neighbors, adds wrap-around links at the edges
compared to mesh

For n=2 (i.e., k X k grids)
* N=k? nodes, 2N links
* Degree: 4
* Diameter: k
* Bisection width: 2k

C
C
C
C

‘-

Torus

Pros: avoids asymmetry and improves path diversity compared to mesh

Cons: unequal link lengths and higher cost compared to mesh
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Crossbar

* Connects n inputs to m outputs vian X m switches

e Switches enable concurrent communication between
disjoint input/output pairs without blocking

N =n-mnodes, n - mlinks

* Diameter: 1

* Pros: non-blocking, latency (for small n, m) . . . .

* Cons: high cost, limited scalability Crosshar

16.05.2024 Computer Systems 41



Butterfly

 k-ary n-flies: k" nodes connected via n stages of k"1 intermediate [0 0
k X k switches 1 1
* k:switch degree 2 2
* n: number of stages of switches j j
5 5
* Pros: lower cost compared to crossbar 2 2
7 7
* Cons: blocking, lack of path diversity, locality not exploitable :—’;uttir;'\;
-ary 3-fly

16.05.2024 Computer Systems 42



k-ary tree with N nodes and log, N stages

Nodes are the leaves of the tree, switches at intermediate stages

Messages are sent up to common ancestor, then sent down to
destination

Pro: simple, cheap

Cons: Bottleneck towards root

* Alternative: Fat tree, where links between switches closer to the root
are increased

Fat tree
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Application-Specific Network-on-Chip Architectures

WIFIDMA

* Custom tailored NoC
topology for chips with very ”S.\N B\
unbalanced traffic demand |
for different PEs

* Example: NoC for a 3G
Modem Chip (2014)
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Messages

Message: logically continuous group of bits, may be arbitrarily long

Packet: basic unit of routing and sequencing, restricted maximum length

* Consists of header + segment of a message

Flit (flow control digit): basic unit of bandwidth and storage allocation

« Contain no separate routing/sequencing information and therefore follow the same path in-order
» Subdivision allows for low overhead (large packets) and fine-grained resource utilization (small flits)

Phit (physical transfer digit): information transferred over a channel in a single clock cycle

Packet

Head flit Body flit/ Body flit - Tail flit

Flit

16.05.2024
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Flow Control vs. Routing

* Flow control: Allocates resources (channels, control state, buffers) to packets
* Alternative view: resolve contention during packet transmission
* Contention: What happens if two packets want to use the same channel at the same time?

* Routing: Selects the path a packet takes from source to destination
* Determines how well the potential of the given topology is exploited
e Should balance load across network channels
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Flow Control

» Bufferless
* Dropping
* Misrouting
 Circuit switching

e Buffered

e Store-and-forward
e Cut-through

* Wormhole

* Virtual channel
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Bufferless Flow Control: Dropping

4

 Competing packets: No buffers available, therefore drop “losing” packets, “winning’
packet is allowed to proceed

* Example:
Two packets A and B arriving, Packet A “wins”, B is dropped and
both requesting channel 0 must be retransmitted from source
AlalAalA]Alo Q: > AlAlA @= » AlA]0
B|B|B|B[B[O |;|> > BIB|B I;L >

 Complete effort already invested in packet B is lost
e Source needs to be informed to about successful transmission or need for retransmission
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Bufferless Flow Control: Dropping

* Time-space diagram with negative acknowledgements (nacks)

* Example: five-flit packets, four-hop route
Retransmission

Bod : -
Header /y Tail nack .-~ ack received
S Y \‘ ," . ’,/ ’,/'
0FlT-IBBBT,'HBBBT P
R N A
5 1 F H|B(B|B HIB[B[B|T
= R N A
©
< . F H(B HIB|B|B|T
Forward \\:) 2 o N A
\3"F Fail to get channel 3 |H|B[B|B|T
Reverse --- 0123456 7 8 91011121314151617

Cycle
* Alternative: no nacks, resend packet if ack is not received before a timeout

* Dropping: simple, wastes resources

16.05.2024 Computer Systems
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Bufferless Flow Control: Misrouting

* Competing packets: No buffers available, therefore misroute “losing” packets, “winning”
packet gets the requested channel

* Example: Two packets A and B arriving, Packet A “wins”, B is misrouted to
both requesting channel O channel 1

A[A]A]A]A]O Q: > AlA]A @ »AlA]0

B[B[B[B[B]O m: > B|B|B != »B[B]0

* Requires sufficient path diversity
* Routing needs to ensure that packet reaches its destination despite misrouting

* Misrouting: no packet dropping, packets sent in wrong direction, livelock possible (need
to guarantee forward progress)
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Bufferless Flow Control: Circuit Switching

* First allocate channels to build a circuit from source to destination, then send packets
along the circuit, deallocate circuit after packets are sent

 Example: four-flit packets, five-hop route
* 1.Send request (R) to destination allocating channels along the way

» 2. Destination returns acknowledgement (A) to source

e 3. Data flits (D) are sent

* 4. Tail flit (T) deallocates the channel
0 [R AD|D|D[D D[D|D|D Tieeo .
e 1 ‘ R A D|D[D|D D[D(D|D T| - Deallocation
€2/ |[R A D{D|D|D D(D|D|D T
53/ R A D[D|D[D D[D[D[D T
41 RHA D[D|D|D D[D|D|D T
012 3 45 6\7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Reservation \ vl
Acknowledgement ycle

e Circuit switching: simple, high latency, high overhead for circuits with short duration

51
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Buffered Flow Control

* Buffers allow to store data while waiting for the following channel
* Without buffers data arriving at cycle i had to be transmitted at cycle i+1 (or dropped)

* Flow control now needs to allocate channels and buffers
* Allocation at packet or flit granularity
* Packet granularity: store-and-forward, cut-through
* Flit granularity: wormhole
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Buffered Flow Control: Store-and-forward (Packet-based)

* Each node waits until packet is received completely before transmission to the next node
* Need to allocate channel and sufficient buffer space for the packet in the next node

* Example: five-flit packet, four-hop route without contention

HIB|B[B|T

H(B|B|B|T
X H{B[B[B|T

Channel

w N R O

HIB[B[B|T

\
01234546 7 8 91011121314151617 1819
\ Cycle
\

Could also be transmitted later if channel/buffer space is not available

e Store-and-forward: channels not held idle, only small buffers required, high latency due
to serialization
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Buffered Flow Control: Cut-through (Packet-based)

* Flits are forwarded as soon as they are received and the following channel and buffer
space is acquired (allocation still at packet granularity)

* Avoids waiting for receiving the complete packet before transmission

* Example: five-flit packet, four-hop route without/with contention
No breaks within

5 O [HBIBIBIT g O HBBIBIT packet transmission
€1 |[H[B|B|B|T €1 [H[B[B[B|T| «
8 H|B|B[B|T 8 H—+—H|B|B|B|T
© 3 H|B[B[B|T © 3 H|B|BIBIT
01234567 0123456 7 8910
Cycle Cycle
No contention Three-cycle contention before channel 2

e Cut-through: high channel utilization, low latency, inefficient use of buffer storage and
long contention latency due to packet-based allocation
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Buffered Flow Control: Wormhole (Flit-based)

e Similar to cut-through, but allocates channels and buffers to flits instead of packets
* Head flit requests channel state (virt. channel) for the packet, buffer for one flit and channel for one flit
* Body flits use virtual channel to follow head flit, request buffer for one flit and channel for one flit
 Tail flit treated like body flit, but additionally releases virtual channel

* Blocking might occur as the single virtual channel belongs to a packet, while buffers are
allocated to flits

e Channel set to idle if buffer cannot be acquired (it cannot be used by other packet)

 Wormhole: Saves buffer space, may block a channel mid-packet

* Improvement: virtual-channel flow control
* Associate multiple virtual channels (channel state and flit buffers) with single physical channel
e Other packets can use channel when one packet is blocked
* Competition for transmitting flits over single physical channel
e Reduces blocking, more complex routers
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Buffered Flow Control: Wormhole vs. Virtual-channel

 Wormhole flow control: When B blocks, channel p and g are idle

Virtual channel-,

B
N idle idle
— A »—{ B > —
chan. p w chan. g
Node 1 Node21 Node 3
blocked

* Virtual-channel flow control: A can use channel p and g using a second virtual channel

== == =
B
{8 MBI A .
chan. p LA chan. g ]
Node 1 Node 2 Node 3
blogked
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Routing

» Selects the path a packet takes from source to destination in a given topology

* Determines how well the potential of the given topology is exploited

* Balance load across the network channels to avoid hotspots and contention
 Difficult, particularly with non-uniform traffic patterns causing load misbalances
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Routing Algorithms

* Properties

* Minimal or non-minimal
* Minimal: select shortest paths
* Non-minimal: not limited to shortest paths only

e Oblivious or adaptive
* Oblivious: select route without considering information about current network state

* Deterministic: Subset of oblivious; always select same path between source and destination

* Adaptive: select route based on current network state

* Design aspects
* Table-based or algorithmic

* Table-based: Table lookup of the entire route (source-table routing) or at each node along the route (node-
table routing)

e Algorithmic: Compute route using an algorithm usually implemented via combinational logic
* Deadlocks
* Situations where packets cannot make progress as they are waiting on one another to release resources
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Routing Example

* Routing decision in ring network: clockwise or counter-clockwise?

* Potential routing algorithms
* Greedy (deterministic, minimal): always pick the shortest direction
* Uniform random (oblivious, non-minimal): randomly pick a direction with equal probability

* Weighted random (oblivious, non-minimal): randomly pick a direction with a higher weight for shorter
direction
* Adaptive (adaptive, non-minimal): pick direction based on load of the local channels
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Dimension-order Routing

* First move towards x-dimension, then move towards y-dimension (XY)
* To increase the clarity, we will focus on 2D meshes in the following

* Example: 2D Mesh
0
oo

Dimension-order routing: Alternate route:
Deterministic and minimal non-minimal

* Dimension-order routing: simple, minimal, can cause load imbalance, doesn‘t exploit path
diversity
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Valiant’s Algorithm

* Packet from source s to destination d is routed via an intermediate node d*
 Randomly select intermediate node d* -
* Phase I: Route packet from s to d*

* Phase Il: Route packet from d“to d

e Use arbitrary routing algorithm for Phase I+ll,
e.g., dimension order routing for tori and meshes

* Can use arbitrary routing algorithm for the two phases
* For tori and meshes: Dimension-order routing as appropriate choice

* Valiant’s Algorithm: Randomizes traffic, balances network load, non-minimal, doesn‘t
exploit locality
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Valiant’s Algorithm

Minimal version of Valiant’s algorithm for k-ary n-cubes:

e Restrict intermediate node: d’lies in minimal quadrant
between s and d (subnetwork with s and d as corner nodes)

 Randomly selects among minimal routes

Steps:
 |dentify quadrant
* Select intermediate node d“from quadrant
* Route from s to d’
* Route fromd“tod

With dimension-order routing (either XY or YX): Doesn‘t use all paths
 |dea: Select randomly whether to use XY or YX (but: deadlock problem arises)

Preserves locality, improves load balancing (compared to deterministic routing)
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Deadlocks

e Deadlock: Situation where packets cannot make progress as they are waiting on each
other to release resources (buffers or channels)

>

u

e Example: D
* Nodes: 0, 1, 2, 3; Channels: u, v, w, x

A holds u and waits for v v

B holds v and waits for w

C holds w and waits for x

D holds x and waits for u

* Observation: Cycles pose a problem <
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Deadlock Avoidance: Restrict Routing

e Dimension Order Routing (k-ary n-meshes)
* E.g., first x then y (we have seen this approach already)
* Deadlock-free, but restricts path diversity

* Turn Model: Focuses on the turns allowed and the cycles they can form
e 2D mesh: 8 possible turns forming two abstract cycles

F 0
Lt t

« XY Routing removes four turns (prevents deadlocks)
<= 1 |->
S | |
L <=!
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Deadlock Avoidance: Restrict Routing

* Turn Model: Focuses on the turns allowed and the cycles they can form
 Removing one (carefully selected) turn from each abstract cycle also prevents deadlocks

Fora e o Fery
Lttt o Lttt 1 L1t |

west-first: traveling west north-last: traveling north negative-first: traveling first
only allowed at the start only allowed as last direction west and south, then east
and north

 Removing any two turns does not prevent deadlocks

- ]
Lt T L
t T |
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Examples: West-First

 Example 1

4+
[l

Foir
I i

west-first: traveling west
only allowed at the start

i

* Example 2
d

58] 5y 0 g I °
- HO-THE [y By 2
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Channel Dependence Graph (CDG)

* Network topology:

* Channel Dependence Graph:
* One vertex for each channel

* Edges denote dependences

* Dependence exists if it is possible for channel i to wait for channel i+1
e 180° turns not allowed (e.g., AB - BA)
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Cycles in the CDG

* Channel Dependence Graph may contain cycles

— Remove selected
edges in the CDG
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Acyclic CDG

 Example: Remove Edges in the CDG (West-first turn model)
Cyclic CDG

Acyclic CDG
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A look at real Systems-on-Chip

Optional, not relevant for exam

PULP 2016, PULP 2022, SpiNNaker2



Simple SoC Architecture for loT / Wearables — Example - PULPino 2016

UART =—
RAM

* SoC: System-on-chip

 PULPino Architecture 2016: apio—— {680
All memories are on the same chipas gp—
the processor core _-

[Instructlon]

193UU0IA] HIXY

 SoC Modules:
* Processor Core __[ R
SPI Slave

SPI—

* |nstruction memory
Data RAM
* Data memory [ ]
* Input/output devices: UARR, SPI, GPIO i |
_ JTAG Adv. Dbg Unit
* Timer L |
* Programming and Debug Devices: SPI
: \. J

Slave and Debug Unit Source: CNX Software

e Connected by on-chip interconnect: https://www.cnx-software.com/2016/04/06/pulpino-open-source-risc-v-mcu-is-designed-

AHB AXl4 for-iot-and-wearables/
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Complex Multi-core SoC — Example PULP 2022

. ey | JEE e
* More complex architecture SoC m
. . MEMORY CLUSTER
* Different On-chip Interconnects o (=] . [
DC FIFO <4 DMA #0 #1 #M-1
* DMA: Direct Memory Access — e ST
Module to offload data o H i —
movements from the CPU g5 |
EHEI ST T N7
 Multi-Core with shared caches e ]| E] e B
-------- B oo ] T T 2

Y
DCFIFO | ' SHARED IS |

All these modules are physically
integrated in one integrated circuit
(1C).

Source: https://iis-projects.ee.ethz.ch/index.php/PULP

=

16.05.2024 Computer Systems 72



SpiNNaker2 Chip

* Brain-inspired Chip designed for Spiking Neural Netwoks (SNNs)

T T T 7L B MeshNoC
Y T T | T |
TrYrYraIras
FTY T Y
ol oy | g | A [ [ | e
niklll bl Bl
L L
AR nanay WOFIFIE: 85H
rarerarsraenfl 8 0o o) T
Y Y T Y | I—1E G &L 11
- 1 5 il
W A | ] 1 FJ L [
AkAEEEAR S ‘[ : it .|
TrYrYrYrNr. B~ | ’J 1
avanavanans (SR :
Source: SpinnCloud | = ﬁ@i‘i i— !
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Conclusion

* Bus-based On-chip Interconnect

* Network on-Chip

* Next Sessions: Specialized Cores
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Thank you for your attention
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Heterogene Systems-on-Chip (SoCs)

* SoCs are often multi-core systems

* General-purpose SoCs may have many replications of general-purpose processors
(e.g. many ARM or standard RISC-V cores)

* To improve energy-efficiency many SoC use specialized cores (heterogeneity).
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Types of Specialized Cores

Vector Processors:
* Introduced in the 70ties (Cray)

* Got new attention recently especially due to machine learning workloads
(x86, ARM and RISC-V Vector Instructions)

GPUs:

* GPUs were initially introduced for rendering graphics in real time especially for video games.

e General Purpose (GP-GPU): Programming Language such as CUDA from NVIDIA allowed to use GPUs for
other compute besides rendering (also a lot for machine learning)

HW Accelerators:
* Processing Cores that are specialized for a certain task (with very limited programmability)
* Usually faster and more energy efficient than software running on programmable core
* Different types:
* Deep Learning: Tensor Processing Units / Neural Processing Units
e Security: Encryption & Decryption
» Video En/Decoders

Application-specific Instruction Set Processors (ASIPs)
* Between general-purpose programmable cores and accelerators
* Some programmability but tailored towards a certain application
» Example: Audio/Video Digital Signal Processors (DSPs)
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* Flynn’s Taxonomy

* Vector Units

* RISC-V Vector Instruction Set
* Vectorization

* Packed SIMD

Optional, not relevant for exam

A look at a real vector unit: ARA
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Flynn’s Taxonomy



Flynn’s Taxonomy

* Classification of Computing Cores

Single Instruction stream, Single Instruction stream,
Single Data stream (SISD) Multiple Data stream (SIMD)

VLIW Systolic Arrays

Multiple Instruction stream,
Single Data stream (MISD)

Vector

Packed SIMD

GPUs

(Multi-threaded
Multiple Instruction stream, SIMD)
Multiple Data stream (MIMD)

Multi-Threaded

Multi-Core
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Vector Units




Vector Instruction Sets

* One instruction operates on several data values (SIMD)

The data values are independent

e Operation use the same type of functional unit for all data

Data values are stored in separate registers

Data values are arranged in uniform structure (vector)

Load/Stores access
»a continuous range of memory
»use a regular pattern (strided load/store)

* One instruction stream for parallel pipelines (so called lanes)
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Functional Units (FUs) for Vector Arithmetic

* Input and Output are an array (vector)
vl=[v1[0] v1[1] v1[2]... v1[n]]

* FUs operate on one element of vector
e.g. Multiplier: v3[i] = v1[i]*v2]i]

* FUs exist for different data types
(integer, floating point)

* FUs often use deep pipeline for high frequency

* Initialization Interval usually =1
* R: Red Operands
* O: Operation
* W: Wreite Result

22.04.2024

Clock Cycle

v1[O0]

v2[0]

v3

0]

Six-stage Pipelined FU

Latency = 6
1 2 3 4 5
R O O O O

Computer Systems




Vector Instruction Execution on FUs

vadd.vv v3, v1, v2

Execution using
four FUs

Execution using
one FU

vife]  v2[e] v1[24] v2[24] vi[25]  v2[25] vi[ze]  V2026] vi[27] v2[27]
vi[5]  v2[5] v1[20] v2[20] vi[21]  v2[21] vipz]  V2[22] v1[23] v2[23]
vi[4]  v2[4] vi[16] v2[16] vi[17] = v2[17] vi[ig]  Vv2[18] vi[19] v2[19]
vi[3]  v2[3] vifr; V22 vi[13]  v213] vi[14]  Vv2014] vi[15] v2[15]
v3[0] v3[0] v3[1] v3[2] v3[3]
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Basic Structure of a Vector Unit

Array of Functional Units (e.g. MUL)
a ) l—

\ A A A 3 A 7y J
' A\ 4 v | |
Vector

Registers Elements Elements Elements Elements
T 048,... 1,5,9,... 26,10, ... 3,7,11,...

o
P
i

\ 4 \4 \ 4 \4 \ 4 \4 A v

/L Y

Lane A 4 h 4
Memory Subsystem

Array of Functional Units (e.g. ADD)
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Example — Timing for Single Vector Instruction

. . vimul.vv v3, vl, v2
e Execution on Vector Unit

e with four lanes (LO-L3)

» Ramp-up time

* FUs with 4 stages ClockCycle 1 2 3 4 5 6
* Vector size is 12 w | R|o] ol w]vo
L1 R O 0 W | v3[1]
* Lanes are used in pipelined fashion L2 | RO 0 | W]
(no dependencies between elements) 3 [ % | © | © | W |v33]
LO R 0 0 W | v3[4]
L1 R 0 0 W | v3[5]
* Full result is ready after 6 cycles 12 | R | 0| 0| W]y
* 4 cycles ramp-up to fill the pipeline B [R[O O | W] vl
LO R | O | O | W |v3[8]
L1 R 0 0 W | v3[9]
L2 R O 0 W | v3[10]
L3 R 0 0 W | v3[11]
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Example — Timing for Sequence of Vector Instructions

vimul.vv v3, vl, v2

* Full result only ready after last vadd.vv v5, v3, va

cycle of vector instruction Dead time
Clock Cycle 1 5 6 7 8 9 10 11 12
* An instruction using the result m:ftL :
needs to wait until completed R

El El = = o o o o N

e Causes a dead time (also called
recovery time) — delay until next vector
instruction can start down pipeline

m|=|=|=loflofofcfo]o]|oo] W
ololo|lofo|lo]|o]lolsl=sl=s]l=sl D

[e] [e] [e] [e] s s s s

g|1s2|=|=

ADD
Unit

£ £ £ £

= - o o o o o o

x| |®|®fo|lo|lo|J]ofo]|lo|o]o
o|lo|lo|ofJo|lo|o|ols]|=s]|=s]|=

o o o o = = = =

3 =
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Vector Chaining

e Vector version of forwarding paths

* Results are forwarded element-wise to next FU via chaining

vi[9] v2[9] v3[0] v4[6]
vi[8] v2[8] Vv3[1] .. V4[5]
vmul.vv  v3, vl, v2 Al vl ) CPERRIRG . WO
N vile] v2i] V3[3] I(Z;Z)gle vap]
vadd.vv v5, v3, v4

v3[3]

MUL ADD
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Example — Timing for Sequence of Vector Instructions with Chaining

vimul.vv v3, vl, v2

 Chain: Forward results from all lanes vadd.vv v5, v3, v4
between the FUs
e No dead time Clock Cycle 1 2 3 4 5 6 7 8 9 10 11 12
MUL 1T
Unlt R o o) w
R (o) \ W
R (o) 0\ W . .
" 0 o \| Chaining (4 lanes)
1
. o |\ o\ | -
. o [ \o\| ~
R :‘ (o] W
ADD R \ O\ (o] W
. R \O \ (o] W
Unit — % \ - -
R \0 (o] W
R \0 (o] W
R * (o] w
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Example — Timing for Sequence of Vector Instructions with Chaining and Interleaving

vimul.vv v3, vl, v2

* Interleaving can overlap vadd.vv v5, v3, v4

independent vector instructions vmul.vv v8, v6, v7

vadd.vv v10, v8, v9

as soon as FUs become available 1 2 3 4 5 6 7
MUL | — [~ [ [~
Unit [_= 0 0 - - ——
* Example: N e e IO T
vmul . vv v3, vl, v2 : - ; : : Z -
vadd.vv v5, v3, v4 - - - : o : 5
vmul . vv v8, v6, v : : Z : : : x
vadd.vv v1l0, v8, v9 ) - - [ 0 w
ADD Do oo —F+—+ot
Unit =t b e T o T

olo|lolof=s|l=s]|=|=

o |=|=|=
3 I I

16
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The RISC-V Vector Instruction Set



RISC-V Vector Programming Model

RISC-V “V” Vector Extension
e Standard extension to the RISC-V ISA
e Version 1.0: https://github.com/riscv/riscv-v-spec

Memory-register vector instructions (operations on registers)

Vector and vector element sizes are configurable
(Vectors can be longer than one vector register)

CSR: Specialized registers to save configuration and status of processor

22.04.2024 Computer Systems 18


https://github.com/riscv/riscv-v-spec

RISC-V Vector Programming Model

* Vector Registers and vector length
e 32 vector data registers ( vO~v31) : each VLEN bits long

* Vector length register v/
* defines on how many elements will the next vector operations be executed
* \ector type register vtype (see next slide)

/ Scalar Registers Vector Registers \

x31 v31

x0 vO

(0] [1] [2] [VLEN-1]

K Vector Length Register Vi /
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Vector CSRs

* Vector type register: vtype
e Used to define vector length via parameters SEW and LMUL
* Used to define tail and mask policy via vta and vma
* See next slide for details

* Vector Byte Length: vlenb
* Read-only; Holds the value VLEN/8 ( a design-time constant )
* Used to define the vector register length VLEN (fixed)

* Vector Length Register: vi
* Read-only; Can be updated by the vset{i}vl{i} instructions (see slide 25)
* Used to define on how many elements will the next vector operations be executed
e vlis limited by VLMAX=LMUL * VLEN / SEW

* Vector Start Index: vstart
* Used to define the index of first element to be executed by a vector instruction
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CSR: Vector type register vtype

CSR: Vector type register vtype layout:

31 30 8 7 6 5 3 2 0
vill reserved (write 0) vma | vta vsew[2:0] vimul[2:0]
» vsew/[2:0] field encodes selected element width(SEW) /
* the elementary size (in bits) of an element in the input and output vsew[2:0] SEW
vectors
o SEW = § *vsew 0 0 0 8
* vimul[2:0] encodes vector register length multiplier 0 0 1 16
e LMUL=2v"™ul=1/8 .8 0 1 1 32
* defines the size of the vector group for vector operation input and 1 0 0 64
output operands, that is the number of vector register(s) forming the 1 0 1 128
group
- : : : . . 1 0 1 256
* vta specifies tail-agnostic/tail-undisturbed policy
- ) ) . 1 1 0 512
* vma specifies mask-agnostic/mask-undisturbed policy
1 1 1 1024
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RISC-V Vector Programming Model - Vector Layouts

 Example vector register data layouts

ement index \@ment index \

SEW= 32b|ts i

SEW=64bits
<«—— VLEN=128bits ——» <«—— VLEN=128bits ——»

&
<

vl=7 vl=3

k < VLMAX=8 jk < VLMAX=4

v

&
<

v

N

 vlis limited by VLMAX=LMUL * VLEN / SEW

* Tail : the elements past the vector length v/; not affected by the current operation

* Two tail policies: undisturbed & agnostic
* undisturbed : the tail elements are left unmodified
* agnostic : the tail elements are left undisturbed or fill in with all 1s
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RISC-V Vector Programming Model - Vector Layouts in Vector Registers

 Example vector register data layouts

ement index

SEW= 32b|t$
<4—— VLEN=128bits ———»

< vl=7

\@ment index

K < VLMAX=8

v

2N

7

e o [ 21 0]
P

vO 0

—>
SEW=32bits
<+——— VLEN=128bits ———»

/

22.04.2024

P
<«

P
<«

SEW=64bits
<4—— VLEN=128bits ———»

»
|

&
<«

vi=

3

VLMAX=4

v

v

Computer Systems

<

-

o

vl

[0]

P
<«

»

SEW=64bits

<+—— VLEN=128bits ———»

[1]

/
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Vector Masking

* The mask value used to control execution of a masked vector instruction is always
supplied by vector register vO
* Where available, masking is encoded in a single-bit vm field in the instruction word

e vadd.vv vd, vs2, vsl #unmasked vector operation, vm=1 in instruction
vadd.vv vd, vs2, vs1,v0.t #enabled masking, mask supplied in vO, vm=0 in instruction

mask

o Do |

vector result, only where v0.mask([i] = n-th mask bit v0.mask[n] is the
n-th bit of the vector register vO

vO

1 unmasked

24
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RISC-V Vector Programming Model

* Masking
* This bitmask defines which of the result element should be actually modified by the operation

* Two mask policies : undisturbed & agnostic
* undisturbed : mask-off elements keep the value they had before the operation
* agnostic : mask-off elements can either be undisturbed or written with all 1s.

Simple Implementation Density-Time Implementation
Execute all N operations, turn off result writeback according to mask Scan mask vector and only execute elements with non-zero masks

v0.mask[7]=1 Vv1[7] v2([7]

v0.mask[6]=0 v1[6] v2[6] Vo_mask[7]:1
v0.mask[5]=1  v1[5] v2[5] v0.mask[6]=0 vit7l v[7]
vO.mask[4]=1 v1[4]  v2[4] v0.mask[5]=1
v0.mask[3]=0 Vv1[3] v2[3] v0.mask[4]=1
v0.mask[3]=0

v0.mask[2]=0
v0.mask[2]=0 vO.mask[1]=1
mask[n] =1
) v0.mask[1]=1 v0.mask[0]=0
activates
Write
Enable V3]
v0.mask[0]=0 _l v3[0] Write data port
Write Enable Write data port
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RISC-V Vector Programming Model

 Setting the vector configuration via vsetvli

* The vsetvli configuration instructions set the vtype register, and also set the vl register,
returning the vl value in a scalar register

vsetvli | rd, rs1,|e32, m2,ta, ma

Resulting machine
vector length setting ~ Requested application vector length (AVL)

If register xO(zero) is provided then AVL is
requested to 8 (We do not need to load 8 into
register)

* Resulting machine vector length in rd: vl = min (LMUL*VLEN / SEW, rs1)
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RISC-V Vector Programming Model

» Setting vector configuration, vsetvli

* The vsetvli configuration instructions set the vtype register, and also set the vl register,

returning the vl value in a scalar register

e8
vsetvli rd, rs1,|e32, m2,ta, ma e16
e32
/ e64
vtype parameters (SEW, LMUL, VTA, VMA) mf8
encoded as immediate in instruction mf4
mf2
m1l
m2
m4
m3
tu
ta

mu
Mma

22.04.2024 Computer Systems

#SEW = 8bits

#SEW = 16bits

H#SEW = 32bits

#SEW = 64bits

#LMUL =1/8

#LMUL =1/4

#LMUL =1/2

#LMUL = 1, default

# LMUL =2

#HLMUL=4

HLMUL=8

#tail undisturbed, default
#tail agnostic

#mask undisturbed, default
#mask agnostic
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RISC-V Vector Programming Model

e Vector Load and Store
e |f set VLEN=128 & vsetvli t0, zero,e32, m2, ta, ma

* vl2re32.v vO0, (a0)

# Load vO-v1 with 2*VLEN/32 words(32bits) held at address in a0

&
<«

" o ’
memory 0 1 2 3 7
T 32bits
a0
memory
22.04.2024 Computer Systems

\_

o [ 2 [l N\

SEW=32bits
<4—— VLEN=128bits ———»

vie32.v vO, (a0)
# 32-bit unit-stride load

vO

32bits

o
[EEY

2 3 4 5 6 7

L __,
o

32bits

28




RISC-V Vector Programming Model

* Vector Load and Store: 4 oy 2l 3l 2
e |f set VLEN=128 & vsetvli t0, zero,e32, m2, ta, ma vl ﬂ
LMUL=2
e vs2rvvO0, (a0) # Store vO-v1 to address in a0 .
Vv
0
< vI=8 >
SEW=32bits
0 . - " k <«——— VLEN=128bits ———» /
\ \ \ / / l vse32.v v0, (a0)
# 32-bit unit-stride store
memory | O 1 2 3 4 5 6 7 e
f “Sbits”
a0

memory | O 1 2 3 4 5 6 7

T 32bits
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RISC-V Vector Programming Model

vstart :
* specifies the first active vector element

e ystartis also saved in a CSR

vstart=0 vstart=1 R
vsl vsl
vs2 vs2
mask 0 1 0 X mask X 1 0 X
vd masked off V-‘;ilzl[]ﬁp masked off tail vd n::(: d VSvls[21[]1¢]JP masked off tail

Masked-off and tail elements
follow mask and tail policies :
which are parameters defined in
the vtype CSR register

Masked-off and tail elements
follow mask and tail policies :
which are parameters defined in
the vtype CSR register

30
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RISC-V Vector Programming Model

Vector-Vector Operation:
e Addition: vadd.vv

* Multiplication: vmul.vv

Operation is conducted
element-wise between the
two vectors.

Without/with masking.

22.04.2024

-~

\

vs2 | [ | | |

VS

|
[ |

1 | //I I/I I/I I/I I/I /
ARV VARV ARy
S S

Lo i
vd | | | | | [ l |
[0] [1] (2] [vI-1]
k vadd.vv vd, vs2, vs1 /
ﬂaskl [ [ | \
vs2 | [ [ [ |
[ [ [ [
vsl | [ 1 [ 1 | / [
YA, \J \J
+ + + +
' y y !
vd | [ [ [ |
[0] [1] [2] [vI-1]

K vadd.vv vd, vs2, vsl, v0.t

Computer Systems
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RISC-V Vector Programming Model

Vector-Scalar Operation:
AaSk [ [ [ | [ | I\
Operation is conducted between vs2 | | | | | | |
each unmasked element of the . \Iu/l/
vector and a scalar register value. | L T
\Y [ [ [ [ [ [ |
ol [ 12 [vi-1]
\ vadd.vx vd, vs2, rs1, vO.t
Vector Immediate Operation:
mask | [ [ [ [ [ |\
Operation is conducted between vs2 | | | | | . |
e —
each unmasked element of the -
vector and a constant value. R e
\ [ _ [ [ [ [ [ |
ol [ 2 [vi-1]
K vadd.vi vd, vs2, imm, v0.t /
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Vector Code Example

# C code
for(i=0;i<8;i++)
C[i] = A[i] + B[i];

# Scalar Code
li a0, 8
loop:
lw a4, 0(al)
lw a5, 0(a2)
add a4, a4, a5
sw a4, 0(a3)
addi a3, a3, 4
addi a2, a2, 4
addi al, al, 4
addi a0, a0, -1
bnez a0, loop

# Vector Code

vsetvli t0, zero,e32, m2,
ta, ma #t0=8
vi2re32.v v8, (al)
vi2re32.v v10, (a2)
vadd.vv  v§, v10,v8
VS2r.v v8, (a3)

#(al) A
#(a2) B
#(a3) C

22.04.2024
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Vector Code Example

# C code
for(i=0;i<8;i++)
C[i] = A[i] * B[i;

# Scalar Code
li a0, 8

loop:
lw a4, 0(al)
lw a5, 0(a2)
mul a4, a5, a4
sw a4, 0(a3)
addi a3, a3, 4
addi a2, a2, 4
addi al, al, 4
addi a0, a0, -1
bnez a0, loop

# Vector Code

vsetvli t0, zero,e32, m2,
ta, ma #t0=8
vi2re32.v v8, (al)
vi2re32.v v10, (a2)
vmul.vww  v8,v10,v8
VS2r.v v8, (a3)

#(al) A
#(a2) B
#(a3) C

22.04.2024

Computer Systems

34



Vector Code Example

# C code # Scalar Code # Vector Code
for(i=0; i<8; i++) li a0, 8 vsetvli t0, zero, e32, m2,
yli]=a*x[i]+yl[i]; loop: ta, ma #t0=8
lw a4, 0(a2) vi2re32.v v8, (a2)
lw a5, 0(a3) vi2re32.v v10, (a3)
mul a4, a4, al vmacc.vx v10, al, v8
add a4, a4 ,a5b VS2r.V v10, (a3)
sw a4, 0(a3)
addi a0, a0, -1 #(a2) x
addi a3, a3, 4 #(a3) vy
addi a2, a2, 4 #al a
bnez a0, loop
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Vector Code Example

# C code # Scalar Code # Vector Code
#set mask li a0, 8 vsetvli t0, zero, e32, m2,
for(i=0;i<8;i++) loop: ta, ma #t0=8
mask[i] =i % 2; lw a4, 0(a2) vi2re32.v v8, (a2)
for(i=0; i<8; i++){ lw a5, 0(a3) vi2re32.v v10, (a3)
if(mask[i]) lw t1, O(a4) vi2re32.v v12, (a4)
yli]=a*x[i]+yl[i]; beqz t1, skip #if mask[i]=0 |vmsne.vx vO, v12, zero
} mul a4, a4, al # Set the v0, enabling the
add a4, a4 ,a5 mask if maskl[i] is not zero
sw a4, 0(a3) vmacc.vx v10, al, v8, vO.t
skip: VS2r.v v10, (a3)
addi a0, a0, -1
addi a3, a3, 4 #(a2) x
addi a2, a2, 4 #(a3) vy
bnez a0, loop # (a4) mask
22.04.2024 Computer Systems # al a 36




Vectorization




Automatic Code Vectorization

for (i=0; i<N; i++)

Scalar Sequential Code C[I] — A[I] + B[I] :

Iter.1

Iter.?

22.04.2024

— — = TN\

Vectorized Code

Time

Tter.1 Iter.?

Vector Instruction

Vectorization is a massive compile-time reordering of operation sequencing
) requires extensive loop-dependence analysis
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Packed SIMD



Packed SIMD Extensions

64b

32b

32b

16b

16b

16b

16b

8b

8b

8b

8b

8b

8b

8b

8b

Very short vectors added to existing ISAs for microprocessors

Use existing (32) 64-bit registers split into 2x32b or ( 2x16b) 4x16b or (4x8b) 8x8b

Single instruction operates on all elements within register

Examples:

*  RISC-V P Extension (not ratified)

*  CoreV Extension (Custom Vendor extension of Open HW Group, not official)

x11 16b 16b 16b 16b
N\ N\ N\ \
x12|  \__ 16b N\ 16b N\ 16b \. 16b
4x16b adds 25/ é§/ é/ é§/
y y \4 y
x13 16b 16b 16b 16b
22.04.2024 Computer Systems
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Packed SIMD vs. Vector

* Pros of Packed SIMD

* No extra HW Co-processor
e SIMD unit can share resources in pipeline (ALU and SIMD ALU)

* Cons of Packed SIMD

* No configurable vector length
* Usually no wider load/store unit
* Limited by scalar register sizes
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A look at a real vector unit: ARA

Optional, not relevant for exam




ARA Vector Unit

12

Vector Unit for the Ariane (now CVAG)

1* = t ==l Open source: https://github.com/pulp-platform/ara

L [LESH Buller |
7 [ Multiplier_|

I.{ FrI - f

Arn Iread end

ARIAMNE | Dhecouter |
AN T -'.:'|'.l\.|llu|'r|'|._|.

'.II.
EBoalar resuk

'

SOOREROARD

Data Width Converter

ARA '
) Sequencer ;
EVadV E".:':L'_Il‘ill resull

|.:'|'||:r-uII|;'! I Li_ Li_J_i__-IJ_
VLSU  Opkueu|—|

|.—'c.d|:1|ﬂ|:|:|-—

||| Losd Unit 3]
- 7
Store Unit

. N

7 SLDU  Opuesc =] Source: Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector
Processor With Multiprecision Floating-Point Support in 22-nm FD-SOI
https://ieeexplore.ieee.org/abstract/document/8918510

Memory Interconnect

H-3-44|l

]

Lane 0
Lane |
Lane M-1

-2t
-

1 1]
T EL T T
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Conclusion

e \Vector Units: Data Level Parallelism
* RISC-V Vector Instruction Set

* Next Session:
* GPUs
e Accelerators
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Thank you for your attention!




B Informatics

Computer Systems
Heterogene Systeme — GPGPUs, TPUs, NPUs

Daniel Mueller-Gritschneder

27.05.2024



* Motivation: Era of Deep Learning
* GP GPUs
* TPUs / NPUs

Optional, not relevant for exam
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Motivation: Era of Deep Learning

Optional, not relevant for exam

Use of Data-level Parallelism (DLP)



ML Plattforms are Heterogeneous

e Large computing continuum with possibly connectivity:

€ O L

Datacenter: Desktop/Workstation Edge/Mobile: Extreme Edge / TinyML:
Multi-Servers /Fog: Mobile Phone MCU
th Multi-GPU PC with GPU Raspberry PI Specialized low-power SoC
with Mufti-GFUs Embedded GPU
Specialized SoCs
Hundreds of CPUs 2-128 CPUs 1-4 CPUs 1CPU

Hundreds of kB to a few MB of

Hundreds of GBs of DRAM Tens of GBs of DRAM 1-4 GBs of DRAM

Several GPUs with 1-2 GPUs with Tens of GB of DRAM 1 GPUs with a few GB of DRAM embedded SRAM

Tens of GB of DRAM A few TB of Storage Specialized Accelerators Low-power Acceleration / Co-proccesors
Several TB of Storage Tens to Hundreds of GB of Storage A few MB of Storage, e.g. embedded Flash

mmm_ Embedded Machine Learning / Edge Al



Deep Learning Models are Heterogeneous

In type: Deep Neural Networks, Convolutional Neural Networks, Transformers, Graph
Neural Networks, Recursive Neural Networks

In computing demand: often measured in MAC operations

In size: often measured in number of parameters

Examples:

* Large Language Models (LLMs) -produces human-like text
e GPT-4: 170 trillion (10e12) parameters
e GPT-3: 175 billion (10e9) parameters

 ResNet18 — 11 million (10e6) parameters — Image classification e.g. for
autonomous driving

 Keyword Spotting (KWS): 16k-300k (10e3) parameters — Detects keyword in an
audio stream, e.g. for Audio wakeup (TinyML)



Example: Convolutional Neural Network

 Consists of layers (structure reprented by T

data flow graph)

MaxPool

2
A' = Conv2D(X.W'.b'.c!.c}.8!.8'.P',ReLu) .
A? = maxpool(A'%n?, 72)

A® = Conv2D(A%2,W3 b’ 62 67,862,862, P°. ReLu)

A* = maxpool(A® x}, nd)

a’ = ﬂatt&n[h”']

a® = DEHSE[EE,WE,hE,SDfHHHK}



Image to Column (Img2Col) Transformation

 For many targets there exist a very optimized implementation of matrix-matrix-
multiply computation e.g. accelerators, for CPUs with some SIMD support, GPUs, but
also single-issue CPUs

* |Img2Col transforms a convolution operation into a matrix-matrix-multiply operation

* |Img2Col requires to build up a batch matrix, which is larger than the original
activation tensor, because it holds duplicates of some values

» Usually Img2Col is not done on the full input activation tensor but inside the
convolution loop on some part of the tensor in order to avoid building up the full
batch matrix



Example for Img2Col (1/5)

 For reference: This is the Standard Convolution

30,0,1 I Ap1.1 | 302 1 |ao,31
000 | 2,10 | Q020 f| 030
Q100 | 2110 | 2120 f| 130
200 | Q210 | Q220 | A230 )
A300 | 2310 | 2320 | @330 1

Input channel 0

Filter bank for output
feature map 1

Wp01.1 Wo 111

Wo,00,1 Wo.1,0.1

A1

W11401

W1001

Filter bank for output
feature map 0

Woo0.1.0 Wo.1.1.0
Wo 000 Wo100 1o
W1000 Wi100

Woo0.18000FWo1013010%F
Wi00.18100FWq1013110 F
Woo.1.18001FWg1113011F

Woo00.18010FWg10180207F
Wigg0,18110FWqq018120F
Woo1.18011FWg 1118021 F

Wip4118101FWi1418114

Wip118111FWiq418124

Wo000 8000t Wo1008010 71
Wi00028100FWi1008110 F
Wo,0,1.08001FWo1103011 F
Wig108101TWi14108111

Wo,000 80101 Wo 1008020t
W1p000a110FWi1008120 F
Woo,108011FWg 1108021 F

Wip108111TWiq108121

p 1

Output feature map 0




Example for Img2Col (2/5)

e Step 1 for Img2Col: Create col-based batch matrix

* Each line holds the activation values under one kernel position for all channels

batch 1 batch 2
a a
3001 | 311 | 221 | 201 Input channel 1 0,0,0 0,1,0
] do.1,0 d0.2,0

30,00 f Q10 | 20 | 030 |
L img2col

d1 0,0 d110
9100 f 9,0 | 120 | 130 |,
— d110 d120

300 [ 9210 [ 220 | 230 |,

i do,0,1 do,1,1

9300 | ¥310 [ 920 | ¥30 | Input channel 0 a a
0,1,1 0,2,1
d1,0,1 d1,1,1

NI diaa




Example for Img2Col (3/5)

e Step 2: Create a row-based filter matrix. (Can be done already offline, is already existing
with just storing weight tensor in ROM memory)

Filter bank for output
feature map 1 (FM1)

Filter bank for output

feature map 0 (FMO)

Woo0.1.1 Wp111
W W
0001 0101 h111 .
Img2col_weights
Wioo1 | Wi104 - Woo000 Wo100 Wi000 Wi1100 Woo10 Wo110 Wio10 Wii110
Woo0,01 Wo101 Wi001 Wi1101 Woo011 Wo111  Wio011 W11

Woo1.0 Wo11.0
Woo000 Wo.100 L
W1000 W1100
25.04.2024 Computer Systems 10



Example for Img2Col (4/5)

* Step 3: Run a matrix-matrix multiplication with target-specific

optimized GEMM kernel

A

batch 1 batch 2
d0,0,0 do,1,0
do,1,0 d0,2,0
d1,0,0 d1,1,0
d1,1,0 d1,2,0
dp,0,1 do,1,1
do,1,1 do,2,1
d1,0,1 d1,1,1
K ERR] 9121

VA

Wi11193111FWi2113121
TWy11,13211FTWoo11
o1t
Wi1213112%Wi221312)
TWy1213212TWoo01
Ao T
Wi1313113%Wi2313123
TWy1313231TWoo31
9531

Wi1123110FW12123121
tTW1123211FWap 1o
a1t
Wi11223112%W1212312)
T W51223212FWap2o
22t
Wi1323113%Wi15323153
T W51323231FWap30

-
Z,3,1




Example for Img2Col (5/5)

* Step 4: Reshape the output to recover the output feature maps using the inverse col2img

transformation.

Wi11131110%Wi2113101F
Wy11,13211 Y Wap113521 F
Wi1213112%Wi5513100F
W1213212FWa5213525 F
Wi1313113%Wy5313153F
W513132311Wi2313231

Wi1123110 % Wi2123121 F
Wy1,1,23211 ¥ Wa212321 F
Wi1223112%Wi212312,F
W1223212FWa222352, F
Wi1323113%Wi5373123F
W513232311Wa2323231

col2img

Wp,0,01 80.00% Wo,101 30,10 T
W10018100TWi1013110 F
Woo01.12001%FWp1113011 F
Wi01,18101FTWi1118111

Wop.0,01 80,10t Wo10180207F
Wi0018110tWi1013120 T
Wpo119011+tWp1118021F
Wio0118111FWiq118121

W0,0,00 @0,00% Wo,1003010 T
Wigo0@100t*Wi100a110 F
Wp.0,1.0 8001+t Wo 1108011 T
W10,1,0 81,011 W1.1,108111

W0.0,00 80,10t Wo,1003020 T
Wi0008110TWi100@120 F
Wp.0,1,0 8011 T Wo 1108021 T
W10,1,08111TWi1103121

Output feature map 0



GEMM Algorithm

* Basic linear algebra algorithm for matrix-matrix-multiply

* Optimized versions exist for many hardware platforms e.g.
* Considering block-wise computation depending on cache sizes

e Exploiting data-level parallelism (DLP)

*GEMM is seen as ,,at the heart of deep learning” especially when acceleration is
considered.

Further reading:
https://petewarden.com/2015/04/20/why-gemme-is-at-the-heart-of-deep-learning/



https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

General-Purpose Graphics Processor Units (GPGPUs)




Source

© SYNTHESIS

COLLECTION OF TECHNOLOGY

Inspired by:

* Book: Aamodt, Fung & Rogers — Generap-Purpose

v - Graphics Processor Architectures

-l ] * Book: Hennesy &Patterson: Computer
cnr | General-Purpose
Graphlcs PTOCES»,» .Of Graphics Processor Architecture — A Qualitative Approach

Architectures Architecture |
* CA Course: Sophia Shao, UC Berkeley

Tor M. Aamodt
Wilson Wai Lun Fung
Timothy G. Rogers

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

Margaret Martonosi, Series Editor
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 GPUs were initially introduced for rendering in real time especially for video games.

* Nowadays GPUs can be found in many devices (Data Centers, PCs, Laptop, Phones,
Embedded GPUs...)

* General Purpose (GP-GPU): Programming Language CUDA from NVIDIA allowed to use
GPUs for other compute besides rendering (now especially used for ML)

25.04.2024 Computer Systems 16



GPU (Discrete vs. Integrated)

* GPUs are combined with a CPU either on a single chip or by inserting an additional card
(e.g. via PCle).

 The CPU is responsible for initiating computation on the GPU and transferring data to and
from the GPU. The CPU is often called “the host”.

CPU
Host CPU  (¢ummm) t t
‘ t Cache Integrated GPU:
System Shared memory
Memory t
Discrete GPU: Own memory System
Memory

25.04.2024 Computer Systems 17



Basic Programming Model

 CPU (Example Code):

void saxpy_serial(int n, float a, float *x, float *y) {
for (inti=0;i<n; ++i)
ylil = a*x[i] + y[il;

saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY kernel

25.04.2024 Computer Systems 18



Basic Programming Model

« GPU (CUDA):

__global__ void saxpy(int n, float a, float *x, float *y)

{ Compute
int i = blockldx.x*blockDim.x + threadldx.x; Kernel
if(i<n)

ylil = a*x[i] + y[i];

}

Setup and call kernel

float *d_x, *d_y; from CPU program
int nblocks = (n + 255) / 256;

cudaMalloc( &d_x, n * sizeof(float) );

cudaMalloc( &d_y, n * sizeof(float) );

cudaMemcpy( d_x, h_x, n * sizeof(float), cudaMemcpyHostToDevice );
cudaMemcpy( d_y, h_y, n * sizeof(float), cudaMemcpyHostToDevice );
saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);

cudaMemcpy( h_x, d_x, n * sizeof(float), cudaMemcpyDeviceToHost );

25.04.2024 Computer Systems 19



Threads, Warps, Thread block

* The threads that make up a compute kernel are organized into a hierarchy composed of a
grid of thread blocks consisting of warps.

* In the CUDA programming model, individual threads execute instructions whose
operands are scalar values (e.g., 32-bit floating-point).

* To improve efficiency typical GPU hardware executes groups of threads together in lock-
step (SIMD). These groups are called warps, which consist of 32 threads

* Warps are grouped into a larger unit called thread block by NVIDIA.

25.04.2024 Computer Systems 20



Example:

saxpy<<<nblocks, 256>>>(n, 2.0, d _x, d_vy);
* Launch a single grid, consisting of nblocks thread blocks
* Each thread block contains 256 threads (8 warps).

Thread Block 1

Thread 0 y[0] = a*x[0] + y[O];
Thread 31 y[31] = a*x[31] * y[31];
Thread 32 y[32] =a*x [32] * y[32];
nblock
GRID Thread — Thread 63 y[63] = a*x [63] * y[63];
blocks

Thread 224 y[244] = a*x [244] * y[244];

Thread 255 y[255] = a*x [255] * y[255];

25.04.2024 Computer Systems 21



Example:

saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);

* Threads with thread_idx.x > n are deactivated

Thread (n-2)*32 | y[n-2] = a*x[n-2] + y[n-2]; Deactivated
Thread (n-1)*32 y[n-1] = a*x[n-1] + y[n-1]; (>n)

—_

—
—

nblock B
GRID Thread

blocks Thread Block L

Wrap K+1

25.04.2024 Computer Systems 22



Single Instruction, Multiple Thread (SIMT)

* GPUs uses the Single Instruction, Multiple Thread (SIMT) model

 Scalar instruction streams for each CUDA thread are grouped together for SIMD execution
on hardware

* Loads and stores are scatter-gather, as threads perform scalar loads and stores

SIMD
execution
across
warp

Scalar instruction stream [l i B B [ 550 ArA B1 1 d Ae  1g 0  B K  A)

25.04.2024 Computer Systems 23



Divergence and Reconvergence of Threads

* Warps execute in lock-step SIMD fashion
* Threads may diverge/reconverge due to control flow

» Simplified illustration (arrows are threads in a thread block):

Mask = Mask = Mask = Mask =

doX(); 11111111 11110000 00001111 11111111
if (threadldx.x < 4) {

doA();
} else { @

doB(); o
}
doY(); S

25.04.2024 Computer Systems 24



Hardware Execution Model

* GPU is built from multiple parallel cores, each core contains a multithreaded SIMD processor with
multiple lanes but with no scalar processor

* CPU sends whole “grid” over to GPU, which distributes thread blocks among cores
(each thread block executes on one core)

Host CPU

$

System

Memory ‘
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Multithreading on SIMD Processor

» SIMD cores execute instructions of independent warps in multithreaded fashion

* E.g. can hide memory latencies

SIMD
execution
across
warp

Scalar instruction stream

SIMD Thread (Warp) Scheduler
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Multithreaded SIMD Processor

nstruction Source H&P: Computer
Warp scheduler .
cache P Architecture — A
Qualitative Approach

Y
Instruction register

| |
R T R S Sl DA R DR R TR TR T S S A

0

Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters
1K x32 |1Kx32 |1Kx32 | 1Kx32 | 1TKx 32 |1Kx32 [1Kx32 [1Kx32 [1Kx32 [1Kx32 |1Kx32 |1Kx32 | 1Kx 32 |1Kx 32 | 1Kx32 | 1Kx 32

Load | Load | Load | Load | Load Load | Load | Load | Load | Load | Load | Load | Load | Load | Load Load
store | store | store | store | store | store | store | store | store | store | store | store | store | store | store | store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit

HENENEEEEEEEEENENENE NN NN NN NN

' A

| Address coalescing unit ‘ | Interconnection network |
\ 3
! ;v
Local To global
ocas4m£énory memory

Figure 4.14 Simplified block diagram of a multithreaded SIMD Processor. [t has 16 SIMD Lanes. The SIMD Thread Scheduler
has, say, 64 independent threads of SIMD instructions that it schedules with a table of 64 program counters (PCs). Note that each

lane has 1024 32-bit registers.
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Look at a Real GPU: A100

Optional, not relevant for exam




A100 GPU -128 Streaming Multiprocessor

PCl Express 4.0 Host mterfoce

NVIDEA calls
SIMD processors
Streaming Multiprocessors

(SMs)

!

OHU0D oW JeoiNe;
KaH

i

!

5
z
]
2
8
2
3
H
=
;
<
o
3
3
-

ZNE

B

PETSTTES Y PRI

Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
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* “A100 has four Tensor Cores per
SM, which together deliver 1024
dense FP16/FP32 FMA operations
per clock”

e “432 Third-generation Tensor Cores
per GPU” (108 SMs)

Table 1. NVIDIA A100 Tensor Core GPU Performance Specs
Peak FPG4! 9.7 TFLOPS
Peak FP64 Tensor Core? 19.5TFLOPS
Peak FP321 19.5 TFLOPS
Peak FP16! 78 TFLOPS
Peak BF16? 39 TFLOPS
Peak TF32 Tensor Core! 156 TFLOPS | 312 TFLOPS?
Peak FP16 Tensor Core! 312 TFLOPS | 624 TFLOPS?
Peak BF16 Tensor Core! 312 TFLOPS | 624 TFLOPS?
Peak INT8 Tensor Core! 624 TOPS | 1,248 TOPS?
Peak INT4 Tensor Core! 1,248 TOPS | 2,496 TOPS?

1 - Peak rates are based on GPU Boost Clock.
2 - Effective TFLOPS / TOPS using the new Sparsity feature

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

Lo Lo
5T ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT3Z INT3Z

INT32 INT32

INT32 INT32

Lo Lo
ST ST

Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32  FPo4
FP32 FP32  FPo4
FP32 FP32  FPoa

FP32 FP32 FP&4

TENSOR CORE

FP32 FP32 FPG4
FP32 FP32 FPG4
FP32 FPa2 FP&4

FP32 FP32 FPG&4

Loy LoV Lo Lo Lo Lov
5T 3T 3T 5T 5T ST

Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FPG4
FP32 FP32 FPG4
FP32 FP32 FP&4

FP32 FP32 FP&4

TENSOR CORE

FP32 FP32 FP&4

FP32 FPa2 FP&4

FP32 FP32 FP&4

FP32 FP32 FPE4

LoV LIV LW Lo Lo Loy
ST ST ST ST ST ST

SFU

INT3Z INT32

INT32 INT32

INTA2 INT22

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

Loy Lof
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

Loy Lo
3T ST

‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32  FPG4
FP32 FPa2  FPed
FP32 FP32  FPa4

FP32 FP32 FP&4

TENSOR CORE

FP32 FP32 FPG4
FP32 FP32  FPe4
FP32 FP32  FPe4

FP32 FP32 FPE4

Lov L Loy Loy Lo Lor
5T 5T ST 5T aT ST

Warp Scheduler (32 thread/clk)
Dispatch Unit {32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP&4
FP32 FPaz FP&4
FP32 FP32 FPe4

FP32 FP32 FP&4

SFU

TENSOR CORE

FP32 FP32

FP32 FPaz

FP32 FP32 FP&4

FP32 FP32 FP&4

Lo Lo Loy
ST ST ST

Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
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Accelerators - Systolic Array




Systolic Array

Concept:

* Functional Units (FUs) are chained to implement a fixed type of computation

Flow inside systolic array needs to be carefully orchestrated

Intermediate results are directly moved to next FU

2D systolic arrays often used for deep learning for Matrix-matrix multiply (GEMM),
called Tensor Cores, GEMM Core, Matrix Multiply Unit

Systolic arrays can be designed for many other computations
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void convliD 12 3(int* x, int* w, int* y) {

Example: 1D Convolution for (i=0; i<10;1+4) {

y[i]=0;

for (j=0;j<3;j++) {
ylil += x[i+j] * w[jl;

}
e Simple 1D convolution (A1x12)*(1x3): i
Ao 9, a; a3 Ay s dg dy dg g 930 | 9
—> i
M'ovmg W, W, w,
window
agW, | a,Wp | a,w, | a;w, | a,w, | agw, | agw, | a,w, | agw, agW,
+ + + + + + + + + +
aw; | a,w; | agw,; | a4W,; | a;W,; | agW; | a,W; | agWw, AW, a;0W,
+ + + + + + + + + +
AW, | az3w, | a W, [ asW, | agW, | a,W, | agW, | agW, | ad;)W, a;,W,
Yo Yo
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Example: 1D Convolution

convlD 12 3:
LW t1,0(al) # wO
 Code LW t2,4(al) #wl
LW t3,8(al) # w2
void convlD_12_3(int* x, int* w, int* y) { LI t4,0
for (i=0; i<10;i++) { convlD_12 3 loop:
y[i]=0; LW a4,0(a0) # x[i+0]

LW a4,4(a0) # x[i+1]

for (j=0;j<3;j++) {
MUL al,a4,t1 # x[i+0] * w[O]

y[i] += x[i+j] * w[jl;

} MUL a4,a4,t2 # x[i+1] * w[1]
} LW a5,8(a0) # x[i+2]
} ADD al,al,a4

MUL a5,a5,t3 # x[i+2] * w[2]

ADD al,al,a5

SW al,0(a2) # Store y]Ji]

ADDI a0,a0,4

ADDI al,al,4

ADDI t4,t4,1

BNE t4,10, convlD 12 3 loop
RET
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Example: 1D Convolution - Systolic Array (1D) - Structure

FIFO

e Structure:

FIFO
N

v

FIFO

v

MUL+ ADD FU is called
Multiply-Accumulate (MAC) Unit
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Example: 1D Convolution - Systolic Array (1D) - Structure

FIFO

e Step 1: Load Weights W2

X, FIFO V4

x
[
X
o
v
A 4
v
v
v
<

MUL MUL MUL

FIFO

v

ADD

v
v

25.04.2024 Computer Systems 36



Example: 1D Convolution - Systolic Array (1D) - Structure

FIFO
* Clock cycle 3: - W W
X, Xy Xo
Xs FIFO \/ ‘ ‘
— X4 )(3 > > " " > 1
vy Vv A 4
MUL MUL MUL
FIFO
X, W 19
2 2‘ ) <
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Example: 1D Convolution - Systolic Array (1D) - Structure

| k | FIFO
. [ ]
Clock cycle 4. w, W, W,
X3 Xy X1 Xo
FIFO
Xg N . .
—_— Xs X4 > > g g > _l
v Vv y.Vv A 4
MUL MUL MUL
X1W, X,W, +
‘ X, W, FIFO
\B
X3W2 X2W2 <

38
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Example: 1D Convolution - Systolic Array (1D) - Structure

" | FIFO
. [}
Clock cycle 5: W, W W
X, X3 X3 X Xo
FIFO
X N/ ‘ ‘ R
— Xe | Xs > > g g _l
\ 2 / yY_ .V \ 4
MUL MUL MUL
XWp W, + XoWo
X W
> 3W»
\a
X,W5 X;W, /3
Latency=5 X1W1
X, W3

25.04.2024 Computer Systems
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XiWq +

W2 tieo
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1st result

39



Example: 1D Convolution - Systolic Array (1D) - Structure

lock | FIFO
. L]
Clock cycle 6: w, W, e
Xs X4 X3 Xy X1
FIFO
Xg N/ ‘ ‘ A
' X7 | Xg > > g > —l
v Vv v V \ 4
MUL MUL MUL
XsWp  xaw, + X1Wo
X,W
> aW>
e
. XcW X, W
One result in each cycle > a2 (<
Only one load of data X, W
X3W,

(Initialization interval = 1)

25.04.2024 Computer Systems

XiWq +
X,Wq +

W2 girg

Y1 | Yo

2nd result
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Systolic Arrays Pros-Cons

* Advantages:
* Move intermediate results between FUs to reduce memory access
* Balance between computation and memory bandwidth
* Simple design to exploit data-level parallelism (DLP)

 Different systolic arrays can be combined for multi-stage computations

* Disadvantage
e Specialized: computation needs to fit FU arrangement
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A look at Real ML Accelerators

Optional, not relevant for exam

Google Tensor Processing Unit (TPU)
VTA Neural Processing Unit (NPU)



TPU V1: Tensor Processing Unit (2017)

* Application-specific Integrated Circuit (ASIC) — Chip from Google
» Specialized to accelerate Deep Neural Network (DNN) computations

* PCB board with PCle Interface to Host processor

Source: https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu?hl=en
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TPU Data Rates

14 Gig/ 0 GIBs 20 Giars
. r N
DDR3 Weight FIFO
) [ Liotasae ] C=——>>|_ (Weight Fetcher) |
B ——s "™
o (G R\ (G N
o —— Unified 167 lmrb:’ M't:*ﬂm
s Buffer i n
14 GiBls §g 14 Gigls % (Local Systollc 1S (64K por cycle)
<::> <‘:"> Activation Setup
§ § Storage)
@ =
' [ Activation
§ 167 GiB/s , ¢
7 Normalize / Pool
[[] onchpro !i
[[] Data Butter
S| ) = e—
[ contror
Not to Scale

Source: https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-

processing-unit-tpu?hl=en
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To DDR memory chips

TPU V1 Dataflow and ISA

Instructions:

e Dataflow: PIDIS £ « Read Weights -
Interface :
* Reads weights from the

DDR into the Weight FIFO

* Read from Host Memory: .
* Reads data from the CPU

Control

(Instructions) Weight FIFO

To Host )
CPU (Host) memory into the
PCle Unified Matrix unified TPU buffer
Interface Buffer Multiply e Execute Matrix Matrix
Multiply for Convolution + D
~ ~ Activation + Pooling
Accumulators * Write to Host Memory -
* Writes data from unified
Activations buffer into CPU memory
Pooling
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TPU: Matrix Matrix Multiply

* Core of the TPU is matrix-matrix-multiply
e 2D Systolic Array: -_’ b

* Input 1: Matrix size Sx256 (Unified buffer) ;
* Input 2: Constant matrix 256x256 (Weight FIFO)
e Output: Inputl multiplied Input 2

* Latency: S cycles R
* Initialization interval: 1 i |

Data

Partial sums

©[2[2 [@

—= Done
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Google TPU V4 for Cloud

Key specifications v4 Pod values
Peak compute per chip 275 teraflops (bf16 or int8)
HBM?2 capacity and bandwidth 32 GiB, 1200 GBps
Measured min/mean/max power 90/170/192 W
TPU Pod size 4096 chips
Interconnect topology 3D mesh
Peak compute per Pod 1.1 exaflops (bf16 or int8) Fhips can be arranged in Twisted Torus
All-reduce bandwidth per Pod 1.1 PB/s nterconnect
Bisection bandwidth per Pod 24TB/s [ e —
| (= (== e

Source: https://cloud.google.com/tpu/docs/v4
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Embedded NPU: Versatile Tensor Accelerator (VTA)

| y
r ™)

INSTRUCTION FETCH MODULE

v r
LOAD COMPUTE STORE
CMD Q CMDQ CMD Q
' LD—CMP Q ! CMP—ST Q ’
(OG- [covPuTEMonULE | TTTTTIIH
A L
REGISTER || MICRO-OP
FILE CACHE
LOAD STORE
MODULE MODULE
CMP—LD Q ST—-CMP Q
‘—»IWI— M
[ WEIGHT BUFFER |

* Source: http://arxiv.org/pdf/1807.04188
* Open Source: https://github.com/apache/tvm-vta
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Covered Topics

* General-Purpose Processor Cores

* Pipelining
Speculation and Branch Prediction
Instruction-Level Parallelism: Superscalar, VLIW
Thread-Level Parallelism: Multi-threading, Multi-Core
Data-Level Parallelism: Vector

 Specialized Cores :

 GP-GPUs
e Accelerators: TPU, NPU

25.04.2024 Computer Systems

50



Thank you for your attention!
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