
Formal Methods of Computer

Science - Summary
SS2023

Manuel Waibel

October 31, 2023

Contents

1 Computability and Complexity 4
1.1 Decidability . 4
1.2 Complexity of decidable Problems . 4

1.2.1 The complexity class P : . 4
1.2.2 The complexity class NP . 5

1.3 Reductions . 6
1.3.1 Types of Reductions . 6

1.4 NP-completeness . 7
1.5 Other complexity classes . 7

1.5.1 Logarithmic Space L . 7
1.6 Useful NP problems to know . 7

1.6.1 Halting . 7
1.6.2 Co-Halting . 8
1.6.3 Correctness . 8
1.6.4 Reachable-Code . 8
1.6.5 SAT, 3-SAT, Validity . 8
1.6.6 3-Colorability . 8
1.6.7 Dominant-Set . 9
1.6.8 Vertex-Cover . 9
1.6.9 Independent-Set . 9

2 Satis�ability 10
2.1 Propositional logic . 10

2.1.1 Syntax . 10
2.1.2 Semantics . 10

2.2 Tseitin translation . 11

1

2.3 Implication graph . 11
2.3.1 Notation . 11
2.3.2 Antecendent . 11
2.3.3 De�nition . 12
2.3.4 Example 1 . 12
2.3.5 Example 2 . 14
2.3.6 Backtracking . 14

2.4 Theory of equality . 15
2.4.1 Rules . 15

2.5 E-Logic and E-Formulas . 16
2.5.1 Equality graph . 16

2.6 Sparse Method - Reduction of E-formulas to propositinoal formulas . . . 17
2.7 Ackermann's reduction . 18
2.8 Additional material from �Tutorial: Logic and Proof Techniques� 19

2.8.1 Noetherian/well-founded induction 19

3 Deductive Veri�cation of Programs 21
3.1 Imperative language - IMP . 21

3.1.1 Evaluation . 21
3.2 Hoare logic . 21

3.2.1 Partial correctness . 21
3.2.2 Total correctess . 22

3.3 Proo�ng correctness . 22
3.4 Hoare triples/Hoare rules . 22

3.4.1 Hoare rules for ⊢{A} p {B} . 23
3.4.2 Using Hoare rules . 24
3.4.3 Hoare rules for ⊢[A] p [B] . 24

3.5 Deriving a postcondition - {A} x := a {?} 25
3.6 Weaker vs. Stronger Assertions . 25
3.7 Finding/proving the weakest precondition wlp(p,B) 26
3.8 Weakest Precondition - Rules . 26

3.8.1 Partial Correctness - WLPs . 26
3.8.2 Total Correctness - WPs . 27

3.9 Veri�cation Conditions - VCs . 27
3.9.1 Partial Correctness . 27
3.9.2 Total Correctness . 28

3.10 Prove validity of triple . 28
3.11 Finding an Invariant . 28

3.11.1 Useful formulas . 29

4 Model Checking 31
4.1 Kripke structure . 31

4.1.1 Temporal Logic structures . 31
4.1.2 CTL* . 31

2

4.1.3 CTL . 32
4.1.4 ACTL* & ACTL . 32
4.1.5 LTL . 32

4.2 Marking algorithm - CTL Model Checking 32
4.3 LTL Model Checking . 33
4.4 CTL* Model Checking . 34
4.5 (Bi-)Simulation . 34

4.5.1 Bisimulation Game . 34
4.5.2 Simulation Game . 34

4.6 Abstraction . 35
4.7 Symbolic encoding of Kripke structures 35

5 Solved Exercises 37
5.1 Many-one reduction from HALTING to REACHABLE-CODE - Exercise

sheet 2023 . 37
5.2 Prove correctness of many-one reduction from HALTING to HALTING-X

- Exam 26.02.2021 . 37
5.3 Prove correctness of many-one reduction from HALTING to BITFLIP-

HALTING - Exam 20.06.2023 . 38
5.4 Prove correctness of many-one reduction from DOMINATING SET to

DS-TRIANGLE - Exam 19.05.2023 . 39

3

1 Computability and Complexity

De�nition: Problem

A problem is a question together with an (countably) in�nite set of possible
instances.
A problem is a decision problem if the question has a yes/no answer.

1.1 Decidability

De�nition: Decidability

A decision problem P is called decidable if there exists an algorithm for P . Oth-
erwise, if there doesn't exits an algorithm for P , then P is called undecidable.

De�nition: Semi-Decidability

A decision problem P is called semi-decidable, if we can build a program Π such
that:

� Π takes as input instances I of P

� if I is a �yes� instance, then Π returns true

� if I is a �no� instance, then Π returns false or does not terminate

(Π works correctly on all positive instances of P , but may not terminate on the neg-
ative instances of P)

If P is decidable =⇒ semi-decidable
If P is semi-decidable ≠⇒ decidable
If P is decidable =⇒ Co− P is decidable
If P is semi-decidable and Co− P is semi-decidable =⇒ P is decidable
If P is semi-decidable ≠⇒ Co− P is semi-decidable

1.2 Complexity of decidable Problems

1.2.1 The complexity class P:

The class P is the collection of all problems that can be solved in polynomial time in
the size of the instance.

4

De�nition: P

P consists of all decision problems P satisfying the following:

� there is a program Π that decides P and Π is such that

� for all instances I of P , the run time of Π on I is polynomial in |I|, i.e. the
run time is O

(
|I|k
)
, where k is a constant.

Example:
Model-checking algorithm: Check what is the output of a given formula under a given
truth assignment

1.2.2 The complexity class NP

NP = Non-deterministic Polynomial time.

�Non-deterministic� here means, having to possibly check all instances. If ones gets
�lucky� one can �nd a solution in polynomial time (being lucky can be enforced by non-
determinism).

Example:
Polynomial model-checking (given formula and truth assignment, check output) → NP-
SAT problem (given a formula - �is there� a truth assignment, which makes the formula
true?)

Certi�cates:
A positive instance for a problem.
SAT: If a formula φ is satis�able, there exists a certi�cate.
If the formula φ is unsatis�able, a certi�cate cannot be found.

Certi�cate relation:
A collection of all instances (e.g. formulas in SAT), together with their certi�cate (in
SAT: assignments, which make the formula true).

5

De�nition:

Assume a binary relation R

We say R is polynomially decidable if there is a polynomial-time algorithm
that checks given a pair v1, v2 of objects (e.g. formula and variable assignment in
SAT), wether (v1, v2) ∈ R.

We say R is polynomially balanced if (v1, v2) ∈ R implies |v2| ≤ |v1|k for
some �xed k ≥ 1.
(= �a certi�cate is bounded within an instance� - e.g. a truth assignment in SAT
of a formula is obviously bounded within the size of the formula)

De�nition: NP

A decision problem P is in the class NP if there exists a polynomially balanced
and polynomially decidable certi�cate relation for P .

Problems in NP can be veri�ed in polynomial time, but there does not (yet) exist a
algorithm, which solves them in polynomial time.

Proof: SAT ∈ NP
R = {(φ, µ) | formula φ evaluates to true under assignment µ}

� R is a certi�cate relation by construction: φ is a positive instance of SAT ⇔ there
exists an assignment µ that makes φ evaluate to true ⇔ (φ, µ) ∈ R.

� R is polynomially balanced because each assignment µ for φ can be represented
as a subset of variables in φ.

� R is polynomially decidable, because evaluating a propositional formula φ under
µ takes only polynomial time.

1.3 Reductions

1.3.1 Types of Reductions

Turing Reductions
The algorithm for a new problem A uses the algorithm for a problem B as a subroutine.

Many-one Reductions
De�ne a function R, which relates instances of problem A to instances of problem B.
All positive instances from A are mapped to the positive instances of B and all negative
instances of A are mapped to the negative instances of B.

Proo�ng the correctness of a reduction in NP, if SAT is involved:

6

1. Positive instance

2. Certi�cate

3. Construction of a truth assignment

4. Show that it is a satis�ng truth assignment

1.4 NP-completeness

Notation: P ≤R P ′ �P can be reduced to P ′�

NP-hard:
A problem P is called NP-hard, if any problem P ′ ∈ NP can be reduced to P (so
P ′ ≤r P).

NP-complete:
A problem P is called NP-cpmplete, if any problem P ′ ∈ NP can be reduced to P
(NP-hard) and P itself is also in NP.

Be mindful for implications on the hard-/completness of �special� problems.
If the instances are the same, but the questions changes, one cannot directly imply NP-
completeness from a NP-complete problem (e.g. 1-IN-3-SAT ⊂ NAESAT ⊂ 3-SAT).
If the instances are a proper subset and the question stays the same, one can imply NP-
hardness (3-SAT from SAT).

1.5 Other complexity classes

1.5.1 Logarithmic Space L

De�nition: Class L

L is the clas of all problems that can be solved by a program that uses logarithmic
space in respect to an input I. The program can use at most O(log2 |I|) bits of
read/write memory.

If a problem can be solved in L, it is solvable in polynomial time, because the stored
internal states can only be 2n, where n is the number of bits. So it is automatically
polynomially bound.

1.6 Useful NP problems to know

1.6.1 Halting

Instance: A program Π and an input string I
Question: Does the program Π terminate on input I?

7

Halting is semi-decidable.

1.6.2 Co-Halting

Instance: A program Π and an input string I
Question: Does the program Π not terminate/run forever on input I?

Co-Halting is not decidable.

1.6.3 Correctness

Instance: Source code for a program Π that takes a string I1 as input and outputs a
string I2.
Question: Does Π return I2 when run on input I1?

1.6.4 Reachable-Code

Instance: Source code of a program Π, a number n of a line in Π.
Question: Is there an input I for Π such that the run of Π on I will reach the code on
line n?

1.6.5 SAT, 3-SAT, Validity

SAT:
Instance: Propositional formula φ.
Question: Is φ satis�able?

3-SAT:
Instance: Propositional formula φ in 3-CNF (i.e., CNF where each clause consists of
exactly 3 literals).
Question: Is φ satis�able?

Validity:
Instance: Propositional formula φ.
Question: Is φ valid?

SAT and 3-SAT are NP-complete.

1.6.6 3-Colorability

Instance: Undirected graph G = (V,E).
Question: Does G have a 3-coloring? I.e. an assignment of one of 3 color to each of
the vertices in V such that any two vertices i, j connected by an edge [i, j] ∈ E do not
have the same color?

8

1.6.7 Dominant-Set

Instance: An undirected graph G = (V,E), and an integer k.
Question: Does there exist a dominating set of vertices of size at most k, i.e., is there
a set S ⊆ V with |S| ≤ k such that for every vertex v ∈ V it either holds v ∈ S or there
is some w ∈ S such that (v, w) ∈ E.

1.6.8 Vertex-Cover

Instance: An undirected graph G = (V,E), and an integer k.
Question: Does there exist a vertex cover of vertices of size at most k, i.e. is there a
set of vertices S ⊆ V with |S| ≤ k, such that it holds for every edge (v, w) ∈ E between
two vertices v ∈ V and w ∈ V at least either v or w are contained in S.

Vertex cover is NP-hard.

1.6.9 Independent-Set

Instance: An undirected graph G = (V,E), and an integer k.
Question: Does there exist a vertex cover of vertices of size at most k, i.e. is there a
set of vertices S ⊆ V with |S| ≤ k, such that it holds for all vertices v ∈ S and w ∈ S,
that there is no edge (v, w) ∈ E.

9

2 Satis�ability

The goal of this block is to construct a decision procedure for equality logic with unin-
terpreted fuction (EUF). Given is usually a EUF-formula φEUF , which is then step by
step reduced to a SAT problem φP . We can then use SAT-solvers to show the validity
of φEUF or provide a counter example, if the SAT-solver �nds a model.
It holds:

φEUF is E-valid i� φE is E-valid i� φP is unsatis�able.

2.1 Propositional logic

2.1.1 Syntax

� Boolean variables like p, q, r, p1, ... represent facts

e.g. r represents �it is raining�

� φ, ψ, ... for formulas

� To combine formulas and/or atoms, we can use conjunction (∧), disjunction (∨),
implication (=⇒), equivalence (↔) and xor (⊕)

� There are also the formulas ⊤ (verum) and ⊥ (falsum)

2.1.2 Semantics

Truth assignments assign truth values (0 or 1) to variables, but not formulas (we have
to evaluate them).
I.e. I(p) = 1

Models:
If a truth assignment makes a formula true, we call this assignment a model of the
formula.

Entailment:
I |= φ i� I(φ) = 1
I ̸|= φ i� I(φ) = 0

W |= φ i� Mod(W) ⊆Mod(φ), where W is a set of formulas.
To show φ |= ψ show φ =⇒ ψ is valid, or further more ¬(φ =⇒ ψ) is unsatis�able.

The empty conjunction (∧) is 1 for all interpretations, it is equivalent to ⊤

10

2.2 Tseitin translation

In a Tseitin translation the formula is decomposed into a tree. Then each node (= atom
or subformula) in the tree gets assigned a new atom li, which represents the atom or
subformula.
Example:
φ : p then l1 ↔ p

The formulas are then brought to CNF.
So l1 ↔ p becomes (¬l1 ∨ p) ∧ (l1 ∨ ¬p)

In the exams it is usually the other way around, given a decomposed Tseitin trans-
lation, reconstruct the original formula.

Useful translations (from here):

Type CNF

l = x1 ∧ x2 (x1 ∨ x2 ∨ l) ∧ (x1 ∨ l) ∧ (x2 ∨ l)

l = x1 ∨ x2 (x1 ∨ x2 ∨ l) ∧ (x1 ∨ l) ∧ (x2 ∨ l)

l = x1 ∧ x2 (NAND) (x1 ∨ x2 ∨ l) ∧ (x1 ∨ l) ∧ (x2 ∨ l)

l = x1 ⊕ x2 (XOR) (x1 ∨ x2 ∨ l) ∧ (x1 ∨ x2 ∨ l) ∧ (x1 ∨ x2 ∨ l) ∧ (x1 ∨ x2 ∨ l)

2.3 Implication graph

2.3.1 Notation

x = v@d, means that x is assigned to v at decision level d (x@d or ¬x@d for short).

Dual of a literal:
ld = 1, if l = 0
ld = 0, if l = 1

2.3.2 Antecendent

Given a non-unit clause C and a partial assignment σ. Simplify C with σ to get the
antecedent of C.

11

https://en.wikipedia.org/wiki/Tseytin_transformation#Gate_sub-expressions

Example:

C : ¬x1 ∨ x4 ∨ ¬x3
σ = {x1 7→ 1, x4 7→ 0}

¬x1 ∨ x4 ∨ ¬x3
¬1 ∨ 0 ∨ ¬x3
0 ∨ 0 ∨ ¬x3

→ antecendent(¬x3) = C

2.3.3 De�nition

An implication graph is a labeled DAG G = (V,E), where:

� Each node is labeled as l@d

� The edges E = {(vi, vj) | vi, vj ∈ V, vdi ∈ Antecendent(vj)}

� If G has a con�ict, we label the node with κ and all incoming edges {(v, κ) | vd ∈ c}
labeled with clause c

A con�ict is a c that cannot by satis�ed, due to the assignments already being
de�ned

The order of the rules is important! Rules must be evaluated from top to bottom!

2.3.4 Example 1

Given:

c1 : x ∨ y
c2 : x ∨ z

c3 : ¬y ∨ ¬z

We make a initional decision and set x to 0: x = 0@1

12

Because we set x to 0 to satisfy c1 we must set y to 1. We mark the node and the
edge accordingly.

Because we set x to 0 to satisfy c2 we must set z to 1. We mark the node and the
edge accordingly.

Because we set y and z to 1 we have a con�ict in c3. We mark this accordingly

13

2.3.5 Example 2

Given:
Truth assignemnt: {¬x9@1,¬x10@3,¬x11@3, x12@2, x13@2}
Current decision assignment: {x1@6}

c1 : ¬x1 ∨ x2
c2 : ¬x1 ∨ x3 ∨ x9
c3 : ¬x2 ∨ ¬x3 ∨ x4
c4 : ¬x4 ∨ x5 ∨ x10
c5 : ¬x4 ∨ x6 ∨ x11
c6 : ¬x5 ∨ ¬x6
c7 : x1 ∨ x7 ∨ ¬x12
c8 : x1 ∨ x8
c9 : ¬x7 ∨ ¬x8 ∨ ¬x13

Figure 1: Resulting implication graph

2.3.6 Backtracking

Identify unique inplication points (UIP). UIPs are nodes, where all paths to the con�ict
node go through.

1. Draw a �fence� around the root nodes (nodes that do not have incoming edges),
and include the con�ict node κ (see �gure 2).

2. Construct a new rule with the nodes outside of the fence

x1@6,¬x9@1,¬x10@3,¬x11@3 −→ c10 : ¬x1 ∨ x9 ∨ x10 ∨ x11
We backtrack to the �highest� decision level excluded by the fence. In this

example it will be level 3 (see �gure 3)

14

Figure 2: Fence after step 1

Figure 3: Fence after step 2

2.4 Theory of equality

2.4.1 Rules

De�nition of =̇:
The meaning is de�ned by the axioms of T

1. ∀x(x =̇ x) (re�exivity)

2. ∀, y((x =̇ y) =⇒ (y =̇ x)) (symmetry)

3. ∀x, y, z((x =̇ y) ∧ (y =̇ z) =⇒ (x =̇ z))

15

Substitution axioms:

∀x1, y1, ..., xn, yn

(
n∧

i=1

xi =̇ yi → f(x1, ..., xn) =̇ f(y1, ..., yn)

)

∀x1, y1, ..., xn, yn

(
n∧

i=1

xi =̇ yi → p(x1, ..., xn) ↔ p(y1, ..., yn)

)

Modus Ponens (MP)
I |= Φ

I |= Φ → Ψ
I |= Ψ

I |= Φ → Ψ
I |= Φ
I |= Ψ

Modus Tolens (MT)
I ̸|= Ψ

I |= Φ → Ψ
I ̸|= Φ

I |= Φ → Ψ
I ̸|= Ψ
I |= Φ

For all the other rules, check the �sem-argu.pdf � provided in Tuwel.

2.5 E-Logic and E-Formulas

To translate a formula into an E-Formula ΨE:

� We replace all constants ci with vci , where vci is a new term variable

� We replace all boolean variables bi with two new term variables vbi,1 and vbi,2 in
the form vbi,1 =̇ vbi,2

2.5.1 Equality graph

1. Add all atoms to the graph

2. Connect them via their corresponding edges

e.g. a dashed lines for an equality =̇

and a solid line for disequality ̸=̇

There are di�erent types of paths, which can have di�erent meanings for the satis�ability
of the formula.

� Equality path: An equality path is a path consisting only of edges from E=̇

An equality path between x and y is denoted by x =̇∗ y

16

� Disequality path: A disequality path is a path consisting of edges from E=̇ and
exactly one edge from E̸=̇

a path between x and y is denoted as x ̸=̇ ∗ y

� Simple path: A simple path is a path without a cycle

De�nition: Contradictroy cycle

A contradictory cycle in GE(φE) is a cycle with exaclty one disequality edge (A
disequality path, that is a cycle).

Theorem: E-unsatis�ability

A subgraph of GE(φE) is E-unsatis�able i� it contains a contradictory cycle.

2.6 Sparse Method - Reduction of E-formulas to propositinoal
formulas

For φE generate two formulas e(φE) and Bt such that

φE is E-satis�able i� e(φE) ∧Bt is satis�able

e(φE) is the propositinal skeleton generated as follows:

1. Choose an ordering on variables (and constants)

e.g. x1 < x2 < x3 < ...

2. Orient the equations according to the ordering

3. Replace xi=̇xj by ei,j

Bt is a conjunction of transitivity constraints:

1. Construct the equality graph (see 2.5.1)

2. Then draw the non-polar graph GE
NP (φ

E) with disregarding the equality type (=̇
is the same as ̸=̇)

17

3. Extract all subgraphs, which are not a triangle (cycle with length 3) and have a
cycle with a length of at least 4.1

4. Make the subgraphs chordal, by adding edges to transform them into triangle
graphs

This way we now add the transitivity relations

5. Add all constraints of each triangle, by formulating following formulas for each
triangle (each triangle adds 3 new formulas)

(ei,j ∧ ej, k =⇒ ek,i)∧
(ei,j ∧ ek, i =⇒ ej,k)∧
(ek,i ∧ ej, k =⇒ ei,j)

Now to conclude write e(φE) ∧Bt.

2.7 Ackermann's reduction

To prove validity of an EUF-formula.

1. Number all functions instances from the inside out

� F (F (x)) =⇒ F2(F1(x))

� The same functions with the same variables inside get replaced by the same
new isntances.

Example: F (x1) =̇ F (x2) ∨ F (x1) ̸=̇ F (x3)

becomes

F1(x1) =̇ F2(x2) ∨ F1(x1) ̸=̇ F3(x3)

2. Associate all function instances Fi with fi (or gi, ...)

F2(

f1︷ ︸︸ ︷
F1(x))︸ ︷︷ ︸
f2

3. Compute flatE(φEUF) by replacing all top-level´ instances of Fi by fi

F2(

f1︷ ︸︸ ︷
F1(x))︸ ︷︷ ︸
f2

becomes f2

1We do this, because a triangle already means, that the atoms are transitively connected. By only

choosing cycles with length > 3 we add actual information to the formula, by formalating transitivity

constraints, which are not already part of the formula.

18

4. Compute the functionality constraints FCE(φEUF)

Let arg(Fi) denote the argument of function Fi

Write∧mF−1
i=1

∧mF

j=i+1(arg(Fi) =̇ arg(Fj) =⇒ fi =̇ fj)

Example:

f2 =̇ 0 becomes (x =̇ f1 =⇒ f1 =̇ f2) =⇒ f2 =̇ 0

2.8 Additional material from �Tutorial: Logic and Proof

Techniques�

For some reason this is also sometimes asked in block 2 in the exams, although not explicitly part of block 2 (but taught by prof. Egly).

Enjoy.

2.8.1 Noetherian/well-founded induction

The term �well-founded� means, that there is a (lexicographic) order ⊑ in a set, where:

(s, t) ⊑ (s′, t′) i�

{
s < s′,

s = s′ and t ≤ t′

So in simple terms, the set is �ordered� (then it is also called a �poset�). The �lexico-
graphic� ordering is de�ned just like the name suggests for text characters.
For S × S (combination of elements):
(1, 2) ≤ (1, 2)
(1, 2) < (1, 3)
(1, 2) < (2, 2)

The principle of this induction is as follows:

De�nition: Noetherian/well-founded indction

Let (S,≤) be well-founded set and let P(x) be a statement involving a variable x.
Suppose

1. P(m) is true for each minimal element m of S (base case)

2. for each non-minimal element x, if P(y) is true ∀y < x, then P(x) is also
true (induction step)

Then P(x) is true for all x ∈ S.

∀x ∈ S [(∀y ∈ S(y < x =⇒ P(y))) =⇒ P(x)] =⇒ ∀z ∈ SP(z)

19

The steps needed (at least in the exams) are usually the same:

1. Determine a Base case

a) Find the minimal element(s)

S is usually de�ned over N or N0

So in the case of N the minimal element would be 1

In the case of N0 the minimal element would be 0

b) Show that the function returns a correct output for this case

i. Insert the minimal elements into the function

ii. Compare the result with the output statement of the function.

The output statement is always given with the function.

e.g. �Output: The computed non-negative integer value for x, y�

2. Formulate a Induction hypothesis

Just use exaclty the sentence below:

�Pick an arbitrary non-minimal element (x, y) and assume that P(x′, y′) is true
for all (x′, y′) ⊏ (x, y).�

3. Perform the Induction step

We want to show that P(x, y) is true for our de�ned (x, y) from step 2.

a) Perform a case split for all x and y which are greater or equal to your minimal
element (e.g. x ≥ 0 and y ≥ 0):

i. Case 1: x = [min elem.]

Compute output for the function (e.g. A(0, y) = y + 1)

�Then A([min elem.], y) = ... and P(0, y) it true�

ii. Case 2: x ̸= [min elem.]∧ y = [min elem.] (A is the funtion name in this
case)

�Then [output] ⊏ (x, [min elem.]). By the induction hypothesis P([output])
is true and A(x, [min elem.]) = A([output]). Therefore P(x, [min elem.])
holds.�

iii. Case 3: x ̸= [min elem.]∧ y ̸= [min elem.] (A is the funtion name in this
case)

�Then ([output(partial output)]). For ([partial output]) it holds that
([partial output]) ⊏ (x, y) and therefore P([partial output]) holds.
For ∀z ∈ N(0), ([output], z) it also holds that (output, z) ⊏ (x, y) and
therefore P(output, z) holds.�

4. �We conclude, that P(x, y) holds for all (x, y) ∈ N(0) × N(0)� □

20

3 Deductive Veri�cation of Programs

Pre-condition: Has to/should be ful�lled upon executing the program.
Post-condition: Has to/should be ful�lled upon exiting the program.
Contract of a program: Combination of pre- and postcondition.

3.1 Imperative language - IMP

Int positive and negative (integer) numerals
Loc locations
AExp arithmetic expressions
BExp boolean expressions
P programs

3.1.1 Evaluation

�If F1 ... Fk, then G�:
F1 ... Fk

G

Execution of p in state σ results in state σ′:
⟨p, σ⟩ → σ′

Evaluation of a in state σ has the resul/value v:
⟨a, σ⟩ → v

Deconstruct the rules and build a derivation tree.

3.2 Hoare logic

Make assertions about IMP programs using axiomatic semantics of IMP → Hoare logic

3.2.1 Partial correctness

{A} p {B}

�For all states, that ful�ll requirement A, if the program p terminates, then the new
state satis�es requirement B.�

21

3.2.2 Total correctess

[A] p [B]

�For all states, that ful�ll requirement A, the program p terminates, then the new state
satis�es requirement B.�

3.3 Proo�ng correctness

{x = 0} x := x + 1 {x = 1} Is it partially correct? → Yes.

Proof:
We need to prove:
σ |= x = 0 =⇒ (∀σ′. ⟨x := x+ 1, σ⟩ → σ′ =⇒ σ′ |= x = 1)

Assume σ |= x = 0 i� ⟨x, σ⟩ → σ(x) and ⟨0, σ⟩ → 0 and σ(x) = 0

Now we need to prove:
(∀σ′. ⟨x := x+ 1, σ⟩ → σ′ =⇒ σ′ |= x = 1)

⟨x := x+ 1, σ⟩ →

⟨x+ 1, σ⟩ →
⟨x := x+ 1, σ⟩ →

⟨x, σ⟩ → 0 ⟨1, σ⟩ → 1
⟨x+ 1, σ⟩ →
⟨x := x+ 1, σ⟩ →

⟨x, σ⟩ → 0 ⟨1, σ⟩ → 1
⟨x+ 1, σ⟩ → 1
⟨x := x+ 1, σ⟩ → σ(x/1)

→ σ(x/1) = σ′ → σ′ |= x = 1

3.4 Hoare triples/Hoare rules

�Triple is provable using Hoare rules�
⊢{A} p {B}

�Is a valid Hoare triple�
|={A} p {B}

If {A} p {B} is probable using Hoare rules, then {A} p {B} is valid.

22

3.4.1 Hoare rules for ⊢{A} p {B}

Assignment rule

{B[x/a]} x := a {B}
Rule of consequence

A =⇒ A′ {A′} p {B′} B′ =⇒ B
{A} p {B}

Sequencing rule

{A} p1 {C} {C} p2 {B}
{A} p1; p2 {B}

Skip rule

{A} skip {A}
Abort rule
Unde�ned state upon aborting (non-terminating state)

{true} abort {B}
If-then-else rule

{A ∧ b} p1 {B} {A ∧ ¬b} p2 {B}
{A} if b then p1 else p2 {B}

While loops

{A ∧ b} p {A}
{A} while b do p od {A ∧ ¬b}

A loop invariant A, holds after each iteration of the loop.

An inductive loop invariantA, holds before the �rst iteration of the loop and before and after each
iteration of the loop.
That is {A ∧ b} p {A} (this is what one needs to prove to prove inductiveness).

Example for (inductive) loop invariants:
Given program:

x := 0; y := 0; n := 10;

while x < n do

x := x + 1; y := y + x;

od

� x ≤ n: inductive invariant (also an invariant)

� x < n: not an invariant and also not an inductive invariant

� y ≥ 0: invariant (but not an inductive invariant)

23

3.4.2 Using Hoare rules

Rule for Assignment
When {A} x := a {B} then use ⊢{B[x/a]} x := a {B}

Examples: Are following Hoare triples provable?

{y = 4} x := 4 {y = x} replace values:
{(y = x)[x/4]} x := 4 {y = x}
→ {y = 4} x := 4 {y = x} ✓

{x+ 1 = y} x := x + 1 {x = y} {(x = y)[x+ 1]} x := x + 1 {x = y}
→ {x+ 1 = y} x := x + 1 {x = y} ✓

{y = x} y := 0 {y = x} {(y = x)[y/0]} y := 0 {y = x}
→ {0 = x} y := 0 {y = x} ⊘

{z = x} y := x {z = x} Precondition is equal to postcondition without
changing z or x ✓

{∀y.x = x} y := x {∀y.y = x} The y in the pre- and postcondition are not the
same, as the y in the program. We can rewrite the
triple as follows:
{∀z.z = x} y := x {∀z.z = x}
This triple is valid, since the precondition can be
derived from the postcondition. ✓

Steps for proving {A} while b do p od {B}:

1. Think of a inductive invariant I which satis�es {I ∧ b} p {I}

2.
{I ∧ b} p {I}

{I} while b do p od {I ∧ ¬b}

3. Show that A =⇒ I for {I} while b do p od {I ∧ ¬b} by rules of implication

4. Show I ∧ ¬b =⇒ B by rules of implication

3.4.3 Hoare rules for ⊢[A] p [B]

Assignment rule

[B[x/a]] x := a [B]

Rule of consequence

A =⇒ A′ [A′] p [B′] B′ =⇒ B
[A] p [B]

24

Sequencing rule

[A] p1 [C] [C] p2 [B]
[A] p1; p2 [B]

Skip rule

[A] skip [A]

Abort rule
Unde�ned state upon aborting (non-terminating state)

[false] abort [B]

If-then-else rule

[A ∧ b] p1 [B] [A ∧ ¬b] p2 [B]
[A] if b then p1 else p2 [B]

While loops

[A ∧ b ∧ t = t0] p [A ∧ t < t0] A ∧ b =⇒ t ≥ 0
[A] while b do p od [A ∧ ¬b]

Where t is an arithmetic expression like e.g. x ≤ 6

3.5 Deriving a postcondition - {A} x := a {?}
⊢{A} x := a {∃x′.(A[x/x′] ∧ x = a[x/x′])}

Example:

⊢{x = 2} x := 3

∃x′.

(x = 2)[x/x′]︸ ︷︷ ︸

∃!x′(x′=2)

∧x = (3[x/x′])︸ ︷︷ ︸
x=3︸ ︷︷ ︸

true and x = 3︸ ︷︷ ︸
x=3

Big paranthesis are not �xed out of lack for motivation.

3.6 Weaker vs. Stronger Assertions

A is weaker than B i� B =⇒ A.
�It is easier to satisfy A, because if I satisfy B I automatically also satisfy A.�
Weakest assertion: true

A is stronger than B i� A =⇒ B.
�If I satisfy B it does not automatically follow that I satisfy A, but if I do satisfy A, I
automatically satisfy B aswell.�
Strongest assertion: false

25

3.7 Finding/proving the weakest precondition wlp(p,B)

1. Find wlp(p,B)

2. Prove A =⇒ wlp(p,B)

Ad 1.
For p = p1; ...; pn compute:

1. wlp(pn, B)

2. wlp(pn−1, wlp(pn, B))

3. wlp(pn−2, wlp(pn−1, wlp(pn, B))
...

4. wlp(p1, wlp(..., wlp(pn, B)))

To compute wlp(p,B) replace variables with their values and use implications, ∧-Operators
and similar to make them into �rst-order logic formulas.

Example:

wlp(if x > 0 then z := 1 else z := −1, z > 0) =

(x > 0 =⇒ wlp(z := 1, z > 0)) ∧ (x ≤ 0 =⇒ wlp(z := −1, z > 0)) =

(x > 0 =⇒ 1 > 0︸ ︷︷ ︸
true

) ∧ (x ≤ 0 =⇒ −1 > 0︸ ︷︷ ︸
false

) =

(x > 0 =⇒ true)︸ ︷︷ ︸
true

∧ (x ≤ 0 =⇒ false)︸ ︷︷ ︸
¬(x≤0)

=

true ∧ ¬(x ≤ 0) =

¬(x ≤ 0) =

x > 0

Then use the computed precondition x > 0 to compute the next higher precondition for
nested wlp(...).

3.8 Weakest Precondition - Rules

3.8.1 Partial Correctness - WLPs

� wlp(x := a,B) = B[a/x]

� wlp(skip, B) = B

26

� wlp(abort, B) = true

� wlp(p1; p2, B) = wlp(p1, wlp(p2, B))

� wlp(if b then p1 else p2, B) = (b =⇒ wlp(p1, B) ∧ ¬b =⇒ wlp(p2, B))

� wlp(while b do p od, B) = I

3.8.2 Total Correctness - WPs

� wp(x := a,B) = B[a/x]

� wp(skip, B) = B

� wp(abort, B) = false

� wp(p1; p2, B) = wp(p1, wp(p2, B))

� wp(if b then p1 else p2, B) = (b =⇒ wp(p1, B) ∧ ¬b =⇒ wp(p2, B))

� wp(while b do p od, B) = I

3.9 Veri�cation Conditions - VCs

3.9.1 Partial Correctness

� V C(x := a,B) = true

� V C(skip, B) = true

� V C(abort, B) = true

� V C(p1; p2, B) = V C(p2, B) ∧ V C(p1, wlp(p2, B))

� V C(if b then p1 else p2, B) = V C(p1, B) ∧ V C(p2, B)

� V C(while b do p od, B) =

(I ∧ ¬b) =⇒ B∧
(I ∧ b) =⇒ wlp(p, I)∧
V C(p, I)

27

3.9.2 Total Correctness

� V C(x := a,B) = true

� V C(skip, B) = true

� V C(abort, B) = true

� V C(p1; p2, B) = V C(p2, B) ∧ V C(p1, wp(p2, B))

� V C(if b then p1 else p2, B) = V C(p1, B) ∧ V C(p2, B)

� V C(while b do p od, B) =

(I ∧ ¬b) =⇒ B∧
(I ∧ b) =⇒ t ≥ 0∧
(I ∧ b ∧ t = t0) =⇒ wp(p, I ∧ t < t0)∧
V C(p, I ∧ t < t0)

Choose t like that, that t decreases in the loop and t ≥ 0

3.10 Prove validity of triple

{A} p {B} =⇒ V C(p,B) ∧ (A =⇒ wlp(p,B))

[A] p [B] =⇒ V C(p,B) ∧ (A =⇒ wp(p,B))

3.11 Finding an Invariant

1. Introduce a loop counter e.g. k

2. Rewrite loop assignments like this:

If the assignment is x := x+ 5

We formulate: xk+1 = xk + 5

Further: xk = x0 + 5 · k
Then replace x0 with the assignment before the loop (e.g. if x := 0 → xk = 5·k)
See useful formulas below for rewriting sums

3. Reform one equation such that it expresses k

e.g. x = 2k → k = x
2

28

4. Concatenate all other expressions with ∧

5. Add the loop condition b, such that the condition also holds after the loop is
�nished

e.g. while z > 0 do ...→ z ≥ 0 if z is gradually decreased in the loop

6. Also consider adding a clause from the precondition, if seem �tting

To prove a triple, always start with A =⇒ wlp(p,B) or wp(p,B)!
This way you can cross-check your invariant.

For total correctness we also need a t. Choose/try t such that it has a relation with the
loop condition b.
For example if:
while z > 0 do ...

We choose t = z.

3.11.1 Useful formulas

x := x+ 2 → xk = x0 + 2k

x := x+ 2

y := y − 4 · x → yk = y0 − 4 · x
2 + x

2
(-x0)

Beware of your loop variable k in the sums in the loop bodies! If a variable
is used before its new assignment, you have to use

∑k−1
1 . If the variable has

an assignment other than 0, you also have to add its initial value explicitly
after the sum (also look if there is a multiplication present, if so you have

to multiply it aswell)!

Beware if you have sum of just a variable, which is not the loop variable!
Then you cannot just use the gaussian sum!
Example: Let y = 10− 2k
Let z = 6− k

29

x = x+ 2 · y − 4 · z + 5

xk+1 = xk2 · yk − 4 · zk + 5

xk = x0 + 2 ·
k∑
1

y − 4 ·
k−1∑
1

z − 4 · z0 + 5k

xk = x0 + 2 ·
k∑
1

(10− 2k)− 4 ·
k−1∑
1

(6− k) + 5k

xk = x0 + 2 ·
k∑
1

10 + 2 ·
k∑
1

−2k − 4 ·
k−1∑
1

6− 4 ·
k−1∑
1

−k + 5k

xk = x0 + 2 · 10k − 4 ·
k∑
1

k − 4 · 6 · (k − 1) + 4 ·
k−1∑
1

k + 5k

xk = x0 + 20k − 4 · k
2 + k

2
− 24 · (k − 1) + 4 · k

2 − k

2
+ 5k

30

4 Model Checking

4.1 Kripke structure

A Kripke structure is denoted as M = (S, S0, R,AP, L) where:

� S is a (�nite) set of states S

� S0 ⊆ S is the set of initial states

� R ⊆ S × S is a transition relation such that ∀s∃s′ : (s, s′) ∈ R (= every node has
at least one successor)

� AP is some �nite set of atomic propositions

� L : S → 2AP is a function that labels each state with the set of those atomic
propositions that are true in that state

A label in a note e.g. {p, q} means that p and q are true in this state (all other atoms
are false).

A path is denoted as π = s0, s1,
A subpath of π is denoted as πi where i is the start index of the path (e.g. π1 =��s0, s1, ...)

4.1.1 Temporal Logic structures

Temporal logic = �Logic that changes over time. For example now x is true, tomorrow
it might be false and the day after that it might be true again.�

4.1.2 CTL*

Path Quanti�ers

Aφ �All paths from given state have property φ�
Eφ �At least one path from given state has property φ�

Temporal Operators

Xφ �Requires that property φ holds on second state of path (= next state)�
Fφ �Assert that property φ will hold at some state on the path (= eventually/in

the future)�
Gφ �Speci�es that property φ holds at every state on the path (= always/global-

ly/everywhere)�
φUψ �The property φ is satis�ed until some point in the future where ψ holds�

�In the Kripke structure M the state s satis�es φ�:

31

M, s |= φ

�In the Kripke structure M there is a path π such that ψ holds�:
M,π |= ψ

�There is a path π in M starting at s such that M,π |= ψ�:
M, s |= Eψ

�For every path π in M starting at s it holds M,π |= ψ�:
M, s |= Aψ

Be careful of potential in�nite loops, when e.g. dealing with the F- or other
operators!

4.1.3 CTL

In CTL path quanti�ers and temporal operators always occur in pairs.
E.g. only AXφ, EXφ, AFφ, EFφ, ...

4.1.4 ACTL* & ACTL

ACTL* is a sublogic from CTL* where only universal path quanti�cation A is allowed
(no E quanti�er).

ACTL is a sublogic of CTL and combines both restrictions from CTL and ACTL*.

4.1.5 LTL

The logic LTL only uses path formulas. This means, that we restrict CTL* to disallow
path quanti�cation.

4.2 Marking algorithm - CTL Model Checking

Compute all state s of of a Kripke structure M , where s |= ϕ for a given formula ϕ.

The �level� or �depth� of a formula is determined by its amount of temporal opera-
tors.

1. Determine all subformulas with layers.

E.g. ¬EGEF¬p →
ϕ0 = p, ψ0 = ¬p
ϕ1 = EF¬p, ψ1 = EF¬p
ϕ2 = EGEF¬p, ψ2 = ¬EGEF¬p

32

2. Subformulas can then be shortened

E.g. EGEF¬p︸ ︷︷ ︸
q

can also be written/considered as EGq

3. Go through the derived subformulas and see if states satisfy the formula (proceed
from ϕ0 to ϕn). Mark every state along a path.

E.g. s0{p} → s1{¬p} and the formula is EF¬p we mark both s0 and s1

4. Repeat step 3. until there are no more subformulas

5. Delete marked nodes, which do not have a marked successor state with the formula

6. The resulting states with the complete fromula are the states, that satisfy the given
formula.

4.3 LTL Model Checking

Check wether E¬ϕ does not hold (transform As to Es by negating).

A node in this algorithm looks like this: (S, i, sk)
Where S is the set of subformulas, i is an index and sk is a state from the Kripke
structure M .

1. Construct a set S with all consistent subformulas of the formula ϕ to check.

The set must include the formula itself we want to check and depending on
the underlying Kripke structure M some parts of the formula may also be �xed.
For the rest we can construct a negated variant aswell.

E.g. for s0 |= EFGp and s0{p} we can have FGp,Gp,¬Gp and p in S. This is
because FGp is the formel itself, which we want to check, Gp is not bound (the F
only indicates, that it must be true some time in the future) so we can also negate
it and s0 satis�es p, so we must include this aswell.

E.g. EGF¬p we would get GF¬p,F¬p and p for s0{p} because G binds F¬p,
because it must be true globaly.

2. Make a transition to another node, if either S or the index gets updated

The set S is updated, if a subformula is ful�lled and a transition to another
state is in M

3. Check if there is a node with index 0 which appears in a cycle

If this is the case E |= ϕ (the subformulas are satis�ed)

Otherwise |̸= Eϕ

33

4.4 CTL* Model Checking

Combination of the techniques for CLT and LTL model checking.
We use the Marking Algorithm for dealing with state formulas and the LTL algorithm
for formulas Eϕ.

4.5 (Bi-)Simulation

Two structures are equivalent, if they satisfy the same CTL* formulas.

M ≡M ′ i� for every formula φ,M |= φ⇐⇒M ′ |= ϕ

Two structures are in preorder to one another of they preserve ACTL* properties:

M ′ ⪰M i� for every ACTL* formula φ,M ′ |= φ =⇒ M |= φ

If M1 ⪯M2 then we say M2 simulates M1

4.5.1 Bisimulation Game

There is a Spoiler, which makes moves and a Duplicator, which has to duplicate the
Spoiler's move in the other structure. The current selection of the states by the players
are marked by pebbles.

1. Spoiler chooses an initial state of either M or M ′ (place a pebble there)

2. Duplicator has to choose the same initial state on the other structure (node that
has the same labelling).

3. Spoiler now can move either of the places pebbles to a successor state

4. Duplicator now has to answer accordingly, by moving the other pebble to a state
wich is labeled equivalently

5. If the Duplicator cannot recreate the Spoiler's move, the structures are not
bisimilar, else the structures are equivalent (but possible in�nite duration)

If we have M ⪯M ′ and M ⪰M ′, we still don't have M ≡M ′!

4.5.2 Simulation Game

The Simulation Game is similar to the Bisimulation Game, with the only di�erence be-
ing, that the Spoiler cannot choose the pebble to move, rather it always playes with the
same pebble (= in the same structure).

If M ′ simulates M , then we write M ⪯M ′.

34

1. Spoiler chooses an initial state of M′ (place a pebble there)

2. Duplicator has to choose the same initial state on the other structure M (node
that has the same labelling).

3. Spoiler now moves to a successor state

4. Duplicator has to answer accordingly, by moving its pebble to a state wich is
labeled equivalently

5. If the Duplicator cannot recreate the Spoiler's move, M ′ does not simulate M

4.6 Abstraction

A structure M is abstracted, when we want to reduce/limit the amount of states we
have in a system.
According to some equivalence relation we combine multiple states into an abstract state.
These reduced states inherit some properties from their initial state such as:

� The start/initial state

� Transitions to other (now abstract) states

� Transitions to other state, which are now contained in the same abstract state
become a self loop of the abstract state

For construction of the abstract states we can use predicates to de�ne which states get
grouped together (e.g. a predicate might be p1(s) = (s.x > s.y)).
One can then check properties (e.g. Gp1) over a abstracted structure, but note that
these properties can be �spurious� meaning they are false in the abstract structure, but
might not be false in the original unabstracted structure, because for example one state
might not be reachable in the original structure. In this case the property might be false
for the abstract state, but there is no concrete counterexample, because in the initial
structure the property holds.
One can then check properties over the abstracted structure, but note that

4.7 Symbolic encoding of Kripke structures

In our case speci�ed to LTL model checking of reachability (can I reach a node such
that, ...) and safety (does it hold that, ...).

We translate a Kripke structure from its explicit encoding (a graph) to a formula:

1. Notate the formula which holds for the starting state

2. The notated formula implies � =⇒ � it's neighbouring formulas, which are con-
nected to the current state (disjuncted - �∨�)

The implied formulas are denoted with a prime (e.g. a =⇒ (¬a′ ∧ b′))

35

Figure 4: Reduced model M r obtained by existential abstraction from M

3. Conjunct (�∧�) the next formula, which is one of the connected nodes

4. Repeat step 2. and 3. until all nodes are processed

36

5 Solved Exercises

5.1 Many-one reduction from HALTING to REACHABLE-CODE
- Exercise sheet 2023

Let (Π, I) be an arbitrary instance of HALTING. We construct the REACHABLE-
CODE instance (Π′, n) as follows:

Π′(String S) {

Π(I)
return 1;

}

Now we set the line number n from REACHABLE-CODE to the last line in Π′ (the
return 1; statement).

Show HALTING (Π, I) ⇔ REACHABLE-CODE (Π′, n).

1. HALTING (Π, I) ⇒ REACHABLE-CODE (Π′, n)

If the call to Π(I) halts, the last line of Π′ is executed. This marks a positive
instance for HALTING and REACHABLE-CODE.

2. HALTING (Π, I) ⇐ REACHABLE-CODE (Π′, n)

If the last line of Π′ is executed and Π′ returns, the call to Π(I) must also have
terminated, which marks a positive instance for HALTING and REACHABLE-
CODE.

5.2 Prove correctness of many-one reduction from HALTING to
HALTING-X - Exam 26.02.2021

HALTING-X
INSTANCE: Two programs Π1, Π2 that take a string as input
QUESTION: Does there exist at least one input string I such that both Π1 and Π2 halt
on I?

Provided reduction function f(Π, I) = (Π1,Π2):

Π1(string S) = call Π(S); return;

Π2(string S) = if (S ̸= I {while(true){}}; return;

Solution (try):
�⇒� direction: Assume that Π halts on input I (positive instance of HALTING). Then
also Π1 halts, since it calls Π, which by our assumption halts. Since our input is I in Π2,
S is equal to I, which makes the if condition false and therefore Π2 halts too. Since Π1

and Π2 both halt, it is also a positive instance of HALTING-X.

37

�⇐� direction: Since for a positive instance of HALTING-X both Π1 and Π2 halt on I,
also Π has to halt on I. If Π1 halts, Π also halts, since for Π1 to �nish executing Π
cannot run in�nitely. Since the input for Π2 is I the if condition will always be false
and Π2 will halt for input I.

5.3 Prove correctness of many-one reduction from HALTING to
BITFLIP-HALTING - Exam 20.06.2023

BITFLIP-HALTING
INSTANCE: A program Π that takes a string as input, and a string I.
QUESTION: Does Π halt on I, but not halt on the bit-�ipped string flip(I)?

Provided reduction function g((Π, I)) = (Π1, I1), where I1 = flip(I):

Π1(string S) {

if (S = flip(I)) {

return;

}

Π(S);
return;

}

Solution (try):
Positive instance of Co-HALTING: program Π does not halt on I.
Positive instance of BITFLIP-HALTING: program Π halts on I, but not on the bit-
�ipped string flip(I).

�⇒� direction: Assume an arbitrary positive instance of Co-Halting such that Π does
not halt on I.
Π1 halts: Since I1 = flip(I), Π1 halts on input I, because the if condition (S =

flip(I) or in Π1: I1 = flip(I)) is satis�ed.
Π1 does not halt: If the input to Π1 is flip(I) the input I1 = flip(flip(I)) is equal to

I. Since I1 ̸= flip(I), the if condition is not satis�ed and Π(S) (Π(I1) = P (I), since
I1 = I) is executed. Since by assumption Π(I) does not halt, Π1 also does not halt.

�⇐� direction: Assume that Π1 does halt on I and does not on flip(I).
Since Π1 does not halt on flip(I), the if condition must be false. This is the case,

since I1 = flip(I) and I = flip(I), so I1 = flip(flip(I)) = I. This means that Π(I1)
(= Π(I)) is executed. Since Π1 does not halt by assumption, Π(I) also cannot halt.

(Because Π1 does halt on I, the if condition must be satis�ed. Since the function g
maps the input I to I1 = flip(I), the if condition S = flip(I) is satis�ed and Π1 halts
without executing Π(I).)

38

5.4 Prove correctness of many-one reduction from
DOMINATING SET to DS-TRIANGLE - Exam 19.05.2023

DS-Triangle
INSTANCE: A triangle-graph G = (V,E), and an integer k.
QUESTION: Does there exist a dominating set of vertices of size at most k, i.e., is there
a set S ⊆ V with |S| ≤ k such that for every vertex v ∈ V it either holds v ∈ S or there
is some w ∈ S such that (v, w) ∈ E.

Recall that the (standard) DOMINATING SET problem is de�ned over arbitrary undi-
rected graphs (together with an integer k) and has the same question.

Provided reduction function g with

g((G, k)) = (f(G), k + 1).

Further f(G) = (V ′, E ′) is de�ned for a graph G = (V,E), let {a, b, c} be a set of fresh
vertices. Moreover we de�ne:

V ′ = V ∪ {a, b, c},
E ′ = E ∪ {(a, b), (b, c), (c, a)}.

Show that G, k is a positive instance of DOMINATING SET i� g((G, k)) is a positive
instance of DS-TRIANGLE.

Solution (try):
DS ⇒ DS-T: Let there be an S ⊆ V with |S| ≤ k, s.t. S is a positive instance of an ar-
bitrary graph G of the DOMINATING SET problem. If we now apply the function g to
our instance, according to f(G) we add three new vertices to our graph V ′ = V ∪{a, b, c},
which are internally connected in a triangle E ′ = E ∪ {(a, b), (b, c), (c, a)}. The bound
k is also increased by one (k + 1). Since at least one of the new vertices has to be in
S we select one of the vertices, no matter if there is a path from V to any new vertice
a, b or c. Since we select one of the new vertice to be in S, the new graph also forms a
dominating set, because S already was a positive instance.

DS⇐ DS-T: Assume we have a positive instance of DS-TRIANGLE with (S, k). Since S
forms a dominating set within bound k in a triangle-graph by assumption, this instance
also forms a positive intance of DOMINATING SET for an arbitrary graph.

39

	Computability and Complexity
	Decidability
	Complexity of decidable Problems
	The complexity class P:
	The complexity class NP

	Reductions
	Types of Reductions

	NP-completeness
	Other complexity classes
	Logarithmic Space L

	Useful NP problems to know
	Halting
	Co-Halting
	Correctness
	Reachable-Code
	SAT, 3-SAT, Validity
	3-Colorability
	Dominant-Set
	Vertex-Cover
	Independent-Set

	Satisfiability
	Propositional logic
	Syntax
	Semantics

	Tseitin translation
	Implication graph
	Notation
	Antecendent
	Definition
	Example 1
	Example 2
	Backtracking

	Theory of equality
	Rules

	E-Logic and E-Formulas
	Equality graph

	Sparse Method - Reduction of E-formulas to propositinoal formulas
	Ackermann's reduction
	Additional material from ''Tutorial: Logic and Proof Techniques''
	Noetherian/well-founded induction

	Deductive Verification of Programs
	Imperative language - IMP
	Evaluation

	Hoare logic
	Partial correctness
	Total correctess

	Proofing correctness
	Hoare triples/Hoare rules
	Hoare rules for {A} p {B}
	Using Hoare rules
	Hoare rules for [A] p [B]

	Deriving a postcondition - {A} x := a {?}
	Weaker vs. Stronger Assertions
	Finding/proving the weakest precondition wlp(p, B)
	Weakest Precondition - Rules
	Partial Correctness - WLPs
	Total Correctness - WPs

	Verification Conditions - VCs
	Partial Correctness
	Total Correctness

	Prove validity of triple
	Finding an Invariant
	Useful formulas

	Model Checking
	Kripke structure
	Temporal Logic structures
	CTL*
	CTL
	ACTL* & ACTL
	LTL

	Marking algorithm - CTL Model Checking
	LTL Model Checking
	CTL* Model Checking
	(Bi-)Simulation
	Bisimulation Game
	Simulation Game

	Abstraction
	Symbolic encoding of Kripke structures

	Solved Exercises
	Many-one reduction from HALTING to REACHABLE-CODE - Exercise sheet 2023
	Prove correctness of many-one reduction from HALTING to HALTING-X - Exam 26.02.2021
	Prove correctness of many-one reduction from HALTING to BITFLIP-HALTING - Exam 20.06.2023
	Prove correctness of many-one reduction from DOMINATING SET to DS-TRIANGLE - Exam 19.05.2023

