Threats and countermeasuers

Lowtech

· Social Engineering:

· User Training; Never hand out sensitive Data without through veirification

· Physical Break-In

· Security Badges; Executed by guard or card reader; requires employee training

· lock down equipment

· Automatic password protected screensavers

· Encrypted filesystems

· Dupster Diving (trashing)

· paper shredder; special deposition

Computer related

· Searching the web

· user education

· Searching whois-database

· only provide generic contacts

· DNS based recoinnassance (i.e. Zone transfers)

keep DNS information to a minimum (no HINFO or TXT records); use cryptic names (like greek gods)

· configure DNS servers to only allow zone transfers to important IPs

· configure firewall to restrict port 53 (DNS) to only the backup DNS server

· use split DNS (i.e separate public from internal services)

Scanning

· Port Scanning and fingerprinting

· close all unnecessary ports

· kernel patches

· intrusion detection system

· mapping the network (traceroute)

· firewall: only let machines be pingable that need to

· router: filter out ICMP timeout messages (leaving the network)

· wardialing (historical)

· look for / forbid modems

· also extra switches, wifi access points, hubs...

Breaking in

· insecure passwords

· change default passwords

· user education

· account lockout

· protect system and backups

· sniffing, spoofing, hijacking

· good topology (i.e. No hubs...)

· encrypt sensitive date when sending over network (SFTP, HTTPS, VPN, ...)

· make initial TCP sequence numbers hard to predict (i.e. Apply security patches)

· implement anti-spoof filtering rules

· disalow sourcerouting

Malware and other threats

· viruses, trojans, worms, spyware

· user education

· (up to date) virus scanner

· patching

· desktop firewall

· rootkits

· guard system from compormisation

· integrity checking software

· regularly scan for unusual open ports

· phishing

· user education

· Denial of service

· locally stopping serices: patch, good privileges, integrity checking programs

· locally exhausting resources: principle of least privilege, adequate resources, intrusion detection systems

· remotely stopping services: patch, anti-spoof filters

· remotely exhausting resources:

· SYN floods: adequate bandwidth; redundant communication links; SYN cookies

· DDOS: no real defence

Security Management

Security plans

Cryptography

Symmetric key Cryptosystems

Substitution Ciphers

· Caessar's Cipher:

Shift every character in plaintext 3 units to the right → ci = E(pi) = pi + 3. Decryption is of course pi = D(ci) = ci – 3

Pros: Easy to use in field

Cons: Easy to predict key/message by it's obvious pattern

Craptanalysis: break between words and double letters are preserved; mapping of p to c is the same for each character → frequency analysis, analysis of pre-/suffixes, …

· Simple substitution:

Generalization of Caesar's Cipher: Each pi is mapped to a character ci determined by a key-alphabet

· One-Time Pad:

The key a string of charactes with the same size as the message itself. It determines the transision for each pi to ci. This Cryptosystem is considered perfect (not crackable). The problem, however, ist the distribution of the key.

· Vernam Cipher:

One-Time Pad with random number. In their numerical representation ci = (pi + ki) mod 26 or ci = (pi XOR ki) mod 26.

Transpositions (Permutations)

Counters pattern matching and frequency analyis

· Columnar transpositions:

Arange plaintaext in rows of the same lenght. The Ciphertext is then read columnwise.

Cryptanalysis: try to find common digrams in windows (window has width of proposed columnsize). On usccess expand to trigrams and so on.

· Data Encryption Standard (DES):

Uses both substitution (confusion) and permutation (diffusion);

Do 16 times: For righte half (bcomes new left half) generate subkey, substitute, permute, add halves (becomes new right half)

Weaknesses: Can be btueforced due to short key (≤ 64 bit); keys can be weak (all 0 or 1); Vulnerable to differential Cryptanalysis (look at how input modifies output)

· Triple DES (3DES):

Uses DES 3 times; 3 64-bit keys; Encrypt with first key, decrypt with second key, encrypt with third key; also not strong enough

· Advanced Encryption Standard (AES):

Variable keylength (128, 192, 256); possible (future) attacks: XLS (eXtended Sparse Linearization), cache timing attacks

How it's done:

· Byte substitution step → substitute bytes in block with S-Box

· Shift row → arrange bytes in rectangel and shift

· Mix columns → multiply each column wih matrix

· Add round key → XOR block with subkey

· Repeat 9, 11, or 13 times (depend on key-length)

· Omit Mix Column in last round

Asymmetric Cryptosystems

Uses two keys: Public key KE, or e, (usually to encrypt) and Private Key KD, or d, (usually to decrypt). It's infieasible to determine a private key from it's public key.

Rivest Shamir Adelma Encryption (RSA)

It holds that

P = D (KD, E (KE, P)) and

P = D (KP, E (KD, P)) and

P = E (D (P)) = D (E (P))

This means upon keypair creation one my choose which one of the keys is private and which one is public. Also the De- and Encryption are complementary (each undoes the other).

Encryption: (for each block) P^e mod n

Decryption: (for each block) (P^e)^d mod n

Security of Cryptosystems

Secrecy of ciphertexts depends on strength of algorithm and secrecy of key; Theoretically breakable systems may be infeasible to break (with current technology); Cryptanalyst need not necessarily solce the hard problem (see substitution)

Shannon's Characteristics of good Ciphers

The amount of secrecy needed should determine the amount of labor

 appropriate for the encryption and decryption.

The set of keys and the enciphering algorithm should be free from com-plexity.

Errors in ciphering should not propagate and cause corruption of further

 information in the message

· .

The size of the enciphered text should be no larger than the text of the

 original message.

Properties of trustworthy encryption systems

· It is based on sound mathematics.

· It has been analyzed by competent experts and found to be sound.

· It has stood the “test of time”.

Breaking Encryption Schemes

Attack Vector: Confidentiality, Integrity, Availability (CIA);

Possible attacks dependent on iformation available:

· Ciphertext only: Based on distribution and probabilities of characters/patterns and the characteristics of ciphertext.

· Full or partial Plaintext: Try to find D or E in C = D/E (P); uses probable plaintext analysis (play hangman)

· Ciphertext of any plaintext: chosen plaintext attack is used, meaning the attacker is able to cuase messages to be encrypted at will.

· Algorithm and Ciphertext: Chosen ciphertext attack; get key to decipher future messages; fails if two or more keys can generate the same ciphertex;

· Ciphertext and plaintext: get key to decipher future messages; operation based on human failure (careless with key/ciphertext/plaintext)

Application of Encryptions

Key exchange:

Goal want to share a symmetric key so that only the receiver can read the key and the receiver also can verify that the sender is who he claims to be.

Solution: Send E (Kpub-rec, E (Kpriv-send, K))

Digital Signature:

Properties:

· unforgable

· authentic

· not alterale

· not reusable

Unforgability and authenticity are covered with a similar approcah used in key excahnge:

The sender sends E (Kpub-rec, D (Kpriv-send, M)).

Certificates:

Are used to verify a a public key really belongs to the claiming person.

Contains:

· Public key

· Certificate information (name, user ID, authorization information, etc.)

· one or more digital signatures

The signatures are provided by a trusted third party. A Certificate is, more or less, a public key with a stamp of approval.

Public Key infrastructure (PKI):

Includes Certificate storage facilities and Certification Autority (CA). The CA can create certificates.

PGP Certificates include:

· Certificate holder's public key (with algorithm)

· Certificate holder's information

· Signatue of the certificate owner (self signment with owne private key)

· Certificate's validity period

· Preferred symmetric encryption algorithm

Secure Coding

Buffer Overflow

Prevention:

· Validate Input (not only from user, but also function-parameters)

· Handle Strings safely (check length before using strcpy, for example)

· use safe functions like strncopy

Running with high privileges

Run Processes with least privilege to minimize consequences of accidentally executed malicious code (trojans, buffer overflow, …). Elevate privileges as short as possible (sudo, runas, …).

Examples for malware the needs administrator rights:

· Back Orifice: Backdoor that gives remote access to compromized machine; needs to write to registry

· SubSeven: Similar to Back Orifice; Needs to copy itself to Windows System directory, write registry keys and alter Win.ini and System.ini

· IloveYouVirus: Worm that spread over MSOutlook; Copies itselt in System Directory and writes to registry

· Website defacing via buffer-overflow in MS Internet Informtion Services (IIS) because Internet Server Application Programming Interface (ISAPI) was (forced to) running with system-rights.

Conclusion: Don't force users to run programs with unneccesarily high privileges.

Why applications need elevated rights:

· Access Control List (ACL) issues: Forces Applications „need“ to run in privileged mode for they „need“ to acces privileged files.

Counter: Open Resources (Read only vs. Full Access); Save data in area where user may write; Loosen ACL.

· Privilege issues: Some actions just need privileges on account, but do not give too much

Counter: None, just give least privilege.

· Using Local Security Authority (LSA) secrets: LSA is used to store an retreive secret data; need admin privileges.

Counter: Data Protection API (DPAPI) same but no admin privileges are required.

Untrusted Input

Rules of thumb for programming:

· All Input is evil until proven otherwise

· Data must be validated as it crosses the boundary between trusted and untrusted environments (server cannont trust client and vice versa)

→ can lead to buffer overflow, for example

Defense against input attacks (how to handle untrusted input):

· Establish a well-defined trust boundary around the application:

Chek Input at boundary and treat it as trusted from then on (multiple layers possible)

· Create an input chokepoint:

These are the points at which input is checked (see above)

When checking input, allow valid data and disallow everything else.

Good Practices

· Don't give too much information to the attacker:

Consider errormessages to not reveal system internal infos, rather log them in a syslog (only the admin can read)

· Don't change errormessages between versions:

Attacker might use knowlwge which version, plugin, etc. ist installed to mount an attack

· Don't enable features without asking:

Important, when there exist dependencies without features. Can lead to accidentally (and unknowingly) opened security holes

· Add Securiy comments to your code:

Comments save you from forgetting why you made a certain security decision. Also fellow developers will know how to use your code.

· Don't re-invent the wheel:

Authenticaytion, Encryption, etc. -implementations are tried and tested and much more likely to have less flaws than own implemenation.

· Don't force users to make security decisions:

Users usually want to get their job done and don't mind security → if needed make workding simple and understandable; make default decision the more secure one

· Don't write user files to system directory:

See ACL issues

· Don't writer to HKEY_LOCAL_MACHINE:

See above

· Don't read objects with FULL_CONTROLL or ALL_ACCESS:

See above

· Allow long passwords:

≥ 14 (since Windows 2000)

· Do thorough logging:

Most of the time they are the single source to identify an attack; Make sure only admin can read logs.

