
Memory Systems

Computer Systems

Markus Bader

SS2024

Sources

15.04.2024 Computer Systems 2

• Literature: „Digital Design and Computer Architecture: RISC-V Edition“, by Sarah L. Harris and David Harris
• https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-

820064-3
• https://pages.hmc.edu/harris/ddca/ddcarv.html (Includes resources for students!)
• They also provide slideshows – the basis for ours! You can investigate extended version at their website.

• Available at TU’s library: https://catalogplus.tuwien.at/permalink/f/qknpf/UTW_alma21139903990003336

Topics

• Introduction
• Memory System Performance Analysis
• Caches
• Virtual Memory
• Memory-Mapped I/O
• Summary

15.04.2024 Computer Systems 3

Introduction

• Computer performance depends on:
• Processor performance
• Memory system performance

Processor / Memory Interface:

15.04.2024 Computer Systems 4

Processor MemoryAddress
MemWrite

WriteData
ReadData

WE

CLKCLK

Processor-Memory Gap

• In prior chapters, we assumed access memory in 1 clock cycle
• This assumption hasn’t been true since the 1980’s.

15.04.2024 Computer Systems 5

Memory System Challenge

• Make memory system appear as fast as processor
• Use hierarchy of memories
• Ideal memory:

• Fast
• Cheap (inexpensive)
• Large (capacity)

• But we can only choose two!

15.04.2024 Computer Systems 6

Memory Hierarchy

15.04.2024 Computer Systems 7

CPU Cache
Main

Memory

Processor ChipCLK

Hard
Disk

Cache

Main Memory

Virtual Memory

Capacity

Sp
ee

d

Technology Price / GB Access Time (ns)

SRAM $100 0.2 - 3

DRAM $3 10 - 50

SSD $0.10 20,000

Bandwidth (GB/s)

100+

30

0.05 - 3

0.001 - 0.1HDD $0.03 5,000,000

Locality

• Exploit locality to make memory accesses fast:
• Temporal Locality:

• Locality in time
• If data used recently, likely to use it again soon
• How to exploit: keep recently accessed data in higher levels of memory hierarchy

• Spatial Locality:
• Locality in space
• If data used recently, likely to use nearby data soon
• How to exploit: when access data, bring nearby data into higher levels of memory hierarchy too

15.04.2024 Computer Systems 8

15.04.2024 Computer Systems 9

Memory Performance

Memory Performance

• Hit: data found in that level of memory hierarchy
• Miss: data not found (must go to next level)

• Average memory access time (AMAT): average time for processor to access data

௖௔௖௛௘ ௖௔௖௛௘ ெெ ெெ ௏ெ

15.04.2024 Computer Systems 10

Memory Performance Example 1

• A program has loads and stores
• of these data values in cache
• Rest supplied by other levels of memory hierarchy
• What are the cache hit and miss rates?

15.04.2024 Computer Systems 11

Memory Performance Example 2

• Suppose processor has 2 levels of hierarchy: cache and main memory
• ௖௔௖௛௘ ெெ

• What is the AMAT (average memory access time) of the program from Example 1?

௖௔௖௛௘ ௖௔௖௛௘ ெெ

15.04.2024 Computer Systems 12

Gene Amdahl

• Amdahl’s Law: the effort spent increasing
the performance of a subsystem is wasted
unless the subsystem affects a large
percentage of overall performance

• Co-founded 3 companies, including one
called Amdahl Corporation in 1970

15.04.2024 Computer Systems 13

15.04.2024 Computer Systems 14

Caches

Cache

• Highest level in memory hierarchy
• Fast (typically ~ 1 cycle access time)
• Ideally supplies most data to processor
• Usually holds most recently accessed data

15.04.2024 Computer Systems 15

CPU Cache
Main

Memory

Processor ChipCLK

Hard
Disk

Cache Design Principles

• What data is held in the cache?
• How is data found?
• What data is replaced?

We focus on data loads, but stores follow the same principles.

15.04.2024 Computer Systems 16

What Data is Held in the Cache?

• Ideally, cache anticipates needed data and puts it in cache
• But impossible to predict future
• Use past to predict future – temporal and spatial locality:

• Temporal locality: copy newly accessed data into cache
• Spatial locality: copy neighboring data into cache too

15.04.2024 Computer Systems 17

Cache Terminology

• Capacity ()
• Number of data bytes in cache

• Block size ()
• Bytes of data brought into cache at once

• Number of blocks ()
• Number of blocks in cache

• 𝐵 =
஼

௕

• Degree of associativity ()
• Number of blocks in a set

• Number of sets ()
• Each memory address maps to exactly one cache set

• 𝑆 =
஻

ே

15.04.2024 Computer Systems 18

How is Data Found?

• Cache organized into S sets
• Each memory address maps to exactly one set
• Caches categorized by # of blocks in a set:

• Direct mapped: 1 block per set
• N-way set associative: N blocks per set
• Fully associative: all cache blocks in 1 set

• Examine each organization for a cache with:
• Capacity (𝑪 = 8 words)
• Block size (𝒃 = 1 word)
• So, number of blocks (𝑩 = 8)

15.04.2024 Computer Systems 19

Example of Cache Parameters

• words (capacity)
• word (block size)
• So, (# of blocks)

Ridiculously small, but will illustrate organizations

15.04.2024 Computer Systems 20

15.04.2024 Computer Systems 21

Direct-Mapped Caches

Direct-Mapped Cache

15.04.2024 Computer Systems 22

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]
mem[0x00...04]
mem[0x00...08]
mem[0x00...0C]
mem[0x00...10]
mem[0x00...14]
mem[0x00...18]
mem[0x00..1C]
mem[0x00..20]
mem[0x00...24]

mem[0xFF...E0]
mem[0xFF...E4]
mem[0xFF...E8]
mem[0xFF...EC]
mem[0xFF...F0]
mem[0xFF...F4]
mem[0xFF...F8]
mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000

00...00000100

00...00001000

00...00001100

00...00010100

00...00011000

00...00011100

00...00100000

00...00100100

11...11110000

11...11100000

11...11100100

11...11101000

11...11101100

11...11110100

11...11111000

11...11111100

6 (110)

5 (101)

4 (100)

3 (011)

2 (010)

1 (001)

0 (000)

Direct-Mapped Cache Hardware

15.04.2024 Computer Systems 23

DataTag

00
Tag Set

Byte
OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x
(1+27+32)-bit

SRAM

Direct-Mapped Cache Performance - Compulsory Misses

15.04.2024 Computer Systems 24

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte
OffsetMemory

Address

V

3
00100...00

1

00...00

00...00

1

mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

RISC-V assembly code
addi s0, zero, 5
addi s1, zero, 0

LOOP: beq s0, zero, DONE
lw s2, 4(s1)
lw s3, 12(s1)
lw s4, 8(s1)
addi s0, s0, -1
j LOOP

DONE: Temporal Locality
Compulsory Misses

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte
OffsetMemory

Address

V
3
00100...01

0

0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Direct-Mapped Cache Performance - Conflict Miss

15.04.2024 Computer Systems 25

RISC-V assembly code
addi s0, zero, 5
addi s1, zero, 0

LOOP: beq s0, zero, DONE
lw s2, 0x4(s1)
lw s4, 0x24(s1)
addi s0, s0, -1
j LOOP

DONE: Conflict Misses

15.04.2024 Computer Systems 26

Associative Caches

-Way Set Associative Cache

15.04.2024 Computer Systems 27

DataTag

Tag Set
Byte

OffsetMemory
Address

Data

Hit1

V

=

01

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0

-Way Set Associative Cache Performance

15.04.2024 Computer Systems 28

RISC-V assembly code

addi s0, zero, 5

addi s1, zero, 0

LOOP: beq s0, zero, DONE

lw s2, 0x4(s1)

lw s4, 0x24(s1)

addi s0, s0, -1

j LOOP

DONE:

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0

0

0

0

0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Associativity reduces Conflict Misses

Set Associative Cache: Aufbau

15.04.2024 Computer Systems 29

Fully Associative Cache

15.04.2024 Computer Systems 30

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

Reduces Conflict Misses but is expensive to build

15.04.2024 Computer Systems 31

Spatial Locality

Spatial Locality

• Increase block size:
• Block size, 𝑏 = 4 words
• 𝐶 = 8 words
• Direct mapped (1 block per set)

• Number of blocks, 𝐵 = 2
஼

௕
=

଼

ସ
= 2

15.04.2024 Computer Systems 32

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Cache with Larger Block Size

15.04.2024 Computer Systems 33

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Cache Performance with Spatial Locality

Larger blocks reduce compulsory misses through
spatial locality

15.04.2024 Computer Systems 34

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

0
0

0
1

1
0

1
1

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

RISC-V assembly code

addi s0, zero, 5

addi s1, zero, 0

LOOP: beq s0, zero, DONE

lw s2, 4(s1)

lw s3, 12(s1)

lw s4, 8(s1)

addi s0, s0, -1

j LOOP

DONE:

Types of Misses

• Compulsory: first time data accessed
• Capacity: cache too small to hold all data of interest
• Conflict: data of interest maps to same location in cache

Miss penalty: time it takes to retrieve a block from lower level of hierarchy

15.04.2024 Computer Systems 35

Cache Organization Recap

• Capacity:
• Block size:

• Number of blocks in cache: ஼

௕

15.04.2024 Computer Systems 36

Organization Number of Ways () Number of Sets ()

Direct Mapped

N-Way Set Associative

Fully Associative

• Number of blocks in a set:

• Number of sets: ஻

ே

15.04.2024 Computer Systems 37

Cache Replacement Policy

Replacement Policy

• Cache is too small to hold all data of interest at once
• If cache full: program accesses data X and evicts data Y
• Capacity miss when access Y again
• How to choose Y to minimize chance of needing it again?

• Least recently used (LRU) replacement: the least recently used block in a set evicted

15.04.2024 Computer Systems 38

LRU Replacement

15.04.2024 Computer Systems 39

RISC-V assembly
lw s1, 0x04(zero)
lw s2, 0x24(zero)
lw s3, 0x54(zero)

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...04]1 00...000mem[0x00...24] 100...010

0

0

0
0

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0

0

0

1

(a)

(b)

Way 1 Way 0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

15.04.2024 Computer Systems 40

Address Bus

Multilevel Caches

• Larger caches have lower miss rates, longer access times
• Expand memory hierarchy to multiple levels of caches
• Level 1: small and fast (e.g. 16 KB, 1 cycle)
• Level 2: larger and slower (e.g. 256 KB, 2-6 cycles)
• Most modern PCs have L1, L2, and L3 cache

15.04.2024 Computer Systems 41

Hit & Miss on reading / load

Load
• Load Hit: Valid bit is set and tag maches. Data is found in cache

• Load Miss: Data is not found in cache
• Pipeline needs to be stalled
• Slower memory must asked to deliver the data

42

Hit & Miss on writing / store

Store
• Write Hit

• Write-Through
• Copy-Back
• Write-Buffer

• Write Miss
• Write-Around
• Fetch-on-Write

• Afterwards: Write Hit

43

Write-Hit: Write-Through

• update the cache AND
• update the main memory immediately

• Pros
• Data consistency with main memory guaranteed (I/O, multiprocessor)
• simple

• Cons
• Frequent accesses to the main memory
• Loss of performance

44

Write-Hit: Copy-Back

• refresh the cache AND marks the block "dirty"
• only update the main memory later when the block is removed from the cache

• often also referred to as write-back

• Pros
• Write hit is much faster
• Less frequent accesses to the main memory

• Cons
• Data inconsistency with the main memory
• Read miss is slower (due to copy-back)

• A dirty block needs to be synced before replacing

45

Write-Hit: Write-Buffer

• for data consistency and fast write operations
• advantages of Write-Through and Copy-Back

• Write-Buffer (Buffered Write-Through)
• new value is entered in the cache and second fast cache
• Processor can continue with further processing
• if buffer is full, processor must wait

46

Write-Miss: Write-Around

• Ignore the cache AND write directly to memory

• Mostly in combination with Write-Through

47

Write-Miss: Fetch-on-Write

• Replace the current content of the cache and update Tag

• If block size > 1 word, load the remaining data belonging to the block from the main
memory after

• Read access to the memory and
• then write hit depending on the strategy

• This is the most frequently used method

48

15.04.2024 Computer Systems 49

Cache Summary

Cache Summary

• What data is held in the cache?
• Recently used data (temporal locality)
• Nearby data (spatial locality)

• How is data found?
• Set is determined by address of data
• Word within block also determined by address
• In associative caches, data could be in one of several ways

• What data is replaced?
• Least-recently used way in the set

15.04.2024 Computer Systems 50

Miss Rate Trends

• Bigger caches reduce capacity misses
• Greater associativity reduces conflict misses

15.04.2024 Computer Systems 51

Adapted from Patterson & Hennessy, Computer Architecture: A Quantitative Approach, 2011

Miss Rate Trends

• Bigger blocks reduce compulsory misses
• Bigger blocks increase conflict misses

15.04.2024 Computer Systems 52

Intel Pentium III Die

15.04.2024 Computer Systems 53

© Intel Corp.

15.04.2024 Computer Systems 54

Virtual Memory

Virtual Memory

• Gives the illusion of bigger memory
• Main memory (DRAM) acts as cache for hard disk

15.04.2024 Computer Systems 55

CPU Cache
Main

Memory

Processor ChipCLK

Hard
Disk

Memory Hierarchy

15.04.2024 Computer Systems 56

CPU Cache
Main

Memory

Processor ChipCLK

Hard
Disk

Memory Hierarchy

15.04.2024 Computer Systems 57

Cache

Main Memory

Virtual Memory

Capacity

Sp
ee

d

Technology Price / GB Access Time (ns)

SRAM $100 0.2 - 3

DRAM $3 10 - 50

SSD $0.10 20,000

Bandwidth (GB/s)

100+

30

0.05 - 3

0.001 - 0.1HDD $0.03 5,000,000

• Physical Memory: DRAM (Main Memory)
• Virtual Memory: Hard drive

• Slow, Large, Cheap

Memory Hierarchy

15.04.2024 Computer Systems 58

Read/Write
Head

Magnetic
Disks

Arshane88 / CC BY-SA 4.0 / Wikimedia Commons

Takes milliseconds to seek correct location on disk

Hard Disk Drive Solid State Drive

Virtual Memory

• Virtual Addresses
• Programs use virtual addresses
• Entire virtual address space stored on a hard drive
• Subset of virtual address data in DRAM
• CPU translates virtual addresses into physical addresses (DRAM addresses)
• Data not in DRAM fetched from hard drive

• Memory Protection
• Each program has own virtual to physical mapping
• Two programs can use same virtual address for different data
• Programs don’t need to be aware others are running
• One program (or virus) can’t corrupt memory used by another

15.04.2024 Computer Systems 59

Virtual Memory

15.04.2024 Computer Systems 60

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

Physical memory acts as cache for virtual memory

Virtual Memory Definitions

• Page size: amount of memory transferred from hard disk to DRAM at once
• Address translation: determining physical address from virtual address
• Page table: lookup table used to translate virtual addresses to physical addresses

15.04.2024 Computer Systems 61

Virtual Memory Definitions

Most accesses hit in physical memory
But programs have the large capacity of virtual memory

15.04.2024 Computer Systems 62

15.04.2024 Computer Systems 63

Address Translation

Address Translation

15.04.2024 Computer Systems 64

Page OffsetPPN

11 10 9 ... 2 1 0
Page OffsetVPN

Virtual Address

Physical Address

Translation

30 29 28 ... 14 13 12

11 10 9 ... 2 1 026 25 24 ... 13 12

19

15

12

Virtual Memory Example

• System:
• Virtual memory size: 2 𝐺𝐵 = 2ଷଵ𝑏𝑦𝑡𝑒𝑠

• Physical memory size: 128 𝑀𝐵 = 2ଶ଻𝑏𝑦𝑡𝑒𝑠

• Page size: 4 𝐾𝐵 = 2ଵଶ 𝑏𝑦𝑡𝑒𝑠

• Organization:
• Virtual address: 31 bits
• Physical address: 27 bits
• Page offset: 12 bits

• # 𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑝𝑎𝑔𝑒𝑠 =
ଶయభ

ଶభమ = 2ଵଽ (𝑉𝑃𝑁 = 19 𝑏𝑖𝑡𝑠)

• # 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑝𝑎𝑔𝑒𝑠 =
ଶమళ

ଶభమ = 2ଵହ (𝑃𝑃𝑁 = 15 𝑏𝑖𝑡𝑠)

15.04.2024 Computer Systems 65

Virtual Memory Example

• 19-bit virtual page number (VPN)
• 15-bit physical page number (PPN)

15.04.2024 Computer Systems 66

Physical Memory

Physical
Page Number Physical Addresses

Virtual Memory

Virtual
Page NumberVirtual Addresses

7FFF 0x7FFF000 - 0x7FFFFFF
0x7FFE000 - 0x7FFEFFF

0x0000000 - 0x0000FFF
0x0001000 - 0x0001FFF

7FFE

0001
0000

7FFFA
7FFF9

00006
00005

7FFFC
7FFFB

7FFFE
7FFFD

7FFFF

00001
00000

00003
00002

00004

0x7FFFF000 - 0x7FFFFFFF
0x7FFFE000 - 0x7FFFEFFF
0x7FFFD000 - 0x7FFFDFFF
0x7FFFC000 - 0x7FFFCFFF
0x7FFFB000 - 0x7FFFBFFF
0x7FFFA000 - 0x7FFFAFFF

0x00005000 - 0x00005FFF

0x00003000 - 0x00003FFF

0x00001000 - 0x00001FFF

0x7FFF9000 - 0x7FFF9FFF

0x00006000 - 0x00006FFF

0x00004000 - 0x00004FFF

0x00002000 - 0x00002FFF

0x00000000 - 0x00000FFF

Physical Memory

Physical
Page Number Physical Addresses

Virtual Memory

Virtual
Page NumberVirtual Addresses

7FFF 0x7FFF000 - 0x7FFFFFF
0x7FFE000 - 0x7FFEFFF

0x0000000 - 0x0000FFF
0x0001000 - 0x0001FFF

7FFE

0001
0000

7FFFA
7FFF9

00006
00005

7FFFC
7FFFB

7FFFE
7FFFD

7FFFF

00001
00000

00003
00002

00004

0x7FFFF000 - 0x7FFFFFFF
0x7FFFE000 - 0x7FFFEFFF
0x7FFFD000 - 0x7FFFDFFF
0x7FFFC000 - 0x7FFFCFFF
0x7FFFB000 - 0x7FFFBFFF
0x7FFFA000 - 0x7FFFAFFF

0x00005000 - 0x00005FFF

0x00003000 - 0x00003FFF

0x00001000 - 0x00001FFF

0x7FFF9000 - 0x7FFF9FFF

0x00006000 - 0x00006FFF

0x00004000 - 0x00004FFF

0x00002000 - 0x00002FFF

0x00000000 - 0x00000FFF

Virtual Memory Example

• What is the physical address of virtual address 0x247C?
• VPN = 0x2
• VPN 0x2 maps to PPN 0x7FFF
• 12-bit page offset: 0x47C
• Physical address = 0x7FFF47C

15.04.2024 Computer Systems 67

15.04.2024 Computer Systems 68

Page Table

How to Perform Translation

• Page table
• Entry for each virtual page
• Entry fields:

• Valid bit: 1 if page in physical memory
• Physical page number: where the page is located

15.04.2024 Computer Systems 69

Page Table Example

15.04.2024 Computer Systems 70

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00002 47C

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

P
a

ge
 T

a
bl

e

Page
Offset

Physical
Address 0x7FFF 47C

VPN is index into page table

Page Table Example 1

• What is the physical address of virtual address 0x5F20?
• VPN = 5
• Entry 5 in page table VPN 5 => physical page 1
• Physical address: 0x1F20

15.04.2024 Computer Systems 71

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00005 F20

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

P
a

ge
 T

ab
le

Page
Offset

Physical
Address 0x0001 F20

Page Table Example 2

• What is the physical address of virtual address 0x73E4?
• VPN = 7
• Entry 7 in page table is invalid
• Virtual page must be paged into physical memory from disk

15.04.2024 Computer Systems 72

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00007 3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

P
a

ge
 T

ab
le

Page
Offset

Page Table Challenges

• Page table is large
• Usually located in physical memory

• Load/store requires 2 main memory accesses:
• One for translation (page table read)
• One to access data (after translation)

• Cuts memory performance in half
• Unless we get clever… by using a Translation Lookaside Buffer (TLB)

15.04.2024 Computer Systems 73

15.04.2024 Computer Systems 74

Translation Lookaside Buffer (TLB)

Translation Lookaside Buffer (TLB)

• Small cache of most recent translations
• Reduces number of memory accesses for most loads/stores from 2 to 1
• Page table accesses: high temporal locality

• Large page size, so consecutive loads/stores likely to access same page

• TLB
• Small: accessed in < 1 cycle
• Typically 16 - 512 entries
• Fully associative
• > 99% hit rates typical
• Reduces number of memory accesses for most loads/stores from 2 to 1

15.04.2024 Computer Systems 75

Example: 2-entry TLB

15.04.2024 Computer Systems 76

Hit1

V

=

01

15 15

15

=

Hit1Hit0

Hit

19 19

19

Virtual
Page Number

Physical
Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual
Address 0x00002 47C

1219

Virtual
Page Number

Page
Offset

V
Virtual

Page Number
Physical

Page Number

Entry 0

12Physical
Address 0x7FFF 47C

TLB

15.04.2024 Computer Systems 77

Virtual Memory Summary

Memory Protection

• Multiple processes (programs) run at once
• Each process has its own page table
• Each process can use entire virtual address space
• A process can only access a subset of physical pages: those mapped in its own page table

15.04.2024 Computer Systems 78

Virtual Memory Summary

• Virtual memory increases capacity
• A subset of virtual pages in physical memory
• Page table maps virtual pages to physical pages – address translation
• A TLB speeds up address translation
• Different page tables for different programs provides memory protection

15.04.2024 Computer Systems 79

15.04.2024 Computer Systems 80

More

Aktuelle Prozessoren

81

Via Nano 1,8 GHz (z.B. in eeePCs) Intel Core i7 950

Bsp.: i7 Nehalem

82

ARM Cortex-A8 (Raspberry v1) Intel i7 Nehalem

L1 Organisation Geteilt Instruktionen / Daten Geteilt Instruktionen / Daten

L1 Size 32KiB per Instruktion/Data 32KiB per Instruktion/Data per Core

L1 Associative 4-way (I), 4-way (D) Set Associative 4-way (I), 8-way (D) Set Associative

L1 repleacement Random Approximated LRU

L1 block size 64 byte 64 byte

L1 write policy Write-back, Write-allocate (?) Write-back, No-write-allocate

L1 hit time (load-use) 1 clock cycle 4 clock cycles, pipelined

L2 Organisation Ein Cache für Instruktionen und Daten Ein Cache für Instruktionen und Daten, per Core

L2 Size 128KiB to 1MiB 256KiB, per Core

L2 Associative 8-way Set Associative 8-way Set Associative

L2 repleacement Random (?) Approximated LRU

L2 block size 64 bytes 64 byte

L2 write policy Write-back, Write-allocate (?) Write-back, Write-allocate

L2 hit time 11 clock cycles 10 clock cycles, pipelined

L3 Organisation Ein Cache für Instruktionen und Daten

L3 Size 8 MiB, shared

L3 Associative 16-way Set Associative

L3 repleacement Approximated LRU

L3 block size 64 byte

L3 write policy Write-back, Write-allocate

L3 hit time 35 clock cycles, pipelined

