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1 Storage Smonman

1 Storage

1.1 Disk Space Manager
• communicates with the I/O controller
• initiates I/O
• issues allocate, deallocate, read and write commands
• abstracts from the details of the underlaying storage:

– provides the concept of a page (typically 4 kB to 64 kB) as a unit of storage to the remaining system

– maintains mapping page-number 7→ physical-location

– higher layers of the DBMS see no hardware details, only a collection of pages

1.1.1 Implementation

• either uses file system functions of the OS, or
• implements its own disk management (raw disk access)

1.2 Buffer Manager
• moves data between disk and main memory
• manages a designated main memory area (buffer pool)
• loads disk pages into the buffer pool and writes them back to disk if they have been modified
• stores additional information:

– is the page used?

– has the contents of the page been modified?

1.3 Files and Access Methods Layer
1.3.1 Structure

The database primarily manages tables of tuples (records) and indices. All records of a table form a file.

The Files and Access Methods Layer manages:
• the pages of a file
• the records within a page

The access to these records by other software layers is managed via RIDs (records IDs). Sometimes they are
also called TIDs (tuple IDs).

These IDs work like pointers to the record. Usually a RID consists of a page number and an offset into this
page.

1.4 Storage Hierarchy
There are three different types of storage:

• Primary Storage: transient (content is lost, when the DBMS is shut down)

– CPU registers

– caches

– main memory
• Secondary Storage: persistent (content is not lost)

– magnetic disks

– solid-state drives
• Tertiary Storage: removable (used for achives)

– Tape
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1 Storage Smonman

– DVDs

– CDs

Usually, the closer the storage is to the CPU, the faster, but smaller and more expensive it is:

tape library

hard disks

main memory

caches

CPU
Type Capacity latency

CPU bytes < 1 ns
Caches kilo- / megabytes < 10 ns
Main Memory gigabytes 70 ns to 100 ns
Hard Disks terabytes 3ms to 10ms
Tape Library petabytes varies

1.5 Magnetic Disks

Track

Sector

Head

A magnetic disk consists of a constantly rotating disk, and a disk head, which can perform read or write
operations.

Disks can be subdivided into consentric tracks, and sectors on that tracks. Disks are managed in blocks. One
block can cover one or more sectors. Writing only happens one block at a time.

Data can be read or written, iff the disk head is positioned over the corresponding block.

Usually big DBMS run on magnetic disk, because they are persistent. Note, that the disk block is not the
same as a database page, even though they are sometimes both called blocks.

1.5.1 Data Access

There are several components that influnce the access time:

1. seek time: the disk head needs to be positioned on the right track

2. rotational delay : the disk head needs to wait for the correct sector

3. transfer time: finally the disk head can perform read or write operations

Sometimes one track is not enough, and another track also needs to be read or written to. In these cases the
time to move between tracks is also an important factor.
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1 Storage Smonman

1.5.2 Access Time

The access time ta is defined as follows:
ta = ts + tr + ttr

ts . . . seek time
tr . . . rotational delay
ttr . . . transfer time

The time to move the head between two tracks tt2t is called track-to-track time.

Sequential I/O is much faster than random I/O.

1.6 Solid State Drive
Have emerged as an alternative to hard disks. Solid State Drives (SSD) do not have any moving parts.

1.6.1 Technology

• usually interconnected flash memory cards
• no moving mechanical components, hence they are more robust
• more expensive

1.6.2 Performance

• much lower latency for random access
• random writes are typically slower

1.7 File Organization
1.7.1 File

A file can represent a table or an index. It consists of a sequence of records.

1.7.2 Records

A record is a single data item in a table or index. A record consists of a collection of related data values.

Each record has a type which describes what the allowed values for the different components of the record are.
The record type also defines the type for the columns if it is part of a table. Records can have a fixed length or
variable length. A variable length record can have variable length fields (varchar type) or optional fields (null
values).

The standard types include:
• numeric types
• char
• boolean
• date
• time
• varchar
• null

For large data blocks, that are usually larger than a page, a different type is used:
• BLOB (binary large object)
• CLOB (character large object)

These items are stored in a separate pool of disk blocks, the record only contains the pointer to these blocks.
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1.7.3 Record Blocking

Records are stored on a page.

The Blocking Factor bfr discribes the amount of records that fit on a page.

Assume a page of size B and a fixed length record of size R. The blocking factor bfr is equal to: bfr =
⌊
B
R

⌋
.

Thus unused space on each page is B − (bfr ·R) bytes.

1.7.4 Spanned Page Organization

Avoids unused page space, by allowing to store parts of a record on a page. To keep track where the other part
of a record is stored, a pointer to the corresponding page is also stored.

This concept can be used to avoid unused page space or if the record size is larger than the page size: R > B.

1.7.5 Unordered vs. Ordered Records

Unordered Records Ordered records

heap file, pile file sorted file, sequential file

records are placed in the file in arbitrary order (append
at end, or insert in free space)

records are sorted by some ordering field

inserting a new record is very efficient inserting a record is expensive

searching for a record requires linear search searching for a record is very efficient because of binary
search

deleting records is expensive

There are techniques to speed up the insertion or deletion of ordered records:
• insertion: place new records in unordered overflow file
• deletion: use delete marker and periodic file reorganization

1.8 Storage Information in PostgreSQL
• Check the size of tables and indices:

– SELECT pg_relation_size(’title_basics’);

– SELECT pg_indexes_size(’title_basics’);

– SELECT pg_relation_size(’title_basics_idx1’);

• How many blocks are taken up by the table?

– SELECT relpages FROM pg_class WHERE relname = ’title_basics’;

– SHOW block_size;

• Query the average blocking factor:

– SELECT reltuples/relpages FROM pg_class WHERE relname = ’title_basics’;

2 Indexing

2.1 Primary Index
In the primary index the file and the index are ordered based on the ordering key field. While the file contains
the full records the index only contains the key value along with a pointer. The pointer can either be:

• a physical address to a record, a logical address, or
• an anchor.

An anchor is a pointer to the first record of a block. The anchor record is the first record of a block.

7



2 Indexing Smonman

2.1.1 Data Access

Index entries are much smaller than data records, thus more index entries can be saved per page than data
records. Binary search is also faster on the index than the file.

Aaron, Ed

Adams, John

Alexander, Ed

Allen, Troy

Anderson, Zach

Arnold, Mack

Primary Key value
of the Block Anchor

Block
Pointer

Aaron, Ed

Abbot, Diana

Acosta, Marc

Name
(Primary Key) SSN

Birth
Date

Adams, John

Adams, Robin

Akera, Jan

Alexander, Ed

Alfred, Bob

Allen, Sam

Allen, Troy

Anders, Keith

Anderson, Rob

Anderson, Zach

Angel, Joe

Archer, Sue

Arnold, Mach

Arnold, Steven

Atkins, Timothy

Page

Index File

Figure 1: Primary Index Example
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2.2 Clustering Index
In the clustering index the file and the index is also ordered on a specific field, just like in the primary index.
But this time, we asume, that the field is not unique. Thus we order the index on an ordering non-key field.

The block pointer now point to the anchor record of the block, where the given value first shows up.

1

2

3

4

5

6

8

Clustering Field
Value

Block
Pointer

1

1

1

2

Deptartment
(Clustering field) Name Tel

2

3

3

3

3

3

4

4

5

5

5

5

6

6

6

6

6

8

8

8

Page

Index File

Figure 2: Clustering Index Example
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2.3 Secondary Index
In the secondary index the index is ordered on an ordering field, but the file might not be ordered, or ordered by
a different field.

1

2

3

4

5

6

7

8

Index Field Value
Block
Pointer

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

9

5

13

8

Indexing field
(secondary key field)

6

15

3

17

21

11

16

2

24

10

20

1

5

23

18

14

12

7

19

22

Page

Page

Index File

Figure 3: Secondary Index Example
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2.4 Summary

Name Ordering Type Index Ordering File Ordering

Primary Index key field ordered ordered
Secondary Index non-key field ordered not necessarily ordered
Cluster Index ordering field ordered ordered

Table 1: Indices Summary

2.5 Overflow Pages
Overflow pages are appended at the end of existing pages. They can usually only be search with linear search.
An increase in overflow pages often means a decrease in search performance.

If the number of overflow pages is too large, re-indexing is required.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Index

File

Overflow Pages

Figure 4: Overflow Pages

2.6 Multi-Level Index
Let bf be the number of blocks (pages) for a file f . Then, the number of blocks bi for the corresponding index i
will be much smaller: bi ≪ bf .

To binary search for an entry in a index, around log2 bi block accesses are needed.

If the file is huge, the index will also be big. It is possible, that the index alone is to large to be performant.
To combat that, another index for the ordered index might be introduced. This can be done until the last index
fits into a single page. This greatly reduces the accesses needed.

Example Suppose that we have 4 kB pages and that each index entry requires 10B (4B for an integer key
field and 6B for the pointer). Then, we have a blocking factor bfr of ⌊ 4096B

10B ⌋ = 409 index entries per page. That
means, each index entry is responsible for 409 other entries. Thus, the disk I/O is t = ⌈log409 bi⌉.

2.6.1 ISAM (Index Sequential Access Method)

This indexing method was used in the MySQL implementation.

Single Level ISAM contains a primary index on an ordered file. Each index entry consists of (a) a key value,
and (b) a pointer to the data file page.

Searching Single Level ISAM is done by using binary search on the index. ISAM is particularly usefull for
range queries. For large indices, multilevel indexing is used.
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Level 2 (Top)

Level 1 (Base)

2

35

55

2

8

15

24

35

39

44

51

55

2

5

Indexing field
(primary key field)

8

12

15

21

24

29

35

36

39

41

44

46

51

52

55

58

Page

Index

File

Figure 5: Multilevel Index Example

Strengths
• simple
• well suited for range queries

Weaknesses
• problems with maintaining the order
• problem with inserts

– Data records are only inserted on the intended page if enough space is left, otherwise an overflow

12
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page is appended.
• problem with deletes

– Key value on higher level of the index may no longer apppear on the leaf level.
• over time, the search performance of ISAM can degrade, if too many overflow pages exist

In conclusion, ISAM is best suited for static data.

2.6.2 B-Tree and B+-Tree Index

• B+-Tree Index

– leaf nodes are connected to form a doubly linked list

– leaves may contain actual data records, e.g.:

∗ primary index

∗ clustering index

– or pointers to data pages
• B-Tree Index inner nodes contain

– data records, or

– data pointers

. . .

Figure 6: B+-Tree Index

In practice mostly B+-Trees are used. But in PostgreSQL, the B+-Tree strategy is refered to as “btree”!

Characteristics
• a B+-Tree index is always balanced

– this means, that the distance from each leave node to the root node is the same
• never needs overflow pages
• efficient (log-time) in

– search

– insert

– delete
• all nodes, except for the root node, have at least 50% occupancy

Definition The definition of a B+-Tree index of order p is as follows.
• each internal node is of the form:

⟨P1,K1, P2,K2, P3,K3, . . . ,Kq−1, Pq⟩

where q ≤ p, each Pi is a tree pointer and Ki is a key value.
• within each node it holds that:

K1 < K2 < K3 < · · · < Kq−1

• each pointer Pi points to a subtree with key values

– < K1 , for 1 = 1

– ∈ [Ki,Ki+1) , for 1 < i < q

13
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– ≤ Kq−1 , for i = q

• each node has at least p
2 entries

• leaf nodes contain pointers to the records or the actual records themselves

– possible layouts of leaf nodes:

∗ pointer
⟨⟨K1,RID1⟩, ⟨K2,RID2⟩, . . . , ⟨Kq,RIDq⟩⟩

∗ data
⟨⟨K1, record1⟩, ⟨K2, record2⟩, . . . , ⟨Kq, recordq⟩⟩

P1 K1
. . . Ki−1 Pi Ki

. . . Kq−1 Pq

X

X ≤ K1

X

Ki−1 < X ≤ Ki

X

Kq−1 < X

(a) Layout of an inner node

K1 P1
. . . Ki Pi

. . . Kq−1 Pq−1 Pnext

Data Pointer Data Pointer Data Pointer

Pointer to
the next leaf
node

(b) Layout of a leaf node

Figure 7: Layout of a B+-Tree index

Insert Operation of a record with the key value k:

Insert Operation

1 search for the l e a f page b where value k should be i n s e r t e d
2 i f the page has space #entries < p then do
3 i n s e r t k
4 else i f the page i s f u l l #entries = p then do
5 s p l i t page b i n t o two pages b and b′

6 determine a key value k′ that s epa ra t e s b and b′ in two pages with p
2

↪→ e n t r i e s each
7 i n s e r t key value k′ at parent with the new po in t e r to b′

8 i f parent has no space then do
9 r e c u r s i v e l y repeat s p l i t t i n g

10 end
11 end

Splitting the page can propagate up to the root, leaving it with q < p
2 , which is legal. The number of splitting

operations is logarithmically bound.
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Delete Operation of a record with the key value k:

Delete Operation

1 search for the l e a f page b where value k i s s t o r ed
2 de l e t e va lue k
3 i f the r e s u l t i s an under fu l page (#entries < p

2 ) then do
4 t ry ba lanc ing with a ne ighbour ing node ( s h i f t one key value from a

↪→ neighbour to page b and ad jus t parent )
5 i f t h i s would l ead to an under fu l neighbour then do
6 merge the two nodes
7 de l e t e key entry and po in t e r in the parent
8 end
9 r e c u r s i v e l y repeat d e l e t i o n at the parent page

10 end

In practice no deletion is carried out, rather the record is marked as deleted. Thus periodic index reorganization
is required. Additionally, only leaf nodes are merged.

2.7 Hash-Based Index
Static Hashing for an attribute A works as follows:

• allocate N disk pages (buckets)
• use a hash function to map each possible value of A to an integer value in [0, N − 1]

• each bucket has a pointer to a chain of overflow pages

Characteristics
• hash index in principle unbeatable for equality-based queries
• performance degrades as the number of overflow pages grows
• useless for range queries

Solution to the problem of the overflow pages:
• static hashing

– requires periodic index reorganization
• extendible hashing

– use a directory of pointers to the buckets

– increase the directory and split only the buckets that overflow

2.8 Bitmap Index
A bitmap is a vector of bits with a dimension of number of rows in a table. Each bitmap is created for only one
attribute.

Bitmaps are particularly well-suited for
• set operations
• multi-key search
• counting rows

For the table 2 the bitmap index for the attribute Sex would be:
M F

10100110 01011001

and for the attribute Zipcode it would be:
19046 30022 94040

00101100 01010010 10000001

15
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Row ID Employer ID Name Sex Zipcode

0 51024 Bass M 94040
1 23402 Clarke F 30022
2 62104 England M 19046
3 34723 Ferragamo F 30022
4 81165 Gucci F 19046
5 13646 Hanson M 30022
6 12675 Marcus M 30022
7 41301 Zara F 94040

Table 2: Example Table

2.9 Multi-Key Index
• an index can be created on a combination of fields
• results in lexicographical ordering of the entries
• used for frequent queries with equality conditions on several fields
• combine attributes that are often searched for together to possibly allow for index-only search

2.10 Function-Based Index
• first apply a function f to a field or a combination of fields and then build an index on the result
• for frequent queries on values f(V ) for some function f applied to the value V of some field. For example

in a case like this SELECT ... WHERE f(attr) = x the optimizer cannot use an index for the attribute
attr . Another example would be a case insensitive index:
CREATE INDEX upper_idx ON Employee (UPPER(name))

2.11 Summary

2.12 Index Types in PostgreSQL
• standard index types

– B+-Tree index ( BTREE )

– Hash-based index ( HASH )

– Bitmap cannot be requested by the user
• further index types

– for specific purposes such as text search, geometric applications, etc.

– GIN (Generalized Inverted Index)

– GiST (Generalized Search Tree)

– SP-GiST (Space-Partitioned GiST)

– BRIN (Block Range Indexes)

2.13 Index Creation in PostgreSQL
• automatically created indices

– for each primary key

– for attributes with the UNIQUE constraint
• commands

– CREATE INDEX (default type is a B+-Tree)

– CLUSTER

– REINDEX reorganisation of index
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To create a B+-Tree index the following can be used:

1 CREATE INDEX byear_btree ON name_basics [USING BTREE] ("birthYear");

To create a hash index the following can be used:

1 CREATE INDEX byear_hash ON name_basics USING HASH ("birthYear");

To get the size of an index the following can be used:

1 SELECT pg_relation_size($idxname);

3 Optimization

3.1 Query Evaluation Process

1. the scanner identifies the query tokens

2. the parser checks the query syntax

3. the validation checks all relations and attribute names

4. query tree creation

5. query optimization

• for SQL

– based on relational algebra expression

• logical optimization

– transformation of relational algebra (RA) expression inde-
pendently of database statistics (heuristic rules)

• physical optimization

– based on cost model

– determine “cheapest” plan

6. execution strategy or query execution plan (QEP) devised

Query in a high-
level language

Scanning, pars-
ing, validating

Immediate form of query

Query optimizer

Execution Plan

Query code generator

Code to exe-
cute the query

Runtime database
processor

Query result

3.2 Translation of SQL Query
Usually, a query will not be optimized as a whole, but rather split into different query blocks. A query block:

• is a basic unit that can be translated into algebraic expressions
• contains a single SELECT - FROM - WHERE expression
• may contain GROUP BY and HAVING

A query block is then translated into a relational algebra expression.

The relational algebra is usually extended (Extended RA) by other operations:
• sorting
• duplicate elimination
• semi-join
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• anti-join
• aggregate functions

– max

– min

– sum

– count

– average

Example for query blocks:

Example

1 SELECT name
2 FROM employee
3 WHERE salary > (
4 SELECT MAX(salary)
5 FROM employee
6 WHERE department_number = 5
7 );

The inner block would be

Inner Block

1 SELECT MAX(salary)
2 FROM employee
3 WHERE department_number = 5

and consequently the outer block would be

Outer Block

1 SELECT name
2 FROM employee
3 WHERE salary > c

3.3 Relational Algebra Expressions
3.3.1 Basic Expressions

• relations of databases
• constant relations

3.3.2 Operations

3.3.3 Set Semantics vs. Bag Semantics

• Set Semantics

– assumed in relational algebra

– relations are sets of tupels (no duplicates)
• Bag Semantics

– used in SQL

– relations are multisets of tupels (duplicates allowed)
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Table 3: Relational Algebra Operations

Name Math

Selection σ(R)
Projection πS(R)
Cartesian Product R1 ×R2

Renaming ρV (R), ρA←B(R)
Union R1 ∪R2

Set Difference R1 −R2

(a) Basic Relational Algebra Operations

Name Math

Intersection R1 ∩R2

Division R1 ÷R2

Various Joins R1 |><| R2

Semi Join Left R1 |>< R2

Semi Join Right R1 ><| R2

Outer Join Left R1 d|><| R2

Outer Join Right R1 |><|d R2

Outer Join Full R1 d|><|d R2

(b) Compound Relational Algebra Operations

3.3.4 Selection

The selection operation selects a subset of tupels (rows) from a relation based on a selection predicate (filter
condition).

The selection predicate is build from comparison operators and combined by logical connectives.

Example

σdepartment_number=4(employee)

σsalary>30000(employee)

3.3.5 Projection

The projection operation selects a subset of attributes (columns) from a relation. This operation might lead to
duplicates, which have to be eliminated in case of set semantics.

Example

πname,salary(employee)

πsex,salary(employee)

3.3.6 Common Properties of Set Operations

• the two operants must be type compatible

– the have the same number of attributes and each pair of corresponding attributes has compatible
domains

• the UNION may produce duplicates

– they have to be eliminated, even in SQL

– in SQL with UNION ALL , duplicates survive
• INTERSECT , EXCEPT (sometimes called MINUS ) do duplicate elimination

3.3.7 Expressing Intersection by other Operations

R ∩ S = R− (R− S)

3.3.8 Cartesian Product (Cross Product)

The cartesian product combines every tupel of the first relation with every tupel of the second relation. The
attributes of the resulting relation consists of the (disjoint) union of the attributes of the two relations.
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Usually, the cartesion product is meaningless without a following selection. Any cartesion product with a
selection, whose predicate refers to attributes from both operants, is better expressed as a join.

3.3.9 Division

Let R be a relation with the attribute set X ∪ Y and S be a relation with attribute set Y , then T (X) =
R(X,Y )÷ S(Y ) is a relation with attribute set X, and T (X) contains all tuples t such that (t, s) ∈ R.

The division operation is defined as:

R(X,Y )÷ S(Y ) = T (X)

Intuitively, the result of R(X,Y ) ÷ S(Y ) contains those X-values which, when combined via the cartesian
product with tupels from S, only yield tupels in R.

Division can also be expressed by basic operations:

R(X,Y )÷ S(Y ) = πX(R)− πX ((πX(R)× S)−R)

= πX(R ∩ (πX(R)× S))

3.3.10 Natural Join

Let R(X,Y ) and S(Y,Z) be two relations, such that X ∈ R, Y ∈ R ∧ Y ∈ S and Z ∈ S. Then,

T = R |><| S

is a relation with attribute set X ∪ Y ∪ Z and t ∈ T iff πX∪Y (t) ∈ R and πY ∪Z(t) ∈ S.

The natural join can also be expressed by basic operations:

R |><| S = πX∪Y ∪Z(σR.Y=S.Y (R× S))

3.3.11 Theta Join (Non-Equi-Join)

Let R(X,Y ) and S(X,Y ) be two relations, then,

T = R |><| θ S

is a relation with attribute set U ∪ V ∪X ∪ Y and t = (r, s) ∈ T iff r ∈ R, s ∈ S and (r, s) satisfies condition θ

The theta join can also be expressed by basic operations:

R |><| θ S = σθ(R× S)

3.3.12 Left Semi Join

The left semi join chooses those tuples from R, which have a join-partner in S. The right semi join works
analogously.

R |>< S = πR(R |><| S)

Typical SQL expressions, that result in semi joins are:
• EXISTS

• IN

• ANY

Semi Join Example

1 SELECT COUNT( * )
2 FROM employee E
3 WHERE e.department_number IN (
4 SELECT d.department_number
5 FROM department d
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6 WHERE d.city = Vienna
7 );

In this example R would be the outer block, while S would be the inner block.

3.3.13 Anti Join

The anti join is effectively the opposite of the semi join. Again, the right anti join works analogously to the left
anti join. The left anti join selects all those tuples from R which do not have a join partner in S:

R |>< S = R− (R |>< S)

Typical SQL expression, that result in anti joins are:
• NOT EXISTS

• NOT IN

• ALL

Anti Join Example

1 SELECT COUNT( * )
2 FROM employee e
3 WHERE e.department_number NOT IN (
4 SELECT d.department_number
5 FROM department d
6 WHERE d.city = Vienna
7 );

3.3.14 Left Outer Join

The left outer join tries to join R with S, but also adds those tuples from R which do not have a join partner in
S. The missing fields are filled with NULL , such that the number of NULL elements in N corresponds to the
number of those attributes in S that are not involved in the natural join R |><| S.

R d|><| S = R |><| S ∪ (R |>< S)× {
N︷ ︸︸ ︷

(NULL, . . . , NULL)}

3.3.15 Full Outer Join

The full outer join tries to join R and S, but also adds those tupels from R and S, which have no join partner.

3.4 Relation Algebra Equivalences
3.4.1 Cascading Selections

σc1∧c2∧···∧cn(R) ≡ σc1(σc2(. . . (σcn(R)) . . . ))

3.4.2 Commuting Selections

σc1(σc2(R)) ≡ σc2(σc1(R))

3.4.3 Cascading Projections

Provided that L1 ⊆ L2 ⊆ · · · ⊆ Ln.

πL1
(πL2

(. . . (πLn
(R)) . . . )) ≡ πL1

(R)

This rule is often applied from right to left, meaning, that instead of one large projection, it is split up into
multiple subsets of projections.
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3.4.4 Commuting Selection and Projection

Provided that all attributes used in the selection occur in L

σc(πL R) ≡ πL(σc(R))

3.4.5 Commuting Cartesian Product

R× S ≡ S ×R

3.4.6 Commuting Set Operations

R ∪ S ≡ S ∪R

R ∩ S ≡ S ∩R

3.4.7 Commuting Join Operations

R |><| S ≡ S |><| R

R |><| θ S ≡ S |><| θ R

3.4.8 Commuting Selection and Join

Provided that the selection only uses predicates in one of the relations, i.g. R:

σc(R |><| θ S) ≡ σc(R) |><| θ S

3.4.9 Commuting Projection and Join or Cartesian Product

Assuming, that relations R and S have no attributes in common.
• if L = L1 ∪ L2, such that all attributes in L1 are from R and all attributes in L2 are from S, and the join

predicate C only uses the attributes in L:

πL(R |><| C S) ≡ πL1(R) |><| C πL2(S)

• if L = L1 ∪ L2, such that all attributes in L1 are from R and all attributes in L2 are from S, and the join
predicate C uses the attributes in L plus further attributes M1 from R and M2 from S:

πL(R |><| C S) ≡ πL(πL1,M1(R) |><| C πL2,M2(S))

3.4.10 Associativity of Cartesian Product

(R× S)× T ≡ R× (S × T )

3.4.11 Associativity of Set Operations

(R ∪ S) ∪ T ≡ R ∪ (S ∪ T )

(R ∩ S) ∩ T ≡ R ∩ (S ∩ T )

3.4.12 Associativity of Join Operations

(R |><| S) |><| T ≡ R |><| (S |><| T )

(R |><| θ S) |><| θ T ≡ R |><| θ(S |><| θ T )

3.4.13 Replace Cartesian Product with Selection by Join

Provided that the selection predicate C is a condition of the form A θ B, where A is an attribute in R and B is
in S.

σC(R× S) ≡ R |><| C S
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3.4.14 Distributivity of Selection with Set Operations

σC(R ∪ S) ≡ σC(R) ∪ σC(S)

σC(R ∩ S) ≡ σC(R) ∩ σC(S) ≡ σC(R) ∩ S

σC(R− S) ≡ σC(R)− σC(S) ≡ σC(R)− S

3.4.15 Distributivity of Projection and Union

πL(R ∪ S) ≡ πL(R) ∪ πL(S)

3.4.16 De Morgan’s Laws for Join and Selection Predicates

¬(C1 ∧ C2) ≡ (¬C1) ∨ (¬C2)

¬(C1 ∨ C2) ≡ (¬C1) ∧ (¬C2)

3.5 Rule-Based Optimization
The idea of rule-based optimization, which is logical optimization, is (i) to apply equivalence-preserving
transformations, and (ii) to use heuristic rules which yield a “simpler” relational algebra expression.

Rule-based optimization says nothing about the concrete implementation of each operator from the extended
relational algebra. The goal is to make intermediate results as small as possible.

This can be done by:
• replacing cartesian producs with selections by joins
• applying selections or projections as soon as possible
• combine selections or projections to avoid double I/O access

A SELECT - FROM - WHERE query might get translated canonically like this:

1. cartesian product of alle relations in the FROM clause

2. selection with predicate in the WHERE clause

3. projection to attributes in the SELECT clause

Typical transformations are:
• cascading selections
• pushing selections (applying selections as early as possible)
• replacing a cartesian product with selection by a join
• carry out most selective selections or joins first
• project out attributes that are not needed further up in the tree
• identiy groups of operations that can be executed together by a single algorithm

3.5.1 Example

Example

1 SELECT e.name
2 FROM employee e, works_on w,

↪→ project p
3 WHERE p.pname = ’Aquarius ’ AND
4 p.pnumber = w.

↪→ project_number AND
5 e.essn = w.ssn AND
6 e.bdate > ’1957 -12 -31’;
7

πname

σ pname=′Aquarius′∧
pnumber=project_number∧

essn=ssn∧
bdate>′1957−12−31′

×

×

employee works_on

project
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πname

σpnumber=project_number

×

σessn=ssn

×

σbdate>′1957−12−31′

employee

works_on

σpname=′Aquarius′

project

Figure 8: Step 1, split the big selection statement, and
move it down the tree.

πname

σessn=ssn

×

σpnumber=project_number

×

σpname=′Aquarius′

project

works_on

σbdate>′1957−12−31′

employee

Figure 9: Step 2, apply the more restrictive selections
first.

πname

|><| essn=ssn

|><| pnumber=project_number

σpname=′Aquarius′

project

works_on

σbdate=′1957−12−31′

employee

Figure 10: Step 3, replace cartesian producs with selec-
tions by joins.

πname

|><| essn=ssn

πessn

|><| pnumber=project_number

πpnumber

σpname=′Aquarius′

project

πessn,project_number

works_on

πssn,name

σbdate>′1957−12−31′

employee

Figure 11: Step 4, move projections down the query
tree.
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3.6 Cost-Based Optimization
The DBMS assigns a cost – some metric that measures the required resources – to each query plan, and the goal
is to find the query plan with the minimal estimated cost. After the query tree of the relational algebra is fixed,
there are still a lot of open questions. A query plan (query execution strategy) answers these questions:

• choose one (out of many) equivalent query trees
• choose for each leaf node an access method to this relation
• choose for each inner node (relational operator) an implementation

The choices made by the query plan define the search space.

3.6.1 Cost of a Query Plan

• main cost components

– disk I/O: cost of reading / writing data block from / to the disk

– CPU cost: cost of performing in-memory operations

– memory usage: number of buffer frames needed

– communication costs: important for distibuted databases
• cost function

– assigns a numeric value depending on the estimated consumption of the above resources to every
query plan

– optimization goal is the minimization of this function

– typical cost functions only consider a single cost factor

∗ for big databases: disk I/O

∗ for small databases: CPU cost

3.6.2 Impact on the Cost Function

• Aspects, that affect the cost function

– size of the input relations

– “sortedness” of input relations

– presence / absence of indices

– available space in the buffer

3.6.3 Cost Function

rX . . . number of records (tupels) in a relation X

bX . . . number of blocks occupied by relation X

bfrX . . . blocking factor in relation X

selX . . . selectivity of predicate P (percentage of tupels satisfying this condition)
sP . . . selection cardinality of predicate P (selP ·rX)

4 Evaluation of Relational Operators

4.1 Sorting
Sorting is an operation of the extended relational algebra, and can be requested by the user via a ORDER BY
clause.

• small files

– file fits entirely into memory

– simply load the file and apply an efficient sorting algorithm (typically quicksort)
• large files
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– file does not fit entirely into memory

– page-wise file organization has to be taken into account

– solution is external sorting

4.1.1 External Sorting

The idea of external sorting is to produce sorted subfiles (runs). These runs are then merged into bigger runs.
The sorting is done, if only one run remains.

External sorting requires buffer space – ususally three buffer frames are sufficient – and profits from more
buffer space.

External sorting can be split into two phases:
• initialization, and
• merge phase.

Initialization For this phase one buffer frame suffices.

Initialization

1 foreach page do
2 read page in to bu f f e r
3 s o r t page
4 wr i t e page to d i sk
5 end

The pages, which are sorted in this phase are called level 0 runs.

Merge Phase For this phase three buffer frames suffice.

Merge Phase

1 repeat unti l only one run i s l e f t do
2 read 2 l e v e l i runs o f l ength L i n t o bu f f e r
3 merge them to a l e v e l i+ 1 run o f l ength 2L
4 end

In principle, only three buffer frames are needed, one for each input page, and one for the resulting page.

26



4 Evaluation of Relational Operators Smonman

4.1.2 External Sorting with Realistic Buffer Sizes

In practice, more buffer frames than the minimum amount are used. For example, if B buffer frames are used,
then the level 0 runs are no longer of length 1, but of length B, because in the initialization phase, B pages can
be read and sorted at once.

For the merge phase, we can merge B − 1 runs at once.

Disk

Input 1

Input 2
Output

Disk
Main Memory

(a) External Sorting with 3 Buffer Frames

Disk

Input 1

Input 2
. . .

Input B − 1

Output

Disk

Main Memory

(b) External Sorting with B Buffer Frames

Figure 12: Memory Scheme of External Sorting

4.1.3 Disk I/O

Two-Way Merge Sort For a two-way merge sort with 3 buffer frames, and b number of pages. Each pass
reads and writes each page exactly once.

The number of passes is the number of passes for each phase of the sorting algorithm, and thus:

1︸︷︷︸
initialization

+ ⌈log2(b)⌉︸ ︷︷ ︸
merge phase

The total cost is calculated by the read and write, which happens per pass, times the number of passes:

2 · b︸︷︷︸
read & write

· (1 + ⌈log2(b)⌉)︸ ︷︷ ︸
number of passes

Multi-Way Merge Sort The multi-way merge sort is analogous to the two-way merge sort, but with B buffer
frames.

The number of level 0 runs is: ⌈
b

B

⌉
The number of passes is:

1 +

⌈
logB−1

(⌈
b

B

⌉)⌉
The total cost is:

2 · b ·
(
1 +

⌈
logB−1

(⌈
b

B

⌉)⌉)

4.2 Selection
Basic search methods can be utilized for a selection with a condition of the type att = val. We assume:
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b . . . number of pages
sel . . . selectivity of the selection predicate
r . . . number of records

bfr . . . blocking factor

The costs of the following searches exclude the output cost of the results. The output costs of the results is
always the number of pages to be written: ⌈

sel ·r
bfr

⌉
4.2.1 Linear Search

Linear search (sequential scan) is a brute force algorithm, because is scans the whole file.

If the attribute att is not unique or if the value val does not exist, the total cost of the disk I/O is the number
of pages:

b

On average, if the attribute att is unique, the average cost is:

b

2

4.2.2 Binary Search

Binary search can be utilized on an ordered file. The first matching tuple can be found after

⌈log2(b)⌉

reads. Since the file is ordered, we can then sequentially scan all the subsequent pages until the predicate does
not hold anymore. Thus, the cost is:

log2(b) +

(⌈
sel ·r
bfr

⌉
− 1

)
In this equation, sel ·r is the amount of tupels that satisfy the search condition. This is divided by the blocking
factor bfr, since reads are happening on a block basis.

For unique attributes this simplifies to:
log2(b)

4.2.3 Index Search

Can be utilized, if an index is available. Sometimes an index-only-search is possible, if the index contains all
requested attributes.

The I/O costs depends on the type of index, and how many tuples should be retreived.

Retreiving One Tuple
• B+-Tree Index :

For a B+-tree index with depth d the cost is
d

if the leaf nodes carry all requested attributes.

If not, the cost also includes the access of the referenced record:

d+ 1

• Hash Index :
For a hash index the cost ideally is:

1

But due to the overflow pages, a common assumption is, that the cost c is more than that:

1 ≤ c ≤ 2
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Retreiving Multiple Tuples
• Clustered Index :

Using a clustered index, we first need to find the first tuple that matches, and then perform a sequential
search, as long as the condition holds. For a cost c of finding the first matching tuple, the total cost is:

c+

⌈
sel ·r
bfr

⌉
• Unclustered Index :

Using an unclustered index, first find all the tuples ⟨val,RID⟩ which match the condition, then retreive all
the relevant pages, based on the record ID (RID), and perform a sequential search on these pages.

If the selectivity sel is realy low, a full sequencial scan might be preferable.

Ranged Queries Ranged queries of type att ≥ val1 ∧ att ≤ val2 is treated similar to a single equality query,
with a non-unique attribute. In this case a hash index does not help.

4.2.4 Complex Selection Predicates

For complex selection predicates of the form

att1 = val2 ∧ att2 = val2 ∧ . . .

we need to adjust the search There are different approaches:
• Using an individual index on the attribute atti, retreive all records that satisfy the condition atti = vali,

and check if other conditions are also satisfied.
• Use a composite index on several or all attributes atti

• Carry out several searches, one for each atti = vali clause. After that, comput the intersection of all the
record IDs (RIDs). This can only be done, if the clauses are combined with the logical ∧. If the search
predicate contains logical ∨ conditions, fewer options are available. Either use a bitmap index for a union,
or a full sequencial scan.

4.3 Joins
Here, we concentrate on two-way equi-joins:

R |><| A=B S

for some attribute A in R and another attribute B in S.

4.3.1 Nested Loops Join

For each page pR of the “outer” relation R iterate through all pages pS of the “inner” relation S. While iterating,
check if the join predicate holds.

Nested Loops Join

1 foreach page pR o f R do
2 foreach page pS o f S do
3 foreach tup l e r ∈ pR ∧ s ∈ pS do
4 i f s .B = r .A then
5 r e s := r e s ∪ {(r, s)}

The cost is defined as:
bR + (bR · bS)

Again, this implementation only needs three buffer frames, one for R, one for S and one for the result.
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4.3.2 Block Nested Loops Join

Using B number of buffer frames, read B − 2 pages of R at a time and try to combine all records in these B − 2
pages with the records of the current page of S.

The cost ist defined as:
bR +

⌈
bR

B − 2

⌉
︸ ︷︷ ︸

loop iterations

·bS

In general, it is better to use the smaller of the two relations in the “outer” loop.

4.3.3 Index Nested Loops Join

This can be utilized if an index for the join attribute B of S exists. For every page pR of the “outer” relation R
and each tuple r of R on page pR use the index of attribute B to retreive all tuples s in S with s.B = r.A.

The cost depends on the type of index and if the attribute B os a unique attribute in S. But for example, if a
B+-tree index with depth d for the unique attribute B is used, then the total cost consists of iterating over all
tupels in R and performing an index lookup over each one:

bR + (|R| · d)

4.3.4 Sort-Merge Join

Suppose that the tuples of R are sorted on the attribute A and the tuples of S are sorted on B, we can scan the
pages of A and B in this order and search for matching tuples.

If at least one of the attributes (A or B) is unique, then we need to scan each of R and S only once.

The cost if both R and S are sorted and at least one attribute is unique is:

bR + bS

If R and/or S are not sorted, the cost of sorting has to be added.

If neither A in R nor B in S is unique, then we have to compute the cross product σA=v(R)× σB=v(S) for
each value v.

The DBMS can only rely on the “sortedness”, if an index exist, or if the sorts the relations. Otherwise, it
cannot say, if a relation is sorted.

4.3.5 Hash Join

Apply the same hash function to R.A and S.B then only pairs of tuples in the corresponding buckets can join.
A hash join can be split up into two phases:

• partitioning (hashing)
• probing (joining)

Partitioning Suppose that we have B buffer frames. The hash function is needed for at most B − 1 buckets.

Read one page pR of R at a time and determine by the hash function for each tupel on page pR the bucket in
[1, B − 1]. When a page for a bucket is full, empty it by writing to the disk. Then do the same with every page
ps of S.

The cost of partitioning is:
2 · (bR + bS)

Probing For every bucket number i ∈ [1, B − 1] do the following: Let Ri and Si denote the i-th bucket of R
and S respectively. Suppose that the smaller of the two (e.g. Ri) fits into B − 2 buffer frames. Then we load Ri

into the buffer and read one page of Si at a time and determine all matches between the tupels on the current
page of Si with all of Ri.

In total we need B buffer frames, one for Si, one for the output, and B − 2 for Ri.

The cost of probing is:
bR + bS
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and the total cost of the hash join is:

2 · (bR + bS) + (bR + bS) = 3 · (bR + bS)

Because hash joining has a linear costs, it is often the first method that DBMSs choose.

If both Ri and Si are too big for the buffer, either:

A: hash Ri and Si recursively, or

B: resort to nested loops join of Ri and Si, using the smaller of the two as outer relation.

4.3.6 Hybrid Hash Join

If the buffer is large enough, we can keep one or more buckets of the smaller relation (say R) in the buffer. For
these buckets, we can skip writing to disk in the partition phase and the reading in probe phase for both R and
S.

Suppose we can keep k out of m buckets of R in the buffer, and suppose that the m buckets if R and S are
approximately of equal size ( bRm and bS

m number of pages each), the cost is:(
3− 2 · k

m

)
· (bR + bS)

Hybrid hash join does require a lot of memory, specifically this unequality has to be satisfied:

B ≥ k · bR
m

+ (m− k) + 1

In the special case where all of R fits into the buffer, where k = m the cost reduces to:

bR + bS

4.4 Other Types of Joins
4.4.1 Theta-Join

Theta joins have more general join conditions. The comparison operators are different from equality:

R.A ◦ S.B

where
◦ ∈ {<,>,≤,≥, ̸=}

Theta joins can be implemented the following ways:
• (block) nested loops join is always applicable
• other implementations may also be applicable with ◦ =≤

– index nested loops

– sort merge join

Only hash joinging will not work, as it needs an equality operator (◦ ==).

4.4.2 Outer Join

The left- / right outer joins R d|><| S / S |><|d R can be computed by modifying one of the join methods:
• when using (Index / Block) nested loops choose R as the outer relation
• for all other join methods simply add the tupels of R without a join partner (padded with NULL s) to the

result
• take the union of join and anti join

The full outer join R d|><|d S can be implemented by applying
• sort-merge, or
• hash join

and account for the unmatched tuples in both relations R and S.
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4.4.3 Semi Join

Can be computed by modifying one of the join methods. The search for join-partners stops as soon as one is
found. In this case, add the tuple from the outer relation to the result.

4.4.4 Anti Join

Can be computed by modifying one of the join methods. The search for join-partners stops as soon as one is
found. In this case, reject the tuple from the outer relation.

4.5 Other Operations
4.5.1 Union

Simply append files if no duplicate elimination is requested (through UNION ALL ).

4.5.2 Intersection

The intersection without duplicate elimination ( INTERSECT ) is a special case of join. Specifically, an equi-join
over all attributes.

4.5.3 Cartesian Product

Cannot do better than nested loops.

4.5.4 Set Difference

Without the duplicate elimination ( EXCEPT ) it is similar to a join. In principle, all join methods are applicable
(like anti join), but sort merge join or hash join are preferable.

4.6 Duplicate Elimination
Duplicate elimination is not a relational algebra operation but may be required

• by the DISTINCT clause in the query, orange
• as default behaviour of set operations in SQL.

It is important to note, that duplicate eliminations are expensive and the DISTINCT clause should be avoided
if not needed.

Duplicate elimination can be implemented via:
• Sorting, or

– sort the file and eliminate consecutive duplicates
• Hashing

– each record is hashed and inserted into a bucket in memory

– before inserting a record into a bucket, check if an identical record already exists in this bucket

4.7 Aggregate Operations
The operations: MIN , MAX , COUNT , SUM and AVG can be computed by a table scan, or by an index scan if
a suitable index exists and index-only scan is supported.

In case of a sorted file, or a B+-tree index, the result for MIN and MAX can be obtained as the first / last
record of the file, or by a single descent in the B+-tree index, following the left / right most pointer.

In case of a dense index (one index entry for every record in the main file) the result for the SUM and AVG
functions can be computed via an index scan. This is only possible, if index-only search is supported.

The function COUNT can also possibly be computed from the index only.
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4.8 Group By
• aggregate functions must be applied separately to each group of tuples
• usual techniques are sorting or hashing according to the grouping attributes.
• if a clustered index on the grouping attribute exists, then the records are already sorted in the right way

4.9 Evaluation of a Sequence of Operators
4.9.1 Materialized Evaluation

The materialized evaluation is a naive method of evaluating a sequnce of operators. In this case, the operators
are evaluated bottom up from the query plan, and each intermediate result ist saved in another file.

Disadvantages
• additional disk I/O

– additional cost

– additional time delay
• long response times

– an operator cannot start producing its results before its input has been fully generated (strictly
sequential evaluation)

4.9.2 Pipelining

The idea of pipelining is, that an operator could pass its result directly on to the next operator without persisting
it to the disk. That means, operator evaulation starts producing results as early as possible (as soon as enough
input data is available).

Different granularities are possible:
• as soon as input for next output tuple is available, or
• wait for a larger chunk of input data.

Disadvantages
• not all operators are suitable for pipelining

– sorting

– hash join

– inner relation in nested loops join

4.9.3 Pipeline Realization

Pipelining can be realized by the means of an interator for each operator in a query plan.

Iterator Concept An iterator has to provide (at least) three methods:
• open()

– initializes the operator evaluation (initializing data structures, allocating buffer space, . . . )
• next()

– generates the next output tuple, or

– signals end of output
• close()

– releases all resources

Example
• start evaluation by calling open() on the root operator ( sigma_q.open() )
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R1

R2

scan

scan
|><| p πI σq

Figure 13: Query Plan Tree Example

• the open() call is forwarded through the plan by the operators

• when control from sigma_q.open() is returned to the query processor, sigma_q.next() is called to
produce the first result tuple

• operators forward the next() request as needed
• as soon as the next result tuple is produced, control return to the query processor again

5 Query Optimization
The ideal optimizer

• enumerates all possible execution plans
• determines (an estimate of) the cost of each plan
• chooses the best one as the final execution plan

Problems:
• the number of possible plans may be too big → heuristics to enumerate only promising plan candidates
• the cost of each plan is only an estimate
• the time needed for query optimization may slow down the response time

5.1 Cardinality Estimation
• the value of the cost function heavily depends on the size of the intermediate results
• cardinality estimation is also importand for choosing the right buffer size

The database keeps statistics like
• number of tupels
• size of tupels
• distribution of attributes

for better cardinality estimation.

Two assumptions are typically made:
• Independence: values of different attributes are independent of each other
• Uniformity : if no information on the attribute value distribution is given, all values of an attribute have

the same probability

5.1.1 Histograms

Uniform distribution is often unrealistic, therefore a histogram over the values is maintained, for a better
approximation of the actual distribution.

The idea is as follows:
• divide the active domain of A into adjacent intervals (buckets) by choosing boundary values b1, b2, b3, . . .

• collect statistical information of each interval

There are two types of histograms:
• Equi-width histograms: all intervals have equal size
• Equi-height histograms: number of rows in each bucket is roughly the same
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5.2 Selectivity
The selectivity is the ratio of qualifying tuples versus all tuples.

The selectivity for a selection σ with predicate P is:

selP =
|σP (R)|

|R|

The selectivity of a join is:

selR |><| S =
|R |><| S|
|R× S|

=
|R |><| S|
|R| · |S|

Equality on unique attribute:

selR.A=c =
1

|R|

Equi-join of R and S via foreign key from R to S:

sel |><| R.A=S.B
=

1

|S|

Equality on non-unique attribute:

selR.A=c =
1

NDV(A,R)

where NDV(A,R) is the number of distinct valuies of attribute A in R.

Equality between attributes:

selR.A=R.B =
1

max(NDV(A,R),NDV(B,R))

Equi-join:

sel |><| R.A=S.B
=

1

max(NDV(A,R),NDV(B,S))

5.2.1 Selectivity Estimates of Range Conditions

We demonstrate the selectivity estimate of range condition on this example: σR.A>c(R)

• Case 1 without histogram: We assume that all values between the current lowest and highest values occur
with the same probability.

– for real-valued attribute R.A:

selR.A>c =
High(A,R)− c

High(A,R)− Low(A,R)

– for integer-values attribute R.A:

selR.A>c =
High(A,R)− c

High(A,R)− Low(A,R) + 1

• Case 2 with equi-depth histogram with m buckets:

– determine i such that value c falls into bucket i

– All buckets i+ 1, . . . ,m entirely satisfy the condition R.A > c

– inside bucket i apply the uniformity assumption as in case 1
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5.2.2 Selectivity Propagation through Joins

Consider the expression σP (R |><| S), where the join is along a foreign key from R to S and the selection predicate
only uses attributes from one of R or S.

• Case 1 P uses only attributes from R, i.e. σP (R |><| S) = σp(R) |><| S

– the selection applied to R retains selP ·|R| tuples of R

– due to the foreign key, each has at most one join partner, hence selP ·|R| is also an upper bound on
σP (R |><| S)

• Case 2 P uses only attributes from S, i.e. σP (R |><| S) = R |><| σP (S)

– the selection applied to S retains selP ·|S| tuples of S

– by applying the uniformity assumption, we assume, that only selP portion of the tuples in R still
have a join partner in S

– Hence, selP ·|R| is again estimated as an upper bound on σP (R |><| S)

5.3 Query Optimization Process
• uncorrelated subqueries are evaluated only once (not for every result from the outer query)
• subqueries can be reformulated as join

– subqueries with NOT IN , NOT EXISTS or <> ALL can be unnested with an anti-join

5.4 Reducing the Search Space
For even a single block in the query, there can be a huge number of possible execution plans. The query optimizer
reduces the search space by a rule-bssed optimization on the RA expressions. In particular:

• push selections and projections down in the query tree, and
• replace cartesian products combined with selections by a join

The query optimization essentially reduces to join optimization, which includes join order and join implemen-
tation.

But for a join of a big number of relations the search space may still be too large to enumerate.

5.4.1 Number of Possible Combinations

A join over n+ 1 realtions requires n binary joins. Root level operator joins sub-plans of k and n− k − 1 join
operators

|><|

R1, . . . , Rk+1 Rk+2, . . . , Rn+1

k joins n− k − 1 joins

Let Cn be the number of possibilities to construct an ordered binary tree of n inner nodes (join operators):

Cn =
n−1∑
k=0

Ck · Cn−k−1
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The number of ordered binary trees with n+ 1 leaves is:

Cn =

n−1∑
k=0

Ck · Cn−k−1

=
(2n)!

(n+ 1)! · n!

For each of these trees, we can permute the input n+ 1 relations. The number of possible join trees is thus:

(2n)!

(n+ 1)! · n!
· (n+ 1)! =

(2n)!

n!

And the combinatorial explosion gets even bigger if we take different implementations of joins into account.

Traditionally, DBMSs consider left-deep trees in the first place.
• significant reduction of the search space
• the inner relation is always a base relation, this allows the use of index nested loops
• is easier to implement in a pipelined fashion

5.5 Finding the Cheapest Exection Plan
• Dynamic Programming

– find the cheapest plan for a join of n relations in n passes

– Pass 1

∗ consider plans for a single relation

∗ for each relation find the cheapest access

– Pass k + 1

∗ consider plans for joining k + 1 relations by extending the optimal joins of k relations by one
more join operation

Dynamic programming significantly reduces the number of plans to be considered, but it is still exponential,
and thus no longer feasable for a join of many tables.

• Greedy

– at each step, choose the next table, such that the additional join is the cheapest
• Heuristic

– restrict the search space by applying some heuristic method, e.g. generic algorithms, hill-climbing,
etc.

• PostgreSQL

– switches from exhaustive search to heuristic search (geqo = generic query optimizer) when the number
of relations is to big

– by default the switch to geqo happens when ≥ 12 relations are joined

5.6 Database Tuning
There are many decisions of database design:

• Which indices?

– On which attribute or attribute combinations?

– Which index type?

– Clustered index?
• avoid time-critical joins

– denormalization

– materialized views
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• avoid access to unnecessary attributes:

– vertical partitioning of a table
• avoid access to unnecesary rows:

– horizontal partitioning of a table (several table with same schema)

5.7 Query Tuning
• optimizers usually do not use indices for arithmetic expressions
• duplicate elimination should oinly be forced if it is really needed (avoid DISTINCT , replace UNION by

UNION ALL )
• in case of multiple ways to formulate a join, try to use a clustered index, and try to avoid string conditions
• if views are defined via joins, are they really needed, or can the base tables be used instead
• can nested subqueries be formulated in a single SELECT - FROM - WHERE statement?
• compute combinations with WITH statement

In some DBMSs optimizer hints can be set, to influence the optimization process. This is not supported by Post-
greSQL. In PostgreSQL, the user can exclude certain implementations with e.g. SET enable_indexscan OFF ,
and can change the cost of different operations.

5.8 Materialized Views
A view is defined by some query Q. If a view is referenced from a FROM clause of another query Q′, then the
defining query Q is expanded into query Q′.

A materialized view stores the result of the defining query Q and can be used directly when referenced by
another query Q′.

• Advantages

– time to read a materialized view is usually much smaller than time to compute the result
• Disadvantages

– materialized views have to be updated whenever one of the input relations gets modified

Materialized view need to be maintained. This can happen automatically, whenever one of the input relations
gets modified, preferably this is done incrementally, and not from scratch (incremental view maintenance), or
explicitly by request from a user.

To create a materialized view in PostgreSQL, this is the command:

1 CREATE MATERIALIZED VIEW <name > AS <query >

To explicitly update the materialized view, this command is used:

1 REFRESH MATERIALIZED VIEW <name >

this recomputes the contents from scratch!

To delete a materialized view, use the DROP command:

1 DROP MATERIALIZED VIEW <name >
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