Texts and Monographs in Computer Science

Suad Alagi¢ and Michael A. Arbib
The Design of Well-Structured and Correct Programs
1978. x, 292pp. 14 illus. cloth

Michael A. Arbib, A.J. Kfoury, and Robert N. Mol
A Basis for Theoretical Computer Science
1981. vii, 220pp. 49 illus. cloth

F.L. Bauer and H. Wossner
Algorithmic Language and Program Development
1982. xvi, 497pp. 109 illus. cloth

Edsger W. Dijkstra
Selected Writings on Computing: A Personal Perspective
1982. xvii, 362pp. 1 illus. cloth

Peter W. Frey, Ed.
Chess Skill in Man and Machine, 2nd Edition
1983. xiv, 329pp. 104 illus. cloth

David Gries, Ed.
Programming Methodology: A Collection of Articles by Members of IFIP WG2.3
1978. xiv, 437pp. 68 illus. cloth

David Gries
The Science of Programming
1981. xvi, 366pp. cloth

A.J. Kfoury, Robert N. Moll, and Michael A. Arbib
A Programming Approach to Computability
1982. viii, 251pp. 36 illus. cloth

Brian Randell, Ed.
The Origins of Digital Computers: Selected Papers
3rd Edition. 1982. xvi, 580pp. 126 illus. cloth

Arto Salomaa and Matti Soittola
Automata-Theoretic Aspects of Formal Power Series
1978. x, 171pp. cloth

Jeffrey R. Sampson
Adaptive Information Processing: An Introductory Survey
1976. x, 214pp. 83 illus. cloth

William M. Waite and Gerhard Goos
Compiler Construction
1984, xiv, 446pp. 196 illus. cloth

Niklaus Wirth
Programming in Modula-2
2nd Corr. Edition. 1983. iv, 176pp. cloth

R.T. Gregory and E.V. Krishnamurthy
Methods and Applications of Error-Free Computation
1984. xii, 189pp. 1 illus. cloth

e s e

The Science
of Programming

David Gries

Springer-Verlag
New York Heidelberg Berlin

David Gries

Depe tment of ComputerScience
Cornell University

Upson Hall

Ithaca, NY 14853

U.S.A.

Library of Congress Cataloging in Publication Data
Gries, David,

The science of programming.

(Texts and monographs in computer science)

Bibliography: p.

Includes index.

1. Electronic digital computers-—Programming.
I. Title. II. Series.
QA76.6.G747 001.64'2 81-14554

AACR2

© 1981 by Springer-Verlag New York Inc.

All rights reserved. No part of this book may be translated or

reproduced in any form without written permission from Springer- Verlag,
175 Fifth Avenue, New York, New York 10010, USA.

The use of general descriptive names, trade names, trademarks, etc. in

this publication, even if the former are not especially identified, is

not to be taken as a sign that such names, as understood by the Trade Marks
and Merchandise Marks Act, may accordingly be used freely by anyone.

Printed in the United States of America.
987654 3 (Third Printing, 1985)

ISBN 0-387-90641-X Springer-Verlag New York Heidelberg Berlin
ISBN 3-540-90641-X Springer-Verlag Berlin Heidelberg New York

Foreword

This is the textbook I hoped someone like Professor David Gries
would write —and, since the latter has no rivals, that means I just hoped
he would write it. The topic deserves no lesser author.

During the last decade, the potential meaning of the word “program”
has changed profoundly. While the “program” we wrote ten years ago
and the “program”™ we can write today can both be executed by a com-
puter, that is about all they have in common. Apart from that superficial
similarity, they are so fundamentally different that it is confusing to
denote both with the same term. The difference between the “old pro-
gram” and the “new program” is as profound as the difference between a
conjecture and a proven theorem, between pre-scientific knowledge of
mathematical facts and consequences rigorously deduced from a body of
postulates.

Remembering how many centuries it has taken Mankind to appreciate
fully the profundity of this latter distinction, we get a glimpse of the edu-
cational challenge we are facing: besides teaching technicalities, we have
to overcome the mental resistance always evoked when it is shown how
the techniques of scientific thought can be fruitfully applied to a next area
of human endeavour. (We have already heard all the objections, which
are so traditional they could have been predicted: “old programs” are
good enough, “new programs” are no better and are too difficult to design
in realistic situations, correctness of programs is much less important than
correctness of specifications, the “real world” does not care about proofs,
etc. Typically, these objections come from people that don’ master the
techniques they object to.)

It does not suffice just to explain the formal machinery that enables us
to design “new programs”. New formalisms are always frightening, and it
takes much careful teaching to convince the novice that the formalism is

vi Foreword

not only helpful but even indispensable. Choice and order of examples
are as important as the good taste with which the formalism is applied.
To get the message across requires a scientist that combines his scientific
involvement in the subject with the precious gifts of a devoted teacher.
We should consider ourselves fortunate that Professor David Gries has
met the challenge.

Edsger W. Dijkstra

Preface

The Oxford English Dictionary contains the following sentence con-
cerning the term science:

Sometimes, however, the term science is extended to de-
note a -department of practical work which depends on
the knowledge and conscious application of principles;
an art, on the other hand, being understood to require
merely knowledge of traditional rules and skill acquired
by habit.

It is in this context that the title of this book was chosen. Programming
began as an art, and even today most people learn only by watching oth-
ers perform (e.g. a lecturer, a friend) and through habit, with little direc-
tion as to the principles involved. In the past 10 years, however, research
has uncovered some useful theory and principles, and we are reaching the
point where we can begin to teach the principles so that they can be cons-
ciously applied. This text is an attempt to convey my understanding of
and excitement for this just-emerging science of programming.

The approach does require some mathematical maturity and the will to
try something new. A programmer with two years experience, or a junior
or senior computer science major in college, can master the material —at
least, this is the level I have aimed at.

A common criticism of the approach used in this book is that it has
been used only for small (one or two pages of program text), albeit com-
plex, problems. While this may be true so far, it is not an argument for

. ignoring the approach. In my opinion it is the best approach to reasoning

about programs, and I believe the next ten years will see it extended to
and practiced on large programs. Moreover, since every large program
consists of many small programs, it is safe to say the following:

Vil Preface

One cannot learn to write large programs effectively until
one has learned to write small ones effectively.

While success cannot be guaranteed, my experience is that the approach
often leads to shorter, clearer, correct programs in the same amount of
time. It also leads to a different frame of mind, in that one becomes
more careful about definitions of variables, about style, about clarity.
Since most programmers currently have difficulty developing even small
programs, and the small programs they develop are not very readable,
studying the approach should prove useful.

The book contains little or no discussion of checking for errors, of
making programs robust, of testing programs and the like. This is not
because these aspects are unimportant or because the approach does not
allow for them. It is simply that, in order to convey the material as sim-
ply as possible, it is necessary to concentrate on the one aspect of develop-
ing correct programs. The teacher using this book may want to discuss
these other issues as well.

The Ofganization of the Book

Part I is an introduction to the propositional and predicate calculi.
Mastery of this material is important, for the predicate calculus should be
used as a tool for doing practical reasoning about programs. Any discip-
line in which severe complexity arises usually turns to mathematics to
help control that complexity. Programming is no different.

Rest assured that I have attempted to convey this material from the
programmer’s viewpoint. Completeness, soundness, etc., are not men-
tioned, because the programmer has no need to study these issues. He
needs to be able to manipulate and simplify propositions and predicates
when developing programs.

Chapter 3, which is quite long, discusses reasoning using a “natural
deduction system”. I wrote this chapter to learn about such systems and
to see how effective they were for reasoning about programs, because a
number of mechanical verifier systems are based on them. My conclusion
is that the more traditional approach of chapter 2 is far more useful, but I
have left chapter 3 in for those whose tastes run to the natural deduction
systems. Chapter 3 may be skipped entirely, although it may prove useful
in a course that covers some formal logic and theory.

If one is familiar with a few concepts of logic, it is certainly possible to
begin reading this book with Part Il and to refer to Part 1 only for con-
ventions and notation. The teacher using this text in a course may also
want to present the material in a different order, presenting, for example,
the material on quantification later in the course when it is first needed.

Preface X

Part I1 defines a small language in terms of weakest preconditions. The
important parts —the ones needed for later understanding of the develop-
ment of programs— are chapters 7 and 8, sections 9.1 and 9.2, and
chapters 10 and I1. Further, it is possible to skip some of the material,
for example the formal definition of the iterative construct and the proof
of theorem 11.6 concerning the use of a loop invariant, although I believe
that mastering this material will be beneficial.

Part III is the heart of the book. Within it, in order to get the reader
more actively involved, 1 have tried the following technique. At a point, a
question will be raised, which the reader is expected to answer. The ques-
tion is followed by white space, a horizontal line, and more white space.
After answering the question, the reader can then continue and discover
my answer. Such active involvement will be more difficult than simply
reading the text, but it will be far more beneficial.

Chapter 21 is fun. It concerns inverting programs, something that Eds-
ger W. Dijkstra and his colleague Wim Feijen dreamed up. Whether it is
really useful has not been decided, but it is fun. Chapter 22 presents a
few simple rules on documenting programs; the material can be read be-
fore the rest of the book. Chapter 23 contains a brief, personal history of
this science of programming and an anecdotal history of the programming
problems in the book.

Answers to some exercises are included —all answers are not given so
the exercises can be used as homework. A complete set of answers can be
obtained at nominal cost by requesting it, on appropriate letterhead.

Notation. The notation iff is used for “if and only if”. A few years ago,
while lecturing in Denmark, I used fif instead, reasoning that since “if and
only if” was a symmetric concept its notation should be symmetric also.
Without knowing it, I had punned in Danish and the audience laughed,
for fif in Danish means “a little trick™. I resolved thereafter to use fifsol
could tell my joke, but my colleagues talked me out of it.

The symbol O is used to mark the end of theorems, definitions,
examples, and so forth. When beginning to produce this book on the
phototypesetter, it was discovered that the mathematical quantifiers
“forall” and “exists” could not be built easily, so 4 and E have been used
for them.

Throughout the book, in the few places they occur, the words ke, him
and his denote a person of either sex.

X Preface

Acknowledgements

Those familiar with Edsger W. Dijkstra’s monograph 4 Discipline of
Programming will find his influence throughout this book. The calculus
for the derivation of programs, the style of developing programs, and
many of the examples are his. In addition, his criticisms of drafts of this
book have been invaluable.

Just as important to me has been the work of Tony Hoare. His paper
on an axiomatic basis for programming was the start of a new era, not
only in its technical contribution but in its taste and style, and his work
since then has continued to influence me. Tony’s excellent, detailed criti-
cisms of a draft of Part I caused me to reorganize and rewrite major parts
of it.

I am grateful to Fred Schneider, who read the first drafts of all chap-
ters and gave technical and stylistic suggestions on almost every para-
graph.

A number of people have given me substantial constructive criticisms
on all or parts of the manuscript. For their help I would like to thank
Greg Andrews, Michael Gordon, Eric Hehner, Gary Levin, Doug Mcll-
roy, Bob Melville, Jay Misra, Hal Perkins, John Williams, Michael
Woodger and David Wright.

My appreciation goes also to the Cornell Computer Science Commun-
ity. The students of course CS600 have been my guinea pigs for the past
five years, and the faculty and students have tolerated my preachings
about programming in a very amiable way. Cornell has been an excellent
place to perform my research.

This book was typed and edited by mysglf, using the departmental
PDP11/60-VAX system running under UNIX and a screen editor written
for the Terak. (The files for the book contain 844,592 characters.) The
final copy was produced using zroff and a Comp Edit phototypesetter at
the Graphics Lab at Cornell. Doug Mcllroy introduced me to many of
the intricacies of troff; Alan Demers, Dean Krafft and Mike Hammond
provided much help with the PDP11/60-VAX system; and Alan Demers,
Barbara Gingras and Sandor Halasz spent many hours helping me con-
nect the output of troff to the phototypesetter. To them I am grateful.

The National Science Foundation has given me continual support for
my research, which led to this book.

Meetings of the IFIP Working Group on programming methodology,
WG2.3, have had a strong influence on my work in programming metho-
dology over the past 8 years.

+UNIX is a trademark of Bell Laboratories.

Preface Xi

.FinallyA I thank my wife, Elaine, and children, Paul and Susan, for
their love and patience while I was writing this book.

In preparing the second printing of this book, over 150 changes were
made without significantly changing the page numbering. Thanks go to
the foliowing people for notifying me of errors: Roland Backhouse, Alfs
T. Berztiss, Ed Cohen, Cui Jing, Cui Yan-Nong, Pavel Curtis, Alan
Demers, David Gries, Robert Harper, Cliff Jones, Donald E. Knuth, Liu
Shau-Chung, Michael Marcotty, Alain Martin, James Mildrew, Ken
Perry, Hal Perkins, Paul Pritchard, Willem de Roever, J.L.A. van de
Snepsheut, R.C. Shaw, Jorgan Steensgaard-Madsen, Rodney Topor, Sol-
veig Torgerson, Wlad Turski, V. Vitek, David Wright, Zhou Bing-Sheng.

Table of Contents

Part 0. Why Use Logic? Why Prove Programs Correct?......... .

Part 1. Propositions and Predicates....................___

Chapter 1. Propositions..

L.1. Fully Parenthesized Propositions............coooveevioo
1.2. Evaluation of Constant Propositions.............cocoeovovoo
1.3. Evaluation of Propositions in a State
I.4. Precedence Rules for OPperatorsoveuveeees oo

1.5. Tautologies..............

1.6. Propositions as Sets of States ...
1.7. Transforming English to Propositional Form.....................

Chapter 2. Reasoning using Equivalence Transformations..........
2.1. The Laws of Equivalence ...
2.2. The Rules of Substitution and Transitivity ...
2.3. A Formal System of Axioms and Inference Rules...............

Chapter 3. A Natural Deduction SYStem ..coeveniiriiiieeeee
3.1. Introduction to Deductive ProofS ..o..oovveioeeeo L

3.2. Inference Rules........

3.3. Proofs and Subproofs..........ooooovoveverceerr
3.4. Adding Flexibility to the Natural Deduction System...........
3.5. Developing Natural Deduction System Proofs.....................

4.3. Free and Bound Identifiers

4.4. Textual Substitution

10
11
12
14
15
16

19
19
22
25

28
29
30
36
45
52

66
66
71
76
79

Xiv

4.5. Quantification Over Other Ranges....
4.6. Some Theorems About Textual Substitution and States

Table of Contents

Chapter 5. Notations and Conventions for Arrays.....................

5.1. One-dimensional Arrays as Function

5.2. Array Sections and Pictures..............

Chapter 6. Using Assertions to Documen

6.1. Program Specifications
6.2. Representing Initial and Final Values of Variables
6.3. Proof Outlines.....................coooee

Part I1. The Semantics of a Small Language

Chapter 7. The Predicate Transformer wp

PN

t Programs.................

Chapter 8. The Commands skip, abort and Composition

Chapter 9. The Assignment Command
9.1. Assignment to Simple Variables........

9.2. Multiple Assignment to Simple Variablescoooooeovi

9.3. Assignment to an Array Element......

9.4. The General Multiple Assignment Command
Chapter 10. The Alternative Command ...

12.2. Two Theorems Concerning Procedure Call
12.2. Using Var Parameters.....................

Part 11I. The Development of Programs....

Chapter (I/3/ Introduction.........ccoeeeeeenn.

Chapter 14. Programming as a Goal-Oriented Activity...............

Chapter 15 Developing Loops from Invariants and Bounds.......

15.1. Developing the Guard First

15.2. Making Progress Towards Terminationc.ooeveenn..

Chapter 16.. Developing Invariants
16.1. The Balloon Theory.......oooo.o.........
16.2. Deleting a Conjunct.........cceoeo........
16.3. Replacing a Constant By a Variable

82
85

88
88
93
96

99
99
102
103

107
108
114

117
117
121
124
127

131
138

149
150
153
158
160

163
163
172

179
179
185

193
193
195
199

Table of Contents

Chapter 18. Using Iteration Instead of Recursion.......................

18.1.
18.2.
18.3.

Solving Simpler Problems Firstococoeiiiiiiii i
Divide and CONQUET.......ccovceveuirineievieiieis e
Traversing Binary TTees ...occooeueeeoiioiiiiiiieceeee L

Chapter 19. Efficiency Considerationscocooovvvveeveeivneeennn .

19.1.
19.2.
19.3.

Chapter 20. Two Larger Examples of Program Development

20.1.

Restricting NondeterminiSmcooovveeievoeeeeee e
Taking an Assertion out of @ LoOp wecvveeieecieennieec
Changing a Representationc.ooceeveevenoeeeis oo

Justifying Lines of TeXt ...occvv e L

Chapter 22. Notes on Documentation...........ccoeeeeevveeeeeveeennn.. .

22.1.

INdentationccooiiiiii i e

Chapter 23. Historical NOeS ...cc..coemvervrivvienie oo

23.1.
23.2.

A Brief History of Programming Methodology..................
The Problems Used in the BOOK «.oovvvvveeiiiiniiieeneceeen L

Appendix 1. Backus-Naur FOrmccoovvvoniimonnceneecee e

Appendix 2. Sets, Sequences, Integers and Real Numbers............

Appendix 3. Relations and Functions..........ccoeeeevreeevaneivnenen, .

Xv

206
211

216

221
222
226
229

237
238
241
246

253
253
259

265

275
275
283
287

294
294
301

304
310
315
320
323
355
358

Part ¢
Why Use Logic?
Why Prove Programs Correct?

A story

We have just finished writing a large program (3000 lines). Among
other things, the program computes as intermediate results the quotient g
and remainder r arising from dividing a non-negative integer x by a posi-
tive integer y. For example, with x =7 and y =2, the program calculates
g =3 (since 7+2=3) and r =1 (since the remainder when 7 is divided by
21is 1).

Our program appears below, with dots “...” representing the parts of
the program that precede and follow the remainder-quotient calculation.
The calculation is performed as given because the program will sometimes
be executed on a micro-computer that has no integer division, and porta-
bility must be maintained at all costs! The remainder-quotient calculation
actually seems quite simple; since = cannot be used, we have elected to
subtract divisor ¥ from a copy of x repeatedly, keeping track of how
many subtractions are made, until another subtraction would yield a nega-
tive integer.

ri= x5 qi=0;
while » >y do
begin r:=r—y; g:= g+1 end;

We’re ready to debug the program. With respect to the remainder-
quotient calculation, we’re smart enough to realize that the divisor should
initially be greater than 0 and that upon its termination the variables

2 Part 0. Why Use Logic? Why Prove Programs Correct?

should satisfy the formula
x =y=*q +r,

so we add some output statements to check the calculations:

write (‘dividend x =, x, 'divisor y =,)
r=x; q:=0;
while r >y do
begin r:=r—y; g:= g+1 end;
write("y *q +r =, y *q +r);

Unfortunately, we get voluminous output because the program segment
occurs in a loop, so our first test run is wasted. We try to be more selec-
tive about what we print. Actually, we need to know values only when an
error is detected. Having heard of a new feature just inserted into the
compiler, we decide to try it. If a Boolean expression appears within
braces { and } at a point in the program, then, whenever “flow of control”
reaches that point during execution, it is checked: if false, a message and
a dump of the program variables are printed: if true, execution continues
normally. These Boolean expressions are called assertions, since in effect
we are asserting that they should be true when flow of control reaches
them. The systems people encourage leaving assertions in the program,
because they help document it.

Protests about inefficiency during production runs are swept aside by
the statement that there is a switch in the compiler to turn off assertion
checking. Also, after some thought, we decide it may be better always to
check assertions —detection of an error during production would be well
worth the extra cost.

So we add assertions to the program:

{r >0
ri=x; g:=0;
(1) while r >y do
begin r:=r—y; g:= g+1 end;
{x =y=*q +r}

Testing now results in far less output, and we make progress. Assertion
checking detects an error during a test run because ¥y is 0 just before a
remainder-quotient calculation, and it takes only four hours to find the
error in the calculation of y and fix it. ‘

Part 0. Why Use Logic? Why Prove Programs Correct? 3

But then we spend a day tracking down an error for which we received
no nice false-assertion message. We finally determine that the remainder-
quotient calculation resulted in

xX=6,y=3,g=1,r=3,

Sure enough, both assertions in (1) are true with these values; the problem
is that the remainder should be less than the divisor, and it isnt. We
determine that the loop condition should be r =2y instead of r >y. If
only the result assertion were strong enough —if only we had used the
assertion x =y*q +r and r <y-— we would have saved a day of work!

- Why didn’t we think of it?

We fix the error and insert the stronger assertion:

{r >0}
r=x;g:=0;
while 7 =y do
begin r:=r—y; g:= g+1 end;
{x =y*q +r and r <y}

Things go fine for a while, but one day we get incomprehensible output.
It turns out that the quotient-remainder algorithm resulted in a negative
remainder » = —2. But the remainder shouldn’t be negative! And we find
out that r was negative because initially x was —2. Ahhh, another error
in calculating the input to the quotient-remainder algorithm —x isn’t sup-
posed to be negativel But we could have caught the error earlier and
saved two days searching, in fact we should have caught it earlier; all we
had to do was make the initial and final assertions for the program seg-
ment strong enough. Once more we fix an error and strengthen an asser-
tion:

{0<x and 0<y}
r=x;q:=0;
while r =2y do
begin ri=r—y; g:= g+1 end;
{x =y*q +r and 0<r <y}

It sure would be nice to be able to invent the right assertions to use in a
less ad hoc fashion. Why can’t we think of them? Does it have to be a
trial-and-error process? Part of our problem here was carelessness in
specifying what the program segment was to do ——we should have written

4 Part 0. Why Use Logic? Why Prove Programs Correct?

the initial assertion (0<Xx and 0 <{y) and the final assertion (x =y*q +r
and 0<r <y) before writing the program segment, for they form the
definition of quotient and remainder.

But what about the error we made in the condition of the while loop?
Could we have prevented that from the beginning? Is there is a way to
prove, just from the program and assertions, that the assertions are true
when flow of control reaches them? Let’s see what we can do.

Just before the loop it seems that part of our result,
2) x =y*q +r

holds, since x =r and ¢ =0. And from the assignments in the loop body
we conclude that if (2) is true before execution of the loop body then it is
true after its execution, so it will be true just before and after every itera-
tion of the loop. Let’s insert it as an assertion in the obvious places, and
let’s also make all assertions as strong as possible:

{0<x and 0<y}

ri=x; q:=0;

{0<r and 0<y and x =y*q +r}

while r 2y do

begin {0<r and 0 <y <r and x =y*q +r}

ri=r—y; q:=q+l
{0<r and 0<<y and x =y*q +r}

end;

{0<r <y and x = y*q +r}

Now, how can we easily determine a correct loop condition, or, given the
condition, how can we prove it is correct? When the loop terminates the
condition is false. Upon termination we want r <p, so that the comple-
ment, r =y must be the correct loop condition. How easy that was!

It seems that if we knew how to make all assertions as strong as possi-
ble and if we learned how to reason carefully about assertions and pro-
grams, then we wouldn’t make so many mistakes, we would know our
program was correct, and we wouldn’t need to debug programs at all!
Hence, the days spent running test cases, looking through output and
searching for errors could be spent in other ways.

Pt 0 Why Use Logic? Why Prove Programs Correct? 5

Divcussion

Ihe story suggests that assertions, or simply Boolean expressions, are
reilly needed in programming. But it is not enough to know how to write
Houlean cxpressions; one needs to know how to reason with them: to sim-
plity them, to prove that one follows from another, to prove that one is
not true in some state, and so forth. And, later on, we will see that it is
necessary to use a kind of assertion that is not part of the usual Boolean
¢xpression language of Pascal, PL/I or FORTRAN, the “quantified”

nusertion.

Knowing how to reason about assertions is one thing; knowing how to
teason about programs is another. In the past 10 years, computer science
his come a long way in the study of proving programs correct. We are
teaching the point where the subject can be taught to undergraduates, or
iv anyone with some training in programming and the will to become
more proficient. More importantly, the study of program correctness
prools has led to the discovery and elucidation of methods for developing
programs. Basically, one attempts to develop a program and its proof
hinnd-in-hand, with the proof ideas leading the way! If the methods are
practiced with care, they can lead to programs that are free of errors, that
titke much less time to develop and debug, and that are much more easily
understood (by those who have studied the subject).

Above, I mentioned that programs could be free of errors and, in a
way, I implied that debugging would be unnecessary. This point needs
somne clarification. Even though we can become more proficient in pro-
pramming, we will still make errors, even if only of a syntactic nature
{typos). We are only human. Hence, some testing will always be neces-
sary. But it should not be called debugging, for the word debugging
mnplics the existence of bugs, which are terribly difficult to eliminate. No
matter how many flies we swat, there will always be more. A disciplined
method of programming should give more confidence than that! We
should run test cases not to look for bugs, but to increase our confidence
in a4 program we are quite sure is correct; finding an error should be the
cxception rather than the rule.

With this motivation, let us turn to our first subject, the study of logic.

Part [
Propositions
and Predicates

Chapter | defines the syntax of propositions —Boolean expressions
using only Boolean variables— and shows how to evaluate them. Chapter
2 gives rules for manipulating propositions, which is often done in order
to find simpler but equivalent ones. This chapter is important for further
work on programming, and should be studied carefully.

Chapter 3 introduces a natural deduction system for proving theorems
about propositions, which is supposed to mimic in some sense the way we
“naturally” argue. Such systems are used in research on mechanical verifi-
cation of proofs of program correctness, and one should become familiar
with them. But the material is not needed to understand the rest of the
book and may be skipped entirely.

Chapter 4 extends propositions to include variables of types besides
Boolean and introduces quantification. A predicate calculus is given, in
which one can express and manipulate the assertions we make about pro-
gram variables. “Bound” and “free” variables are introduced and the
notion of textual substitution is studied. This material is necessary for
further reading.

Chapter 5 concerns arrays. Thinking of an array as a function from
subscript values to array element values, instead of as a collection of
independent variables, leads to some neat notation and rules for dealing
with arrays. The first two sections of this chapter should be read, but the
third may be skipped on first reading.

Finally, chapter 6 discusses briefly the use of assertions in programs,
thus motivating the next two parts of the book.

Chapter 1
Propositions

We want to be able to describe sets of states of program variables and
to write and manipulate clear, unambiguous assertions about program
variables. We begin by considering only variables (and expressions) of
type Boolean: from the operational point of view, each variable contains
one of the values T and F, which represent our notions of “truth” and
“falsity”, respectively. The word Boolean comes from the name of a 19th
century English mathematician, George Boole, who initiated the algebraic
study of truth values.

Like many logicians, we will use the word proposition for the kind of
Boolean or logical expression to be defined and discussed in this chapter.

Propositions are similar to arithmetic expressions. There are operands,
which represent the values T or F (instead of integers), and operators
(e.g. and, or instead of *, +), and parentheses are used to aid in determin-
ing order of evaluation. The problem will not be in defining and evaluat-
ing propositions, but in learning how to express assertions written in
English as propositions and to reason with those propositions.

1.1 Fully Parenthesized Propositions

Propositions are formed according to the following rules (the operators
will be defined subsequently). As can be seen, parentheses are required
around each proposition that includes an operation. This restriction,
which will be weakened later on, allows us to dispense momentarily with
problems of precedence of operators.

1. T and F are propositions.

2. An identifier is a proposition. (An identifier is a sequence of -

one or more digits and letters, the first of which is a letter.)

Section 1.1 Fully Parenthesized Propositions 9

3. If b is a proposition, then sois (1 5).

4. If b and ¢ are propositions, then so are (b Ac), (bVe),
(b =c¢), and (b =c¢).

This syntax may be easier to understand in the form of a BNF grammar
(Appendix 1 gives a short introduction to BNF):

(1.1.1) <proposition> = T | F | <identifier>
| (« <proposition>)
| (<proposition> A <proposition>>)
| { <proposition> VvV <proposition>>)
| (<proposition> = <proposition>>)
| (<proposition> = <proposition>>)

Example. The following are propositions (separated by commas):

F, (17), (bVxyz), ((1b)A(c=d)),
((abc1=id)A(~d)) O

Example. The following are not propositions:
FF, (bV(c), (b)A), at+b O

As seen in the above syntax, five operators are defined over values of
type Boolean:

negation: (notbd), or (a1 b)
conjunction: (b and c), or (b Ac)
disjunction: (b orc), or (bVc)
implication: (b imp ¢), or (b =¢)
equality: (b equals ¢), or (b =c)

Two different notations have been given for each operator, a name and a
mathematical symbol. The name indicates how to pronounce it, and its
use also makes typing easier when a typewriter does not have the
corresponding mathematical symbol.

The following terminology is used. (b Ac¢) is called a conjuncrion; its
operands b and ¢ called comjuncts. (bVc) is called a disjunction; its
operands b and ¢ are called disjuncts. (b =c¢) is called an implication;
its antecedent is b and its consequent is c.

10 Part 1. Propositions and Predicates

1.2 Evaluation of Constant Propositions

Thus far we have given a syntax for propositions; we have defined the
set of well-formed propositions. We now give a semantics (meaning) by
showing how to evaluate them.

We begin by defining evaluation of constant propositions —proposi-
tions that contain only constants as operands— and we do this in three
cases based on the structure of a proposition e: for e with no operators,
for e with one operator, and for e with more than one operator.

(1.2.1) Case 1. The value of proposition T is T’; the value of F is F.

(1.2.2) Case 2. The values of (1b), (b Ac), (b Ve), (b =¢)and (b =c),
where b and ¢ are each one of the constants T and F, are given
by the following table (called a truth table). Each row of the
table contains possible values for the operands b and ¢ and, for
these values, shows the value of each of the five operations. For
example, from the last row we see that the value of (1 T) is F
and that the values of (TAT), (TVT), (T=>7T)and (I'=T) are

all T.
b c|Gb) (BAc) (BVe) (B=>c) (b=c)
F F| T F F T T

(123 F T| T F T T F
T F| F F T F F
T T| F T T T T

(1.2.4) Case 3. The value of a constant proposition with more than one
operator is found by repeatedly applying (1.2.2) to a subproposi-
tion of the constant proposition and replacing the subproposition
by its value, until the proposition is reduced to T or F.

We give an example of evaluation of a proposition:

(TAT)>F)
=(T>F)
= F

Remark: The description of the operations in terms of a truth table, which
lists all possible operand combinations and their values, can be given only
because the set of possible values is finite. For example, no such table
could be given for operations on integers. [I

The names of the operations correspond fairly closely to their mean-

ings in English. For example, “not true” usually means “false”, and “not-

Section 1.3 Evaluation of Propositions in a State Il

ELIYS

false” “true”. But note that operation or denotes “inclusive or” and not
“exclusive or”. That is, (TV T) is T, while the “exclusive or” of T and T
is false.

Also, there is no causality implied by operation imp. The sentence “If
it rains, the picnic is cancelled” can be written in propositional form as
(rain = no picnic). From the English sentence we infer that the lack of
rain means there will be a picnic, but no such inference can be made from
the proposition (rain = no picnic).

1.3 Evaluation of Propositions in a State

A proposition like ((1¢)V d) can appear in a program in several places,
for example in an assignment statement b:= ((ac)Vd) and in an if-
statement if ((ac)Vd) then ---. When the statement in which the
proposition appears is to be executed, the proposition is evaluated in the
current machine “state” to produce either T or F. To define this evalua-
tion requires a careful explanation of the notion of “state™.

A state associates identifiers with values. For example, in state s (say),
identifier ¢ could be associated with value F and identifier d with T. In
terms of a computer memory, when the computer is in state s, locations
named ¢ and d contain the values F and T, respectively. In another
state, the associations could be (¢, T') and (d, F). The crucial point here
is that a state consists of a set of pairs (identifier, value) in which all the
identifiers are distinct, i.e. the state is a function:

(1.3.1) Definition. A state s is a function from a set of identifiers to the
set of values 7 and F. ©J

Example. Let state s be the function defined by the set {(a, T), (bc, F),
(y1,T)}. Then s(a) denotes the value determined by applying state (func-
tion) s to identifier 4: s(a)=7T. Similarly, s(bc)=F and s(yI) =
T. O

(1.3.2) Definition. Proposition e is well-defined in state s if each iden-
tifier in e is associated with either T or F in states. O

In state s = {(b, T),(c, F)}, proposition (b Vc) is well-defined while
proposition (b Vd) is not.

Let us now extend the notation s(identifier) to define the value of a
proposition in a state. For any state s and proposition e, s(e) will
denote the value resulting from evaluating e in state s. Since an identifier
b is also a proposition, we will be careful to make sure that s(b) will still
denote the value of b in state s.

12 Part I. Propositions and Predicates

(1.3.3) Definition. Let proposition e be well-defined in state s. Then
s(e), the value of e in state s, is the value obtained by replacing
all occurrences of identifiers b in e by their values s(b) and
evaluating the resulting constant proposition according to the
rules given in the previous section 1.2. O

Example. s({((2b)Vc)) is evaluated in state s = {(b, T),(c, F)}:

s(((ab)ve))
= ({2 T)VF) (b has been replaced by T, ¢ by F)
=F O

1.4 Precedence Rules for Operators

The previous sections dealt with a restricted form of propositions, so
that evaluation of propositions could be explained without having to deal
with the precedence of operators. We now relax this restriction.

Parentheses can be omitted or included at will around any proposition.
For example, the proposition ((b V¢)=d) can be written as b V¢ =d. In
this case, additional rules define the order of evaluation of subproposi-
tions. These rules, which are similar to those for arithmetic expressions
are:

I. Sequences of the same operator are evaluated from left to
right, e.g. b Ac Ad is equivalent to ((b Ac)Ad).

2. The order of evaluation of different, adjacent operators is
given by the list: not (has highest precedence and binds tightest),
and, or, imp, equals.

It is usually better to make liberal use of parentheses in order to make
the order of evaluation clear, and we will usually do so.

Examples b =b A¢ is equivalent to (1b)=(b Ac)
bVaic>d is equivalent to (b V(ac))>d
b=c=>dAhe isequivalentto (b =>c)=>(dnre) O

The following BNF grammar defines the syntax of propositions, giving
enough structure so that precedences can be deduced from it. (The non-
terminal <lidentifier™ has been left undefined and has its usual meaning).

Section 1.4 Precedence Rules for Operators 13

I. <proposition> ::= <imp-expr>

2. | <proposition> = <imp-expr>
3. <imp-expr> = <Jexpr>

4. | <imp-expr> = <expr>>

5. <expr> = <term>

6. | <expr>V <term>

7. <term> n= <factor>

8. | <term> A <factor>>

9. <factor> = 4 <factor>
10. | (<proposition>)
1. | T
12. | F
13. | <identifier>

We now define s(e), the value of proposition e in state s, recursively,
based on the structure of e given by the grammar. That is, for each rule
of the grammar, we show how to evaluate e if it has the form given by
that rule. For example, rule 6 indicates that for an <expr>> of the form
<expr>V <term>>, its value is the value found by applying operation or
to the values s(<lexpr>) and s(<term>>) of its operands <lexpr> and
<term>>. The values of the five operations =, =, v, A and . used in
rules 2, 4, 6, 8 and 9 are given by truth table (1.2.3).

1. s(<proposition>) = s(<imp-expr>>)
2. s(<proposition>) = s(<proposition>) = s(<imp-expr>>)
3. s(<imp-expr>) = s(<expr>)
4. s (<imp-expr>) = s{<imp-expr>) = s("<expr>)
5. s(<expr>) = s(<term>)
6. s(<expr>) = s(<expr>)V s(<term>)
7. s(<term>) = s(<factor>)
8. s(<term>) = s(<term>) A s(<factor>)
9. s(<factor>) = 4s(<factor>)
10. s(<factor>) = s(<proposition>)
11. s(<factor>) =T
12. s(<factor>) = F
13. s(<factor>) = s(<lidentifier>) (the value of

<identifier> in s)

An example of evaluation using a truth table

Let us compute values of the proposition (b =>¢)=(~b V¢) for all pos-
sible operand values using a truth table. In the table below, each row
gives possible values for b and ¢ and the corresponding values of b,
1b Ve, b =c and the final proposition. This truth table shows how one
builds a truth table for a proposition, by beginning with the values of the

14 Part 1. Propositions and Predicates

identifiers, then showing the values of the smallest subpropositions, then
the next smallest, and building up to the complete proposition.

As can be seen, the values of b Ve and b = ¢ are the same in each
state, and hence the propositions are equivalent and can be used inter-
changeably. In fact, one often finds & = ¢ defined as +b Vc. Similarly,
b =c is often defined as an abbreviation for (b =>¢c)A(c =b) (see exer-
cise 21).

b 4 =b abve b=>¢ (b=c)=(abVc)
F F T T T T
F T T T T T
T F F F F T
T T F T T T

1.5 Tautologies

A Tautology is a proposition that is true in every state in which it is
well-defined. For example, proposition 7 is a tautology and F is not.
The proposition bV 15 is a tautology, as can be seen by evaluating it with
b=Tand b=F:

TV.T =TVF T
FVvsF =FVvT =T

or, in truth-table form:

b | ab bvab
T’F T
Fl T T

The basic way to show that a proposition is a tautology is to show that its
evaluation yields 7 in every possible state. Unfortunately, each extra
identifier in a proposition doubles the number of combinations of values
for identifiers —for a proposition with i distinct identifiers there are 2/
cases! Hence, the work involved can become tedious and time consum-
ing. To illustrate this, (1.5.1) contains the truth table for proposition
(b AcAd)=(d=>b), which has three distinct identifiers. By taking some
shortcuts, the work can be reduced. For example, a glance at truth table
(1.2.3) indicates that operation imp is true whenever its antecedent is false,
so that its conséquent need only be evaluated if its antecedent is true. In
example (1.5.1) there is only one state in which the antecedent b Ac Ad is
true —the state in which b, ¢ and d are true— and hence we need only
the top line of truth table (1.5.1).

Section 1.6 Propositions as Sets of States 15

bcd baend | d
TTT
TTF
TFT
(1.5.1) TFF
FTT
FTF
FFT
FFF

Q~

(bAchd)>(d=>b)

Y Ty YT T TN
N NSNS Y
MNNNNNNNN

Using such informal reasoning helps reduce the number of states in
which the proposition must be evaluated. Nevertheless, the more distinct
identifiers a proposition has the more states to inspect, and evaluation
soon becomes infeasible. Later chapters investigate other methods for
proving that a proposition is a tautology.

Disproving a conjecture

Sometimes we conjecture that a proposition ¢ is a tautology, but are
unable to develop a proof of it, so we decide to try to disprove it. What
does it take to disprove such a conjecture?

It may be possible to prove the converse —i.e. that ~e is a tautology—
but the chances are slim. If we had reason to believe a conjecture, it is
unlikely that its converse is true. Much more likely is that it is true in
most states but false in one or two, and to disprove it we need only find
one such state:

To prove a conjecture, it is necessary to prove that it is true in all
cases; to disprove a conjecture, it is sufficient to find a single case
where it is false.

1.6 Propositions as Sets of States

A proposition represents, or describes, the set of states in which it is
true. Conversely, for any set of states containing only identifiers associ-
ated with T or F we can derive a proposition that represents that state
set. Thus, the empty set, the set containing no states, is represented by
proposition F because F is true in no state. The set of all states is
represented by proposition T because T is true in all states. The follow-
ing example illustrates how one can derive a proposition that represents a
given set of states. The resulting proposition contains only the operators
and, or and not.

16 Part 1. Propositions and Predicates

Example. The set of two states {(b,T),(c,T),(d,T)} and {(b,F),
(¢, T),(d, F)}, is represented by the proposition

(b Ac Ad)V(ab AcA~d) O

The connection between a proposition and the set of states it represents is
so strong that we often idenrify the two concepts. Thus, instead of writ-
ing “the set of states in which bV +¢ is true” we may write “the states in
bV ac” Though it is a sloppy use of English, it is at times convenient.

In connection with this discussion, the following terminology is intro-
duced. Proposition b is weaker than ¢ if ¢ >b. Correspondingly, c is
said to be stronger than b. A stronger proposition makes more restric-
tions on the combinations of values its identifiers can be associated with,
a weaker proposition makes fewer. In terms of sets of states, b is as weak
as ¢ if it is “less restrictive™ if b’s set of states includes at least ¢’s states,
and possibly more. The weakest proposition is 7T (or any tautology),
because it represents the set of all states; the strongest is F, because it
represents the set of no states.

1.7 Transforming English to Propositional Form

At this point, we translate a few sentences into propositional form.
Consider the sentence “If it rains, the picnic is cancelled.” Let identifier r
stand for the proposition “it rains” and let identifier pc represent “the
picnic is cancelled”. Then the sentence can be written as r = pc.

As shown by this example, the technique is to represent “atomic parts
of a sentence —how these are chosen is up to the translator— by identif-
iers and to describe their relationship using Boolean operators. Here are
some more examples, using identifiers r, pc, wet, and s defined as fol-
lows:

29

it rains: r

picnic is cancelled: pc
be wet: wer

stay at home: s

1. If it rains but I stay at home, I won’t be wet: (r As) = 1 wet

2. T'll be wet if it rains: r = wet

3. If it rains and the picnic is not cancelled or I don’t stay home,
Il be wet: Either ((r Aapc)V as)=>wet or
(r A(apcV as))=wet. The English is ambiguous; the latter pro-
position is probably the desired one.

Exercises for Chapter 1 17

4. Whether or not the picnic is cancelled, I'm staying home if it
rains: (pcV apc)Ar =5, This reduces to r =5.

5. Either it doesn’t rain or I'm staying home: rVs.

Exercises for Chapter 1

l.. AEach line contains a proposition and two states s/ and 52, Evaluate the propo-
sition in both states.

proposition state 57 state s2

m _ n_ p g m_n _p gq
(@) ~+(mvVvn) Tr F T T F T T 7
by amVn r F T T F T T T
(©) ~(mAn) T F T T F T T T
(d) «mAn r F T T F T
(&) (mvVmn)=>p T F T T Tr T F T
() mv(n>p) r F T T T T F T
(@ (m=n)Ar(p=gq) F F T F r F T F
() m=(nAr(p=gq)) F F T F T F T F
B m=nrp=gq) F F T F T F T F
0 (m=n)r(p=>q) F T F T T T F F
(k) (m=n Ap)=>gq F T F T T T F F
O (m=n)=>(p =>q) ¥ F F F T T T T
(m) (m =(n>p))=gq F F F F T T T T

2. Write truth tables to show the values of the following propositions in all states:

(a) bvevd (&) 1b=>(bVc)
(b) bArchad H 1b=(bVe)
(©) bA(cvd) (8 ({b=c)vb
(d) bV(cnrd) (hy (BVe)r(b=c)r(c >b)

) (b=c)=(b=>c)r(c>b)

3. Translate the following sentences into propositional form.

(@ x<y orx=y.

(b) Either x <y, x=y,orx>y.

(c) ¥x>yandy >z, thenv=w.

(d) The following are all true: x <y,y<zandv=w.

(e) At most one of the following is true: x <y, p <z and v = w.

(f) None of the following are true: x <y,y<zandv=w.

(g) The following are not all true at the same time: x <y,y<zandv=w.

(h) When x <y, then y <z; when x 2y, then v =w,

() When x <y then y <z means that v =w, butif x 2=y then y <z doesn't
hold; however, if v =w then x <y. :

(i) If execution of program P is begun with x <y, then execution terminates
with y =2~

(k) Execution of program P begun with x <0 will not terminate.

18 Part 1. Propositions and Predicates

4. Below are some English sentences. Introduce identifiers to represent the simple
ones (e.g. “it’s raining cats and dogs.”) and then translate the sentences into pro-
positions.

(a) Whether or not it’s raining, I'm going swimming.

(b) If it’s raining I’'m not going swimming.

(c) It’s raining cats and dogs.

(d) It’s raining cats or dogs.

(e) 1If it rains cats and dogs I'll eat my hat, but I won’t go swimming.

(f) If it rains cats and dogs while I am swimming I'll eat my hat.

Chapter 2
Reasoning using Equivalence Transformations

Evaluating propositions is rarely our main task. More often we wish
to manipulate them in some manner in order to derive “equivalent” but
simpler ones (easier to read and understand). Two propositions (or, in
general, expressions) are equivalent if they have the same value in every
state. For example, since a+(c—a)=c is always true for integer vari-
ables a and ¢, the two integer expressions a+(c —a) and ¢ are equivalent,
and a+(c—a)=c is called an equivalence.

This chapter defines equivalence of propositions in terms of the evalua-
tion model of chapter 1. A list of useful equivalences is given, together
with two rules for generating others. The idea of a “calculus” is discussed,
and the rules are put in the form of a formal calculus for “reasoning”
about propositions.

These rules form the basis for much of the manipulations we do with
propositions and are very important for later work on developing pro-
grams. The chapter should be studied carefully.

2.1 The Laws of Equivalence

For propositions, we define equivalence in terms of operation equals
and the notion of a tautology as follows:

(2.1.1) Definition. Propositions E! and E2 are equivalent iff E1 =E2 is
a tautology. In this case, EI = E2 is an equivalence. [

Thus, an equivalence is an equality that is a tautology.

Below, we give a list of equivalences; these are the basic equivalences
from which all others will be derived, so we call them the laws of
equivalence. Actually, they are “schemas™ the identifiers EIJ , £2 and E3

20 Part 1. Propositions and Predicates

within them are parameters, and one arrives at a particular equivalence by
subs-ituting particular propositions for them. For example, substituting
xVy for EI and z for E2 in the first law of Commutativity, (EI AE2) =
(E2A EI), yields the equivalence

(xVvy)rz)=(z A(xVy))

Remark: Parentheses are inserted where necessary when performing a sub-
stitution so that the order of evaluation remains consistent with the origi-
nal proposition. For example, the result of substituting xVy for 4 in
bAaz is (xVy)az, and not xVyAz, which is equivalent to
xV(yAz). O

I. Commutative Laws (These allow us to reorder the operands of and, or
and equality):

(EINE2) = (E2AED

(EIVE2) = (E2VED

(E1=E2)y = (E2=El

2. Associative Laws (These allow us to dispense with parentheses when
dealing with sequences of and and sequences of or):
EIN(E2ANE3) = (EINE2)AE3 (so write both as EIA E2A E3)
EIV(E2VE3) = (EIVEJ)VE3

3. Distributive Laws (These are useful in factoring a proposition, in the
same way that we rewrite 2* (3+4) as (2* 3)+(2*4)):

EIV(E2NE3) = (EIVE2)A(EIVE3)

EIN(E2VE3) = (EINE2)V(EINE3)

4. De Morgan’s Laws (After Augustus De Morgan, a 19th century
English mathematician who, along with Boole, laid much of the founda-
tions for mathematical logic):

1(E]AE2) = FEIV.E2

+(EIVE2) = EINAE2

5. Law of Negation: 2 (- El) = EI

6. Law of the Excluded Middle: EIV-El = T
7. Law of Contradiction: EIA-El = F

8. Law of Implication: £/ > FE2 = .EIVE2

9. Law of Equality: (E1 =E2) = (EI=E2)AN(E2=>EI)

Section 2.1 The Laws of Equivalence 21

10. Laws of or-simplification:

EIVE] = EJ]
EINT =T
EIVF = EJ

EIV(EINE2) = EI

I'l. Laws of and-simplification:

EINE] = EI
EINT = FI
EINF = F

EINEIVE2) = EI

12, Law of Identity: El=F]

Don’t be alarmed at the number of laws. Most of them you have used
many times, perhaps unknowingly, and this list will only serve to make
you more aware of them. Study the laws carefully, for they are used over
and over again in manipulating propositions. Do some of the exercises at
the end of this section until the use of these laws becomes second nature.
Knowing the laws by name makes discussions of their use easier.

The law of the Excluded Middle deserves some comment. It means
that at least one of » and -& must be true in any state; there can be no
middle ground. Some don’t believe this law, at least in all its generality.
In fact, here is a counterexample to it, in English. Consider the sentence

This sentence is false.

which we might consider as the meaning of an identifier b. Is it true or
false? It can’t be true, because it says it is false; it can’t be false, because
then it would be true! The sentence is neither true nor false, and hence
violates the law of the Excluded Middle. The paradox arises because of
the self-referential aspect of the sentence —it indicates something about
itself, as do all paradoxes. [Here is another paradox to ponder: a barber
in a small town cuts the hair of every person in town except for those who
cut their own. Who cuts the barber’s hair?] In our formal system, there
will be no way to introduce such self-referential treatment, and the law of
the Excluded Middle holds. But this means we cannot express all our
thoughts and arguments in the formal system.

Finally, the laws of Equality and Implication deserve special mention.
Together, they define equality and imp in terms of other operators: b =¢
can always be replaced by (b 2c)A(c =b) and b =¢ by bVe. This
reinforces what we said about the two operations in chapter 1.

22 Part I. Propositions and Predicates

Proving that the logical laws are equivalences

We have stated, without proof, that laws 1-12 are equivalences. One
way to prove this is to build truth tables and note that the laws are true in
all states. For example, the first of De Morgan’s laws, +(EIAE2) = 1 E]
V 4 F2, has the following truth table:

El E2|EINE2 1(E1/\E2)1-|E1 1 E2 - ElV 1E2{1(E1/\E2)= A EIVAE2
F F F T T T T T
F T F T Tr F T T
T F F T F T T l T
T T T F F F F T

Clearly, the law is true in all states (in which it is well-defined), so that it
is a tautology.

Exercise 1 concerns proving all the laws to be equivalences.

2.2 The Rules of Substitution and Transitivity

Thus far, we have just discussed some basic equivalences. We now
turn to ways of generating other equivalences, without having to check
their truth tables. One rule we all use in transforming expressions, usually
without explicit mention, is the rule of “substitution of equals for equals”.
Here is an example of the use of this rule. Since a-+(c—a)=c, we can
substitute for expression a+(c—a) in (a+(c—a))*d to conclude that
(a+(c—a))*d =c*d; we simply replace a+(c—a) in (a+{(c —a))*d by the
simpler, but equivalent, expression c.

The rule of substitution is:

(2.2.1) Rule of Substitution. Let el =¢2 be an equivalence and E (p) be
a proposition, written as a function of one of its identifiers p.
Then E(el) = E(e2) and E(e2)= E(el) are also equivalences. O

Here is an example of the use of the rule of Substitution. The la\«_/ of
Implication indicates that (b =>¢)=(~b Vc) is an equivalence. Consider
the proposition E(p)=dVp. With

el = b=>c¢ and
el = abVe
we have

E(el) = dv(b=c)
E(e2) = dV(abVe)

Il

Section 2.2 The Rules of Substitution and Transitivity 23

so that dV(b =¢) =d V(- b V¢) is an equivalence.

In using the rule of Substitution, we often use the following form. The
proposition that we conclude is an equivalence is written on one line. The
initial proposition appears to the left of the equality sign and the one that

results from the substitution appears to the right, followed by the name of
the law el =e2 used in the application:

dV(b=c)=dV(-bVc) (Implication)
We need one more rule for generating equivalences:

(2.2.2) Rule of Transitivity. If e/ =¢2 and e2 =e3 are equivalences, then
so is el =e3 (and hence el is equivalent to e3). O

Example. We show that (b =c) =(-c=.b) is an equivalence (an
cxplanation of the format follows):

b=>c
= .bVe (Implication)
= cVab (Commutativity)

= 11c¢ Vb (Negation)

= a¢ =.b (Implication)

This is read as follows. First, lines 1 and 2 indicate that b =¢ is
equivalent to b Ve, by virtue of the rule of Substitution and the law of
Implication. Secondly, lines 2 and 3 indicate that (5 V) is equivalent to
¢V b, by virtue of the rule of Substitution and the law of Commuta-
tivity. We also conclude, using the rule of Transitivity, that the first pro-
position, b ¢, is equivalent to the third, ¢V .b. Continuing in this
fashion, each pair of lines gives an equivalence and the reasons why the
equivalence holds. We finally conclude that the first proposition, b =¢,
is equivalent to the last, «¢ =.5. O

Example. We show that the law of Contradiction can be proved from the
others. The portion of each proposition to be replaced in each step is
underlined in order to make it easier to identify the substitution.

(b Asb)=+bViab (De Morgan’s Law)
=a1bVh (Negation)

=bVvab (Commutativity)

= (Excluded Middle) O

Generally speaking, such fine detail is unnecessary. The laws of Com-~
mutativity and Associativity are often used without explanation, and the
application of several steps can appear on one line. For example:

24 Part 1. Propositions and Predicates

A =c)=>c
= 4(bA(abVc) Ve (Implication, 2 times)
= abVa(abVec)Ve (De Morgan)
=T (Excluded Middle)

Transforming an implication

Suppose we want to prove that
(2.2.3) EINE2NE3=E
is a tautology. The proposition is transformed as follows:

(EINE2NE3)=E
= (EIANE2AE3)VE (Implication)
= 1 EIV.E2V.E3VE (De Morgan)

The final proposition is true in any state in which at least one of - El,
1E2, +E3 and E is true. Hence, to prove that (2.2.3) is a tautology we
need only prove that in any state in which three of them are false the
fourth is true. And we can choose which three to assume false, based on
their form, in order to develop the simplest proof.

With an argument similar to the one just given, we can see that the
five statements

EINE2NE3 = E
EIANE2AE > 1 E3 ,
EIN~EAE3 = 1E2
Z~EANE2NE3 = +El

(2.2.4) ~EIV1E2V~E3VE

are equivalent and we can choose which to work with. When given a pro-
position like (2.2.3), eliminating implication completely in favor of dis-
junctions like (2.2.4) can be helpful. Likewise, when formulating a prob-
lem, put it in the form of a disjunction right from the beginning.

Example. Prove that
(B =Zc)Na(ab Z(c V)= (1c>d)

is a tautology. Eliminate the main implication and use De Morgan’s law:
110 =)V aa(ab>(cVd))V(ac >d)

Now simplify using Negation and eliminate the other implications:

Section 2.3 A Formal System of Axioms and Inference Rules 25

(abve)v(bvevd)Vic vd)

Use the laws of Associativity, Commutativity and or-simplification to
arrive at

bVvabVvevd

which is true because of the laws of the Excluded Middle, bV +b =T,
and or-simplification. This problem, which at first looked quite difficult,
became simple when the implications were eliminated.

2.3 A Formal System of Axioms and Inference Rules

A calculus, according to Webster’s Third International Dictionary, is a
method or process of reasoning by computation of symbols. In section
2.2 we presented a calculus, for by performing some symbol manipulation
according to rules of Substitution and Transitivity we can reason with
propositions. For obvious reasons, the system presented here is called a
propositional calculus.

We are careful to say a propositional calculus, and not the proposi-
tional calculus. With slight changes in the rules we can have a different
calculus. Or we can invent a completely different set of rules and a com-
pletely different calculus, which is better suited for other purposes.

We want to emphasize the nature of this calculus as a formal system
for manipulating propositions. To do this, let us put aside momentarily
the notions of state and evaluation and see whether equivalences, which
we will call theorems, can be discussed without them. First, define the
propositions that arise directly from laws 1-12 to be theorems. They are
also called axioms (and the laws 1-12 are axiom schemas), because their
theoremhood is taken at face value, without proof.

(2.3.1) Axioms. Any proposition that arises by substituting propositions
for EI, E2 and E3 in one of the Laws 1-12 is called a
theorem. O

Next, define the propositions that arise by using the rules of Substitution
and Transitivity and an already-derived theorem to be a theorem. In this
context, the rules are often called inference rules, for they can be used to
infer that a proposition is a theorem. An inference rule is often written in
the form

E[s ""En E17E27""En
- and —_—
E E, E,

26 Part 1. Propositions and Predicates

where the E; and £ stand for arbitrary propositions. The inference rule
has the following meaning. If propositions E,, - - -, E, are theorems,
then so is proposition F (and Eg in the second case). Written in this
form, the rules of Substitution and Transitivity are

el =e2

2.3.2) Rule of Substitution:
() ule of Substitution E(el) = E(e2), E(e2)= E(el)

el =e2, e2=e3

(2.3.3) Rule of Traunsitivityy, —————
el =e3

A theorem of the formal system, then, is either an axiom (according to

(2.3.1)) or a proposition that is derived from one of the inference rules
(2.3.2) and (2.3.3).

Note carefully that this is a totally different system for dealing with
propositions, which has been defined without regard to the notions of
states and evaluation. The syntax of propositions is the same, but what
we do with propositions is entirely different. Of course, there is a relation
between the formal system and the system of evaluation given in the pre-
vious chapter. Exercises 9 and 10 call for proof of the following relation-
ship: for any tautology e in the sense of chapter 1, e =T is a theorem,
and vice versa. -

Exercises for Chapter 2
1. Verify that laws 1-12 are equivalences by building truth tables for them.

2. Prove the law of ldentity, e =e, using the rules of Substitution and Transi-
tivity and the laws 1-11.

3. Prove that + T = F is an equivalence, using the rules of Substitution and Tran-
sitivity and the laws [-12.

4. Prove that 4+ F =T is an equivalence, using the rules of Substitution and Tran-
sitivity and the laws 1-12.

5. Each column below consists of a sequence of propositions, each of which
(except the first) is equivalent to its predecessor. The equivalence can be shown
by one application of the rule of Substitution and one of the laws 1-12 or the
results of exercises 3-4. Identify the law (as is done for the first two cases).

(@ (xAy)V(zAaz) (@ a(1bA (b >z))Vz
(b) (x Ay)VF Contradiction ®) (1D A(ab>2z))>z
(¢) x Ay or-simplification ©) (\bA(1bVZ))>z
(d) (x/\y)VF (d) (1b/\(1 1bV11Z))$>Z

(& (xAy)V(FAz) (© (1bAa(abAraz))>2
® (xAy)V(FAz) O (bA(abAaz) >z
(8 (xAYIV((xAax)Az) (8 1(bV(bAqz)>z

Exercises for Chapter 2 27

() (xAyIV(xA(axAz)) () A((BVAb)A(DVaz))=>2z
B xA(V(axArz)) © A(TADVaz))>z

@ xA@Vax)A(yVz) @ 1(BVaz)>z

&) xA(axVy)A(zVy) &) aa(bVaz)Vz

M xXA(axVaay)A(zVy) O (BVaz)Vvz

(m) x Aa(xAay)A(zVy) (m) bV(~1zVz)

6. Each proposition below can be simplified to one of the six propositions F, T,
Xx,y,xAy,and x Vy. Simplify them, using the rules of Substitution and Tran-
sitivity and the laws 1-12.

(@ xV(yVx)Vay & 1x >(xAy)

(b) (xVyIA(xVay) (h) T=(1x =x)

(€) xVyVax @ x =@ > Ay)

(@ XVPIMNXVap)AGxVPIA(ax Vay) () 1x P(ax>(1xAy))
© (xAYIV(xAYIV(ax AYIV(ax Aay) (K) 2y >y

O (ixAy)vx : @ 2y =ay

7. Show that any proposition e can be transformed into an equivalent proposition
in disjunctive normal form —i.e. one that has the form

egV - - - Ve, where each ¢; has the formgg A - - - A g,

Each g; is an identifier id, a unary operator 1id, T or F. Furthermore, the
identifiers in each e; are distinet.

8. Show that any proposition e can be transformed into an equivalent proposition
in conjunctive normal form —i.e. one that has the form

egN - - - Ae, where each ¢; has the formggV - -+ Vg,

Each g; is an identifier id, a unary operator 1id, T or F. Furthermore, the
identifiers in each e; are distinct.

9. Prove that any theorem generated using laws 1-12 and the rules of Substitution
and Transitivity is a tautology, by proving that laws 1-12 are tautologies (see exer-
cise 1) and showing that the two rules can generate only tautologies.

10. Prove that if e is a tautology, then e = T can be proved to be an equivalence
using only the laws 1-12 and the rules of Substitution and Transitivity. Hint: use
exercise 8.

Chapter 3
A Natural Deduction System

This chapter introduces another formal system of axioms and inference
rules for deducing proofs that propositions are tautologies. It is called a
“natural-deduction system” because it is meant to mimic the patterns of
reasoning that we “naturally” use in making arguments in English.

This material is not used later and can be skipped. The equivalence-
transformation system discussed in chapter 2 serves more than adequately
in developing correct programs later on. One could go further and say
that the equivalence-transformation system is more suited to our needs.
The fact that the natural-deduction system was developed in order to
mimic our natural patterns of reasoning may be the best reason for nor
using it, for our “natural” patterns of reasoning are far from adequate.

Nevertheless, study of this chapter is worthwhile for several reasons.
The formal system presented here is minimal: there are no axioms and a
minimal number of inference rules. Thus, one can see what it takes to
start with a bare-bones system and build up enough theorems to the point
where further theorems are not cumbersome to prove. The equivalence-
transformation system, on the other hand, provided as axioms all the use-
ful basic equivalences. Secondly, such systems are being used more and
more in mechanical verification systems, and the computer science student
should be familiar with them. (A natural-deduction system is also used in
the popular game WFF'N PROOF.) Finally, it is useful to see and com-
pare two totally different formal systems for dealing with propositions.

Section 3.1 Introduction to Deductive Proofs 29

3.1 Introduction to Deductive Proofs

Consider the problem of proving that a conclusion follows from certain
premises. For example, we might want to prove that P A(rvag) follows
frompAg —ie p A(rvg) is true in every state in which pArg is. This
problem can be written in the following form:

(3.1.1) premise: pag
conclusion:p A(r vq)

In English, we might argue as follows.

(3.1.2) Proof of (3.1.1): Since P Aq is true (in state s), s0 is p,and so is
q. One property of or is that, for any r, rVq is true if ¢ is, so
r Vg is true. Finally, since p and r Vq are both true, the proper-
ties of and allow us to conclude that PA(rvVg)istruein s also.

In order to get at the essence of such proofs, in order to determine just
what is involved in such arguments, we are going to strip away the verbi-
age from the proof and present simply the bare details. Admittedly, the
proofs will ook (at first) complicated and detailed. But once we have
worked with the proof method for a while, we will be able to return to
informal proofs in English with much better facility. We will also be able
to give some guidelines for developing proofs (section 3.5).

The bare details of proof (3.1.2) are, in order: a statement of the
theorem, the sequence of propositions initially assumed to be true, and the
sequence of propositions that are true based on previous propositions and
various rules of inference.

These bare details are presented in (3.1.3). The first line states the
theorem to be proved: “From pPAg infer pA(rvg)”. The second line
gives the premise (if there were more premises, they would be given on
successive lines). Each of the succeeding lines gives a proposition that one
can infer, based on the truth of the propositions in the previous lines and
an inference rule. The last line contains the conclu: ion.

From p Ag infer p A(rvg)

1 | prg premise
(3.1.3) 21 p property of and, 1
3¢ property of and, 1
4 | rvg property of or, 3
51 pa(rvg) property of and, 2, 4

To the right of each proposition appears an explanation of how the
proposition’s “truth” is derived. For example, line 4 of the proof indicates

30 Part 1. Propositions and Predicates

that r Vg is true because of a property of or —that r Vg is true if g is—
and because g appears on the preceding line 3. Note that parentheses are
introduced freely in order to maintain priority of operators. We shall
continue to do this without formal description.

In this formal system, a theorem to be proved has the form
Frome,, - -- e, infere.

In terms of evaluation of propositions, such a theorem is interpreted as: if
€y, ..., €, are true in a state, then e is true in that state also. If n is 0,
meaning that there are no premises, then it can be interpreted as: e is true
in all states, i.e. e is a tautology. In this case we write it as

Infer e.

Finally, a proposition on a line of a proof can be interpreted to mean that
it is true in any state in which the propositions on previous lines are true.

As mentioned earlier, our natural deduction system has no axioms.
The properties of operators used above are captured in the inference rules,
which we begin to introduce and explain in the next section. (Inférence
rules were first introduced in section 2.3; review that material if neces-
sary.) The inference rules for the natural deduction system are collected
in Figure 3.3.1 at the end of section 3.3.

3.2 Inference Rules

There are ten inference rules in the natural deduction system. Ten is a
rather large number, and we can work with that many only if they are
organized so that they are easy to remember. In this system, there are
two inference rules for each of the five operators not, and, or, imp and
equals. One of the rules allows the introduction of the operator in a new
proposition; the other allows its elimination. Hence there are five rules of
introduction and five rules of elimination. The rules for introducing and
eliminating and are called A-I and A-E, respectively, and similarly for the
other operators.

Inference rules A-I, A-E and V-1

Let us begin by giving three rules: A-I, A-E and v-1.

320) AL 2o b
R Y3

Section 3.2 Inference Rules 31

EIA'..AEn

(3.2.2) A-E:

E;
(3.2.3) v-I:
E VvV -

Rule A-1 indicates that if £, and E, occur on previous lines of a proof
(i.e. are assumed to be true or have been proved to be true), then their
conjunction may be written on a line. If we assert “it is raining”, and we
assert “the sun is shining”, then we can conclude “it is raining and the sun
is shining”. The rule is called “A-Introduction”, or “A-1” for short, because
it shows how a conjunction can be introduced.

Rule A-E shows how and can be eliminated to yield one of its con-
juncts. If E{AE, appears on a previous line of a proof (i.e. is assumed to
be true or has been proved to be true), then either E| or E, may be writ-
ten on the next line. Based on the assumption “it is raining and the sun is

shining”, we can conclude “it is raining”, and we can conclude “the sun is
shining”.

Remark: There are places where it frequently rains while the sun is shin-
ing. Ithaca, the home of Cornell University, is one of them. In fact, it
sometimes rains when perfectly blue sky seems to be overhead. The
weather can also change from a furious blizzard to bright, calm sunshine
and then back again, within minutes. When the weather acts so strangely,
as it often does, one says that it is Ithacating. 0O

Rule V-1 indicates that if E| is on a previous line, then we may write
E\VE, on a line. If we assert “it is raining”, then we can conclude “it is
raining or the sun is shining”.

Remember, these rules hold for al propositions E; and £,. They are
really “schemas”, and we get an instance of the rule by replacing E; and

E; by particular propositions. For example, since pVgq and r are propo-
sitions, the following is an instance of A-1.

pvq,ar
PVgInar
Let us redo proof (3.1.3) in (3.2.4) below and indicate the exact infer-
ence rule used at each step. The top line states what is to be proved. The

line numbered 1 contains the first (and only) premise (pr 1). Each other
line has the following property. Let the line have the form

line #] E “name of rule”, line #, ..., line #

32 Part 1. Propositions and Predicates

Then one can form an instance of the named inference rule by writing the
propositions on lines line #, ..., line # above a line and proposition E
below. That is, the truth of E is inferred by one inference rule from the
truth of previous propositions. For example, from line 4 of the proof we
see that g /r Vg is an instance of rule V-I: (r Vg) is being inferred from q.

From p Ag infer p A(rvq)

1 | pAg prl
2|\ p A-E, 1
3.2.4 ’
() 3 AE, 1
4 {rvg v-1, 3
51 pa(rvg) Al 2, 4

Note how rule A-E is used to break a proposition into its constituent
parts, while A-1 and V-1 are used to build new ones. This is typical of the
use of introduction and elimination rules.

Proofs (3.2.5) and (3.2.6) below illustrate that and is a commutative
operation; if p A g is true then so is ¢ Ap, and vice versa. This is obvious
after our previous study of propositions, but it must be proved in this for-
mal system before it can be used. Note that both proofs are necessary;
one cannot derive the second as an instance of the first by replacing p
and g in the first by g and p, respectively. In this formal system, a proof
holds only for the particular propositions involved. It is not a schema,
the way an inference rule is.

From p Ag infer g Ap

1 | pAg pr |
325 2 1|p A-E, 1

3¢ A-E, 1

4 | gAp AL 3,2

To illustrate the relation between the proof system and English, we give
an argument in English for lemma (3.2.5): Suppose p Ag is true [line 1].
Then so is p, and so is g [lines 2 and 3]. Therefore, by the definition of
and, g Ap is true [line 4].

From g Ap infer p Ag

1 | gap prl
(3.26) 2 | ¢ AE| T

3)4 A-E, 1

4 | prg AL 3,2

Proof (3.2.6) can be abbreviated by omitting lines containing premises and

Scction 3.2 Inference Rules 33

using “pr i” to refer to the i premise later on, as shown in (3.2.7). This
abbreviation will occur often. But note that this is only an abbreviation,
and we will continue to use the phrase “occurs on a previous line” to
include the premises, even though the abbreviation is used.

From g Ap infer p A g
(3.2.7) 1|g A-E, prl

2 \p A-E, pri

3| prg AL 2,1

Inference rule v-E

The inference rule for elimination of or is

E\N -+ VE, E\®E, -+ E,>E

3.2.8) V-E:
(3.2.8) 7

Rule V-E indicates that if a disjunction appears a previous line, and if
E; = E appears on a previous line for each disjunct £;, then £ may be
written on a line of the proof. If we assert “it will rain tomorrow or it
will snow tomorrow”, and if we assert “rain implies no sun”, and if we

also assert “snow implies no sun”, then we can conclude “there will be no
sun tomorrow”. From

(rain Vsnow), (rain = no sun), (snow =no sun)

we conclude no sun.

Here is a simple example.

FrompV(gAr), p=s,(gAr)=s infer s Vp

1 | pv(gar) pr !l

2| p=>s pr2

3 | (gAr)=>s pr 3

4 15 V-E, 1,2,3
5

sVp V-I (rule (3.2.3)), 4

Inference rule =>-F

ElI=E2, E]

3.2.9) =E:
(3.2.9) I

34 Part 1. Propositions and Predicates

Rule =-E is called modus ponens. It allows us to write the consequent
of an implication on a line of the proof if its antecedent appears on a pre-
vious line. If we assert that x >0 implies that y is even, and if we deter-
mine that x >0, then we can conclude that y is even.

We show an example of its use in proof (3.2.10). To show the relation
between the formal proof and an English one, we give the proof in
English: Suppose p Ag and p =r are both true. From P Ag we conclude
that p is true. Because p =7, the truth of p implies the truth of r,and r
is true. But if 7 is true, so is r “ored” with anything; hence r V(g =r) is
true.

From p Ag, p =r infer r V(g =r)

1 P /\q pr 1
2 P =r pr 2
3.2.1
G210 30p A-E (rule (3.2.2)), 1
4 | r >-E, 2,3
51 rv(g=r) V- (rule (3.2.3)), 4

To emphasize the use of the abbreviation to refer to premises, we show
(3.2.10) in its abbreviated form in (3.2.1 1).

From p Ag, p =>r infer r V(g =>r)

Ip A-E, prl
3.2.11
() 21 r =-E, pr2, 1
31 rvig=>r) V-], 2

Inference rules =-I and =-E

El=FE2, F2>El
EI=F2

(3.2.12) =1I:

ElI=F2
El=F2, F2= E]

(3.2.13) =-E:

Rules =-1 and =-E together define equality in terms of implication.
The premises of one rule are the conclusions of the other, and vice versa.
This is quite similar to how equality is defined in the system of chapter 2.
Rule =-1 is used, then, to introduce an equality el =e2 based on the pre-
vious proof of el =e2 and e2=>el.

Here is an example of the use of these rules.

Ixercises for Section 3.2 35

Erom p, p =(g %r), r =q infer r=gq

1 | p=(g=r) =-E, pr2
2| g=>r =-E, 1, pr |
31 r=gq =, pr3 2

Exercises for Section 3.2

1. Each of the following theorems can be proven using exactly one basic inference
rule (using the abbreviation that premises need not be written on lines; see the text
preceding (3.2.7)). Name that inference rule.

(a) Froma, b infera A D

{b) Froma AbA(gVr),a inferq Vr

{¢) From -a infer 1aVa

(d) Fromc =d, dVc inferd =>¢

(¢) Fromb =c, b infer bV 1 b

() From aa,b,c infer naVe

(2) From (@ =b)Ab, a infera=>bp

(hy FromaVd =c,c=>aVbinferaVvb =c¢

(i) FromaAb, gVr infer (a Ab)A(qVr)

(i) Fromp =(q =>r), p, qVr infer g =r

(k) Fromc=>d, d=e,d=>c inferc =d

() FromaVb,aVe,(aVbh)=c infer ¢

(m) From a =>(d Vc¢),(dVe)=a infera =(dVc)
(n) From (aVb)=c,(aVd)=c,(aVbh)V(a Vd) infer ¢
(o) Froma=(bVe),b=(bVc),aVvh infer b Ve

2. Here is one proof that p follows from p. Write another proof that uses only
one reference to the premise.

From p infer p

1 ip prli
2ip prl

3. Prove the following theorems using the inference rules.

(a) Fromp Ag, p =7 inferr) From b =c Ad, b inferd

(b) Fromp =gq, g infer p (g) Fromp Aqg, p =r infer r

(c) Fromp, g =r,p=r inferp Ar (h) Fromp, g A(p =>s) infer g As
(d) From b A < ¢ infer 1 ¢ (i) Fromp =gq infer g =p

(¢) From b infer bV ¢ () From b = (c Ad), b infer d

4. For each of your proofs of exercise 3, give an English version. (The English
versions need not mimic the formal proofs exactly.)

36 Part 1. Propositions and Predicates

3.3 Proofs and Subproofs

Inference rule =-1

A theorem of the form “From e, - - - , e, infer e” is interpreted as: if
€, .-, €, are true in a state, thensoise. If e, ..., e, appear on lines of
a proof, which is interpreted to mean that they are assumed or proven
true, then we should be able to write e on a line also. Rule =-1, (3.3.1),
gives us permission to do so. Its premise need not appear on a previous
line of the proof; it can appear elsewhere as a separate proof, which we
refer to in substantiating the use of the rule. Unique names should be
given to proofs to avoid ambiguous references.

From E,, - - - | E, infer E
(E(A - AE)>E

3.3.1) =-I

Proof (3.3.2) uses =1 twice in order to prove that p Ag and g Ap are
equivalent, using lemmas proved in the previous section.

Infer (p Aq) = (g Ap)

332 | @rg)=>(@@rp) =>1,3.25)
2 | (grp)=(Arg) =1, (3.2.6)
31 Ag)=(grp) =1,1,2

Rule =-1 allows us to conclude p =g if we have a proof of g given
premise p. On the other hand, if we take p =>q as a premise, then rule
=-E allows us to conclude that ¢ holds when p is given. We see that the
following relationship holds:

Deduction Theorem. “Infer p =g ™ is a theorem of the natural
deduction system, which can be interpreted to mean that p=qis
a tautology, iff “From p infer g~ is a theorem. [

Another example of the use of =1 shows that p implies itself:

Infer p =p

3.33
() 1] p=>p =>-l, exercise 2 of section 3.2

Subproofs

A proof can be included within a proof, much the way a procedure can
be included within a program. This allows the premise of =-1 to appear
as a line of a proof. To illustrate this, (3.3.2) is rewritten in (3.3.4) to
include proof (3.2.5) as a subproof. The subproof happens to be on line 1
here, but it could be on any line. If the subtheorem appears on line j

Section 3.3 Proofs and Subproofs] 37

(say) of the main proof, then its proof appears indented underneath, with
its lines numbered j.1, j.2, etc. We could have replaced the reference to
(3.2.6) by a subproof in a similar manner.

Infer (p Ag)=(qAp)

1 | Fromp Aqg infer g Ap
I.1 | p A-E, pr]
1.2 | g A-E, pr]
(3.3.4) 1.3 | gap A1, 1.2, 10
2 | (prg)=>(gArp) >-1, 1
31 (grp)=rg) >-1, (3.2.6)
4 | (prg)=(grp) =1,2,3

Another example of a proof with a subproof is given in (3.3.5). Again, it
may be instructive to compare the proof to an English version:

Suppose (gVs)=(p Aq). To prove equivalence, we must show
also that (p Ag)=>(gVs). [Note how this uses rule =-1, that
a=b and b =>a means a =b. These sentences correspond to
lines 1, 3 and 4 of the formal proof.] To prove (p Ag)=>(gVs),
argue as follows. Assume p Ag is true. Then so is g. By the
definition of or, so is g Vs. [Note the correspondence to lines
2.1-22] O

From (g Vs)=(p Aq) infer (g Vs)=(p Aq)

11 (gVvs)=(@Arq) prl
2 | FrompAg infer gVs
(3.3.5) 21 | ¢q A-E, prl
22 | gVvs v-1, 2.1
31 rg)>(gVs) =-1,2
41 (gvs)=(@Arq) =113

As mentioned earlier, the relationship between proofs and sub-proofs
in logic is similar to the relationship between procedures and sub-
procedures {modules and sub-modules) in programs. A theorem and its
proof can be used in two ways: first, use the theorem to prove something
else; secondly, study the proof of the theorem. A procedure and its
description can be used in two ways: first, understand the description so
that calls of the procedure can be written; secondly, study the procedure
body to understand how the procedure works. This similarity should
make the idea of subproofs easy to understand.

38 Part 1. Propositions and Predicates

Scope rules

A subproof can contain references not only to previous lines in its
proof, but also to previous lines that occur in surrounding proofs. We
call these global line references. However, “recursion” is not allowed; a
line j (say) may not contain a reference to a theorem whose proof is not
finished by line j.

The reader skilled in the use of block structure in languages like PL/I,
ALGOL 60 and Pascal will have no difficulty in understanding this scope
rule, for essentially the same scope mechanism is employed here (except
for the restriction against recursion). Let us state the rule more precisely.

(3.3.6) Scope rule. Line i of a proof, where 7 is an integer, may contain
references to lines 1, ..., i—1. Line 7.0, where i is an integer, may
contain references to lines j. 1, ..., j.(i—1) and to any lines refer-
enceable from line j (this excludes references to line j itself). [

Example (3.3.7) illustrates the use of this scope rule; line 2.2 refers to
line 1, which is outside the proof of line 2.

From p =(q =r) infer (p Aq)=>r

I p=>(@=>r) prl
2 | From p Agq infer r
3.3.7) 21 | p A-E, pr 1
22 { g=>r =>-E, 1, 2.1
231 ¢ A-E, prl
24 | r >-E, 2.2, 23
31 (pAg)>r =>1,2

Below we illustrate an invalid use of the scope rule.

Erom p infer p = .p (Proof INVALID)

I |p pr |
2 | From p infer 1p

210 p prl

22 | p=a.p -1, 2 (invalid reference to line 2)
3| p>ap =-1, 2 (valid reference to line 2)

We illustrate another common mistake below; the use of a line that is not
in a surrounding proof. Below, on line 6.1 an attempt is made to refer-
ence s on line 4.1. Since line 4.1 is not in a surrounding proof, this is not
allowed.

A subproof using global references is being proved in a particular con-
text. Taken out of context, the subproof may not be true because it relies

Scction 3.3 Proofs and Subproofs . 39

FrompVvgq,p =5, 5 >r infer r (proof INVALID)

L1 pvg prl
2 | p=s pr2
3| s=>r pr3
4 | From p infer r

4.1 | s =-E, 2, pr | (valid reference to 2)
42 | r =>-E, 3, 4.1 (valid reference to 3)

5| p=>r =>-1, 4

6 | From g infer r

6.1] r =-E, 3, 4.1 (invalid reference to 4.1)
71 g=>r =16

8 | r vV-E, 1, 5,7

on assumptions about the context. This again points up the similarity
between ALGOL-like procedures and subproofs. Facts assumed outside a
subproof can be used within the proof, just as variables declared outside a
procedure can be used within a procedure, using the same scope mechan-
isSm.

To end this discussion of scope, we give a proof with two levels of sub-
proof. It can be understood most easily as follows. First read lines 1,2
and 3 (don’t read the the proof of the lemma on line 2) and satisfy your-
self that if the proof of the lemma on line 2 is correct, then the whole
proof is correct. Next, study the proof of the lemma on line 2 (only lines
2.1, 2.2 and 2.3). Finally, study the proof of the lemma on line 2.2, which
refers to a line two levels out in the proof.

From (p Ag)=r infer p (g =r)

1 1 (prg)=>r prl
2 | From p infer g =r
(3.3.8) 21 | p pri

2.2 | From g infer r
221 | pAg AL 21,pr1

‘ 222 | r =2-E, 1, 2.2.1
23 | g=>r >-1, 2.2
31 p=@=>r) =1, 2

Proof by contradiction

A proof by contradiction typically proceeds as follows. One makes an
assumption. From this assumption one proceeds to prove a contradiction,
say, by showing that something is both true and false. Since such a

40 Part I. Propositions and Predicates

contradiction cannot possibly happen, and since the proof from assump-
tion to contradiction is valid, the assumption must be false.

Proof by contradiction is embodied in the proof rules ;-1 and +-E:

From E infer EIA - El
= E

(3.3.9) a-L:

From -~ E infer EIA S El

(3.3.10) +-E: -

Rule +-l indicates that if “From E infer EI A 5 EI” has been proved for
sorme proposition £/, then one can write 1+ E on a line of the proof.

Rule +-1 similarly allows us to conclude that E holds if a proof of
“From + E infer E] A 5 EI” exists, for some proposition El.

We show in (3.3.11) an example of the use of rule -1, that from p we
can conclude 1 1p.

From p infer 1 -p

1| p prl
(3.3.11) 2 | From p infer p A «p
21 | paap AL L prl
3 1P 1-],2

Rule -1 is used to prove that ~ ap follows from p; similarly, rule --E is
used in (3.3.12) to prove that p follows from 1 p.

From . .p infer p

1 1ap prl
(3.3.12) 2 | From -p infer ap A+ 4p
2.1 | apAsap Alprl, 1
3 D 1-E,2

Theorems (3.3.11) and (3.3.12) look quite similar, and yet both proofs are
needed; one cannot simply get one from the other more easily than they
are proven here. More importantly, both of the rules -1 and +1-E are
needed; if one is omitted from the proof system, we will be unable to
deduce some propositions that are tautologies in the sense described in
section 1.5. This may seem strange, since the rules look so similar.

Let us give two more proofs. The first one indicates that from p and
1p One can prove gny proposition g, even one that is equivalent to false.
This is because both p and ~p cannot both be true at the same time, and
hence the premises form an absurdity.

Section 3.3 Proofs and Subproofs 41

From p, 1p infer g

1 |p prl

2| ap pr2
(3.3.13) 3 | From +q infer p A 1p
31 | paap AL L2
4 q 1-E, 3

From p Aq infer .(p = 1q)

1 | pAg pri
2 | Fromp = +q infer g A a1 g
(3.3.14) 2.1 i p AE, |
22 | g A-E, 1
2.3 1g =-E, prl, 2.1
24 | ghag A-1,22, 23
3 -(p = -»q) 1-1, 2

For comparison, we give an English version of proof (3.3.14). Let p Ag
be true. Then both p and g are true. Assume that p =>.¢q is true.
Because p is true this implication allows us to conclude that +1q is true,
but this is absurd because g is true. Hence the assumption that p = 1q
is true is wrong, and 1(p = 1 ¢) holds.

Summary

The reader may have noticed a difference between the natural deduc-
tion system and the previous systems of evaluation and equivalence
transformation: the natural deduction system does not allow the use of
constants T and F! The connection between the systems can be stated as
follows. If “Infer e” is a theorem of the natural deduction system, then e
is a tautology and e =T is an equivalence. On the other hand, if e =T is
a tautology and e does not contain T and F, then “Infer ¢” is a theorem
of the natural deduction system. The omission of T and F is no problem
because, by the rule of Substitution, in any proposition T can be replaced
by a tautology (e.g. bV 1b) and F by the complement of a tautology (e.g.
b A 1b) to yield an equivalent proposition.

We summarize what a proof is as follows. A proof of a theorem
“From e, - - ,e, infer e” or of a theorem “Infer e” consists of a
sequence of lines. The first line contains the theorem. If the first line is
unnumbered, the rest are indented and numbered 1, 2, etc. If the first line
has the number i, the rest are indented and numbered i 1, i.2, etc. The
last line must contain proposition e. Each line i must have one of the
following four forms:

42 Part 1. Propositions and Predicates

Form 1: (i)e; prj

where 1<<j<{n. The line contains premise j.

Form 2: (i) p Name, ref , ..., ref,

Each ref either (1) is a line number (which is valid according to
scope rule (3.3.6)), or (2) has the form “pr j”, in which case it
refers to premise e; of the theorem, or (3) is the name of a previ-
ously proven theorem. Let r; denote the proposition or theorem
referred to by ref,. Then the following must be an instance of
inference rule Name:

s "':rq
p

Form 3: (i) p Theorem name, ref 1, ..., ref,

Theorem name is the name of a previously proved theorem; ref),
is as in Form 2. Let r; denote the proposition referred to be
refy. Then “From ry, ---,r, infer p” must be the named
theorem.

Form 4: (i) [Proof of another theorem]

That is, the line contains a complete subproof, whose format fol-
lows these rules.

Figure 3.3.1 contains a list of the inference rules.

Historical Notes

The style of the logical system defined in this chapter was conceived
principally to capture our “natural” patterns of reasoning. Gerhard
Gentzen, a German mathematician who died in an Allied prisoner of war
camp just after World War 11, developed such a system for mathematical
arguments in his 1935 paper Untersuchungen ueber das logische Schliessen
[20], which is included in [43].

Several textbooks on logic are based on natural deduction, for example
W.V.0. Quine’s book Methods of Logic [41].

The particular block-structured system given here was developed using
two sources: WFF'N PROOF: The Game of Modern Logic, by Layman
E. Allen [1], and the monograph 4 Programming Logic, by Robert Con-
stable and Michael O’Donnell [7]. The former introduces the deduction
system through a series of games; it uses prefix notation, partly to avoid
problems with parentheses, which we have sidestepped through informal-
ity. A Programming Logic describes a mechanical program verifier for

Exercises for Section 3.3 43

"PL/CS (a subset of PL/C, which is a subset of PL/I), developed at Cor-

nell University. Its inference rules were developed with ease of presenta-
tion and mechanical verification in mind. Actually, the verifier can be
used to verify proofs of programs, and includes not only the propositional
calculus but also a predicate calculus, including a theory of integers and a
theory of strings.

Ey, .., E, E\A..AE,
Al ———— AE ——
E\A.. AE, E;
E, E\VN.VE, E\>E, .. E,>F
v.]|; ———— V-E:
E,V..VE, E
L From E infer EIA 1 E] ' From - £ infer EIA - E]
K -E T E
. FElI=>E2, E2=>FE] —F El=FE2
: El=E2 Y EI>E2, E2>El

From E\, ..., E, infer E E El=>E2, E]
(E\ALANE)>E ’ E2

Figure 3.3.1 The Set of Basic Inference Rules

Exercises for Section 3.3

I. Use lemma (3.2.11) and inference rule =1 to give a I-line proof that
(P AgA(p=r))=(rvig=>r)).
2. Prove that (p Ag)= (p V @), using rule =-1.

3. Prove that ¢ =>(g Ag). Prove that (g Aq)=>¢g. Use the fisst two results to
prove that g =(g Aq). Then rewrite the last proof so that it does not refer to
outside proofs.

4. Prove that p =(p Vp).

5. Prove that p =>((r Vs)=>p).

6. Prove that g = (r = (g Ar)).

7. Prove that from p = (r > s) follows r = (p =>s).

44 Part 1. Propositions and Predicates

8. What is wrong with the following proof?

Infer a =5 (Proof INVALID)

I |a pri
2 | From +1b infer b A ab

2.1 b prl

2.2 ab=bAab =1, 2

23 | bA4b =-E, 2.2, 2.1
215 ~+-E, 2

9. Prove that from 1p and (1 p =¢q)V(p A(r =¢)) follows r =¢.
10. Prove that ¢ =>(p Ar) follows from ¢ = p and g =r.
11. Prove that from 1 ¢g follows ¢ =p.
12. Prove that from -1 g follows ¢ = 1p.
13. Prove that from 1 ¢q follows ¢ = (p A ap).
14. Prove that from p Vg, 1g follows p.
15. Prove p A(p = ¢q)>¢q.
16. Prove ((p =g)A (g =r))=(p =r).
17. Prove (p = q)={((p A 1 q)=>q).
18. Prove ((p A ~q)>q)=>(p =>q). [This, together with exercise 17, allows us
to prove (p =g)=((p A 19)>q)]
19. Prove (p =g)=>({(p A=qg)=p).
20. Prove ((p A2g)=ap)=(p =>¢q). [This, together with exercise 19, allows
us to prove (p = ¢)=((p A 1g)=1p)]
21. Prove that (p =g)=(1p = 1q).
22. Prove that (1 p = 1q)=(p =g). [This, together with exercise 21, allows us
to prove (p =q)=(ap = 1q)]
23. Prove ~(p =g)=>(p =q)
24. Prove (ap =¢q)= ~+(p =¢q). [This, together with exercise 21, allows us to
prove the law of Inequality, «+(p =g)=(ap =¢q).]

25. Prove (p =q)=>(q =p).
26. Use a rule of Contradiction to prove From p infer p.

27. For each of the proofs of exercise 1-7, 9-25, give a version in English. (It need
not follow the formal proof exactly.)

Section 3.4 Adding Flexibility to the Natural Deduction System 45

3.4 Adding Flexibility to the Natural Deduction System

We first introduce some flexibility by showing how theorems can be
viewed as schemas ——i.e. how identifiers in a theorem can be viewed as
standing for any arbitrary proposition. Next, we introduce a rule of sub-
stitution of equals for equals, incorporating into the natural deduction Sys-
tem the method of proving equivalences of chapter 2. We prove a
number of theorems, including the laws of equivalence of chapter 2.

Using theorems as schemas

The inference rules given in Figure 3.3.1 hold for any propositions £,
Ey, ..., E,. They are really “schemas”, and one gets a particular inference
rule by substituting particular propositions for the “placeholders” E, E,,
-» E,. On the other hand, theorems of the form “From premises infer
conclusion” are proved only for particular propositions. For example,
proof (3.3.2) used the following two theorems (3.2.5) and (3.2.6):

From p Aq infer g Ap
From g Ap infer p Ag

Even though it looks like the second should follow directly from the
first, in the formal system both must be proved.

But we can prove something abour the formal system: systematic sub-
stitution of propositions for identifiers in a theorem and its proof yields
another theorem and proof. So we can consider any theorem to be a
schema also. For example, from proof (3.2.5) of “Fromp Ag infer g Ap”
we can generate a proof of “From (¢ Vb)Ac infer c A(aVh)” simply by
substituting a Vb for p and ¢ for g everywhere in proof (3.2.3):

From (aVb)Ac infer cA(aVh)

1 | (@avb)ac pri

21 avh A-E, 1
31e¢ A-E, 1
4 | cA(aVvh) AL 3,2

Let us state more precisely this idea of textual substitution in theorem and
proof.

(3.4.1) Theorem. Write a theorem as a function of one of its identifiers,
p: “From E(p), ..., E,(p) infer E(p)”. Let G be any proposi-
tion. Then “From E/(G), ..., E,(G) infer £(G)” can also be
proved.

46 Part 1. Propositions and Predicates

Informal proof. Without less of generality, assume the proof of the
theorem contains no references to other theorems outside the proof. (If it
does, first change the proof to include them as subproofs, as was done in
generating proof (3.3.4) from proof (3.3.2), repeating the process until no
references to outside theorems exist.) Then we can obtain a proof of the
new theorem simply by substituting G for p everywhere in the proof of
the original theorem. O

Theorems like (3.4.1) are often called meta-theorems, because they are
not theorems in the proof system, like “From ... infer ...”, but are proofs
about the proof system. The use of meta-theorems takes us outside the
formal system just a bit, but it is worthwhile to relax formality in this
way.

We can put meta-theorem (3.4.1) in the form of a derived rule of infer-
ence as follows:

From E\(p), - - -, E,(p) infer E(p)) '
4.2 dentifi
(3) From EI(G), .. ,E,,(G) infer E(G) (P an identy 1er)

We use this derived rule of inference to rewrite theorem (3.3.2) using
only theorem (3.2.5) (and not (3.2.6)). Note how line 2 refers to theorem
(3.2.5) and indicates what propositions are being replaced. We often leave
out this indication if it is obvious enough.

Infer (p Ag)=(qAp)

L1 (prg)=(grp) (3.25)

2 1 (gAap)=(pArg) (3.2.5) (withp for g, g for p)
3 (pAQ):(qu) :-17 1’2

Earlier, we discussed the relation between procedures of a program and
subproofs of a proof. We can now extend this relation to procedures with
parameters and subproofs with parameters. Consider rule (3.4.2). The
proof of the premise corresponds to the definition of a procedure with a
parameter p. The use of the conclusion in another proof corresponds to a
call of the procedure with an argument G.

The Rule of Substitution of equals for equals

The rule of Substitution, introduced in section 2.2, will be used in this
section in the following form.

Section 3.4 Adding Flexibility to the Natural Deduction System 47

(3.4.3) Theorem. Let proposition E be thought of as a function of one
of its identifiers, p, so that we write it as E(p). Then if el =e2
and E(el) appear on previous lines, then we may write £(e2) on
a line. O

For example, given that ¢ =>a Vb is true, to show that ¢ b Vg is true
we take E(p) tobe ¢ =p, el =e2 tobe aVbh =b Va (the law of Commu-
tativity, which will be proved later) and apply the theorem.

The rule of Substitution was an inference rule in the equivalence sys-
tem of chapter 2. However, it is a meta-theorem of the natural deduction
system and must be proved. Its proof, which would be performed by
induction on the structure of proposition E(p), is left to the interested
reader in exercise 10, so let us suppose it has been done. We put the rule
of Substitution in the form of a derived inference rule:

4 b el 627 E(el) . [, . ..
(3' 'I) SuDs: E(2) (E(p) 1s & Tunction o p)

To show the use of (3.4.4), we give a schematic proof to show that the
rule of substitution as given in section 2.2 holds here also.

From el =e2 infer E(el) = E(e2)

1 | el=e2 prl
2 | From E(el) infer E(e2)
(3.4.5) 2.1 | E@e2) subs, pr 1, |

3| E(el)>E(e2) >-1, 2

4 | From E(e2) infer E(el)
4.1 | e2=el =1, (3.3.3) (p =p)
4.2 | E(el) subs, 4.1, pr 1

5 | E(e2y=E(el) =1, 4

6 | E(el)=FE(e2) =-1,3,5

With this derived rule of inference, we have the flexibility of both the
equivalence and the natural deduction systems. But we must make sure
that the laws of section 2.1 actually hold! We do this next.

Some basic theorems

A number of theorems are used often, including the laws of section
2.1. We want to state them here and prove some of them; the rest of the
proofs are left as exercises. The first to be proved is quite useful. It
states that if at least one of two propositions is true, and if the first is
false, then the second is true.

48 Part 1. Propositions and Predicates | Section 3.4 Adding Flexibility to the Natural Deduction System

From p Vg, -p infer ¢ From (bVe)A(bVd) infer b V(cArd)
I 1p pr2 I | bve A-E, pr]
2 | From p infer g 2| bvd A-E, prl
21 1 p prl 3] bVab 3.4.14)
(3.4.6) 2.2 | From ~q infer p A ap 4 | From b infer b V(c Ad)
221 | prap AL21, 1 f a1 | bviead) v, prl
23 | g .-E, 2.2 51 b6=bv(crd) =-1, 4
3| p=>g =1, 2 : (3.4.8) 6 | From b infer b V(c Ad)
4 | g V-E, pr 1, 3, (3.3.3) 6.1 | ¢ (3.4.6), 1, pr 1
62 | d (3.4.6),2, pri
We now turn to the laws of section 2.1. Some of their proofs are given 63 | cAd A-LL 6.1, 6.2
here; the others are left as exercises to the reader. 6.4 | bv(cArd) V-1, 6.3
) 7| ~b=>bV(cAd) =-1,6
1. Commutative laws. (p Aq)=(q Ap) was proven in theorem (3.3.4); the - 8 | bV(cAd) V-E, 3,5, 7
other two commutative laws are left to the reader to prove.
2. Associative laws. These we don’t need to prove since the inference (3.49) Infer bv(cAd)=(bVc)A(bVd)
rules for and and or were written using any number of operands and no , L bv(ead)=(bVe)r(bVvd) =1, (3.4.7)
parentheses. 21 @ve)rbvdy=bv(cad) =-1,(3.4.8)
3 bviendy=(bve)nbvd) =,1,2

3. Distributive laws. Here is a proof of the first; the second is left to the
reader. The proof is broken into three parts. The first part proves an
implication => and the second part proves it in the other direction, so
that the third can prove the equivalence. The second part uses a case
analysis (rule V-E) on b V 15 —the law of the Excluded Middle— which is

4. De Morgans’s laws. We prove only the first one here.

From (b Ac) infer 1b V ¢

not proved until later. The use of bV 15 in this fashion occurs often ; ;‘Ezr:\lc-.)(-.b Vac) infer (b A)A (b Ac) prl
From b V(c Ad) infer (b Vc)A(b Vd) 21 a(abVac) prl
I | From b infer (b Ve)A(bVd) 2.2 | From b infer (<5 V 1¢c)A (2B Vac)
1.1 bve v-I, pr i (3.4.10) 2.2.1 ab Ve v-I, pr i
12 | bvd v-I, pr 1 222 | (AbVac)Aa(abVac) AL 221,21
(3.4.7) 13 | (bve)a(bvd) AL 1, 1.2 ;i ; . -E, 22
21 b=>(bve)r(bvd) >, 1 . rom ~c infer (1bVac)Aa(sbVac)
3 | From cAd infer (bVc)A(bVd) 24.1 | 1bVac v-l, pr 1
31| ¢ : A-E, pr1 242 | (abVac)aa(abVac) Al 241, 2.1
32 | d A-E, pr 1 25t ¢ +-E, 2.4
2.6 | bac AL, 23,25
33 | bve v-l, 3.1 . 2.3,
34 | bvd v-l, 3.2 ; 21-)7\/ (bAcIA(bAC) AL 2.6, 1
35 1 (bve)a(bvd) Al 33,34 b Vac .-E, 2
4 | (cAd)=(BVe)A(bVd) >1,3
51 (Vve)n(bvd) V-E, prl,2,4

50 Part 1. Propositions and Predicates

From <6V 1c infer 1(b Ac)
I | From 15 infer 1(b Ac)

LT | b pr i
1.2 | From b Ac infer b A 1 b
1.2.1 l b A-E, pr 1
(3.4.11) 122 | bAqb AL 12,0, 11
13] ~(bArc) a-1, 1.2
2 | ab=>4(bAc) =-1, 1
3 | From .c infer -(b Ac)
3.1 ac prl
32 | From b Ac infer cAac
321 | ¢ A-E, prl
322 | eAqc A-1, 3.2.1, 3.1
3.3 | a(bArc) 11, 3.2
4 ac=>a(bAc) =>-1,3
51 a(bArce) V-E, prl, 2,4
(3.4.12) Infer ~+(bAc)=1bV ac
1 W(bAc)=4bV e =>-1, (3.4.10)
2 1bV1C:>'1(b /\C) é'l, (3411)
3 1(b/\C):1bV1C :-I, 1,2

5. Law of Negation. This one is extremely simple because we have
already done the necessary groundwork in previous theorems:

(3413) Infer - b =5

1 | b=14b =-1, (3.3.11)
2 11b =>b =], (3.3.12)
3 11b =b =1, 1’ 2

6. Law of the Excluded Middle. This proof proceeds by assuming the
converse and proving a contradiction in a straightforward manner.

S—

Exercises for Section 3.4 51
Infer b v 4p
I | From -.(bV-.b)infer(bvqb)/\-.(bV1b)
1.1 1(bv1b) prl
1.2 From 1b infer(bV-.b)A-;(bV-.b)
L21 | bvab V-1, pr 1
(3.4.14) 122 | (bvab)a HW(bVab) A 121, 1.1
1.3 | & ~-E, 1.2
1.4 | bvab v-1, 1.3
1.5 (bV-|b)/\-|(bV1b) AL 14, prd
21 bvab 1-E, I

7. Law of Contradiction. Left to the reader.
8. Law of Implication. Left to the reader.
9. Law of Equality. Left to the reader.

10-11. Laws of or- and and-Simplification. These laws use the constants
T and F, which don’t appear in the inference system.

Exercises for Section 3.4

1. Use the idea in theorem (3.4.1) to derive from (3.3.7) a proof that
(P Ag)=>(pVq) follows from p (g =p vq).

2. Use the idea in theorem (3.4.1) to derive from (3.3.8) a proof that from
(g Ar Ag)=r follows (g Ar)=(q =>r).

3. Use the idea in theorem (3.4.1) to derive from (3.3.4) a proof that (a Ab Ac)
={(cAanrb).

4. Prove the second and third Commutative laws, (bVc)=(c Vb) and (b =c¢)
=(c =b).

- Prove the second Distributive law, b Alevd) = (b Ac)V(b Ad).
- Prove the second of De Morgan’s laws, WbVe)=1bAnc.

- Prove the law of Contradiction, +(b A 15).

- Prove the law of Implication, b Ve = (15 =c).

- Prove the law of Equality, (b =c¢) =(b=>c)A(c=b).

10. Prove theorem (3.4.3).

11. Prove the rule of Transitivity: froma =5b and b =¢ follows a =¢.

- I - Y

12. Prove that from p Vg and 1g follows p (see (3.4.6)).

52 Part 1. Propositions and Predicates

3.5 Developing Natural Deduction System Proofs

" he reader has no doubt struggled to prove some theorems in the
natural deduction system, and has wondered whether such proofs could be
developed in a systematic manner. This section should provide some help.

We will begin to be less formal, stating facts without formal proof and
taking larger steps in a proof when doing so does not hamper understand-
ing. This is not only convenient; it is necessary. While the formal
methods are indispensable for learning about propositions, one must begin
to use the insight they supply instead of the complete formality they
require in order to keep from being buried under mounds of detail.

To help the reader take a more active role in the development of the
proofs, they will be presented as follows. At each step, a question will be
posed, which must be answered in order to invent the next step in the
proof. The answer will be separated from the question by white space
and an underline, so that the reader can try to answer the question before
proceeding. In this way,.the reader can actually develop each step of the
proof and check it with the one presented.

Some general hints on developing proofs

Suppose a theorem of the form “From el, e2 infer e3” is to be proved.
The proof must have the form

From el, e2 infer e3

1| el prl
2] e2 pr2

31e3 Why?

and we need only substantiate line 3 —i.e. give a reason why e3 can be
written on it. We can look to three things for insight. First, we may be
able to combine the premises or derive sub-propositions from them in
some fashion, if not to produce e3 at least to get something that looks
similar to it.

Secondly, we can investigate e3 itself. Since an inference rule must be
used to substantiate line 3, the form of e3 should help us decide which
inference rule to use. And this leads us to the third piece of information
we can use, the inference rules themselves. There are ten inference rules,
which yields a lot of possibilities. Fortunately, few of them will apply to
any particular proposition e3, because e3 must have the form of the con-
clusion of the inference rule used to substantiate it. And, with the addi-
tional information of the premises, the number of actual possibilities can
be reduced even more.

Section 3.5 Developing Natural Deduction System Proofs 53

For example, if e3 has the form e4=>e5, the two most likely inference
rules to use are =-E and =1, and if a suitable equivalence does not seem
possible to derive from the premises, then =-E can be eliminated from
consideration.

Let us suppose we try to substantiate line 3 using rule =-I, because it
has the form e4=>e5. Then we would expand the proof as follows.

From el, e2 infer e4=>>¢5

1| el pri
2 | e pr2
3 | From e4 infer e5

3.1 | e4 prl

32 | &5 Why?
4 | ed=e5 =13

Thus, we have reduced the problem of proving e4=>¢e5 from el and e2 to
the problem of proving e5 from e4, and the new problem promises to be
simpler because propositions e4 and e5 each contain fewer operations than
e3 did —they are in some sense smaller and simpler.

The above discussion shows basically how to go about developing a
proof. At each step, investigate the inference rules to determine which are
most likely to be applicable, based mainly on the proposition to be proved
and secondly on previous assumptions and already-proved theorems, and

attempt to apply one of them in order to reduce the problem to a simpler
one.

As the proof expands and more assumptions are made, try to invent
and substantiate new propositions {from the already proved ones) that
may be helpful for proving the desired result. But remember that, while
the premises are certainly useful, proof development is a goal-oriented
activity, and it is mainly the goal, the proposition that must be substan-

tiated; we should look to the goal and possible inference rules for the
most insight.

Successful proof development requires some experience with the infer-
ence rules, so the reader should spend some time studying them and
deciding when they might be employed. We can give some hints here.

Rules =-1 and =-E together define operation equals. They are used
only to derive an equivalence or to turn one into implications. If

equivalence is not a part of the premises or goal, they can be eliminated
from consideration.

The other rules of introduction are used to introduce longer proposi-
tions from shorter ones. Hence, they are useful when the desired goal, or

54 Part [. Propositions and Predicates

parts of it, can be built from shorter propositions that occur on previous
lines. Note that, except for =-I, the forms of the conclusions of the rules
of introduction are all different, so that at most one of these rules can be
used to substantiate a proposition.

The rules of elimination are generally used to “break apart” a proposi-
tion so that one of its sub-propositions can be derived. All the rules of
elimination (except for =E) have a general proposition as their conclu-
sion. This means that they may possibly be used to substantiate any pro-
position. Whether an elimination rule can be used depends on whether its
premises have appeared on previous lines, so to decide whether these rules
should be used requires a look at previous lines.

The Development of a proof

Problem. Prove that if p = ¢ is true then so is (p A ag)> «p. The first
step in developing a proof is to draw the outline for the proof and fill in
the first line with the theorem, the next lines with the premises and the
last line with the goal —i.e the proposition to be inferred. Perform this
step.

The problem description yields the following start of a proof:

From p =q infer (D A1q)=>ap
1| p=>q prl

2 | (phrag)=ap Why?

At this point, it is wise to study the premises to see whether propositions
can be derived from them. Do this.

Little can be derived from p =g, except the disjunction 1p Vg (using the
rule of Substitution). We will keep this proposition in mind. Which rules
of inference could be used to substantiate line 2? That is, which rules of
inference could have (p A 1g)=>1p as their conclusion?

Possible inference rules are: =-I, A-E, V-E, 1-E, =-E and =-E. Which
seems most applicable, and why? Expand the proof accordingly.

Section 3.5 Developing Natural Deduction System Proofs 55

There is little to suppose that the elimination rules could be useful, for

their premises are different from the propositions on previous lines. This
leaves only =-1.

From p =¢q infer (p A~g)=>qp
1| p>gq prl

2 | From p A 5q infer = p

2.1 | pAag prl

22 | ap Why?
3| @Ag)=ap >1,2

What can be derived from the propositions appearing on lines previous to
2.2?

Using A-E, we can derive p and +q from premise p A.g. We then see
that g can be derived from p =g and p. (Is it strange that both ¢ and
1q can be derived?) Keeping these in mind, list the inference rules that
could be used to substantiate line 2.2.

Possible inference rules are -1, A-E, V-E, +-E and =-E. Choose the rule
that is most applicable and expand the proof accordingly.

The elimination rules don’t seem useful here; elimination of imp on line 1
results in g, and we already know that A-E can be used to derive only p
and 1¢q from p A.g. Only -1 seems helpful:

¥rom p =g infer (p A~q)=>1p

11 p=>q prl
2 | From p A4q infer «p
21 | pArag prl
2.2 | From p infer e A ve (which e?)
221 | p prl
222 | erqe Why?
2.3 p 1—1, 2.2
3 [(prag)=ap >-1, 2

Whgt proposition e should be used on lines 2.2 and 2.2.2? To make the
choice, look at the propositions that occur on lines previous to 2.2 and

56 Part 1. Propositions and Predicates

the propositions we know we can derive from them. Expand the proof
accordingly.

We reasoned above that we could derive both ¢ and ¢, so the obvious
choice is e =g. We complete the proof as follows:

From p =qg infer (p A 2g)=>ap

1| p=>q pr!l
2 From p A 1q infer 1p
2.1 | pAag prl
22 1 p A-E, 2.1
23 | aq A-E, 2.1
24 | Fromp infer g A -q
2.4.1 q =-E, 1,22
242 | gAaag AL 241,23
2.5 ap 2-1,24
31 (@Ar-g)=>ap =>-1, 2

The Development of a second proof

Problem. Prove that from 1p =g follows «(p =¢). Draw the outline of
the proof and fill in the obvious details.

From -p =gq infer 1(p =q)
1 ap =gq prl

2 2(p =q) Why?

What information can be gleaned from the premises?

Rule =-E can be used to derive two implications. This seems useful here,
since implications will be needed to derive the goal, and we derive both.

Section 3.5 Developing Natural Deduction System Proofs 57

From +1p =g infer 1(p =q)
I 1ip >q =-E, pr i
2 | g=ap =-E, pr 1

The following rules could be used to substantiate line 3: 4-I, A-E, V-E, 4-
E and =-E. Choose the most likely one and expand the proof accord-
ingly.

The elimination rules don’t seem helpful at all, because the premises that
would be needed in order to use them are not available and don’t seem
easy to derive. The only rule to try at this point is 1-1 —we have little
choice!

From 1p =g infer «(p =q)

L | ap=>gq =E, prl

2| g=ap =-E, prl

3 | Fromp =gq infer e A e (which e?)
3.1 | p=gq prl
32 | eAne Why?

4 1(p :q) +-1, 3

What proposition e should be used on lines 3 and 3.2, and how should it
be proved? Expand the proof accordingly.

The propositions 1p =g and ¢ = .p are available. In addition, from
line 3.1 p = ¢ and g =p can be derived. Let’s rearrange these as follows:

P>4,9=>1p,q>p, and
P >q,9>ap,qg>p.
If we assume p we can prove both P and ap; if we assume ~p we can

also prove p and 1p. Hence we should be able to prove the contradic-
tion pAp. Sotry e =p and write the following proof.

58 Part 1. Propositions and Predicates

From 1p =g infer -1 (p =q)

1 ap >q =-E, prl
2] g=>ap =-E, prl
3 | Fromp =gq infer p Aap
3.1 | p>¢q =-E, pr!
32 | g=>p =E, prl
33 | p Why?
34 | ap Why?
35 | pAap AL 33,34
4| «(p=gq) -1, 3

So we are left with concluding the two propositions p and 1p. These are
quite simple, using the above reasoning, so let us just show the final
proof. '

From 1p =gq infer . (p =q)

1| ~p>gq =E, prl
2 | g=ap =-E, pr |
3 | Fromp =gq inferp Aap
31 | p=>gq =-E, pr !
32 | g=>p =E, pr!
33 | From ~p inferp Aqp
331 | ¢q =-E, 1, prl
332 0 p =>-E, 3.2, 3.3.1
333 | pAap AL 332 prl
34| p -+-E, 3.3
3.5 | Fromp inferp Aap
351 | ¢q =-E, 3.1, pr 1
352 | ap =>-E, 2, 3.5.1
353 | pAap Al prl, 352
3.6 ap 1—1, 35
37 | pAap A1, 3.4, 3.6
51 1(p=gq) s-1, 2

At each step of the development of the proof there was little choice. The
crucial —and most difficult— point of the development was the choice of
inference rule -1 to substantiate the last line of the proof, but careful
study of the inference rules led to it as the only likely candidate. Thus,
directed study of the available information can lead quite simply to the
proof.

Section 3.5 Developing Natural Deduction System Proofs 59

The Tardy Bus Problem

The Tardy Bus Problem is taken from WFF'N PROOF: The Game of
Modern Logic [1].

THE TARDY BUS PROBLEM. Given are the following premises:

L. If Bill takes the bus, then Bill misses his appointment, if the
bus is late.

. 2. Bill shouldn’t go home, if (a) Bill misses his appointment, and
(b) Bill feels downcast.

3. If Bill doesn’t get the job, then (a) Bill feels downcast, and (b)
Bill shouldn’t go home.

Which of the following conjectures are true? That is, which can be validly
proved from the premises? Give proofs of the true conjectures and coun-
terexamples for the others.

L. If Bill takes the bus, then Bill does get the job, if the bus is
late.

2. Bill gets the job, if (a) Bill misses his appointment, and (b) Bill
should go home.

3. If the bus is late, then (a) Bill doesn’t take the bus, or Bill
doesn’t miss his appointment, if (b) Bill doesn’t get the job.

4. Bill doesn’t take the bus if, (a) the bus is late, and (b) Bill
doesn’t get the job.

5. If Bill doesn’t miss his appointment, then (a) Bill shouldn’t go
home, and (b) Bill doesn’t get the job.

6. Bill feels downcast, if (a) the bus is late, or (b) Bill misses his
appointment.

7. If Bill does get the job, then (a) Bill doesn’t feel downcast, or
(b) Bill shouldn’t go home.

8. If (a) Bill should go home, and Bill takes the bus, then (b) Bill
doesn’t feel downcast, if the bus is late.

This problem is typical of the puzzles one comes across from time to time.
Most people are confused by them —they just don’t know how to deal
with them effectively and are amazed at those that do. It turns out, how-
ever, that knowledge of propositional calculus makes the problem fairly
easy.

The first step in solving the problem is to translate the premises into
propositional form. Let the identifiers and their interpretations be:

60 Part 1. Propositions and Predicates

tb: Bill rakes the bus

ma: Bill misses his appointment
bi: The bus is late

gh: Bill should go home

fd: Bill feels downcast

gj: Bill gets the job.

The premises are given below. Each has been put in the form of an impli-
cation and in the form of a disjunction, knowing that the disjunctive form
is often helpful.

Premise 1. 16 = (bl = ma) or athVablvma
Premise 2. (maAfd)= -gh or ~maV ~fdV agh
Premise 3. 1gj =(fdA agh) or gjV(fdAgh)

Now let’s solve the first few problems. In order to save space, Premises 1,
2 and 3 are not written in every proof, but are simply referred to as Prem-
ises 1, 2 and 3. Included, however, are propositions derived from them in
order to get more true propositions from which to conclude the result.

Conjecture 1: If Bill takes the bus, then Bill does get the job, if the bus is
late. Translate the conjecture into propositional form.

In propositional form, the conjecture is b = (bl =gj). We try to prove
“From tb infer b/ =>gj”, which would prove that the conjecture is true.
Write the outline for the proof and fill in the obvious details.

From tb infer bl = gj
1|t prl

2 | bl=gj Why?

What propositions can be derived from line 1 and Premises 1, 2 and 3?
Expand the proof accordingly.

Proposition bl = ma can be derived from Premise 1 and line 1:

Section 3.5 Developing Natural Deduction System Proofs 61

From 1b infer bl = gj
I pri
2 | bl=ma =-E, Premise I, |

3| bl=>gj Why?

Which rules could be used to substantiate line 37

Proposition b/ =>gj could be an instance of the conclusion of rules =,
A-E, V-E, +-E, =-E and =-E. Which seems most useful here? Expand the
proof accordingly.

The necessary propositions for the use of the elimination rules are not
available, so try =-I:

From b infer bl = gj
14 e prl
2 | bl =>ma =-E, Premise 1, |
3 | From bl infer gj
3.1 | bl prl

32 | g Why?
4 | bl=>gj =1, 3

Can any propositions be inferred at line 3.2 from the propositions on pre-
vious lines and Premises 1, 2 and 3? Expand the proof accordingly.

Proposition ma can be derived from lines 2 and 3.1

From 1) infer bl =>gj

1|2 pr !

2 | bl=>ma =-E, Premise I, |
3 | From bl infer gj

3.1 | b prl

3.2 | ma =-E, 2, 3.1

33 1 gj Why?
4 | bl=>gj =1, 3

62 Part 1. Propositions and Predicates

What rules could be used to substantiate line 3.3?

Proposition gj could be an instance of the conclusion of rules A-E, V-E,
+-E and =-E. Which ones seem helpful here?

None of the the rules seem helpful. The only proposition available that
contains gj is Premise 3, and its disjunctive form indicates that gj must
necessarily be true only in states in which (fdA agh) is false (according to
theorem (3.4.6)). But there is nothing in Premise 2, the only other place
fd and gh appear, to make us believe that fdA gh must be false.
Perhaps the conjecture is false. What counterexample —i.e. state in
which the conjecture is false— does the structure of the proof and this
argument lead to?

Up to line 3.2 of the proof we have assumed or proved th =T, bl=T
and ma =T. To contradict the conjecture, we need gj =F. Finally, the
above argument indicates we should try to let fdA 1gh be true, so we try
Jd=T and gh =F. Indeed, in this state Premises 1, 2 and 3 are true and
the conjecture is false.

Conjecture 2: Bill gets the job, if (a) Bill misses his appointment and (b)
Bill should go home. Translate the conjecture into propositional form.

This conjecture can be translated as (ma Agh)=gj. To prove it we need
to prove “From ma Agh infer gj”. Draw the outline of a proof and fill in
the obvious details.

From ma A gh infer gj

1 | manrgh prl
21 g Why?

What can we derive from line I and Premises 1, 2 and 3? Expand the
proof accordingly.

Section 3.5 Developing Natural Deduction System Proofs 63

Both line 1 and Premise 2 contain ma and gh. Premise 2 can be put in
the form +(ma Agh)Vfd. Since ma Agh is on line 1, theorem (3.4.6)
together with the law of Negation allows us to conclude that 2 fd is true,
or that fd is false. Putting this argument into the proof yields

From ma Agh infer gj

I | mangh prl

2 | a(maArgh)Vafd subs, De Morgan, Premise 2
3| va(manrgh) subs, Negation, 1

4 | ~fd (34.6),2,3

51 g Why?

What inference rule should be used to substantiate line 57 Expand the
proof accordingly.

The applicable rules are A-E, V-E, +-E and =-E. This means that an ear-
lier proposition must be broken apart to derive gj. The one that contains
g/ is Premise 3, and in its disjunctive form it looks promising. To show
that gj is true, we need only show that fdA 1gh is false. But we already
know that fd is false, so that we can complete the proof as follows.

From ma Agh infer gj

I | mangh prl

2 | 1(margh)Vafd subs, De Morgan, Premise 2
3 | aa(mangh) subs, Negation, 1

4 | -fd 3.4.6),2,3

5| afdVaagh v-1, 4

6 | A (fdragh) subs, De Morgan, 5

71 g (3.4.6), Premise 3, 6

Conjecture 3: If the bus is late, then (a) Bill doesn’t take the bus, or Bill
doesn’t miss his appointment, if (b) Bill doesn’t get the job. Translate the
conjecture into propositional form.

Is this conjecture ambiguous? Two possible translations are

bl =(1gj =(+thV 1ma)), and
bl = (1th V(~1gj = rma))

Let us assume the first proposition is intended. It is true if we can prove
“From b/ infer 1gj =(+thV 1ma)”. Draw the outline of the proof and

64 Part 1. Propositions and Predicates

fill in the obvious details.

From b/ infer 1gj =(+th V ~ma)
1| bl pri

2 1gj = {(tb vV ama) Why?

What propositions can be derived from line 1 and the Premises?

No propositions can be derived, at least easily, so let’s proceed to the next
step. What rule should be used to substantiate line 2?2 Expand the proof
accordingly.

Quite obviously, rule =-1 should be tried:

From b1 infer agj =(+tbV 1ma)

1| bl pri
2 | From -gj iofer 1tb V ama
2.1 ~gj prl

22 | 4thVama Why?
3 187 = (+tb vV ama)

Just before line 2.2, what propositions can be inferred from earlier propo-
sitions and Premises 1, 2 and 37 Expand the proof accordingly.

The antecedent of Premise 3 is true, so we can conclude that the conse-
quent is also true:

7

Exercises for Section 3.5 65

From bl infer 1gj >(1tb Vima)

1| bl prl
2 | From gj infer 1tb V ima
2.1 | .gj prl
2.2 | fdAh-gh =-E, Premise 3, 2.1
23 | fd A-E, 2.2
24 | .gh A-E, 2.2

25| atbVama Why?
3 187 =(~tb Vima)

What inference rule should be used to substantiate line 2.5? Expand the
proof accordingly.

The proposition on line 2.5 could have the form of the conclusion of rules
V-I, A-E, V-E, +-E and =-E. The first rule to try is V-I. Its use would
require proving that one of 1tb and ~ma is true. But, looking at the
Premises, this seems difficult. For from Premise 1 we see that both b
and ma could be true, while the other premises are true also because both
their conclusions are true. Perhaps there is a contradiction. What is it?

In a state with tb =T, ma=T, bl=T, gh=F, fd=T and gi=F
Premises 1, 2 and 3 are true, but the conjecture is false.

Exercises for Section 3.5
1. Prove or disprove conjectures 4-8 of the Tardy Bus problem.

2. For comparison, prove the valid conjectures of the Tardy Bus problem using a
mixture of the equivalence-transformation system of chapter 2 and English.

Chapter 4
Predicates

In section 1.3, a state was defined as a function from identifiers to the
set of values {T, F}. The notion of a state is now extended to allow iden-
tifiers to be associated with other values, e.g. integers, sequences of char-
acters, and sets. The notion of a proposition will then be generalized in
two ways:

I. In a proposition, an identifier may be replaced by any expres-
sion {e.g. x <y) that has the value T or F.

2. The quantifiers E, meaning “there exists”; 4, meaning “ff)r all”;
and N, meaning “number of”, are introduced. This requires an
explanation of the notions of free identifier and boum.i identifier
and a careful discussion of scope of identifiers in expressions.

Expressions resulting from these generalizations are called predicates, and
the addition to a formal system (like the system of chapter 2 or 3) of
inference rules to deal with them yields a predicate.calculus.

4.1 Extending the Range of a State

We now consider a state to be a function from identifiers to values,
where these values may be other than T and F. In any given context, an
identifier has a type, such as Boolean, which defines the set of values with
which it may be associated. The notations used to indicate the st'andard
types required later are:

Boolean (i): identifier i can be associated (only) with T or F.

Section 4.1 Extending the Range of a State 67

natural number(i): i can be associated with a member of {0, 1,
2, PR }

integer(i). i can be associated with an integer —a member of
o 2-1,0,1,2, - -).

integerset (i): i can be associated with a set of integers.
Other types will be introduced where necessary.

Let P be the expression x <y, where x and y have type integer.
When evaluated, P yields either 7 or F, so it may replace any identifier
in a proposition. For example, replacing b in (b Ac)vd by P yields

(x<p)rc)vd.

The new assertions like P are called aromic expressions, while an expres-
sion that results from replacing an identifier by an atomic expression is
called a predicate. We will not go into detail about the syntax of atomic
expressions; instead we will use conventional mathematical notation and
rely on the reader’s knowledge of mathematics and programming. For
example, any expression of a programming language that yields a Boolean
result is an acceptable atomic expression. Thus, the following are valid
predicates:

(=A@ <z)V(x+y<z)
(x<yry<z)vx+ty<z

The second example illustrates that parentheses are not always needed to
isolate the atomic expressions from the rest of a predicate. The pre-
cedences of operators in a predicate follow conventional mathematics.
For example, the Boolean operators A, V, and = have lower precedence
than the arithmetic and relational operators. We will use parentheses to
make the precedence of operations explicit where necessary.

Evaluating predicates

Evaluating a predicate in a state is similar to evaluating a proposition.
All identifiers are replaced by their values in the state, the atomic expres-
sions are evaluated and replaced by their values (7 or F), and the result-
ing constant proposition is evaluated. For example, the predicate
x <y Vb in the state {(x,2),(0,3),(b,F)} has the value of 2<3 v F,
which is equivalent to TV F, which is T.

Using our earlier notation s(e) to represent the value of expression e
in state s, and writing a state as the set of pairs it contains, we show the
evaluation of three predicates:

68 Part 1. Propositions and Predicates

s({x<y Any<z)V{(x+y<z)) wheres ={{x,1),(y,3),(z,5)}
= (IK<3A35) v (143<5)
=(TATH)vT
=T.

s(x <y Ay <z)V(x+y <z)) wheres ={(x,3),(y,1).(z.5)}
= (B<IAI<C) vV E+HICS
=(FAT)VT
=T.

s(x<sy Ay <z)V(x-+y<z)) where s ={(x, 5),(y, 1),(z, 3)}
= (K1 A1<3)V(5+1<3)
=(FAT)VF
= F.

Reasoning about atomic expressions

Just as inference rules were developed for reasoning with propositions,
so they should be developed to deal with atomic expressions. For exam-
ple, we should be able to prove formally that i <k follows from i<j
A J<k). We shall not do this here; as they say, “it is beyond the scope
of this book.” Instead, we rely on the reader’s knowledge of mathematics
and programming to reason, as he always has done, about the atomic
expressions within predicates.

As mentioned earlier, we will be using expressions dealirig with integer
arithmetic, real arithmetic (though rarely) and sets. The operators we will
be using in these expressions are described in Appendix 2.

The operators cand and cor

Every proposition is well-defined in any state in which all its identifiers
have one of the values 7" and F. When we introduce other types of
values and expressions, however, the possibility of undefined expressions
(in some states) arises. For example, the expression x /y is undefined if y
is 0. We should, of course, be sure that an expression in a program is
well-defined in each state in which it will be evaluated, but at times it is
useful to allow part of an expression to be undefined.

Consider, for example, the expression
y=0v(x/y=5).

Formally, this expression is undefined if y =0, because x /y is undefined
if =0 and or is itself defined only when its operands are T or F. And
yet some would argue that the expression should have a meaning in any
state where y =0. Since in such states the first operand of or is true, and
since or is defined to be true if either of its operands is true, the

Section 4.1 Extending the Range of a State 69

expression should be true. Furthermore, such an interpretation would be
quite useful in programming, for it would allow us to say many things
more clearly and compactly. For example, consider being able to write

ify =0V (x/y=5) then s/ else 52
as opposed to

if y =0 then sJ
else if x /y= 5 then s]
else 52

Rather than change the definition of and and or, which would require
us to change our formal logic completely, we introduce two new opera-
tors: cand (for conditional and) and cor (for conditional or). The
operands of these new operators can be any of three values: F, T and U

(for Undefined). The new operators are defined by the following truth
table.

]bcandc b corc bcandc b corc

T Ty

c
U F
T U
F U
U U

TTaoac

4
T
F
U
T
F

NN N
T QN
TNNNN

This definition says nothing about the order in which the operands should
be evaluated. But the intelligent way to evaluate these operations, at least

On current computers, is in terms of the following equivalent conditional
expressions:

b cand c: if b then ¢ else F
b corc: ifb then T else ¢

Operators cand and cor are not commutative. For example, » cand ¢ is
not equivalent to ¢ cand b. Hence, care must be exercised in manipulat-
ing expressions containing them. The following laws of equivalence do
hold for cand and cor (see exercise 5). These laws are numbered to
correspond to the numbering of the laws in chapter 2.

2. Associativity: EI cand (E2 cand E3) = (EI cand E2) cand E3
EI cor (E2 cor E3) = (EI cor E2) cor E3

3. Distributivity:
El cand (E2 cor E3) = (EI cand E2) cor (EI cand E3)
£1 cor (E2 cand E3) = (EI cor E2) cand (EI cor E3)

70 Part L. Propositions and Predicates

4. De Morgan: ~(E! cand E2) = - El cor 1 E2)
= (El cor E2) = 1 El cand - E2)

6. Excluded Middle: E] cor + El = T (provided EI is well-defined)
7. Contradiction: E] cand - El = F (provided EI is well-defined)

10. cor-simplification
El cor EI = EI
ElcorT =T
El cor F = FI
El cor (El cand E2) = EI

(provided EI is well-defined)

11. cand-simplification
El cand EI = EI
Elcand T = EI
El cand F = F (provided EI is well-defined)
EIl cand (EI cor E2) = EI

In addition, one can derive various laws that combine cand and cor with
the other operations, for example,

El cand (£2V E3) = (EI cand E2)V(EI cand E3)

Further development of such laws are left to the reader.

Exercises for Section 4.1

1. The first two exercises consist of evaluating predicates and other expressions
involving integers and sets. Appendix 2 gives more information on the operations
used. The state 5 in which the expressions should be evaluated consists of two
integer identifiers x,y, a Boolean identifier b, two set identifiers m,n and an
integer array c¢[1:3]. Their values are:

x=7,y=2,b=T, m={1,234}, n ={24,6}, c =(2,4,6)

(h) —ceil(~x/y)=x+y
(1) 7mod?2

(a) x+y =3

(b) (x—1)~y =3
(©) (x+)+y =3 G floor(xfy)=x=+y

(d) ceil(x/y)=x+y +1 (k) min(floor(x[2), ceil(x [2))<ceil(x[2)
() floor(x+D/y)=(x+1)+y () (abs(—x)=—abs(x))=b

() floor(—x/y)=-—3 (m) bVx <y

(g) ceil(x/y)=x=+y (n) 19 mod3

2. Evaluate the following expressions in the state given in exercise 1.

(@) mUn (8) |m|lEm
(b)y mNn (h) | n] €n

Section 4.2 Quantification 71

(©) x€mAb M {lm|jvie, THcn
(d) mCnab G Im| +ln|=|mun|
(e) DCTm (k) min{m)

M {ili€mneven(i)iCn () {i|i€mAi€n}

3. Evaluate the following predicates in the state given in exercise 1. Use U for
the value of an undefined expression.

(@ bvx /[(y—2)=0) x=0cand x /(y—2)=0
() b corx /[(y—2)=0 (g 1<y <3 cand c[ylem
© bAx /(y—2)=0 (hy ISy<3corc[x]€Em

(d) b eand x /(y—2)=0 (i) 1<y <3 cand cly+llem
(&) x =0Ax /(y=2)=0 () I<x<3corc[y]em

4. Consider propositions @, b and ¢ as having the values F', 7 or U (for unde-
fined). Describe all states where the commutative laws @ cor b = b cor ¢ and
a cand b = b cand a do not hold.

5. Prove that the laws of Associativity, Distributivity, De Morgan, Excluded Mid-
dle, Contradiction, cor-simplification and cand-simplification, given just before
these exercises, hold. Do this by building a truth table for each one.

4.2 Quantification

Existential quantification

Let m and n be two integer expressions satisfying m <n. Consider
the predicate

(421) EmvEm+lv e VEn—h

where each E; is a predicate. (4.2.1) is true in any state in which at least
one of the E; is true. It can be expressed using the existential quantifier
E (read “there exists™) as

422 Eiim<i<n: E).

The set of values that satisfy m <i <n is called the range of the quanti-
fied identifier i. Predicate (4.2.2) is read in English as follows.

(Ei there exists at least one (integer) i
: such that
m<i<nm i is between m and n—1 (inclusive)
: for which the following holds:
E) E.

72 Part 1. Propositions and Predicates

The reader is no doubt already familiar with some forms of quantifica-
tion in mathematics. For example,

n—i
5 = Syt Sma Tt
<

n—1
nsi = Sm ¥Sp4r* 00 ¥ Sy
=m

stand for the sum and product of the values $,, Sy+1, ... Sy—1, TESPEC-
tively. These can be written in a more linear fashion, similar to (4.2.1), as
follows, and we shall continue to use this new form:

Eiim<i<n:s)
(MNiom<i<n:isg)

At this point, (4.2.2) is simply an abbreviation for (4.2.1). It can be
recursively defined as follows:

(4.2.3) Definition of E:
Eim<i<m:E)=F, and, for k=m,
Eiim<i<k+l:E) = Eim<i<k:E)VE O

Remark: The base case of this recursive definition, which concerns an
empty range m <i <m for i, brings out an interesting point. The dis-
Jjunction of zero predicates, (Ei:m <i <m: E;), has the value F: “oring”
0 predicates together yields a predicate that is always false. For example,
the following predicates are equivalent to F:

Ei:0<i<0:i=1i)
(Ei:—3<i<—-3:T)

The disjunction of zero disjuncts is F. The conjunction of zero con-
juncts turns out to be 7. Similarly, the sum of zero values is 0 and the
product of zero values is 1. These four facts are expressed as

Zi:0<i<0:x;) =0,
(N 0<i<0:x;) =1,
Fi0<i<0:FE) =F,
(4i:0<i<0:E;) =T. (Notation explained subsequently)

The value 0 is called the identity element of addition, because any number
added to 0 yields that number. Similarly, I, F and T are the identity ele-
ments of the operators *, or and and, respectively. O

Section 4.2 Quantification 73

The following examples use quantification over two identifiers. They
are equivalent; they assert the existence of / and J between 1 and 99 such
that / is prime and their product is 1079 (is this true?). The third one uses
the convention that successive quantifications with the same range,
Eim<si<n Ejm<j<n: Ek:-m<k<n: ---) can be written
as (Ei,j,k:m<i,jk<n:- --)

(DE0<i<100:(Ej:0<j <100: prime (i) A i %] =1079))
(2) (Ei:0<i <100: prime (i) A (Ej:0<j <100:i%j =1079))
(3) (Ei,j:0<i,j <100: prime (i) A i*j = 1079))

Universal quantification

The universal quantifier, A, is read as “for all”. The predicate
424) Aim<i<n: E)
is true in a state iff, for all values i in the range m <i <n, F; is true in
that state.

We now define 4 in terms of E, so that, formally, we need deal only
with one of them as a new concept. Predicate (4.2.4) is true iff all the E;
are true, so we see that it is equivalent to

Em AEm-HA Tt AEH"‘I
= 1 9(EuAE A -+ AE,) {Negation)
= A Ep VB,V - VaE,) (De Morgan)

= 2Eiim<i<n:-E)
This leads us to define (4.2.4) as
(4.2.5) Definition. (4i:m Si<mE)=a.Fim<i<n:-E). O
Now we can prove that (4.2.4) is true if its range is empty:

Aim<i<m:E)

= LEim<i<m:aE)

= . F (because the range of E is empty)
=T

Numerical quantification

.Consider predicates Eo, Ey, It is quite easy to assert formally that
k is the smallest integer such that E, holds. We need only indicate that
Eg through Ej_, are false and that Ej is true:

74 Part I. Propositions and Predicates

0<k AAi:0<i<k:~E)A E,

It is more difficult to assert that k is the second smallest integer such that
E; holds, because we also have to describe the first such predicate E;:

0<j<k ANAPO<i<j:1E)AE; A
(Ai:j+l<i<klﬁE,‘)AEk

Obviously, describing the third smallest value k such that E; holds will
be clumsier, and to write a function that yields the number of true E; will
be even harder. Let us introduce some notation:

(4.2.6) Definition. (Ni:m <i<n:E;) denotes the number of different
values i in range m <i <n for which E; is true. N is called the
counting quantifier. 0O

This means that

Eim<i<n:E)=((Nim<i<n:E)=1
Aim<i<n:E) =((Ni:m<i<n:E)=n—m)

Now it is easy to assert that k is the third smallest integer such that E,
holds:

(Ni:0<i<k:E)=2) A E

A Note on ranges

Thus far, the ranges of quantifiers have been given in the form m <i
<n, for integer expressions m and n. The lower bound m is included in
the range, the upper bound n is not. Later, the form of ranges will be
generalized, but this is a useful convention, and we will use it where it is
suitable.

Note that the number of values in the range is n—m. Note also that
quantifications with adjacent ranges can be combined as follows:

Eim<i<mE)VE:n<i<p: E) = Eim<i<p: E)
Aimsi<mE)ANAin<i<p:E) = Aim<i<p:E)
Nitm<i<mE)+(Ni:n<i<p:E) = WNiim<i<p:E)

Exercises for Section 4.2 75

Exercises for Section 4.2

1. Consider character strings in PL/I or Pascal. Let | denote catenation of
strings. For example, the value of the expression ’ab:’] ’x1”is the character string
‘ab:x1’. What is the identity element of operation catenation?

2. Define the notation (4 i:m <i <n: E;) recursively.
3. Define the notation (Ni:m <i <n: E;) recursively.

4. Write a predicate that asserts that the value x occurs the same number of times
in arrays 6[0:n—17 and ¢[0:m —1].

5. Write a predicate perm (b, c) that asserts that array b[0:n—1] is a permuta-
tion of array ¢[0:n—1]. Array b is a permutation of ¢ if it i just a rearrange-
ment of it: each value occurs the same number of times in b and ¢. (See exercise
4.)

6. Consider array b[0:n~1], where n >0. Let Jsk be two integers satisfying
0<j<k+1<n. By b[j:k] we mean the set of array elements b[j], ..., b[k],
where the list is empty if j =k +1.

Translate the following sentences into predicates. For example, the first one
can be written as (4 {: j <i <k +1: b[i]=0). Some of the statements may be
ambiguous, in which case you should try to translate both possibilities.

(a) All elements of 5[;:k] are zero.

(b) No values of b[j:k] are zero.

(¢) Some values of b[j:k] are zero. (What does “some” mean?)
(d) All zeroes of 5[0:n—1] are in b[j:k].

(e) Some zeroes of b[0:n—1] are in blj:k].

(f) Those values in b[0:n—1] that are not in blj:k]arein b[j:k].
(8) Itis not the case that all zeroes of 5[0:n—1] are in blj:k].
(h) If b[0:n—1] contains a zero then so does blj:k].

() M b[j:k] contains two zeroes then j =1.

() Either b[1:7] or b[j:k] contains a zero (or both).

(k) The values of b[j:k] are in ascending order.

M fxisinb[j:k], then x +1 is in b[k+1:n—1].

(m) b[j:k] contains at least two zeroes.

(n) Every value in b6[j:k] is also in b[k+1:n~1].

{0) j isa power of 2if j is in b[j:k].

(p) Every element of b[0:7] is less than x, and every element of
blj+1:n—1] exceeds x .

(@) £ b[1]is3 or b[2] is 4 and b[3]is 5 then j =3,

76 Part I. Propositions and Predicates

4.3 Free and Bound Identifiers
The predicate

(43.1) (Ai:m <i<n:x*>0)

asserts that x multiplied by any integer between m an_d n—'—l (inclusive)
exceeds 0. This is true if both x and m exceed 0 or if x is less than 0
and » is at most 0. Hence, (4.3.1) is equivalent to the predicate

(x >0Am>0)V (x <0 A n<0)

Thus, the truth of (4.3.1) in a state s depends on the values of m,n and
x in s, but not on the value of i —in fact, / need not even occur in state
s. And it should also be clear that the meaning of the predicate does not
change if all occurrences of i are replaced by j:

(Ajm<j<n:x*j>0)

Obviously, identifier i in (4.3.1) plays a different role than ifientiﬁers m,
n and x. So we introduce terminology to help make the different rol.es
clear. Identifiers w1, n and x are free identifiers of the predicate. Identlf-
ier i is bound in (4.3.1), and it is bound to the quantifier A in that predi-
cate.

Now consider the predicate
432 i>0AAdirm<i<n:x* >0).

This is confusing, because the leftmost occurrence of i is free (and fiurmg
an evaluation will be replaced by the value of / in the state)., while the
other occurrences of i are bound to the quantifier A. Clearly, it would pe
better to use a different identifier j (say) for the bound i and to rewrite

(4.3.2) as
i>0AAjm<j<n:x*j>0).

While it is possible to allow predicates like (4.3.2), gnd r~n'ost~logical sys-
tems do, it is advisable to enforce the use of each identifier in only one

way:

(4.3.3) Restriction on identifiers: In an expression, an identifier may not
be both bound and free, and an identifier may not be bound to
two different quantifiers. O

Note that the predicate

Section 4.3 Free and Bound Identifiers 77

(Ai:m<i<n:x*i>0) AAiim <i<n:yxi<0)
does not comply with the restriction. An equivalent predicate that does is
(Ai:m<i<n:x*i>0) ANAk . m<k <n:yk <0)

At times, for convenience a predicate will be written that does not follow
restriction (4.3.3). In this case, be sure to view each quantified identifier
as being used nowhere else in the world. Think of the two different uses
of the same identifier as different identifiers.

Let us now formally define the terms Jree and bound, based on the
structure of expressions.

(4.3.4) Definition (of a free identifier in an expression).
1. i is free in the expression consisting simply of 7.
2.1 is free in expression (E)ifitis free in E.
3. i is free in expression op E, where op is a unary operator (e.g.
1,), if it is free in E.
4. i is free in expression EI op E2, where op is a binary operator
(e.g. V,+)if it is free in EJ or E2 (or both).
5.1 is free in expression Ajm<j<n:E), Ejm<j<n:E)
and (Nj:m <j <n:E))if it is not the same identifier as j and if
itisfreeinm,n or E. 03

(4.3.5) Definition (of a bound identifier 7 in an expression).
1.7 is bound in expression (E)ifitis bound in E.
2. i is bound in expression op E, where op is a unary operator,
if it is bound in E.
3. i is bound in expression El op E2, where op is a binary opera-
tor, if it is bound in EJ or E2.
4.1 is bound to the quantifier in expression (Ei:m <i<n:FE)
(and similarly for 4 and N). The scope of the bound identifier
is the complete predicate (Ei:m <i<n: E).
5.1 is bound (but not to the shown quantifier) in expression
(Ej:m<j<n:E)if it is bound in m, n or E. Similar state-
ments hold for quantifiers 4 and N. O

Note that both x and Yy are free in the predicate X<y, while x
remains free and y becomes bound when the predicate is embedded in the
expression (Ny:0<{y < 10: x <y)=4.

78 Part 1. Propositions and Predicates

Examples. In the predicates given below, bound occurrences of identifiers
are denoted by arrows leading to the quantifier to which they are bound,
while all other occurrences are free. Invalid predicates are marked as
invalid.

T 1 1
2sm <n AA1:2<i <m:m+i #0)

]
2<m <n AR 2<n <m:m-n #0) INVALID (why?)

| 1 (]
(l'?;': IS% <25:25i =0) A (Ei:1<i<{25:26=i =0) INVALID

71] 1
(B 1<t <25:25+1 =0) A (Ei:1<i <25:26+i =0)

1 ! b
(Bi: 11 <25:25%i =0 A 26+ =0)

] Pl
(jinlfz:n <m <n+6:(l‘€{:2<{<m:mfll =0))

1 '
(11 rlrz:n <r11 <n+6:(l‘?,111:2<r]z <m:m-n =0)) INVALID

|

[]
(}17111:n <r£z <n+6:(l‘5_llc:2<11c<m:m+llc =0)) O

The scope mechanism being employed here is similar to the ALGOL
60 scope mechanism (which is also used in Pascal and PL/I). Act}xally,
its use in the predicate calculus came first. A phrase (4i:R: E) mt.ro—
duces a new level of nomenclature, much like a procedure declaration
“proc p(i); begin ... end” does. Inside the phrase, one can refer to all
variables used outside, except for i; these are global identifiers of the
phrase. The part Ai is a “declaration” of a new local identifier 7.

As in ALGOL 60, the name of a local identifier has no significance
and can be changed systematically without destroying the meaning. But
care must be taken to “declare” bound identifiers in the right place to get
the intended meaning.

Section 4.4 Textual Substitution 79

Exercises for Section 4.3

1. In the following predicates, draw an arrow from each bound identifier (o the
quantifier to which it is bound. Indicate the invalid predicates.

@Ek:0<k <n:PAH(T)rk>0

0} (4/:0<j<n:B; >wp(SL;, R))

©EO0<j<n:(4 O <G+H1 f(H)<f(+1))

(DA 0<j<n: BiVe)MAK:0<k <n: B, ZEs 0<s<n:(,))
(e) (Aj:0<j<n:(Et:j-H<l<m:(A k:0<k <n:F(k,1)))

4.4 Textual Substitution

Textual substitution will be used in Part 1I to provide an elegant and
useful definition of assignment to variables.

Let E and e be expressions and x an identifier. The notation
EF

denotes the expression obtained by simultaneously substituting e for all
free occurrences of x in E (with suitable use of parentheses around e to
maintain precedence of operators).

A simple example is: (x+y)F = (z+y).

Some more examples of textual substitution are given using the follow-
ing predicate E, which asserts that x and all elements of array 5[0:n—1]
are less than y:

(441) E = x<p A(4i:0<i<n:b[i]<y).

We have

4.4.2) F =2y A4 D0si<nm: b[i]<y).

(443) Eli) =x<x+y A4 D0 <m:bli]<x++y).

444) E. = E (only free occurrences of i are replaced,
and i is not free in E)

(44.5) (Ep*z?)i, = (x <w#z AMNMADOSI<n:b[i]<w*z)iy,
= x<wHatu) A4 0T <m:b[i]<wH(a+u))

Example (4.4.2) shows the replacement of free identifier x by identifier z;
(4.4.3) the replacement of a free identifier by an expression. Example
(4.4.4) illustrates that only free occurrences of an identifier are replaced.
Example (4.4.5) shows two successive substitutions and the introduction of

80 Part 1. Propositions and Predicates

parentheses around the expression being inserted. In the second substitu-
tion of (4.4.5), z is being replaced by a-+u, so that w*z should be
changed to w*(a-+u) and not w*a+u, which, because of our precedence
conventions, would be viewed as (w*a)tu. (If we always fully
parenthesized expressions or used prefix notation, the need for this extra
parenthesization would not arise.)

Substitution has already been used, but with a different notation. If
we consider F of (4.4.1) to be a function of identifier x, E(x), then E is
equivalent to E(z). The new notation describes both the identifier being
replaced and its replacement. Therefore, an English description is not
needed to indicate the identifier being replaced.

There are some problems with textual substitution as just defined,
which we illustrate with some examples. First, Ecb+1 would not make
sense because it would result in - - - ¢+I1[i]- - -, which is syntactically
incorrect. Textual replacement must result in a well-formed expression.

Secondly, suppose we want to indicate that identifier x and the array
elements of b are all less than y —i, where 7 is a program variable. Not-
ing the similarity between this assertion and E, (4.4.1), we try to write this
by replacing y in £ by y —i:

E =x<y AALO<I<n:b[i]<y)
El ;=x<y—i NA:0<i<n:b[i]l<y—i).

But this is not the desired predicate, because the i in y—i has become
bound to the quantifier 4, since it now occurs within the scope of 4.
Care must be taken to avoid such “capturing” of an identifier im the
expression being substituted. To avoid this conflict we can call for first
(automatically) replacing identifier i of E by a fresh identifier k (say), so
that we arrive at

El =x<y—iNAk:0<k <n:b[k]<y—i).
Let us now define textual substitution more carefully:

(4.4.6) Definition. The notation EJ, where x is an identifier and E and
e expressions, denotes the predicate created by simultaneously
replacing every free occurrence of x in £ by e. To be valid, the
substitution must yield a syntactically correct predicate. If the
substitution would cause an identifier in e to become bound, then
a suitable replacement of bound identifiers in £ must take place
before the substitution in order to avoid the conflict. O

The following two lemmas are stated without proof, for they are fairly
obvious: ‘

Exercises for Section 4.4 81

(447) Lemma. (EHI = EX, O

(4.48) Lemma. If y is not free in E, then (E})} = Efl‘,. O

Simultaneous substitution

Let X denote a list (vector) of distinct identifiers:
X =Xy, X2, L, %,

Let & be a list (of the same length as X) of expressions. Then simultane-
ous sub.stztunon of all occurrences of the x; by the corresponding ¢; in an
expression E is denoted by

)? X’A”’xn
449 EF, or E')

The caveats placed on simple substitution in definition 4.4.6 apply here
also. Here are some examples.

(x+x+y)idh . = atb+at+b +e¢

(x+x+y);‘%,,z = x+y+x+y+z

(Ai0<i<n:b(i)Vc(i+1)38 ,
= Ak 0<k<n+i:d(k)V c(k+1))
The second example illustrates the fact that the substitutions must be

simultaneous; if one first replaces all occurrences of x and then replaces
all occurrences of y, the result is x+z + x4z +z, which is not the same.

In general, EY can be different from (EJ)..

Exercises for Section 4.4

1. Conside.r the predicate E: (4i:0<i <n: bli1<bli+1]). Indicate which of
the following textual substitutions are invalid and perform the valid ones.

Ej, El., EX, EFy,, Egiy, En%
2. Consider the predicate E: n >i AN I<j<n:n+j=0)>1. Indicate

which of the following textual substitutions are invalid and perform the valid
ones.

i n i i i i
E}’ Em+i’ E}"‘H » Efé’ (EI’:'H)IIs E::ifi,l

3. Conside_r the predicate £ = (4i: 1<i<n: (Ej:b[j1=1i)). Indicate which of
the following textual substitutions are invalid and perform the valid ones.

82 Part 1. Propositions and Predicates

E; , E7, ElN,
4. Consider the assignment statement x:= x +1. Suppose that after its execution
we want R:x >0 to be true. What condition, or “precondition”, must be true
before execution in order to have R true after? Can you put your answer in
terms of a textual substitution in R?
5. Consider the assignment statement @:= a*b. Suppose that after its execution
we want R:a*b =c to be true. What condition, or “precondition”, must be true
before execution in order to have R true after? Can you put your answer in
terms of a textual substitution in R?

6. Define textual substitution recursively, based on the structure of an expression.

4.5 Quantification Over Other Ranges

Until now, we have viewed the predicate (Ei:m <i<m:E;) as an
abbreviation for E, V - -- VE,_;. The notion of quantification is now
generalized to allow quantification over other ranges, including infinite
ones. This results in a system with more “power”; we will be able to
make assertions that were previously not possible. But predicates with
infinite ranges cannot always be computed by a general method in a finite
amount of time. Hence, although such predicates may be used heavily in
discussing programs, they won’t appear in programs.

A predicate can have the form
(45.1) (Fi:R:E) or
(452 (Ai:R:E),

where i is an identifier and R and E are predicates (usually, but not
necessarily, containing 7). The first has the interpretation “there exists a
value of i in range R (for which R is true) for which E is true”. The
second has the interpretation “for all values of / in range R, E is true”.

The notions of free and bound identifiers and the restrictions on their
occurrence in predicates, as given in section 4.3, hold here in the same
manner and will not be discussed further.

Example 1. Let Person(p) represent the sentence “p is a person”. Let
Mortal(x) represent the sentence “x is mortal”. Then the sentence “All
men are mortal”, or, less poetically but more in keeping with the times,
“All persons are mortal”, can be expressed by (4dp: Person(p):
Mortal(p)). 0O

Example 2. It has been proved that arbitrarily large primes exist. This
theorem can be stated as follows: ’

Section 4.5 Quantification Over Other Ranges 83

An:0<n:(Ei:n<i:prime(i))), where
prime(i) = (1<i A(4j:1<j<i:i mod j # 0))

In fact, Chebyshev proved in 1850 that there is a prime between every
integer and its double, which we state as

@n:1<n:(Ei:n<i<2n:prime(i))) O

Example 3. The predicate below asserts that the maximum of an integer
and its negation is the absolute value of that integer:

(A n:integer(n): max(n,—n)=abs(n)) O

The type of a quantified identifier

Implicit in our use of (Ei:n <i:prime(i)) above is that i has type
integer. However, when dealing with more general ranges this is not
always the case. Consider, for example, the predicate A p Person(p):
Mortal(p)), where the range of p is the set of all objects (see example 1
above). Hence, the type of a quantified identifier must be made clear in
some fashion so that the set of values that the identifier ranges over is
unambiguously identified. The formal way to do this is to include the

type as part of the range predicate. This has been done in example 3
above, where the range is integer(n).

Often, however, the text surrounding a predicate and the form of the
predicate itself will identify the type of the quantified identifier, making it
unnecessary to give it explicitly in the predicate.

‘The range can even be omitted completely when it can be determined
from the context; this is just the usual attempt to suppress unnecessary
details. For example, the predicate in example 3 could have been written

as

(A n:max(n,—n)=abs(n))

since the context indicated that only integers were under consideration.

Tautologies and implicit quantification

. Suppose a predicate like max(n, —n)=abs(n), where n has type
integer, has been proved to hold in all states: it is a tautology. Then it is
true for all (integer) values of n, so that the following is also true:

(A n:integer(n): max(n, —n)=abs(n))

84 Part I. Propositions and Predicates

or, as an abbreviation,
(An:max(n, —n)=abs(n))

Thus we see that

(4.5.3) any tautology E is equivalent to the same pre'dica_te E }t')ut wi_th
all its identifiers iy, - - - , i, universally quantified, i.e. it is equiv-
alentto(Ai;, - - i E).

This simple fact will be useful in chapter 6 in determining how to describe
initial and final values of variables of a program.

Inference rules for A and E
The rest of this section 4.5, which requires knowledge of ch:.ipter 3,
need not be read to understand later material. It gives introduct}on and
elimination rules for 4 and E, thus extending the na.tural deducgon Sys-
tem given in chapter 3. The purpose is to show as briefly as possible how
this can be done. N
First, consider a rule for introducing 4. For it, we 'need‘condltlor%s
under which (4 i: R: E) holds in a state s. It will be true in s if R $>E is
true in s, and if the proof of R = E does not depend on i, so thgt it is
true for all i. The simplest way to require this condition is to require that
i not even be mentioned in anything that the proof _of R = E depends
upon. Thus, we require that 7/ be a fresh identifier, which oceurs nowhere
in proofs that the proof of R = F depends upon. Thus, the inference rule
is

4.54) A-L where i is a fresh identifier.

(Ai:R:E)

Now assume that (4 i: R: E) is true in state s. Then it is true for any
value of i, so that R = E/ holds in state s for any predicate e. Thus we
have the elimination rule

(Ai: R E)

- —— for any predicate e
R, >E,

(4.5.5) A-E:

Let us now turn to the inference rules for E. Using the techniques of
earlier sections, E can be defined in terms of 4:

(Ai: R E)

(45.6) E-L m

Section 4.6 Some Theorems About Textual Substitution and States 85

(Ei:R:E)

45.7) E-E: —————_
() 'l(AiZRI 1E)

A final inference rule allows substitution of one bound variable for
another without changing the value of the predicate:

(Ei:R:E)
(Ek:R{:E})
(provided k does not appear free in R and E)

(4.5.8) bound-variable substitution:

Exercises for Section 4.5

L. Let fool(p,) stand for “you can fool person p at time ¢ ™. Translate the fol-
lowing sentences into the predicate calculus.

(@) You can fool some of the people some of the time.
(b) You can fool all the people some of the time.

(c) You can't fool all the people all the time.

2. Write the following statements as predicates.

(a) The square of an integer is nonnegative.

(b) Three integers are the lengths of the sides of a triangle if and only if the sum
of any two is at least the third (use sides(a,b, c¢) to mean that a,b and ¢ are
the lengths of the sides of a triangle).

(¢) For any positive integer 71 2 solution to the equation w” +x" 4" = "
exists, where w, x, Yy and z are positive integers.
(d) The sum of the divisors of integer », but not including n itself, is n. (An

integer with this property is called a perfect number. The smallest perfect number
1s 6, since 14+2+3=6.)

4.6 Some Theorems About Textual Substitution and States

In general, the two expressions £ and EX are not the same; evaluated
in the same state they can yield different results. But they are related.
We now investigate this relation.

Let us first review terminology. If e is an expression and s a state,
then s{e) denotes the value of expression e in state s, found by substitut-
ing the values in s for the identifiers in e and then evaluating the result-

ing constant expression. If an identifier is undefined in s, the symbol U
is used for its value.

We need to be able to talk about a state s’ that is the same as state s
except for the value of identifier x (say), which is v in §. We describe
state s” by the notation

86 Part 1. Propositions and Predicates

(s; x:v)

For example, execution of the assignment x:= 2 in state s terminates in
the state s" =(s; x:2). In general, execution of the assignment x:= e
beginning in state s terminates in the state (s; x:s(e)), since the value of
expression e in state s is being assigned to x. Note that

s=(s; x:5(x))
holds because the value of x in state s is s(x).

We now give three simple lemmas dealing with textual substitution. For-
mal proofs would rely heavily on the caveats given on textual substitution
in definition (4.4.6), and would be based on the structure of the expres-
sions involved. We give informal proofs.

(4.6.1) Lemma. s(E)) = s(E%,)).
That is, substituting an expression e for x in E and then evaluat-

ing in s yields the same result as substituting the value of e in s
for x and then evaluating.

Proof. Consider evaluating the lefthand side (LHS). Wherever x occurs
in the original expression E, instead of replacing it by its value in s we
must evaluate e in s and use this value, since x has been replaced by e.
"This value is s(e). Hence, to evaluate the LHS we can evaluate E in s,
but wherever x occurs use the value s(e). But this is the way the RHS is

evaluated, so the two are the same. O
~

The following lemma will be extremely helpful in understanding the
definition of the assignment statement in Part II.

(4.6.2) Lemma. Consider a state s. Let s’ = (s; x:s(e)). Then
S'(E) = s(ED).

In other words, evaluating E} in state s yields the same value as
evaluating E in (s; x:s(e)).

Proof. s'(E) = (s; x:5(e))(E) (Definition of state s")
= (s; x:5(e))(E%)) (In evaluating E in (s; x:s5(e)),
the value s(e) is used for x)

= (s; x:5(x))(Ef.)) (x does not occur in EJ,), so the
value of Ej,, is independent
of the value of x)

Exercises for Section 4.6
87
= X {
S(Eey) (Since state s =(s; x:s(x)))
= X
S{E) (Lemma 46.1) O

The ab i i
ove lemmas generalize easily to the case of simultaneoys substi
sti-

tuuoﬂ, and we WIH not dlSCuss the matter 1u1thex. Ihe t“lal 16111111& a
tll‘/lal but lmpOI tant faCt, 18 Stated Wlthout pl ()Of

(4.6.3) Lemma. For a list o

Exercises for Section 4.6

L. Let state s contain: X=5,y=6,b=T What are th
, . e the ¢

ME - states? (55 x:6), (53 pus(x)), (53 yis(x+y))

ontents of the follow.
((s; x:6); y:4), ((s; X:y); yix).

(s; b:F), (s; b:1y,

Chapter 5
Notations and Conventions for Arrays

The array is a major feature of our programn}ing language;s. It'lﬁ
important to have the right viewpoint and potatlon for dealing w.1t
arrays, so that making assertions and reasoning about programs'usmg
them can be done effectively. Traditionally, an array has been. considered
to be a collection of subscripted independent variablés, which shfire a
common name. This chapter presents a different view, introduces suitable
notation, and gives examples of its use.

This material is presented here because it discusses nqtations and con-
cepts needed for reasoning about arrays, rather .than with tk}e nota.tlons
used in the programming language itself. The first two sections will be
needed for defining assignment to array elements in Part 1L -

5.1 One-dimensional Arrays as Functions

Consider an array defined in Pascal-like notation by
var a: array [1:3] of integer
In PL/1 and FORTRAN, this would be written as

DECLARE 4(1:3) FIXED; and
INTEGER a(3)

respectively. Except in older versions of FORTRAN, the lo.w'er bound
need not be one; it can be any integer —negative, zero or positive. Zero
is often a more suitable lower bound than one, espec1ally if the range of a
quantified identifier i (say) is written in the.foFm m <i {n. For exam-
ple, suppose an array b is to have n values in 1.t, each being 22. Giving
b the lower bound 0 and putting these values in b[0], b[1], ..., b[n—1]

Section 5.1 One-dimensional Arrays as Functions 89

allows us to express this as
(M 0<i<nm:b[i]=2)

Throughout this section we will use as an example an array b declared
as

(5.1.1) var b: array [0:2] of integer

Let us introduce some notation. First, sequence notation (see Appen-
dix 2) is used to describe the value of an array. For example, b =
(4, =2, 7) means that b[0]=4, b[11==2 and h[2]=7. Secondly, for any
array b, b.lower denotes its lower subscript bound and b.upper its upper
bound. For example, for » declared in (5.1.1), b.lower =0 and

b.upper =2. Then we define domain (b), the subscript range of an array,
as

domain(b) = {i | b.lower <i <bh.upper}

As mentioned earlier, the conventional view is that 4 declared in
(5.1.1) is a collection of three independent subscripted variables, b[0],
b[1] and 5[2], each of type integer. One can refer to a subscripted vari-
able using 5[i], where the value of integer expression i is in domain).
One can assign value e to subscripted variable 5[2] (say) by using an
assignment b [i]:= e where expression i currently has the value 2.

It is advantageous to introduce a second view. Array b is considered
to be a (partial) function: b is a simple variable that contains a function
from subscript values to integers. With this view, b[i] denotes function
application: the function currently in simple variable b is applied to argu-
ment ¢ to yield an integer value, in the same way that abs (i) does.

Remark: On my first encounter with it, this functional view of arrays
bewildered me. It seemed useless and difficult to work with. Only after
gaining experience with it did I come to appreciate its simplicity, elegance

and usefulness. 1 hope the reader ends up with the same apprecia-
tion. O

When considering an array as a function, what does the assignment
blil=e mean? Well, it assigns a new function to &, a function that is
the same as the old one except that at argument i its value is e. For
example, execution of #[1]:= 8 beginning with

b[0]1=2,b[1]1=4,b[2]=6

terminates with & the same as before, except at position I:

90 Part 1. Propositions and Predicates

b[0]=2,b[1]=8,b{2]=6.
It is convenient to introduce a notation to describe such altered arrays.

(5.1.2) Definition. Let b be an array (function), i an expression and e
an expression of the type of the array elements. Then (&; i:e)
denotes the array (function) that is the same as b except that
when applied to the value of 7 it yields e:

i=j—e

(b; ie)[j]= i#j —b[j] O

Notice the similarity between the notation (s; x:v) used in section 4.6
to denote a modified state s and the notation (b; ize) to denote a modi-

fied array &.

Example 1. Let 5[0:2]=(2,4,6). Then
(b; 0:8)[0]=28 (i.e. function (b; 0:8) applied to 0 yields 8)
(b; 0:8)[1]=0b[1]=4 (i.e. (b; 0:8) applied to 1 yields b[1])
(b; 0:8)[2]1=0b[2]1=6 (i.e. (b; 0:8) applied to 2 yields b[2])

so that (b; 0:8)=(8,4,6). O

Example 2. Let 5[0:2]=(2,4,6). Then
(b; 1:8)=(2,8,6)
(b; 2:8)=(2,4,8)
((b; 0:8); 2:9)=(8,4,9)
(((b; 0:8); 2:9); 0:1)=(7,4,9) O

Example 2 illustrates nested use of the notatioh. Since (&; 0:8) is the
array (function) (8,4,6), it can be used in the first position of the nota-
tion. Nestéd parentheses do become burdensome, so we drop them and
rely instead on the convention that rightmost pairs “i:e” are dominant
and have precedence. Thus the last line of example 2 is equivalent to

(b; 0:8; 2:9; 0:7).

Example 3. Let 5{0:2]=(2,4,6). Then
(b; 0:8; 2.9, 0:N[0] =7
(b; 0:8; 2:9; O:N[1] = (b; 0:8; 29)[1] = (b; 0:B)[I]=0b[1]1=4
(b; 0:8; 2:9; 0:D[2] = (b; 0:8; 29[2]=9 O

The assignment statement b[i]'= ¢ can now be explained in terms of
the functional view of arrays; it is simply an abbreviation for the follow-

ing assignment to simple variable b!

Section 5.1 One-dimensional Arrays as Functions
91

b= (b; i)

.We now have two conflicting views of arrays: an array is a collect:
pf independent variables and an array is a partial function. Each v; N,
xts'advantages, and, as with the particle and wave theories of lilew has
switch back and forth between them, always using the most co ght,'we
one for the problem at hand. emient

» One advantage of the functional view is that it simplifies the pro
ming language, because there is now only one kind of variable, the Sram-
variable. .It may contain a function, which can be applied to’ar uslmple
but function application already exists in most programming lai s,
On.the other hand, with the collection-of-independent-variables VigUages,
-notlo.n of state becomes confused, because a state must ma L the
identifiers but also entities like b[1] into values. P ot only

~ In.desmjibing b[i]:= e as an abbreviation of b := (b; i:e) the funct;
view is beuTg used to describe the effect of execution, but not hgtlonal
assignment is to be implemented. Execution can still be performedW ‘the
the c_ollection—of-independent-variables view —by evaluating ; e
selecting the subscripted variable to assign to, and assigning e to iztmd °
not necessary to create a whole new array (b; i:e) and then assign ié s

The functional view has other uses besides describing assignment F
example, for an array c[0:n —17 the assertion o

perm((c; 0:x),C)

asserts that <, but with the value x in position 0, is a permutation of
array C. It is clumsy to formally assert this in another fashion.

Simplifying expressions

It Is sometimes necessary to simplify expressions (including predic
contaxpmg the new notation. This can often be done using a twoateS)
apa]ysxs as shown below, which is motivated by definition (5.1.2) ~C’;5e
fxrst'step 1s the hardest, so let us briefly explain it. First, note .t};at.e'thhe
I=j or i#j. In the former case (b5 i:5)[J1=5 reduces to 5=5: ; o
second case it reduces to b[j]1=5. P the

b;1:5)[j1=5 '
= (=7 AS=5)V(i#jAb[j]=5) (Def. of (b; i:5))
=E=/)v(Ei#] Ab[i]=5) ((5=5)=T, and-simpl,)

f ¢ =j'V_i ?éj) A.(i =jVvb[jl1=5) (Distributivity)
= T_A '(z —]‘V b[j1=5) (Excluded middle)
=i=jVb[j]=5 (and-simpl.)

92 Part 1. Propositions and Predicates

Exercises for Section 5.1

1. Let b{1:4]=(2, 4, 6, 8). What are the contents of the following arrays?

(a) (b; 1:3) (d) (b; 1:b(4); 2:b(3); 3:6(2); 4:b(1))

() (b; L:b(1) (e) (b; 4:b(4); 3:6(3); 2:b(2); 1:b(1)

(¢ (b; 1:b(4) (H (b; Lb(1); 1:b(2); 1:b(3): 1:6(4)

2. Let a state contain { =2, j =3 and b(0:5)=(—3,—2,~1,0,1,2). Evaluate
the following:

(@ (b;i:2)[/] (e) (b; i+7:6)[4]

d) (b i+L2T B (b i:2; j:3)j+i—2]

(© (b; it2DL] (&) (bs i:2; j: 3 +i—1]

(@) (b5 i+7:0)[5] () (b; i:2; j—1:3)[i]

3. Simplify the following predicates by eliminating the notation (b; ...).

(@ (b i:3)[]=(b; i:5)[j]

(®) (b; i:b[iDLi]=i

(© (b5 i:b[i]; j:6DE)=(bs j:bi) i:0[i D]

(@ (b; b1 j:biPLi)=(b; j:b[i] i:6L DU]

(@ (b; i:bj L j:bUDETI= (b5 i:b[1]; j:o[FDIj]

® b; ©:b[iDU1=(b; j:6 D]

4. The programming language Pascal contains the type record, which allows one
to build a new type consisting of a fixed number of components (fields) with other
types. For example, the Pascal-like declarations B

type ¢ . record n: array [0:10] of char; age: integer end;
varp,q:t

define a type ¢ and two variables p and g with type . Each variable contains
two fields; the first is named 7 and can contain a string of 0 to 10 characters
—e.g. a person’s name— and the second is named age and can contain an
integer. The following assignments indicate how the components of p and g can
be assigned and referenced. After their execution, both p and g contain "Hehner’
in the first component and 32 in the second. Note how g.age refers to field age
of record variable q.

p.n:="Hehner'; p.age:= 32; g.n'= p.n; g.age'= g.age+1—1

An array consists of a set of individual values, all of the same type (the old
view). A record consists of a set of individual values, which can be of different
types. In order to allow components to have different types we have sacrificed
some flexibility: components must be referenced using their name (instead of an
expression). Nevertheless, arrays and records are similar.

Develop a functional view for records, similar to the functional view for arrays
just presented.

Section 5.2 Array Sections and Pictures 93

5.2 Array Sections and Pictures

Given integer expressions e/ and e2 satisfying e/ <<e2+1, the notation
blel:e2] denotes array b restricted to the range e/:e2. Thus, for an array
declared as

var b: array [0:n—1] of integer

b[0:n—1] denotes the whole array, while if 0<<i <j <inm, b[i:j] refers to
the array section composed of b[i], bli+1], ..., b[J1. I i=j+1, b[i:j]
refers to an empty section of b.

Quite often, we have to assert something like “all elements of array b

are less than x”, or “array b contains only zeroes”. These might be writ-
ten as follows.

(A 0<i <nm:b[i]<x)
(A1:0<i<n:b[i]=0)

Because such assertions occur so frequently, we abbreviate them; these
two assertions would be written as b <x and & =0, respectively. That is,
the relational operators denote element-wise comparison when applied to
arrays. Here are some more examples, using arrays b[0:n—1] and
c[0:n—1] and simple variable x.

Abbreviation Equivalent predicate
b[1:5]1=x Ai:1<i<5bli]=x)
b[6:10]*%x (Aj:6<j<10:b[j]1# x)

blO:A—1]<x<blkin—1] (Ai:0<i<k:b[i]<x)A

(Aik <i<n:x<b[i]
Ap.g:isp<j<qg<k:b[p]<blq])
(A 6<j<I10:b[]5#x)
=(EF6<j<10:4(b[j1#x)
=(Ej6<j<10:6]1=x)

blij1<b[j k]
1 (b[6:10] # x)

Be very careful with = and #, for the last example shows that b =y can
be different from (b #y)! Similarly, b <y can be different from
b (b >y).

We also use the notation x €5 to assert that the value of x is equal to
(at least) one of the values b[i]. Thus, using domain(b) to represent the
set of subscript values for b, x €5 is equivalent to

(Ei:i€domain(b). x =b[i])

Such abbreviations can make program specification —and understand-
ing the specification later— easier. However, when developing a program

94 Part 1. Propositions and Predicates

to meet the specification it is often advantageous to expand the abbrevia-
tions into their full form, because the full form can give more insight into
program development. In a sense, the abbreviations are a form of
abstraction; they let us concentrate on what is meant, while how that
meaning is formally expressed is put aside for the moment. This is similar
to procedural abstraction; when writing a call of a procedure we concen-
trate on what the procedure does, and how it is implemented does not
concern us at the moment.

Array pictures

Let us now turn to a slightly different subject, using pictures for some
predicates that describe arrays. Suppose we are writing a program to sort
an array b[0:n—1], with initial values B[0:n—1] —i.e. initially, b=B.
We want to describe the following conditions:)

(1) p[0:k —1] is sorted and all its elements are at most x,

(2) the value that belongs in 5[k] is in simple variable x,
(3) every value in bk +1:n—1] is at least x.

To express this formally, we write

(5.2.1) 0<k <n A ordered(b[0:k—1]) A perm((b; k:x),B) A
plO:k~11<x <b[k+1:n—1]

where
ordered(b[0:k —1]) =(A4i: 0<i <k —1:b[i]<b[i+1]

and the notation perm (X, Y) means “array X is a permutation of array
Y™

Looks complicated, doesnt it? Because such assertions occur fre-
quently when dealing with arrays, we introduce a “picture” notation to
present them in a manner that allows easier understanding. We replace
assertion (5.2.1) by

0 k-1 k k+1 n—1
0<k <n A b(ordered, <x i l >x J A perm(B, (b; kx))

The second term describes the current partitioning of b in a straightfor-
ward manner. The array name b appears to the left of the picture. The
properties of each partition of the array are written inside the box for that
partition. The lower and upper bounds are given at the top for a parti-
tion whose size is =0, while just the subscript value is given for a parti-
tion known to be of size 1 (like b[k:k]). Bounds may be omitted if the

Exercises for Section 5.2
95

g
PlCtUIe 18 u“alnbl uous; the abo'e icture ca be written 1n at leaSt two
p n

0 k n—1 0 k—1 k+1
—1
b lﬂdered, <x } f Exj and b k)rdered, <x ‘ { >xn 7

Not.e that 'some of the partitions may be empty. For example, if k =0
b[0:k —1] is empty and the picture reduces to ’ ’

k k41 n-—l

b T <x 7]

w.hﬂe 1flf =n the section b[k+1:n] is empty. One disadvantage of such
pxctures.ls that they often cause us to forget about singular cases]\l;;

uncogscwusly think that, since section b[0:k —1] is in the picture 't. .
contain something. So use such pictures with care. et

An essentigl property of such pictures is that the formal definition of
gsmgnrr_lent (glven' late.r in Part II} is useable on pictures when they appear
n predicates. This will be discussed in detail in Part 1.

Exercises for Section 5.2

. cise 6 of sectior 2, u ng the al)]nevlamms ntroduce n this sec-
1 Red() exerct ion 4 S
N g 1

2. Translate the following predicates into the pict i
t
@ 0<p <q+1<n A b[0p—1]<x <b[y +‘1]-r;61310 won
() 0<k—1<f <h—1<n A ‘
I=b{l:k—17A 2=plk:f —1]A 3=b[h+1:n]

3. Change the following predicates into equivalent ones that don’t use pictures

0
@ 0<k<h<n A b[<x [=x]

h n
[=x][>x |

0 i n
(6) 0<i<n A b|ordered | l

96 Part 1. Propositions and Predicates

5.3 Handling Arrays of Arrays of ...
This section may be skipped on first reading.

The Pascal declaration
(5.3.1) var b:array [0:1] of array [1:3] of integer

defines an array of arrays. That is, 5{0] (and similarly 5[1]) is an array
consisting of three elements named A[0][1], 5[0][2] and 5[0][3]. One can
also have an “array of arrays of arrays”, in which case three subscripts
could be used —e.g. d[i][/ [k]— and so forth.

Array of arrays take the place of two-dimensional arrays in FOR-
TRAN and PL/I. For example, (5.3.1) could be thought of as equivalent

to the PL/1 declaration
3

DECLARE b(0:1, 1:3) FIXED;

because both declarations define an array that can be thought of as two-
dimensional:

p[0,1] b[0,2] 5[0,3]
or
B[1,1] b[1,2] b[1,3]

p[OI1} b[0][2] &[0](3]
pLINIT b[1][2] b[1][3]

We now extend the notation (b; i:e) to allow a sequence of subscripts
in the position where i appears, for the following reason. If the assign-
ment ¢[i]-= 2 is equivalent to ¢:= (c; i:2), then the assignment b[i][j]= 3
should be equivalent to b:=(b; [i}fj]:3), where brackets are placed
around each of the subscripts i and j in order to have an easy-to-read
notation.

We need to be able to refer to sequences of subscript expressions
(enclosed in brackets), like [i],[i+1][/] and [i][}[k]. We introduce some
terminology to make it easier. The term selector denotes a finite sequence
of subscript expressions, each enclosed in brackets. The null selector
-—the sequence containing 0 subscripts— is written as €. The null selector
enjoys a nice property; it is the identity element of the operation catena-
tion on sequences (see the remark following definition (4.2.3)). That is,
using o to denote catenation, for any identifier or selector s we have so €
= 5. Any reference to a variable —simple or subscripted— now consists
of an identifier catenated with a selector; the reference x to a simple vari-
able is really x o €.

Section 5.3 Handling Arrays of Arrays of ... 97

Example 1. b o ¢ is identifier 5 followed by the null selector. It refers to
the complete array b.

b10] c.onsists of identifier b catenated with the selector [0]. For b
declared in (5.3.1), it refers to the array (b[0][1], 5[01{2], b[0][3]).

b[i][j] consists of identifier » followed by the selector [i][j]. For &
declared in (5.3.1), it refers to a single integer. O

We want to define the notation (b; s:e) for any selector s. We do this

recursively on the length of s. The first step is to determine the base case
(b; ee). ,

Let x be a simple variable (which contains a scalar or function). Since
X and x o€ are equivalent, the assignments x:= e and xo &= e are also
equivalent. But, by our earlier notation the latter should be equivalent to
x:=(x; &e). Therefore, the two expressions e and (x; €e) must yield
the same value, and we have

e=(x; €e)
With this insight, we define the notation (5 s:e).

(5.3.2) Definition. Let b and g be functions or variables of the same
type. Let s be a suitable selector for 5. The notation (b; s:e)
for a suitable expression e is defined by

(b; eg) =z

i#j —~ blj]

i=j —~(b[jlse) O

Example 2. In this and the following examples, let ¢[1:3] = (6,7,8) and

b[0:17[1:3] = ((0, 1, 2),(3,4,5)). Then

(b; [i1es:e)[j1 =

(c; €b[1]) = b[1], so that
(c; eb[1D[2] = b[1]2] =4. O

Example 3. (c; 1:3)[1] = (c; [1]0 :3)[1]
= (c[1]; €:3) = 3.
(c; 3)[2]= (c; [1]e &3)[2] = c[2] = 7.
(c; I3)BI=(c; [1Jee3)[31=¢[3]=8. O

Example 4. (b; [1][31:9)[0] = b[0]=(0, 1,2).
(b5 [B3E9)1] = (b[13; [319) = (3,4,9). O

Again,. all but the outer parentheses can be omitted. For example, the
folloyvmg two expressions are equivalent. They define an array (function)
that is the same as b except in three positions —[71/1, /1 and [k][i).

98 Part 1. Propositions and Predicates

(& [l Ye) 1S); [k MiLg) and
(b; [Te; ULSfs [k ide)-

Exercises for Section 5.3

1. Exercise 4 of section 5.1 was to develop a functional view of records. One can
also have arrays of records and records of arrays. For example, the following
Pascal-like declarations are valid.

type 2: record x:integer; y:array [0:10] of integer end;
var b:array [0:n —1] of ¢ :

Modify the notation of this section to allow references to subrecords of arrays and
subarrays of records, etc.

Chapter 6
Using Assertions To Document Programs

This chapter introduces the use of predicates as assertions for docu-
menting programs in an informal manner, thus paving the way for the
more formal treatment given in Parts 11 and I1].

6.1 Program Specifications

A program specification must describe exactly whar execution of a
program is to accomplish. Another part of a specification might also deal
with speed, size, and so forth, but for now we will concentrate on the f)art
that describes only the whar.

One way to specify a program is to give a high-level, English command
for it. For example, the following specifies a program to multiply two
non-negative integer variables.

(6.1.1) Store in z the product a*b, assuming @ and b are initially >9.

When written as a comment for a program segment within a program,
(6.1.1) is called a command-comment; it is a comment that is a statement
or command to perform some action,

A naive programmer might think that a program that sets ¢, b and z
to 0 satisfies (6.1.1), because (6.1.1) does not indicate that ¢ and b should

100 Part 1. Propositions and Predicates

Multiply ¢ and b together

does not indicate where the result of the multiplication should be stored,
and hence it cannot be understood in isolation, as it should be.

English can be ambiguous, so we often rely on more formal specifica-
tion techniques. The notation

(6.12) {2} S {R}

where Q and R are predicates and § is a program (sequence of com-
mands), has the following interpretation:

(6.1.3) If execution of S is begun in a state satisfying Q, then it is
guaranteed to terminate in a finite amount of time in a state
satisfying R. O

O is called the precondition or input assertion of S; R the postcondition,
output assertion or result assertion. The braces { and } around the asser-
tions are used to separate the assertions from the program itself.

Note that nothing is said about execution beginning in a state that
does not satisfy Q; the specification deals only with some initial states. If
the program is to deal with all possible initial states, for example by print-
ing error messages for erroneous input, then these cases form part of the
specification and must be covered by the predicates Q and R.

Note also that termination is guaranteed to happen in a finite amount
of time —provided, of course, that execution continues.

Finally, we stress the fact that (6.1.2) is itself a predicate —a statement
that is either true or false— which we usually want to be true. When
writing a program S to satisfy (6.1.2), it is our business to prove in some
fashion that {Q} S {R} does indeed hold. Part 11 will describe how to
write such a predicate in the predicate calculus introduced in earlier sec-
tions and to formally prove that it is a tautology.

As an example of the use of notation (6.1.2), we write specification
(6.1.1) in it —note the use of the label R in the postcondition to give the
postcondition a name:

(6.1.4) {0<a AO0<b}S {R:z=a*b}

Unfortunately, (6.1.4) does not indicate which variables should be
changed, and in fact the program segment z:= 0; a:= 0; b:= 0 satisfies it.
Typically, we use common sense and English to rectify the problem (but
see also section 6.2). And we often use a mixture of the command-
comment and the formal notation (6.1.2) in the following standardized
form: :

Section 6.I Program Specifications 101

(6.1.5) Given fixed a, & =0, establish (the truth ofy R: z =a*b.

The precondition of Fhe program is given, the fixed variables, which must
not be changed, are listed and the postcondition is to be established.

}Iel € are so p
me more eXalnpleS Of S eCIhCaUO“S a” Val]ables are
in tegel al ued)' (

Example 1 (array summation). Given i
. are fixed n = :
b[0:n—1]. Establish n >0 and fixed array

R:s =EZi0<i<n:b[i]). O

Example 2 (sqgare root approximation). Given fixed integer n =0, store
I s an approximation to the square root of #; i.e. establish

R:s*<n<(s+1)2 O

Example 3 (sorting). Given fixed n >0 . .
establish ’ =0 and array 5[0:n—1], sort b, ie.

R:i(di: 0<i<n—1: bUEISH+I]D. O

Agam, tt'mre 1s a problem with this specification; the result can be esta-
blished simply by setting all elements of » to zeroes.
overcome by including a comment to the effect that
b is to swap two of its elements.

This problem can be
the only way to alter

Nat}lrally, with large, complex problems there may be difficulty in
spec.:xfymg programs in this simple manner, and new notation may have to
b.e introduced to cope with the complexity. But for the most part, the
simple specification forms given above will suffice. iler

' . Even a compiler can
be specified in such a notation, by judicious use of ab P

straction:

{Pascal program (p)}
compiler

{IBM 370 program(q) A equivalent (p , q)}

where the predicates Pascal program, IBM 370

7o ;
must be defined elsewhere. program and equivalent

102 Part 1. Propositions and Predicates

6.2 Representing Initial and Final Values of Variables
The program

swap:ti=x; x=y; yi=t

swaps or exchanges the values of integer variables x and y, usm%j z
“local” variable 7. In order to state formally what swap does, we nee 2
way to describe the initial and final values of x and y. To do this, we u

identifiers X and Y:
6.2.1) {x:X/\y':—Y}Swap {x:Y/\y:X}

Now, we are asserting that (6.2.1) is always true;.iF is a tautqlogy. Reca;lll
from’ section 4.5 that a tautology with free identlflérs is eguwalent to tde
same predicate but with all previously free identifiers universally bound.

That is, (6.2.1) is equivalent to
(622) AX.,Y:{x=XAy=Y}swap {x=YAy=X})
and actually to
AX, Y. x,y{x=XAy=Y}swap x=YAy=X}

(6.2.2) can be read in English as follows: for all (integer) value.s of X in;,j
Y. i.f initially x =X and y =Y, then execution of swap estabhshes x =
and y = X. ') 1

X and Y denote the initial values of variables x and y, bgt they also
denote the final values of y and x. An identifier can file.n.ote elther, an 1lm—
tial or a final value, or even a value upon which the m}tml or final value
depends. For example, the following is also a specification of swap,
although it is not as easy to understand:

{x=X+IAy =Y~1} swap {x =Y—1Ay =X-+1}.

Generally, we will use capital letters in identifiers that represent %?xtlal tahnacz
final values of program variables, and small letters for identifiers
name variables in a program. o '

As a final example, we specify a sort program again, this time ;Jsm%an
extra identifier to alleviate the problem mentl.one‘(‘i in exan‘lple 3o s:ctzgg
6.1. The predicate perm(c, C) has the meaning array ¢ is a.perznzl a
of array C, i.e. a rearrangement of C”. See exercise 5 of section 4.2.

Section 6.3 Proof Outlines 103

Example 1 (sorting). Given fixed n 20 and array c[0:n—1] with ¢ =C,
establish

R: perm(c, C) A (Ai10<i<n—l:c[i]<c[i+l]).

Exercises for Section 6.2

1. Write specifications for the following problems. Put them in the form used in
example | above (sorting) and also in the form {Q} S {R}. The problems may
be vaguely stated, so you may have to use common sense and your experience to
derive a precise specification,

(a) Set x to the maximum value in array b[0:n —1].

(b) Set x to the absolute value of x.

(c) Find the position of a maximum value in array b[0:n—1].

(d) Find the position of the first maximum value in b[0:n —1].

(e) Tell whether a given integer that is greater than | is prime. (An integer >1 is
prime if it is divisible only by | and itself.)

(f) Find the n** Fibonacci number S The Fibonacci numbers are defined by
f0=0,F1=1 and, for n >, o =f o +tfu—. Thus, the Fibonacci number
sequence begins with (0, 1, I, 2,3,5 78

(g) Tell whether integer array b[0:n—17 is sorted (is in ascending order).
(h) Set each value of array b[0:11—1] to the sum of the values in b.

() Let c[0:1—1] be the Kst of people teaching at Cornell and w[0:1—17 be the
list of people on welfare in Ithaca. Both lists are alphabetically ordered. It is
known that at least one person is on both lists. Find the first such person!

() The same problem as (1), except that there are three lists: ¢, the Cornellians;
w, those on welfare; and m, those making money consulting for the federal
government.

(k) Consider a two-dimensional array g[O0:n—1, 0:3]. g[i, 0L gli, 17, g[i, 21
and g7, 3] are the grades for student i/ in his courses this semester, with
A =40, B=30, C =2.0, etc. Let name[0:n—1] contain the names of the
students. Find the student with the highest average. You may use “real vari-
ables”, which can contain floating point numbers.

6.3 Proof Outlines

We have shown how to write a predicate (within braces) before and
after a program in order to assert what is to be true before and after exe-
cution. In the same manner, a predicate may appear berween two state-
ments in order to show what must be true at that point of execution. For
example, here is a complete formulation of program swap, which swaps
(exchanges) the values of two variables x and y, using a local variable ¢.

104 Part I. Propositions and Predicates
{X=xnry=Y}
=X,
ft=XAx=XAry=Y}
X=
t=XAx=YAry=Y}
y=t

y=XAx=Y}

The reader can informally verify that, for each statement of the program,
if its precondition —the predicate in braces preceding it— is true, then
execution of the statement terminates with its postcondition —the predi-
cate in braces following it— true.

A predicate placed in a program is called an assertion; we assert it is
true at that point of execution. A program together with an assertion
between each pair of statements is called a proof outline, because it is just
that; it is an outline of a formal proof, and one can understand that the
program satisfies its specification simply by showing that each triple
(precondition, statement, postcondition) satisfies {precondition} statement
{postcondition}. The formal proof method is described in Part 1.

Placing assertions in a program for purposes of documentation is often
called anrotating the program, and the final program is also called an
annotated program.

Below is a proof outline for

{i Z20As =142+ - - +i}
i=i+l; si=s+i
i >0As =1+2+ - - - +i}

The proof outline illustrates two new conventions. First, an assertion can
be named so that it can be discussed more easily, by placing the name at
its beginning followed by a colon. Secondly, adjacent assertions —e.g.
{P} {PI}— mean that the first implies the second —e.g. P = P]. The
lines have been numbered solely for reference in a later discussion.

() {P:i=0As =142+ - - +i}

() {PI:i+1>0As =142+ - - - +(i+1—1)}
(3) =i+l

(4) {P2:i>0As =142+ - - +(G—1)}

(5) {P3:i>0As+i=142+" - +i}

(6) s:=s-+i

(7 {R:i>0As =142+ - - +i}

The above proof outline indicates the following facts, in order:

Section 6.3 Proof Outlines 105

1. Pp=>p] (lines 1, 2)
2. {PI}i=i+1{P2} (lines2, 3, 4)
3. P2=>P3 (lines 4, 5)

4.

{P3} s:=s+i {R} (lines 5, 6, 7)

Together, these give the desired result: execution of j:= i+1; si=5+i
begun in a state satisfying P terminates in a state satisfying R.

The next example illustrates the use of a conditional statement. Note
how the assertion following then is the conjunction of the precondition of
the' conditional statement and the test, since this is what is true at that
point of execution. Since both the then-part and the else-part end with

the assertion x =gbs(X), this is what we may conclude about execution
of the conditional statement.

{x =X}
if x <0 then {x=X Ax <0}

X= —x

x=—XArx>0 {x =abs(X)}

else {x =XAx2>=0}

skip

(x=XAx2=20) {x =abs(X)}
{x =abs(X)}

More details on annotating a program will be forthcoming when we
study loops in Part II. However, one point should be made here. It is
not always necessary to give a complete proof outline. Enough assertions
should be inserted to make the program understandable, but not so many
'that the program is hidden from view. In general, a good practice is to
insert those assertions that are not so easily determined by the reader, and
to omit those that are.

S

Part 11
The Semantics of
a Small Language

This Part introduces a programming notation and defines it in terms of
the notion of a “weakest precondition”. The main concern is the state-
ments, or commands, of the notation and how they can be understood.
The syntax of declarations and €xpressions is a secondary concern, and
instead of formally defining them we appeal to the reader’s knowledge of
mathematics and brogramming. In general, a Pascal-like notation for
declarations is used, which the reader should have no trouble understand-
ing. It is understood that each simple variable and expression has a type,
usually integer or Boolean, and that variables are considered to be of type
integer unless otherwise specified or obvious from the context.

Chapter 7
The Predicate Transformer wp

Our task is to define the commands (statements) of a small language.
This will be done as follows. For any command S and predicate R,
which describes the desired result of executing §, we will define another
predicate, denoted by wp (S, R), that represents

(7.1) the set of all states such that execution of S begun in any one of
them is guaranteed to terminate in a finite amount of time in a
state satisfying R. 0O

Let’s give some examples for some ALGOL-like commands, based on our
knowledge of how these commands are executed.

Example 1. Let S be the assignment command i:=i+1 and let R be
i< 1. Then

wp (“ii= i+17, i <1) = (i <0)

for if i <0, then execution of i:= i +1 terminates with i <1, while if i >0,
execution cannot make i <<I. O

Example 2. Let S be ifx>=y thenz:=x elsez:=y and R be z =
max(x,y). Execution of § always sets z to max(x,y), so that
wp(S,R)=T7T. O

Example 3. Let S be as in Example 2 and let R be z=y. Then
wp(S,R) = (y 2x), for execution of S beginning with y >.x sets z to y
and execution of S beginning with y <x sets z to x, which is #y. 0O

Example 4. Let S§ be as in Example 2 and let R be z =y—1. Then
wp(S,R) = F (the set of no states), for execution of S can never set z
less thany. O

Chapter 7 The Predicate Transformer wp 109

Example 5. Let S be as in Example 2 and R be z=yp+l. Then
wp(S,R) = (x =y+1), for only then will execution of S set z to
y+i. O

Example 6. For a command S, wp (S, T) represents the set of all states
such that execution of S begun in any one of them is guaranteed to ter-
minate. [

In section 6.1, we used the notation {0} S {R} to mean that execution
of § begun in any state satisfying predicate O would terminate in a state
satisfying predicate R. In this context, Q is called the precondition and
R the postcondition of S. Similarly, we call wp(S, R) the weakest
precondition of § with respect to R, since it represents the set of all
states such that execution begun in any one of them will terminate with R
true. (See section 1.6 for a definition of weaker and weakest in this con-
text.) We see, then, that the notation {0} S {R} is simply another nota-
tion for

(7.2) @ =wp(S,R).

Note carefully that {Q} S {R} is really a statement in the predicate cal-
culus, since it is equivalent to O =wp(S,R). Thus, it is either true or
false in any state. When we write it, we usually mean it to be a tautology
~—Wwe expect it to be universally true.

A command S is usually designed for a specific purpose —to establish
the truth of one particular postcondition R. So we are not always
interested in the general properties of S, but only in those pertaining to
R. Moreover, even for this R we may not be interested in the weakest
precondition wp (S, R), but usually in some stronger precondition Q (say)
that represents a subset of the set represented by wp(S, R). Thus, if we
can show that Q = wp(S, R) without actually forming wp (S, R), then we
are content to use Q as a precondition.

The ability to work with a precondition that is not the weakest is use-
ful, because the derivation of wp (S, R) itself can be impractical, as we
shall see when we consider loops.

Note that wp is a function of two arguments: a command S and a
predicate R. Consider for the moment an arbitrary but fixed command
§. We can then write wp (S, R) as a function of one argument: wpg(R).
The function wps transforms any predicate R into another predicate
wps(R). This is the origin of the term “predicate transformer” for WDs .

Remark: The notation Q {S} R was first used in 1969 (see chapter 23) to
denote partial correctness. It has the interpretation: if execution of S
begins in a state satisfying @, and if execution terminates, then the final

110 Part 1. The Semantics of a Small Language

state will satisfy R. We use braces around the predif:ate§ (instead of
around the command) to denote total correctness: execution is guaranteed
to terminate. As an example, note that

T {while T do skip} T

where skip is a null command, is a tautology, because execution of the
loop never halts. But

{T} while T do skip {T}

which is equivalent to T = wp(“while T do skip”, T), is everywhere
false. O

Some properties of wp

If we are to define a programming notation using the .concept of wp,
then we had better be sure that wp is well-behaved. By this we mean tbat
we should be able to define reasonable, implementable commands us1r11(gi
wp. Furthermore, it would be nice if unimplementable comma.nds woxi
be rejected from consideration. Let us therefore analyze our mte(;’pr.e a(;
tion (7.1) of wp(S,R), and see whether any properties can be derive
from it. '

First, consider the predicate wp(S,F) (for any commz.md S). This
describes the set of states such that executior.l of S begun in any one of
them is guaranteed to terminate in a state satisfying . But no state evei
satisfies F, because F represents the empty set. 'Hence there could no
possibly be a state in wp(S, F), and we have our first property:

(7.3) Law of the Excluded Miracle: wp(S, F) = F.

The name of this property is appropriate, for it would indeed be a miracle
if execution could terminate in no state.

The second law is as follows. For any command S and predicates @
and R the following holds:

(7.4) Distributivity of Conjunction:
wp (S, Q) Awp(S,R) =wp(S,QAR)

Let us see why (7.4) is a tautology. First, consider any state's that. satis-
fies the lefthand side (LHS) of (7.4). Execution qf S begun in s will te?—
minate with both O and R true. Hence Q AR will also be true, and.s is
in wp(S,Q AR). This shows that LHS = RHS. Next, suppose s xst 1rj
wp(S,Q AR). Then execution of § begun in s is g.uaranteed. to ter
minate in some state s’ of Q AR. Any such s must bein Q and in R, so

Chapter 7 The Predicate Transformer wp i1

that 5 is in wp(S, Q) and in wp(S, R). This shows that RHS = LHS.
Together with LHS > RHS, this yields RHS = LHS.

We have thus shown that (7.3) and (7.4) hold. The arguments were
based solely on the informal interpretation (7.1) that we wanted to give to
the notation wp(S,R). We now take them as basic axioms, and use
them as we do other axioms and laws of the predicate calculus. Using

them, we can prove two other useful laws; their proofs are left as exer-
cises.

(7.5) Law of Monotonicity: if 0 = R then wp (S, Q)= wp(S,R)

(7.6) Distributivity of Disjunction:
wp(S,Q)Vwp(S,R) = wp(S,Q VR)

It is interesting to compare (7.4) and (7.6). One is an equivalence, the
other an implication. Why? The reason is that execution of commands
may be nondeterministic. Execution of a command is nondeterministic if
it need not always be exactly the same each time it is begun in the same
state. It may produce different answers, or it may simply take different
“paths” en route to the same answer. Most sequential programming nota-
tions, like Algol and FORTRAN, are implemented in a deterministic
fashion —execution begun in the same state is always the same— so this
idea of nondeterminism may be new to you.

As an example of a nondeterministic action for which the LHS and
RHS of (7.6) are not equivalent, consider the act of flipping a coin that is,
theoretically, so thin that it cannot land on its side. There is no guarantee
that flipping the coin will yield a head, so that wp (flip, head) = F. Simi-
larly, wp (flip, tail) = F. Hence,

wp (flip, head)V wp (flip, tail) = F
But the coin is guaranteed to land with either a head or a tail up, so that
wp (flip, head V tail) = T

If we know that a command is deterministic, we can show (see exercise
6) that

7.7 wp(S,Q)vwp(sS, R} =wp(S,QVR) (for deterministic S)

Note carefully that nondeterminism is a property of the implementa-
tion of a command, and not a property of the command itself. If a com-
mand satisfies (7.7), then it should be possible to implement it in a deter-
ministic fashion without restricting its generality. If a command does not
satisfy (7.7), then if it is implemented in a deterministic fashion, the

112 Part I1. The Semantics of a Small Language

implementation is likely to restrict the command somewhat —for exam-
ple, by requiring so much skill in flipping a coin that landing head up is
guaranteed.

In the next chapter we will begin defining a programming notation in
terms of wp. In doing so, we must be extremely careful. For any com-
mand S, the function wpg(R) yields a predicate, and at first glance it
might seem that any function with domain and range the set of predicates
will do. But remember that such functions must represent implementable
commands. At the least, it is our duty to certify that such functions
satisfy (7.3) and (7.4), because these properties were developed based on
our notion of command execution. We shall not always perform this duty
in later chapters (because it has been done before); rather, we will leave
this task to the reader as exercises.

Exercises for Chapter 7

1. Determine wp(S, R) for the following S and R, based on your own
knowledge of how S is executed. Assume that all variables are of type integer
and that all subscripts are in range.

S R
() =i+l i>0
() =i+ ji=j—2 i+j=0
(¢ =i+l ji=j—1 i*j =0

(d) z:i=z%; i:=i—] z*jt =¢
(e) ali}=1 alil=alj]
n alalil}=i ali]l=i

2. Examples 1-5 of this section each gave a predicate in the form wp(S,R)=Q.
Rewrite each of these in the form {Q} S {R}, just to get used to the two dif-
ferent notations. For example, example 2 would be written as

{T}if x =y then z:= x else 7=y {z =max(x, y)}.
3. Prove (7.5) and (7.6). Don’t rely on the notion of execution and interpretation
(7.1); prove them only from (7.4) and the laws of predicate calculus.
4. Prove using (7.4) that (wp (S, R)Awp (S, R)) =F.
5. Give an example to show that the following is not true for all states:
(wp(S, R)Vwp(S,aR))=T.
6. Show that (7.7) holds for deterministic S. (It cannot be proved from axioms

(7.3)-(7.4); it must be argued based on the definitions of determinism and Wp, as
was done for (7.3) and (7.4).)

7. Suppose Q = wp(S,R) has been proven for particular ¢, R and S.
Analyze fully the statement :

Exercises for Chapter 7 !
13

(78) {(A4x:0)} S {(4x:R)}

(Is it true in general;

“reasonable” if not, what restrictions must be made so that it hoids for

easona| hclasses of predicates Q,R and commands S, etc.) Hint: be careful
siaer the case where x appears in S. You may want to answer the question
under the ground rule that the appearance of x in § means that (7 8) is invalid
and Fhat thet quantified identifier x should be changed before proc-eedin nv?tl"
also mst'ructwe, however, to answer this question without using thi o N
See section 4.3. & i ground rule.

8. Suppose Q =wp(S,R) has been

roven fo i
Analyze fully the statement P r particular 0, R and S.

{(Ex:Q)} S {(Ex:R)}

‘(‘Is 1t true in general; if not, what restrictions must be m
reasonable”

exercise 7.

: ade so that it holds for
classes of predicates Q. R and commands S, etc.) See the hint on

Chapter 8 3
The Commands skip, abort and Composition

We now define a programming notation in terms of wp. .We will alscz
indicate how each command of the programming notation 1s to be'exe1
cuted, so that the reader can relate it to statements of other convetnt(xjoxije
languages. Also, by showing how the comfn_and' can be efxecu ehou1d
establish that it really is useful. But the definition in terms of wp s
be viewed as the definition of the command. '

We begin with the command skip. Execution of ikip d(’)’es nothaxgg
(and, we assume, very quickly). It is equivalent to the er.npty coln;m n
of ALGOL 60 and Pascal and to the PL/ I. command consisting s}g ety gt 2
semicolon ;. It is included in the notation for twc? refsons. ;)rs :j(l)ne
often useful to be able to explicitly say that “not.hmg shoulq 1e1 Ver.
But just as importantly its predicate‘ transformer is mathematically y
simple —it is the identity transformation:

(8.1) Definition. wp(skip, R)=R. O

The second command is abort, which is introduced not béc'ausethoft 1:2
usefulness in programming but because itf too, has a definition d?cate
mathematically simple. It is the only pos&ble; command whose pre
transformer is a “constant” function (see exercise 3).

(8.2) Definition. wp(abort, R)=F. 0O

How is abort executed? Well, it should never be executed', ft_;eca;s'e 11;
can only be executed in a state satisfyTng F and no state satis 1tesd t.hen
execution ever reaches a point at whxc_:h-abort is to be ex§cu§ ,Caned
obviously the program (and its proof) is in error, and :abortlon is
for. . ‘

Sequential composition is one way of composing larger pro%irast;egr;
ments from smaller segments. Let S/ and S2 be two commands.

Chapter 8 The Commands skip, abort and Composition 115

S1; S2 is a new command. It is executed by first executing $7 and then
executing S2. Its formal definition is:

(8.3) Definition. wp(“ST; $2°, R) = wp(S1, wp(S2, R)). O

As a (trivial) example, we have

wp (“skip; skip”, R) = wp (skip, wp(skip, R))

= wp(skip, R) (since wp(skip, R)Y=R)
=R.

Now consider a sequence of three commands: SI; $2; S3. Executing
it should involve first executing S/, then §2, and finally S$3, but we must
make sure that the sequence also makes sense in terms of wp. Isit to be
interpreted as (SI; $2); S3 or as 81; (82; §3)? Fortunately, the opera-
tion of function composition, which is used in defining sequential compo-
sition, is associative (see Appendix 3). Therefore

wp(“SI; (82; 8§3)”, R) = wp(“(SI; $2); 8§37, R).

That is, it doesn’t matter whether one thinks of S7; §2; 3 as S7 com-
posed with $2; S3 or as SI; S2 composed with S3, and it is all right to
leave the parentheses out. (Similarly, because addition is associative,

atb+c is well-defined because a+(b+c) yields the same result as
(a+b)tc) :

Be aware of the role of the semicolon; it is used to combine adjacent,
independent commands into a single command, much the way it is used in
English to combine independent clauses. (For an example of its use in
English, see the previous sentence.) It can be thought of as an operator
that combines, just as catenation is used in Pascal and PL/I to combine

two strings of characters. Once this is understood, there should be no
confusion about where to put a semicolon.

Our use of the semicolon conforms not only to English usage, but also
to its original use in the first programming notation that contained it,
ALGOL 60. It is a pity that the designers of PL/I and Ada saw fit to go
against convention and use the semicolon as a statement terminator, for it
has caused great confusion.

Thus far, we don’t have much of a programming notation —about all
we can write is a sequence of skips and aborss. In the next chapter we
define the assignment command. Before reading ahead, though, perform

. some of the exercises in order to get a firm grasp of this (still simple)

material.

116 Part 1. The Semantics of a Small Language

Exercises for Chapter 8

1. Prove that definition (8.1) satisfies laws (7.3), (7.4) and (7.7).

2. Prove that definition (8.2) satisfies laws (7.3), (7.4) and (7.7).

3. Consider introducing a command make —true with a constant predicate

transformer:

wp(méke —true, RYy=T for all predicates R.

Why isn't make —true a valid command?

4. Prove that definition (8..3) satisfies laws (7.3) and (7.4), provided S7 and S2 do.
5. Prove that deﬁnitionA (8.3) satisfies (7.7) provided SI z.m.d S2 do. This shows
that sequential composition does not introduce nondeterminism.

6. Prove that wp(“x:= e; abort”, R) = F, for any predicate R, regardless of
the definition of wp (“x:= e”, R).

Chapter 9
The Assignment Command

9.1 Assignment to Simple Variables

For the moment, we consider assignment to a simple variable, where a
“simple” variable is a variable of type integer, Boolean and the like. We
treat assignment to array elements in section 9.3.

The assignment command has the form
Xz e

where x is a simple variable, e is an expression, and the types of x and e
are the same. This command is read as “x becomes e”. Asa convention,
it is written with a blank separating the assignment symbol = from e but
no blank separating x from := .

The command x:= e can be executed properly only in a state in which
e can be evaluated (e.g. there is no division by zero). Execution consists
of evaluating e and storing the resulting value in the location named x.
In effect, (the value of) x is replaced by (the value of) e, and a similar,
but textual, replacement forms the heart of the definition:

(9.1.1) Definition. wp(“x:=e”, R) = domain(e) cand R}
where

(9.1.2) domain(e) is a predicate that describes the set of all states in
which e may be evaluated —i.e. is well-defined. O

Predicate domain(e) will not be formally defined, since expressions e are
not. However, it must exclude all states in which evaluation of ¢ would
be undefined —e.g. because of division by zero or subscript out of range.

118 Part 11. The Semantics of a Small Language

It can be defined recursively on the structure of expressions (see exercise
6). .
Often, we tend to omit domain(e) entirely, writing

(9.1.3) wp(“x:=e”, R) =R}

because assignments should always be written in contexts in which the
expressions can be properly evaluated.

Definition (9.1.3) can be bewildering at fir.st, for it seems to hrequx;e
“thinking backwards”. Our operational h.a.blts rilake us 'feel t ?t t e1
precondition should be R and the postco'ndmon RJ! Here 1s an 1n oi.ma
explanation of (9.1.1): Since x will contain t'he value of e after execudxo;x,
then R will be true after execution iff R, with the va.lue .of x replace by
e, is true before execution. A more formal explanation is left to exercise
3.’ The following examples should lend some confidence in the de.ﬁn(;tlf(_)n;
In particular, examples 7 and 8 should convince the read.er that this defin
ition is consistent with our conventional mode! of execution.

Example 1. wp (“x:= 57, x =5) = (5=5) = T. Hence execution of x:= 5
always establishes x =5. O

Example 2. wp (“x:= 57, x #5) = (5#5) = F. Hence execution of x:=5
never establishes x 5. 0O

Example 3. wp (“x:= x+17, x <0) = (x+1<0) = (x <—1). O
Example 4. wp (“x:= x*x”, x*=10) = (x*x)* =10) = (x*=10). O
Example 5. For any predicate p of one argument,

wp(“x:= a+b”,p(x)) = (b #0 cand p (a<b)).

This example required explicit use of the term domain{e) of definition
9.1.1). O

Example 6. Suppose array & is declared with subscript range 0:100. Then

wp(“x:= b[i]",x =b[i]) = (0<i <100 cand b[i]1=b[i])
= (0<i < 100).

Thus, x will contain the value b[i] upon termination iff i is a valid sub-
script for array 5. 0O

Section 9.1 Assignment to Simple Variables 119

Example 7. Assume ¢ is a constant. Then wp(“x:=e” x =c) = (e=c).
This means that execution of x:= e is guaranteed to terminate with ¢ in x
if the value of expression e before execution is ¢. [

Example 8. Assume ¢ is a constant and x and y are distinct identifiers.
Then

wp(“x=e” y=c)=(y =c). O

Example 8 is particularly illuminating. Since y must retain its original
value ¢, execution of the assignment x:= ¢ cannot change y. Since the
above must hold for all variables y and values ¢, execution of x:= e may
change only x, and no other variable. Hence, no so-called “side effects”
are allowed. This restriction holds universally: execution of an assignment
may change only the variable indicated and evaluation of an expression
may change no variable. This prohibits functions with side effects.

The ban on side effects is extremely important, for it allows us to con-
sider expressions as conventional mathematical entities. This means that
we can use all the conventional properties with which we are used to
working when dealing with them —such as associativity and commuta-
tivity of addition and the logical laws of chapter 2.

Swapping the values of two variables

The sequence 7:= x; x:= Y5 y:=t can be used to “swap” or exchange
the values of variables x and ¥, as the following shows.

wp(“1:=x; xI=y; yi=1”, x=X Ay =7Y)

= wp(CrEx; x=yT wp (Y= x =X Ay =Y))
wp(“t=x; x=y”, x=X At=Y)
wp (“t:= x”, wp(“x=y” x=X A1 =)
wp(“t'=x7, y=X At =Y)
O=XAx=Y)

I

i

I

The above is comparatively difficult to read and write. Instead, we use a
proof outline, as illustrated to the left in (5.1.49).

0.149) p=XArx=Y} =X Aax=1}

1= x; 1= x;
e

X=y; yi=¢
x=Xnrr=v} {x=XAy=yY}
Y=t

x=XAy=7}

120 Part 1. The Semantics of a Small Language

Recall from section 6.3 that, in a proof outline, an assertion appears
between each pair of commands. The assertion is a postcondition for the
first command and a precondition for the second: The proof outline is
often read backwards, since a precondition is determined from a postcon-
dition and a command. We could also abbreviate this proof outline as
shown to the right in (9.1.4), since determining the intermediate assertions
is a simple, almost mechanical, chore.

Exercises for Section 9.1

1. Determine and simplify wp (S, R) for the pairs (S, R). Variable all5 has
type Boolean; all other variables have type integer.

S R
(@ x:=2%y+3 x=13
(b) x:=x+y x < 2%y
© =g 0<jAAi:0<i<j:b[i]=5)

@ alls= (b[j1=5) alls = (A4i:0<i<j:b[i]=5)
(&) alls:=alls A (B[j]1=5) alls =(Ai:0<i<j:bli]=3)
() x=x=p x*y =c

@ x=(x—y)*(x+y) x+y*#0

2. Prove that definition (9.1.3) satisfies laws (7.3), (7.4) and (7.7). The latter
shows that assignment is deterministic.

3. Review section 4.6 (Some theorems about textual substitution). Let s be the
machine state before execution of x:= e and let s” be the final state. Describe s
and & in terms of how x:= e is executed. (What, for example, should be the
value in x upon termination?) Then show that for any predicate R, s"(R) is true
iff s(RY) is true. Finally, argue that this last fact shows that the definition of
assignment is consistent with our operational view of assignment.

4. One can write a “forward rule” for assignment, which from a precondition
derives the strongest postcondition sp(Q,“x = e~} such that execution of X:= e
with Q true leaves sp{Q,“x:= e”) true (in the definition below, v represents the

initial value of x):
p(Q,x=e”) = (Ev: Qi A x=¢)

Show that this definition is also consistent with our model of execution. One way
t0 do this is to show that execution of x:= ¢ with Q true is guaranteed to ter-
minate with sp(Q,“x:= e”) true:

{Q} x=e {sp(Q,“x= e}
5.See exercise 4. Give an example to show that @ is not equivalent to
wp(x:= e, sp(Q,“x= e”).
6. Consider integer expressions defined using the syntax (see Appendix 1)

Section 9.2 Multiple Assignment to Simple Variables 121

<Lexpr> = <term> | <expr> <term>>
<term> = <factor>| <term>* <factor>

| <term>< <factor>
<factor> ::l: <lnteger constant> | <identifier>

<array identifier> [<expr >]

Let 7
et domain(b) denote the set of subscript values for any array 4. Define

(<€Xp]> for any expression €Xpr eCt ve
) i 3
donla”l 1 <4 p > r S1 Iy

sion by zero.

A on the structure of
ssume the errors that can occur are subscript out of range and divi-

9.2 Multiple Assignment to Simple Variables

A multiple assignment to simple variables has the form

92.1) xy, x5, .o, x,0= €, €y, ..., e,

wh
g 1fapr(e;sthe ;cl areI distinct simple variables and the €; are expressions. For
¢s of explanation the assignment i i :
: of Is abbreviated as x:=&. T i
any identifier with a bar i © opromas,
over it repr 1
it presents a vector (of appropriate
The i i
v m;lxmple ass%gnme.nt command can be executed as follows. First
o uate the expressions, in any order, to yield values v, -+ v . Then
1gn v] ’ the
&0 vy 10 Xy, vy to Xy, ..., v, t0 Xx,, in that order. (Because t}:e Xx; are
i

disti i
. st?nct, t'he orde.:r of assignment doesn’t matter. However a later general
1zation will require left-to-right assignment.) , ¢ .

Th i i :
chang: i;nulltq?le assignment is useful because it easily describes a state
volving more than one variable. It o
: - . Its formal defin ;
extension of assignment to one variable: tion 1s a simple
(9-2.2) Definition. wp(“¥:=2”, R) = domain(¢) cand RX . O
5 -

where domain() describes the set of states in which

the vector & can be evaluated: #ll the expressions in

domain(2) = (A i: domain (e)).
Example 1. x, y:= y, x can be used to “swap” the values of x and y. O
Example 2. x,y, z:= ¥, z, x “rotates” the values of X,y and z. O
Example 3. wp (“z, y:= z*x, Y17y 20 A z%x) =)

= (120 A (24x)* 7 =0
= (21Az*x"=¢). O

122 Part I1. The Semantics of a Small Language

Example 4. wp (“s,i:= s+b[i],i +17,i >0 A s =(Zj: 07 <i: b[j]
= iH1>0AsHh[I]1=(Ej:0<j <i+1:B[j]
= i 20As =207 <i:b[jD

Note that execution leaves s =(Z j: 0<{j <i: b[j]) unchanged. [

Example 4. wp(“x,y:= x—y, y—x7, x+y =c¢)
= (x—y+y—x=c)
= (0=¢). O

Example 5. wp(“x,y:= x—y, x+y”, x+ty =¢)
= (x—y+x+ty=c¢)
= (2xx=c¢). O

It is difficult at first to use the assignment command definition, for our
old habits of reasoning about assignments in terms of execution get in the
way. We have to consciously force ourselves to use it. Surprisingly
enough, with practice it does help. Here is an example to illustrate this.

Suppose we have an array b and variables i, m, and p, with
i<m<i+p. Values i and i+p—1 define the boundaries of a partition
bli:i+p—1] of b, while m is an index in that partition, as shown in the

"first predicate below. It is desired to make the middle partition smaller
by setting i to m—+1, but at the same time p should be changed so that
i+p—1 still describes the rightmost boundary of the partition, which does
not change, as shown by the second predicate below.

i m i+p
bl | l

I Ai<m<i+p

br I I l Ai=m+I<itp

Now, what value should be assigned to p? Instead of determining it
through ad hocery, let us use the definition of wp. Letting ¢ be the ini-
tial value of i+p, we want to find the expression x that makes the fol-

lowing true:
{i4+p=c} i,p=m+l, x {i+p=c}

We have:

Exercises for Section 9.2 123

wp(“i, p:= m+1, x” itp=c¢)
= (H‘P :C)rln’el-l,x
= (m+l+x)=c¢
Since initially i +p =¢, we substitute for ¢ to get

m+l+x =i+p

Solving for variable x yields x =p ti—m—1, so the desired assignment is
ip=m+lp+i—m—I1.
The definition of wp was used to derive the assignment, and not only

to show that the assignment was correct. This is a hint as to the useful-
ness of wp in deriving programs.

Remark: Consider finding a solution for x in the assertion
(923) {T}a=a+l; b:=x {a =b}
Blind analysis leads to

wp(“ai=a+l; b= x”, g =p)
= wp(“a=a+1”,a=x)
= ag+l=x

whif:h clearly is wrong; we cannot substitute g1 for x in (9.2.3) and
achieve a tautology. The problem is that x must be considered a function
of @ and b. If we write x as x(a, b), then we get

wp(“a:=a+l; b= x(a, b)”, a =b)
= wp(“a=a+1",a =x(a, b))
= a+l=x(at+l1,b)

Thus, we see that x is not dependent on b, and we can take x as the
expression @, which is the obvious answer. [

Exercises for Section 9.2

1. Prove that x,y:= el e2 is semantically equivalent to x:= el; y:= 2, and
also t9 Y= e2; x= el, provided that x does not occur in e2 and y does not
occur in el.

2. Show by counterexample that x, y=el, e2 and x:= el; y:= ¢2 and yi=e2;
X = el are generally not equivalent if x occurs in e2 or y inel. ,

124 Part 11. The Semantics of a Small Language

3. Determine and simplify wp (S, R) for the pairs (S, R). given below.

S R
(a) z,x,y=1l,¢,d zxx? =¢?
(b)y i,s:=1, b[0 I<i<nm As=b[0]+...+b[i—1]
(¢ a,n=0,1 a*<n /\(a+l)2>n
(@ i,s=i+l], s+b[i] 0<i<n As=b[0]+...+b[i—1]
(e) i=i+l; ji=j+H i=j
O j=jti i=ibl i=
@ ijEitL o i=)

4. In each of the following predicates, X represents an unknown expression that is
to be determined. That is, an expression for x involving the other variables is to
be determined so that the assertion is a tautology. Do so, as was done in the
example preceding the exercises. The first few exercises are simple, so that you
can easily become familiar with the technique.

(a) {T} a, bi=a+1, x {b=q+1}

() {T} a:=a-+1; b=x {b=a+1}

(© {T}b=x; ai=a+1 {b=a+1}

(@ {i=j}ij=itlx {i=j}

(&) {i=j}i=i+l; ji=x {i=j}

0 {i=jlj=x; =i+l {i=j}

(& {ztasb=c} z,a=z+b,x {z +axb =c}

(b) {even(a) Az +a*b =c} a,b:=a [2,x {z +a*b=c}

() {feven{(a)Az+a*b=c}a=a/2; bi=x {z+a*b=c}

M {T}is=0x s=(CZj:0<i<i: b}

(k) {7} i,s=0,x {s=Zj:0<7<i: b} ,
M) {{i>0As=Zj0<j<i:b[jP}i,si=i+], x {s=(Zj:0<j<i:b[jI}

9.3 Assignment to an Array Element

Recall (section 5.1) that in the functional view of arrays an array b is a
simple variable that contains a function, and that conventional “array sub-
scripting”, b{i], is simply application of the function currently in b to the
argument {. Recall also that (b; i:e) denotes a function that is the same
as b, except that at the argument i it yields the value e.

We can therefore view a subscripted variable assignment b[i]=e as
equivalent to the assignment

9.3.1) b:=(b; i:e)

since both change b to represent the function (b; i:e). But (9.3.1) is an
assignment to a simple variable. Since assignment to a simple variable is
already defined in (9.1.1), so is assignment to a subscripted variable! We
have, using definition (9.1.1),

i
i
{
i
i
i
|
{
|
i

Section 9.3 Assignment to an Array Element
125

POBLT= €% R) = wp (b= (b; oy

R
= domain ((b ; :

i:e)) cand R(bb;i:e)

Using in.range(b,) to mean that the value
can rewrite the definition of b[i]= ¢ as

(9.3.2)

of i is a valid subscript, we

Definition. wp(“blil=e” R)

= tnrange (b, i) cand domain(e) cand Rf’b ey O
sie

Typically, we tend to leave off inrange and domain | wr

iting simply
©33) wp(bli}= e, Ry = R i)

'J=e. O

€xamples are desig
ples, assume that al

Example 1. wp (“b[i]=57, b[i]=5)

= @GLi]=54, . (Definition)

= §b~ IS)1=5 (Textual substitution)
= 5=5

=T

Hence, execution of b[il= 5 always sets bliJto 5. O
Example 2. wp (“b[iT:= 57, blil=b[5)

= (b[i]:bU])(Ii;i:S)

(b5 i:5)i]=(s; i:5)[7]

Z OEIAS=hUY Vii=; A 5=y
= GEjAS=p] v (=)

= (f+#j Vi=j)A(5=b[j]Vi=j)

(Definition)

(Textual subs.)
(Case anal.: i7jVi=j)

Il

]

(Distributivity)

l_j v b‘ 7'_—5
Ofte]l t]le case ;i =j j i y ~
-] J 18 omitted CareIeSS W i n
; I , | : 1 . 1 hen basmg arguments on intux

on really helps here, The case analysis

126 Part 1I. The Semantics of a Small Language

performed here was explained at the end of section 5.1, so reread that
part if you are having trouble with it. U

Example 3. wp (“b[b[il}=i”, bli]=1i)

= (bL1=06. o110 (Definition)

= (b; bi}Di]=i {Textual sub§.)
(b[i]1#i A blil=1i) V (b[i]=i A i=1i) (Case analysis)
= FV (Bli]l=irT)
= bli]=i

Hence, execution of b[h[i1]:=i has no effect on the predic.ate bli]l=i.
This exercise is quite difficult to perform using only operational reason-
ing. O

Example 4. Assume n >1. Let ordered(b[1:n]) mean that the elements
of b are in ascending order. Then

wp(“b[n]= x”, ordered(b[1:n]))
= (ordered(b[1:n])E. nxy (Definition)

= ordered((b; n:x)[1:n]) (Textual substitution)
= ordered(b[l:n—1]) A b[n—1]< x (Definition of ordered)

By replacing ordered(b[l:n]) by its definition, we get a more formal
derivation:
“ = x” : 1 b1 bli+1])
wp(“b[n]=x", Ai:1<i<n:b[i])
= Ai:1<i<n:(b; n:x))[]<(b; n:x)[i+1])
= (b; n:x)[n—-1]<(b; n:x)n]r '
A 1<i<n—1l:(b; n:x)i]<(b; nx)[i+1])
= pln—lI<x AN Ai:I<i<n—Lb[i]sbli+1]) O

.

Exercises for Section 9.3

1. Determine and simplify the following weakest preconditio.ns, where array b is
declared as b[0:n—1] and it is known that all subscripts are in range.

a) wp (“b[i]=i”, b[B[iT|=1)
Eb)) Wig“b%i:]l: 5 (Ejis] <n:b[l:]<b[]:]))
(9 wp(*bli]= 5, (Ej:i<11]’<gt[g[llf]l)3[1]))

“b[i}=5", b[0:n—1]= n— .)
2:)) :ﬁg“bl[:i%iz b{i—g]-kb[i]”, blil=(Xj: !Sj <lIb[J])—)
® wp(r=bli}; b[iT= b[j); b= 17 bli]=x Ab[j1=y)
(@ wp(t:=bli] bli1= b[jY; biF= 1", k#i AkF*j Ablk]=C) ‘
2. Derive a definition for an assignment r.s:= e¢ for a Pascal-like record r with
field name s (see exercise 4 of section 5.1).

Section 9.4 The General Multiple Assignment Command 127

9.4 The General Multiple Assignment Command

This section may be skipped, since it is not needed to understand pro-
gram development described in Part 1II. The material is used heavily in
defining procedure calls in chapter 12.

Thus far, we have defined the assignment x:= e for a simple variable
x, the assignment ¥:= & for distinct simple variables x;, and the assign-
ment b[i]:= e to an array element bli]. We now want to define the gen-
eral multiple assignment command. For example, it allows us to swap the
values of two array elements:

6[i] 6L 1= b[j1, b1

In addition, it allows us to deal with assignments to elements of sub-
arrays. For example, for array ¢ declared as;

var c: array [0:10] of array [0:10] of integer,

the assignment ¢[i/][/]:= ¢ has not yet been defined.

Recall (from section 5.3) that a selector is a sequence of bracketed
expressions (subscripts). The null selector is denoted by €. For any iden-

tifier x (say), we have x =x o €, where o denotes catenation of identif-
iers and selectors.

The multiple assignment command has the form

O4l) xios), x0T ey, -, e,
where each x; is an identifier, each s; is a selector and each expression e;
has the same type as x; o s;. Using o5 for x; 0 sy, « - -

, Xy 08, and @
fore;, - -, e,, we abbreviate the multiple assignment by

(9.42) xos=7 .

Note that a simple assignment x:= ¢ has form (9.4.1) —with n =1 and
$;=¢&— since it is the same as x o £:= ¢. Also, the assignment b[i]= e
has this form, with n =1, x1=b,s;=[i]and e;=e.

The multiple assignment can be executed in a manner consistent with
the formal definition given below as follows:

(9.4.3) Execution of a multiple assignment. First, determine the variables
specified by the x; o 5; and evaluate the expressions ¢; to yield
values v;. Then assign v; to X1 8y, V210 Xp0 55, ..., and v, to
Xn © 8,. The order of assignment must be from left to right. O

We define multiple assignment by giving a predicate transformer for it.

128 Part II. The Semantics of a Small Language Section 9.4 The General Mulitiple Assignment C d
nt Comman

129

To get some idea for the predicate transformer, let’s look at the definition

s (a) Provided x i i ;
of multiple assignment to simple variables: X Is a list of di

stinct identifiers (thus, each of the
denotes conventional

wp(“%:=&", R) = RE .

We must be sure that the general multiple assignment definition includes
this as a subcase. We therefore generalize the simpler definition to allow
identifiers catenated with selectors instead of just identifiers x:

(9.44) Definition. wp(“¥o5:=8", R)=RZ°° . O

The difficulty with (9.4.4) is that textual substitution is defined only for
identifiers, and so RZ °° is as yet undefined. We now generalize the

notion of textual substitution to include the new case by describing how
to massage RZ °° into the form of a conventional textual substitution.
The generalization will be done so that the manner of execution given in
(9.4.3), including the left-to-right order of assignment, will be consistent
with definition (9.4.4).

To motivate the generalization, consider the assignment

(9.4.5) bosy, -

,bosyimey, - e,

This assignment first assign e; to b o s, then e, to b ¢ 5,, and so on.
Thus, it should be equivalent to

(9.4.6) b:=(b; syey; C5 Smiem)

Why? Suppose two of the selectors 5; and s; (say), where i <j, are the
same. Then, after execution of (9.4.5), the value of ¢; (and not of e;) will
bein b o s;, and thereafter a reference b o s; should yield ;. But this is
exactly the case with execution of (9.4.6); the left-to-right order of assign-
ment during execution of (9.4.5) is reflected in the right-to-left precedence
rule for applying function (b; s;:e; ' S .€,) to an argument. 7
Secondly, note that for distinct identifiers » and ¢ and selectors s and
t (which need not be distinct) the assignments b o s,c o ti=¢, g and
cot,bos:=g, e should have the same effect. This is because b o s
and ¢ o ¢t refer to differem parts of computer memory, and what is
assigned to one cannot effect what is assigned to the other. (Remember,
expressions e and g are evaluated before any assignments are made.)

This leads us to the following

(9.4.7) Definition. Pe—f , where each element of vector ¥ is an identifier
catenated with a selector, is given by the following three rules.

selectors in X is the null selector £), PX

textual substitution. ‘
be,bﬂs,COI,f: i:,coz,bo y

) RZ 5 Rnre ™

f)hrotwd;d that b and ¢ are distinct identifiers, This rule indicates
at a jacent re.ference—expression pairs may be permuted as lon

as they begin with different identifiers, :

bos, - b x -
(C)Re 1 _OS’"’X:Rb,x
B E ®ispers oo ise 7

provided that identifier does not begin any of the x;. This rule

;)ndlc.:ates how m}lltiple assignments to subparts of an object b can
¢ viewed as a single assignment to . [J

Example 1. wp(“x,x:= 1,27 R)
=wp(“x o g, x o gi= 1,2” R)
= R();; el €2)
= R3 (see definition (53.2))

Execution of x, x:= | 2 ;
» X-= 1, 2 1s equivalent to executi =2 ;
1o sense in using x, x:= 1,2. 0O 1on of xi= 2; there is really

Example 2. wp (“b[/], []:= bUL ALY, b[i]1=X Ab[;
—_— ,. K - > > - []]:Y)
= (b5 £:b[Y; j:bLiD[i]=X A (&; i:b[jT; j:b[iD[] =
=§(b.; i:b[jg;[j:b[i])[i]ZX A b[i]Z: }[’]]’J. b =x
==/ AB[I=X) V (i %] A p[j]= =
U, b[i]=)Y (E#] AB[I=X) A bli]=¥

N
ote that the swap performs correctly when i=;, since this case is

automatically included in the ab ivati
ove derivation. If this ivati
too fast for you, reread section 5.1. [derivation seems

Example 3. wp(“b[i], b[}= UL BLIT (A k: ki ANkF#j
¢ > : , s : J:b[k]1= B[k
:(A k.k?éz. AkFEf: (b i:bj]; j:b[i])[k]=B[/]c])) D
=(Ak: k% Ak#j:b[k]ZB[k])

The last line follows because i

= b[k]. The only array v
5[O

f ki and % #j then (b; :b[Y; J:b[iD[k]
alues changed by the swap are b[i] and

130 Part 11. The Semantics of a Small Language

Exercises for Section 9.4

1. Transform the following using definition (8.4.7) so that ‘they d(?nc?te c.onve.n-
tional textual substitution —i.e. the superscript in each is a list of distinct identif-
1ers.

(@) RO

() R0

© R
(d) Reb![jjzfg[f%b[j]wf[i]

2. Determine and simplify the following weakest preconditions, where b is an
array of integers and it is assumed that all subscripts are in range.

(@) wp(“bli],b[2]=3, 4", b[i]=3)

(o) wp(“b[i],b[2]:= 4,47, b[i]=3)

(c) wp(“p, blp}=0blpLp”, p=b[pPD

(d) wp (i, b[i]=i+1,07, 0<i A(A4j:0<j<i:b[j1=0))
(&) wp(“i, b[i]=i+1, 07, 0<i A b[0:i—1]=0)

® wp(p, blpl.blq)=blpl.blql.p™, p =blgD

(& wp(p, b[pl.b[b[p1):= b[p).bIblp1Lp" p =blb[PID
(h) wp(“p, blpl,b[b[p1)= blp1.b[b[pILp" p #*b[blPID

3. Prove the following implication:
i=IAb[i]=K = wp(“i, b[il= bli],i”, i =KAbB[I}=1)

4; Derive a definition for a general multiple assignment command that can include
assignments to simple variables, array elements and Pascal record fields. (see
exercise 1 of section 5.3.)

5. Prove that lemma 4.6.3 holds for the extended definition of textual substitution:

Lemma. Suppose each x; of list X has the form ‘ic'ientif ier o selector and
suppose @ is a list of fresh, distinct identifiers. Then

(E)E = E O

Chapter 10
The Alternative Command

Programming notations usually have a conditional command, or if-
statement, which allows execution of a subcommand to be dependent on
the current state of the program variables. An example of a conditional
command, taken from ALGOL 60 and Pascal, is

if x>0 thenz:= x else z:= —x

Execution of this command stores the absolute value of x in z: if x =0
then the first alternative z:= x is executed; otherwise the second alterna-

tive z:= —x is executed. In our programming notation, this command
can be written as

(10.1) ifx=0-—z:=x
Ix<0—2z:=—x
fi

or, since it is short and simple enough, on one line as
Hx20—z=x [x<0—~z:=—x fi

Command (10.1) contains two entities of the form B — S (separated
by the symbol []) where B is a Boolean expression and § a command.
B — S is called a guarded command, for B acts as a guard at the gate
— , making sure S is executed only under the right conditions. To exe-
cute (10.1}, find one true guard and execute its corresponding command.
Thus, with x >0 execute z'=x, with x <0 execute z:= —x, and with
x =0 execute either (but not both) of the assignments.

This brief introduction has glossed over a number of important points.

Let us now be more precise in describing the syntax and execution of the
alternative command.

132 Part I1. The Semantics of a Small Language

The general form of the alternative command is

(10.2) if B, — S,
0B,— S,

ﬂBn-'Sn
fi

where n 20 and each B; — S; is a guarded command. Each S; can be
any command —skip, abort, sequential composition, assignment, another
alternative command, etc.

For purposes of abbreviation, we refer to the general command (10.2)
as 1F, while BB denotes the disjunction

B]VBzv s VB,,.

Command IF can be executed as follows. First, if any guard B; is not
well-defined in the state in which execution begins, abortion may occur.
This is because nothing is assumed about the order of evaluation of the
guards. Secondly, at least one guard must be true; otherwise execution
aborts. Finally, if at least one guard is true, then one guarded command
B; — §; with true guard B; is chosen and S; is executed.

The definition of wp(IF, R) is now quite obvious. The first conjunct
indicates that the guards must be well-defined. The second conjunct indi-
cates that at least one guard is true. The rest of the conjuncts indicate
that execution of each command S; with a true guard B; terminates with
R true:

(10.3a) Definition. wp(I1F, R) = domain(BB) A BB A
(B1=wp(Si, R)) A -+ - A (B, 2wp(S,,R)) O

Typically, we assume that the guards are total functions —i.e. are well-
defined in all states. This allows us to simplify the definition by deleting
the first conjunct. Thus, with the aid of quantifiers we rewrite the defini-
tion in (10.3b) below. From now on, we will use (10.3b) as the definition,
but be sure the guards are well-defined in the states in which the alterna-
tive command will be executed!

(10.3b) Definition. wp(IF, R) = (Ei:1<i<n:B)A
Mil<i<n:B;»wp(S;,R)) O

Example 1. Let us show that, under all initial conditions, execution of
(10.1) stores the absolute value of x in z. That is, we want to show that
wp((10.1),z =abs(x)) = T. We have:

Chapter 10 The Alternative Command 133

wp ((10.1),z = abs (x))

=(x20vx <0) A BB A
(x 202 wp (“2:= x”, 2 =abs (x))) A < B, S wp(S,, R)A
(r S0wp (2= ", 2 =abs () | B, wp (s, R)

=T A(xz20=>x=abs(x)) A ’
(x 0= —x =abs(x))

=TATAT

=7 O

Example 2. The following command is supposed to be the body of a loop
that counts the number of positive values () in array b[0:m ~1].

(10.4) i b[i]>0—p,i=p+I, i+
0b[i]1<0 —i=i+]
fi

After execution of this command we expect to have i
the number of values in b[0:i—1] that are greater tha
be the assertion

m and p equal to
n zero. Letting R

ismAp =(Nj:0<j<i:b[j1>0)
we calculate:

wp((10.4), R) = (b[i1>0V b[i]<0) A
(Gl1>0 = wp(“p,i= p+1,i+1”, R)) A
(b[11<0 = wp(“i:= i+17, R)
=bli]#0A
(BliI>0=2i+1<m Ap+I=(Nj:0<; <it1:A[1>0) A
GI<0=i+1<m Ap =(Nj:0<j <i+1:b[j]>0))
=b[i]#0A i <m A
P=WINJ0<j<i:b[j1>0) A
P=INj:0<j<i:b[j]1>0)
=O[1#0Ai<m Ap =(Nj:0<j <i:b[j]>0)

Hence we see that array b should not contain the value 0, and that the
definition of p as the number of values greater than zero in b[0:i—17 will
be true after execution of the alternative command if it is true before. O

. The reader may feel that there was too much work in proving what we
did in example 2. After all, the result can be obtained in an intuitive
manner, and perhaps fairly easily (although one is likely to overlook the
problem with zero elements in array 5). At this point, it is important to
practice such formal manipulations. It results in better understanding of
the theory and better understanding of the alternative command itself

134 Part 1I. The Semantics of a Small Language

Moreover, the kind of manipulations performed in example 2 will indeed
be necessary in developing some programs, and the facility needed for this
can only come through practice. Even the act of performing a few exer-
cises will begin to change the way you “naturally” think about programs
and thus what you call your intuition about programming.

Later on, when attacking a problem that is similar to one worked on
earlier, it may not be necessary to be so formal, but the formality will be
at your fingertips when you need it on the more difficult problems.

Some comments about the alternative command

The alternative command differs from the conventional if-statement in
several respects. We now discuss the reasons for these differences.

First, the alternative command allows any number of alternatives, not
just two. Thus, it serves also as a “case statement” (Pascal) or “SELECT
statement” (PL/I). There is no need to have two different notations, one
for two alternatives and one for more. One notation for one concept —in
this case alternation or choice— is a well-known, reasonable principle.

There are no defaults: each alternative command must be preceded by
a guard that describes the conditions under which it may be executed.
For example, the command to set x to the absolute value of x must be
written with two guarded commands:

fx=20—skip] x<0—x=—xfi

Its counterpart in ALGOL, if x <0 then z:= —x; has the default that if
x 20 execution is equivalent to execution of skip. Although a program
may be a bit longer because of the lack of a default, there are advantages.
The explicit appearance of each guard does aid the reader; each alterna-
tive is given in full detail, leaving less chance of overlooking something.
More importantly, the lack of a default helps during program develop-
ment. Upon deriving a possible alternative command, the programmer is
forced to derive the conditions under which its execution will perform
satisfactorily and, moreover, is forced to continue deriving alternatives
until at least one is true in each possible initial state. This point will
become clearer in Part III.)

The absence of defaults introduces, in a reasonable manner, the possi-
bility of nondeterminism. Suppose x =0 when execution of command
(10.1) begins. Then, since both guards x =0 and x <0 are true, either
command may be executed (but only one of them). The choice is entirely
up to the executor —for example it could be a random choice, or on days
with odd dates it could be the first and on days with even dates it could
be the second, or it could be chosen to minimize execution time. The

Chapter 10 The Alternative Command 135

point is that, since execution of either one leads t
programmer should not have to worry about which
free to derive as many alternatives commands a
as possible, without regard to overlap.

O a correct result, the
one 1s executed. He is
nd corresponding guards

Of course, for purposes of efficiency the programmer could strength
the guards to excise the nondeterminism. For exampie chan ing tﬁn
second guard.in (10.1) from x <0 to x <0 would help h’t evéluiticg)n ?
unary minus is expensive, because in the case x =(only the first ;
mand z:= x could then be executed. g o

Finally, the lack of default allows the

(10.1)), which is pleasing —if not necessary
eye.

possibility of symmetry (see
— to one with a mathematical

A theorem about the alternative command

Quit; often, we are not interested in the weakest precondition of
glter'r)atlye command, but only in determining if a known re:cond't'an
implies it. For example, if the alternative command appealr)s ina ron
gram, we may already know that its precondition is the postconditioir();
the prev'lc'ms command, and we really don’t need to calculate the weake(s)t
precondition. In such cases, the following theorem is useful.

(10.5) Theorem. Consider command IF. Suppose a predicate O satisfies

(1) 0 =BB
(2) QAB;=wp(S;, R), for all LI<i<n.

Then (and only then) Q=wp(F, R). O

I.Jroof. We first.show how to take Q outside the scope of the quantifica-
tion 1 assumption 2 of the theorem:

(Ai:QAB =>wp(S;, R))
=(Ai:1(0AB)Vwp (S, R)) (Implication)
=(Ai: 1QVaBiVwp(S,R)) (De Morgan)
=1QVAiiaBVwp(S,,R)) (Q doesn’t depend on)
= Q=i B;=wp(S,, R)) (Implication, twice)

Hence, we have

(@ >BB)A(4i: QAB; =wp(S;, R)) (Assumpti
B (S5, ptions (1), (2))
=(Q=BB)A(Q>(4i: B, >w (Si, R)) (F
= Q=>(BBA(4i:B; $WP(SI~J€))) (From above

= 0 >wp(IF, R) (Definition (10.3b))

136 Part 11. The Semantics of a Small Language

Hence, the conjunction of the assumptions is equivalent to the conclusion,
and the theorem is proved. O

Example 3. Suppose a binary search is being performed for a value x
known to be in array b[0:n—1]. We are at the stage where the following
predicate @ is true:

Q: ordered(b[0:n—1P A 0<<i <k <j<n Ax€blij]

That is, the search has been narrowed down to array section b[i:j], and k
is an index into this section. We want to prove that

(10.6) {Q}ifbk1<x —ii=k [| b[k]=x — ji= k fi {x €b[i:j]}

holds. The first assumption @ = BB of theorem (10.5) holds, because the
disjunction of the guards in (10.6) is equivalent to I'. The second
assumption holds, because

QO Ab[kI<x = x €blk:j]

= wp(“i:=k”, x€bli:j]), and
QAb[k]l=x = x €blitk]

= wp(“j= k7, x€b[i:j]) .

The two implications follow from the fact that Q indicates that the array
is ordered and that x is in b[i:j] and from the second conjunct of the
antecedents. Hence the theorem allows us to conclude that (10.6) is
true. O

Exercises for Chapter 10

1. Determine wp (“if fi”, R), for any predicate R. Have you seen a command
with this definition before?

2. Prove that command IF satisfies properties (7.3) and (7.4) of chapter 7, pro-
vided the sub-commands of IF do.

3. The following command S3 is used in an algorithm that finds the quotient and
remainder when a value x is divided by a value y. Calculate and simplify
wp(S3,g*w+r=x A r=0).

S ifw<r —r,g=r—w,qg+1[] w>r — skip fi.
4. Calculate and simplify wp(S4,a >0 A b >0) for the command
St¢.ifa>b ~a=a—bfl b>a ~b=b—a fi

5. Calculate and simplify wp (S5, x < y) for the command

Exercises for Chapter 10 137

S5:fx>y —x,y=y, x[] x<y — skip fi

6. Arrays f[0:n] and g[0:m] are alphabetically ordered lists of names of people.
It is known that at least one name is on both lists. Let X represent the first (in
alphabetic order) such name. Calculate and simplify the weakest precondition of
the following alternative command with respect to predicate R given after it.
Assume / and j are within the array bounds.

S6: if f[I1<g[j]— i:= i+l
0/Ui1=glj] — skip
tﬂf[i]>g[j] —j=j+l
1

{R: ordered(f[0:n]) A ordered(g[0:m]) A fI1< X A gljI< X}

7. The com'mand of the following proof outline could be used in an algorithm to
store @ *b in variable z. Using theorem 10.5, prove that the proof outline is true.

fx>0Az+ysx =ag=*b}

ifodd(x) — z,x= z+y x~1] even(x) — skip fi,
y, x1=2%p, x32

[x20Az+ysx =a*b}

8. The command in the following proof outline could be used in an algorithm that

determines the maximum value m of an array b[0:n~1]. Using theorem 10.5,
prove that it is true.

{0<i<n A m =max(b[0:i—1])}
Hb[i1>m — m:=b[i1] bli1<m — skip fi
{0<i <n A m =max(b[0:i])}

Chapter 11
The Iterative Command

The conventional while-loop and the iterative command

The while-loop in Pascal has the form “while B do §” and in PL/I
the rather baroque form “DO WHILE (B) ; § END ;” for a Boolean
expression B and command §. S is sometimes called.the body of the
loop. Execution of the while-loop can be expressed using a goto state-

ment as

loop: if B then begin S; goto loop end

but it is often described by a flaw chart:

out

In our programming notation, the while-loop has the form

do B — S od

where B — § is a guarded command. This form allows us to generalize
to the following, which we call the iterative command and refer to by the

name DO.

Chapter 11 The lterative Command 139

where 7 20 and each B, — S; is a guarded command. Note the syntactic
similarity between DO and IF; one is a set of guarded commands enclosed
in do and od, the other a set enclosed in if and fi.

In one sentence, here is how (11.1) can be executed. Repeat (or
iterate) the following until no longer possible: choose a guard B; that is
true and execute the corresponding command S;.

Upon termination all the guards are false. Choosing a true guard and
executing its command is called performing an iteration of the loop.

Note that nondeterminism is allowed: if two or more guards are true,
any one (but only one) is chosen and the corresponding command is exe-
cuted at each iteration. Using IF to denote the alternative command with
the same guarded commands and BB to denote the disjunction of the
guards (see chapter 10), we see that (11.1) is equivalent to

do BB —if B, — S,
0B, —s,
fi

od

or do BB — IF od

That is, if all the guards are false, which means that BB is false, execution
terminates; otherwise, the corresponding alternative command IF is exe-
cuted and the process is repeated. One iteration of a loop, therefore, is
equivalent to finding BB true and executing IF.

Thus, we can get by with only the simple while-loop. Nevertheless, we
will continue to use the more general form because it is extremely useful
in developing programs, as we will see in Part II.

The formal definition of DO

The following predicate Hy(R) represents the set of states in which
execution of DO terminates in 0 iterations with R true, because the
guards are initially false:

HoR) = +BBAR

140 Part 1l. The Semantics of a Small Language

Let us also write a predicate H,(R), for k£ >0, to represent the set of all
states in which execution of DO terminates in k or fewer iterations, with
R true. The definition will be recursive —i.e. in terms of H,_(R). One
case is that DO terminates in 0 iterations, in which case Hg(R) is true.
The other case is that at least one iteration is performed. Thus, BB must
initially be true and the iteration consists of executing a corresponding IF.
This execution of IF must terminate in a state in which the loop will
iterate kK —1 or fewer times. This leads to

H(R) = Hy(R) V wp(IF, H,_(R)), for k >0.

Now, wp(DO, R) is to represent the set of states in which execution of
DO terminates in a bounded number of iterations with R true. That is,
initially there must be some k such that at most k iterations will be per-
formed. We therefore define

(11.2) Definition. wp(DO, R) = (Ek:0<k:H,(R)) O

Two examples of reasoning about loops

The formal definition of DO is not easy to use, and it gives no insight
into developing programs. Therefore, we want to develop a theorem that
allows us to work with a useful precondition of a loop (with respect to a
postcondition) that is not the weakest precondition. We first illustrate the
idea with two examples.

Execution of the following algorithm is supposed to store in variable s
the sum of the elements of array 5[0:10].

i,s:==1, b[0];
doi<<ll —i,s:= i+1,‘s+b[i] od
{R: s=Ck:0<k <IL:BED}

How can we argue that it works? Let’s begin by giving a predicate P that
shows the logical relationship between variables i, s and b —in effect, it
serves as a definition of / and s:

P I<i<IlAs=Ck:0<k <i:b[k])

We will show that P is true just before and after each iteration of the
loop, so that it is also true upon termination. If P is true in all these
places, then, with the additional help of the falsity of the guards, we can
see that R is also true upon termination (since P Ai=11= R). We
summarize what we need to show by annotating the algorithm:

Chapter 11 The Iterative Command
141

{1}
i,s:= 1, b[0];
{P}

(IL3) doi<Il — fi<i]n [, 8= § 3
(o { P}i,s=i+1, s+b6[i]1{P} od
{R}

We repeat, because it is very important;
before execution of the loop and that (2)
I-D true, then P is true before and after e i
tion. Then, the truth of P and the falsi
clude that the desired result R has been established

Now let’s verify that P is true afte
matter. what the initial state is.
prove it as follows:

if we can show that (1) P is true

r the initialization 7 5:= L,6[0], no
We can see this informally, or we can

wp(“i, s:= 1, b[0]”, P)
= 1T<1<11 A BI0I=(Zk:0<k <1:b[k])

Now let’s §how that an iteration of the loo
an execution of command ; R
i <11 true terminates with P sti
or we can formally prove it:

of t P terminates with P true —ie,
s= [+, s-lﬁ[i] beginning with P and
II true. Again, we can see this informally

wp (“i, s:= i+1, s+b[i]”, P)

= ISEHISIT A s+b[1]=(Sh:0<k <
= 0<i<<II A S=(2k20<k<i:b[k]) e

and (P A <1]) implies the last line.

f Xecution f th p 3 p =
I]e]lce we k]l()w that 11 exe on o ¢ 1()0 termlnates upon ter mina
tion 1 and i > I 19 and hence 123 are true.

A predicate P that is true before and after e

(. . ach iteration of i
called an invarian: relation, or simply an inva Ay

rignt, of the loop. (The

To . .

of show that th? loop term.mates, we introduce an integer function t
° program variables that is an upper bound on the number of it ra
lons still to be performed. Each iteration of by at

142 Part 11. The Semantics of a Small Language

11—,

Since each iteration increases i by 1, it obviously decreases ¢ by 1. Also,
as long as there is an iteration to perform, i.e. as long as i <11, we know
that ¢ is greater than 0.

In this case, ¢ indicates exactly how many iterations are still to be per-
formed, but, in general, it may only provide an upper bound on the
number of iterations still to be performed. Function r has been called a
variant function, as opposed to the invariant relation P —the function
changes at each iteration; the relation remains invariantly true. However,
in order to emphasize its purpose, we will call ¢ the bound function.

The previous example may seem to require too much of an explanation
for such a simple algorithm. Let us now consider a second example,
whose correctness is not so obvious. Indeed, it is only with the aid of the
invariant that we will be able to understand it. Algorithm (11.4) is sup-
posed to store in variable z the value a*b for & =0, but without the use

of multiplication.

{b =0}
x,y,z=a,b,0

(11.4) doy >0Aeven(y) -y, x=y+2,x+tx

[l 0odd(y) —-y,z=y—1,z+x
od
{R:z=a*b}

One view of the loop is that it processes the binary representation of b,
which has been stored in y. Testing for oddness and evenness is done by
interrogating the rightmost bit, subtracting 1 when the rightmost bit is 1
means changing it to a zero, and dividing by 2 is done by shifting the
binary representation 1 bit to the right, thus deleting the rightmost bit.

But, how do we know the algorithm works? We introduce —out of the
old hat, so to speak— the invariant P (how to find invariants is a topic of

Part I1I):
Py =0Az+x*y =a*b.

We determine that P is true just after th;: initialization:
wp(“x,y,z:=a,b,0”, P)=b=0A0+a*b =gq*b,

which is obviously implied by the precondition of algorithm (11.4). Next,
we show that any iteration of the loop beginning with P true terminates
with P true, so that P is an invariant of the loop. For the second
guarded command, this can be observed by noting that the value of
z +x*py remains the same if y is decreased by 1 and x is added to z:

Chapter 11 The Iterative Command

z+x*y =74 Fx*(y—1).

cxecution of y, x:= Y2, x+
unchanged, because x*y
more formal verification

For .the first guarded command, note that
:(x:_ w1:h y' even leaves the value of +x*y
oo X)* (y +2) when ¥y is even. We leave th
. . ' e reader (exercise 7).)
term;fr::;:sch\;:rat}ion of the loop leaves p tr
. s i
implies the result R :swfoilhoav:/s%) osether with

ue, P must be true upon
the falsity of the guards

P A0 >0 A even(v)) A vodd(y)
SV 20Az4x*y =g%p A (y <
Z Y =0Az4x*y =g%p <04 even (y))
;Z:a*b

The work d i
one thus far is conveyed by the following annotated program
{6 =20} |
X,y,z=a,b,0;
{P}
doy >0 A even (5%

0 odd(y))_‘{P/\y>0/\even(y)}y,x::y+2,x+x (P}
od

T Prodd(y)} y,zi= y 1, 2 4x (p)

{p Ay <O0Aq0dd
(2 Ay =0 o)
{R: z=ga*p}

(11.5)

To show that the loop terminat
greater than 0 if there is another
at least I on each iteration,

es, us-e the bound function =y it is
lteration to execute and is decreased by

A theorem ¢]
o .
ncerning a loop, an invariant and a bound function
, the same kind of reasoning was used to
embodied in theorem (11.6). By :cs)wdetsllxredl.l v o o e e
.6). » the theorem should be qy;j
quite clear.

Assumption 1 implj
! plies that P wil ;
Assum.ptxon 2 indicates that fun il be true upon termination of DO,

In the two exam j 1
ples just given
argue that the loops performed

c?cc'ur. Ap unbounded number i
limit, which would lead to a co

ntradicti ;
the guards are false, so that -, B radiction. Finally,

. upon termi i
B is true. P rmination alj

144 Part 1I. The Semantics of a Small Language

(11.6) Theorem. Consider loop DO. Suppose a predicate P satisfies
1. PAB, = wp(S;, P), foralli, I<i<n.

Suppose, further, that an integer function ¢ satisfies the following,
where ¢/ is a fresh identifier:

2. PABB=(1 >0),
3. PAB; = wp(ili=t; 8§t <il), forI<i<n.

Then P=wp(DO, P A «BB). O

Proof. We leave to the reader (exercise 2) the proof that assumption I
implies

1. P ABB=wp(IF, P)
We leave to the reader (exercise 3) the proof that assumption 3 implies
3. P ABB A <t0+1 = wp(IF, t <10), forall 0.
Finally, we leave to the reader (exercise 4) the proof that, for all £ =0,
(1L.7y P At <k=H,(PA.BB).

Predicate (11.7) is interpreted to mean that in any state in which P is
true, if + <k, then execution of the loop will terminate in k£ or fewer
iterations with P true and BB false. Since ¢ is a finite function, (Ek:
0<k::<k)istrue in any state. Therefore,

P

1

PAEK: 0Lkt <k) .

= (Ek:0<k: P At <k) (Since k is not free in P)
> (Ek:0<k: Hi(PA.BB)) (1L7)

= wp(DO, P A 4BB) (Definition (11.2)) O

Discussion

A loop has many invariants. For example, the predicate x*0=0 is an
invariant of every loop since it is always true. But an invariant that Si‘itle
fies the assumptions of theorem (11.6) is important because it proyu.ies
understanding of the loop. Indeed, every loop, except the most trivial,
should be annotated with an invariant that satisfies the theorem.

As we shall see in Part III, the invariant is not only useful to the
reader, it is almost necessary for the programmer. We shall give heuris-
tics for developing the invariant and bound function before developing th.e
loop and argue that this is the more effective way to program. Thl.S
makes sense if we view the invariant as simply the definition of the vari-
ables and remember the adage about precisely defining variables before

Chapter 11 The Iterative Command 145

using them. At this point, of course, developing an invariant may seem
almost impossible, since even the idea of an invariant is new. Leave the
development process to Part 111, and for now concentrate on understand-
ing loops for which invariants are already provided.

Annotating a loop and understanding the annotation

Algorithms (11.3) and (11.5) are annotated to show when and where
the invariants are true. Rather than write the invariant in so m ny places,
it is often easier to give the invariant and bound function in the text
accompanying an algorithm. When it is necessary to include them in the

algorithm itself, it is advantageous to use an abbreviation, such as shown
in (11.8).

{0}

{inv P: the invariant}

{bound t: the bound function}
(11.8) do By — S,

| B, — S,

od

{R}

When faced with a loop with form (11.8), according to theorem (11.6)
the reader need only check the points given in (11.9) to understand that
the loop is correct. The existence. of such a checklist is indeed an advan-
tage, for it allows one to be sure that nothing has been forgotten. In fact,
the checklist is of use to the programmer himself, although after a while
(pun) its use becomes second-nature.

(11.9) Checklist for understanding a loop:
L. Show that P is true before execution of the loop begins.

2. Show that {PAB;} S; {P}, for I<\i<n. That is, execution of
each guarded command terminates with P true, so that P is
indeed an invariant of the loop.

3. Show that PA.BB = R, ie. upon termination the desired
result is true.

4. Show that P ABB = (¢ >>0), so that ¢ is bounded from below
as long as the loop has not terminated.
5. Show that {PAB} tl:=1¢; S; {tr<tl}, for 1<i<n, so that

each loop iteration is guaranteed to decrease the bound func-
tion. O

146 Part 11. The Semantics of a Small Language

Often, only the invariant and bound function need be provided as
documentation for a loop, because the algorithm is then almost trivial to
verify. This is documentation at its best: just enough to provide the
necessary understanding and not so much that the reader is lost in super-
fluous, obvious details.

In the same vein, the parts of an invariant that refer only to unchanged
variables of a loop are often omitted, and the reader is expected to note
this. For example, in algorithm (11.3) we did not indicate explicitly that
array b remained unchanged (by including as a conjunct of the precondi-
tion, the invariant and the postcondition the predicate b =B where B
represents the initial value of »). Similarly, in algorithm (5.4} we did not
indicate explicitly that ¢ and b remained unchanged.

It is important to perform several of the exercises 7-13. In Part I1I we
will be discussing the development of loops, but Part 111 will make sense
and seem easy only if you are completely familiar with theorem 11.6 and
the use of checklist 11.9 and if you have gained some facility in this way
of thinking.

Exercises for Chapter 11

1. Determine wp (do od, R), for any R. Have you seen a command with these
characteristics before?

2. Prove that 1’ follows from assumption I (see the proof of theorem (11.6)).
3. Prove that 3’ follows from assumption 3 (see the proof of theorem (11.6)).

4. Prove by induction on k that (11.7) follows from 1’, 2 and 3’ (see the proof of
theorem (11.6)).

5. Prove that properties (7.3) and (7.4) of chapter 7 hold for the definition of
wp (DO, R).

6. H,(R) represents the states in which execution of DO will terminate in k or
fewer iterations with R true. Define H';(R) to represent the set of states in
which execution of DO will terminate in exactly k iterations. What set of states
does the predicate (Ek: 0<{k: H'y(R)) represent? How does it differ from
wp (DO, R)?

7. Formally prove the points of checklist 11.9 for algorithm 11.4.

8. Formally prove the points of checklist 11.9 for the following algorithm, which
stores in s the sum of the elements of b[1:10].

{T}

i,s:=10,0;

{inv P: 0<i K10 A s =(Zk:i+HI<k<10:6[Kk])}
{bound t: i}

doi#0 —i,s:=i—1,s+b[i] od
(R:s=Ck: 1<k <10:b[k])}

tixercises for Chapter 11 147

9. Fo.rmally. prove the points of checklist 11.9 for the following algorithm. The
a lgorithm finds the position i of x in array b[0:n—17 if x €b[0:n—1] and sets
{ ton if it is not.

i:=0;

{inv P: O0<<i<<n A x ¢b[0:—17}

{bound t: n—i}

doi<{m cand x #b[i] — i:=i+] od
{R:O<i<mAx=b[iDV(i=nAx Eb[0:n—1])}

10. Fprmally prove the points of checklist 11.9 for the following algorithm. The
algorithm sets { to the highest power of 2 that is at most 7.

{0<n}

i=1;

{inv P: 0<i<n A(Ep:i=2")}
{bound t: n—i}

do 2*i<<pn — i:= 2% od
{R:0<i<n<2* A(Ep:i=2°P)}

11. F.ormally prove the points of checklist 11.9 for the following algorithm. The
algorithm computes the nth Fibonacci number f,, for 7 >0, which is defined by
fo=0,f1=1,and f,, =f, 1 Hfno forn>1.

{n >0}

i,a,b=1,1,0;

{inv Pri<i<n ha=f; Ab=f,_}}
{bound 1: n—i} l
doi<nm —i,a,bi=i+l,a+b,a od
{R:a=f,}

12. F.ormally prove the points of checklist 11.9 for the following algorithm. The
algorithm computes the quotient ¢ and remainder r when x is divided by y.

fx=20A0<y}

q,r=0, x;

{inv P: 0<r AO<y A g*y+r =x}
{bound t: r}

do r?y - r,q:: r—y, q+[od
{R:O<r <y Agty+r=x}

13. F.ormally prove the points of checklist 11.9 for the following algorithm. The
algorithm finds an integer k& such b[k] is the maximum value of array b[0:n—1]

~note.t1‘1at if the maximum value occurs more than once the algorithm is non-
deterministic.

148

Part 11. The Semantics of a Small Language

{0<n}
ik=1,0 i1
{inv P: 0<i<n Ab[k]=b[0:i
bound t: n—i} ‘
Eiooz%‘<n —if bli]<blk] —'sk-z_p_
M6li1=blk]) — k=i
fi;
i=i+l
od
{R: b[k]1=Zb[0:n—1]}

Chapter 12
Procedure Cali

proved in order to make proving procedure calls

Finally, the theorems are extended to include reference, or

var’”, parameters, This chapter relies heavily on the multiple assignment
Command, which was defined in section 9.4.

correct easier.,

4.

This materia] need not be read to understand Part I (program
development), and this chapter may be skipped. The burpose of the
chapter is to illustrate how the correctness issues extend to more compli-
cated constructs, but the material will not be used formally. Because of
the attempt to deal with a number of different parameter-passing mechan-

The procedure, or subroutine as jt called in FORTRAN, is a basic
building-block in brogramming,
1949 on the EDSAC, generally accepted as the first practica] stored pro-

procedure is written, is whayz it does; the main broperty that we omit from
consideration is Aoy it does it.

150 Part 11. The Semantics of a Small Language

In one sense, using a procedure is exactly like using any other opera-
tion (e.g. +) of the programming notation, and constructing a procedure is
extending the language to include another operation. For example, when
we use + in an expression, we never question how it is performed; we just
assume that it works. Similarly, when writing a procedure call we rely
only on what the procedure does, and not on how it does it. In another
sense, a procedure (and its proof) is a lemma. A program can be con-
sidered a constructive proof that its specification is consistent and com-
putable; a procedure is a lemma used in the constructive proof.

In the following sections, Pascal-like notations are used for procedure
declaration and call, although the (possible) execution of a procedure call
may not be exactly as in Pascal. The reason is that the main influence in
developing the procedure call here was the need for a simple, understand-
able theorem about its use, and such an influence was beyond the state of
the art when Pascal was developed.

12.1 Calls with Value and Result Parameters

Procedure declaration
A procedure declaration has the form

proc <identifier >(<parameter specification>; - ;
<parameter specification>);

{P} <body> {Q}
where each <parameter specification> has one of the three forms

value <identifier list> : <type>
value result <identifier list> : <type>
result <identifier list> : <type>

As usual, an <identifier list> is a sequence of one or more identifiers,
joined by commas. A parameter of a procedure has a type (e.g. Boolean,
array of integer), which defines the type that a corresponding argument
may have. We do not consider array bounds to be part of the type of an
array; an array is simply a function of one integer argument.

Execution of a procedure call causes the procedure <body>> to be exe-
cuted. The <body> may be any command whatsoever —a sequence of
commands, an assignment command, a loop, etc. It may contain suitably
declared local variables. During execution of the <body>, the parame-
ters are considered to be local variables of the <body>. The initial values
of the parameters and the use of their final values are determined by the

. C 1 3 Va i€ an S m
Sectmn 12 I al S witn d I{C ult P arameters

151

attributes valye
. or result given to th
. . e i
mng. This will be explained later PRTAIEISTS I the procedure read-

The precondition p and
for understanding, but not e
.{P} ?l.)ody> {0} has been
In writing calls. A trend in
posfcondition to be written

postcondition Q of the <p

: ody> are
Xecuting, a procedure call. necessary

It is assumed that

documentation is to require
before the body,
on needed to wri
» On¢ need only understa

both the

pre- and
as shown below, because it is
te and understand procedure
nd the first three lines:

proc <identifier>(

<par.s -
<body> par.spec.>;

© s <par. spec.>);

s essential for a

calls of them i . but it does not limj

free othe e:jn \ any essential way. P and Q ma ~ ;lmlt procedures or
I 1dentifiers that are not used within th ¥, Of course, contain as

€ pr

tial Ya{ues of variables, etc.). See i
restriction. . i

Example. Given fixed X

X €b, the followin
g r
establishing x :b[iﬁ, proce

fixed n >0 and fixed array b[0:n

dure determines the position o —I11, where

in b, thus

{Pre:n=NAx=
{Post:0<i<NAB[i]:X} ANX EBIO:N—I]}

Proc search(value n, x: integer;
b

value b: array of integer);
result i: integer);

I:= O;
{invariant: 0<i < N A '
{bound: N—i\} X & B[0:i—1]}

do b[i]?ﬁx — iz [+] od

Note that identifi
ent
paramet ifiers have been used to denote the injt;
ers that do not have attr ¢ the initial values of the

are not a - g ibute result, eve
Itered during executjon of the procedurez t(lilough the parameters
ody. 0O

152 Part I1. The Semantics of a Small Language

In the sequel, we assume the procedure has the following form:

(12.1.1) proc p(value X; value result y; result 2);

{P} B {Q}

Thus, the x; are the value parameters of procedure p, the y; the value-
result parameters and the z; the result parameters. We have left out the
types of the parameters because they don’t concern us at this point. (This
is an example of the use of abstraction!)

The procedure call and its execution
We are interested in formally defining the command procedure call,
which has the form

(12.12) p(a, b,

The name of the procedure is p. The a;, b; and ¢; are the arguments of
the procedure. The a; are expressions; the b, and ¢; have the form
identifier o selector —in common parlance, they are “variables”. The g;
are the value arguments corresponding to the x; of (12.1.1), the b; the
value-result arguments and the ¢; the result arguments. Each argument
must have the same type as its corresponding parameter.

The identifiers accessible at the point of call must be different from the
procedure parameters X, y and Z. This restriction avoids extra notation
needed to deal with the conflict of the same identifier being used for two
different purposes and is not essential.

To illustrate, here is a call of procedure search of the previous exam-
ple: search(50,t,c,position[j]). lts execution stores in position[j] the
position of the value of ¢ in array ¢[0:49].

A call p(@, b, %) can be executed as follows:

All parameters are considered to be local variables of the pro-
cedure. First, determine the values of the value arguments @
and & and store them in the corresponding parameters ¥ and 7.
Second, determine the variables described by the result argu-
ments &, ¢ —i.e. determine their addresses in memory. Note
that all parameters with attribute value are initialized, and the
others are not. Third, execute the procedure body. Fourth,
store the values of the result parameters ¥, Z in the correspond-
ing result arguments b, & (using their previously determined

addresses) in left-to-right order.

Section 12.2 Two Theorems Concerning Procedure Call 153

Formal definition of the procedure call

Fro o .
al (r_n bt_he—apove qescrlptlon of execution, we see that execution of th
Pla,b,¢)is equivalent to execution of the sequence)

X.V=a,b; B b, =y, 5

(The addresses of j ¢ ca
, n be evaluated before or afte i
; . I execut
procedure body B, since €xecution of B cannot change them)Cu\;):doeﬁ“the
. ine

(I2.1.3) wp(p(a, b, &), R) = wp(*z.5:=a,h. B: b,&:= 57" R)

12.2 Two Theorems Concerning Procedure Call

We no
when writ")v develop theorems that allow the use of procedural abstractio
fts v ing procedure calls. First, we state a theorem and argue ab n
validity based on our notion of procedure cali execution gue about

12.2.
(12.2.1) Theorem. Suppose procedure p is defined as in (12.1.1). Then

PR EDFANATY: 0225 RED) 5@, 5, 2) (r)

v

holds. In other words, PR >wp(p(a,b,7),R)

P
! ero:iigSué)ptose for the moment that we know the values 77, that will
€d to parameters with attribute res ’

! ult. The i
grg.Cf:dllrE body B, by itself, can be viewed as liple see ¢
{h,z -I:oﬁ:)\;;i From (12.1.3), we see that the procedure call can be viewed as

ek 1g sequence (12.2.2). In (12.2.2), postcondition R has b
p at the end and assertions p and @ have been placed suit by

because we €Xpect to use that information subsequently o

(1222) x7=z,h P} y.7=a,v {Q}; be=y,7 {R}

Since this i i

e 6zlcns :js a sequence of assignments, we can easily determine the weak

pred;zcat:n ition ‘suc.h that its execution will establish each of the three
$ at the indicated places. Note that these are necessary and suffi

cient conditions. For exampl ination i
before anamons. ple, R holds on termination if (12.2.5) holds

(12.2.3) Weakest precondition to establish p: p*.7
-y

(1224) eakest 141 . = - =
precondition to establish 0: (07> 235

W ish Q: (07 2)7

— i

7, v

(since it contains no X; or y;1)

154 Part II. The Semantics of a Small Language

: :) b, oy y 7y X,y
(12.2.5) Weakest precondition to establish R: ((R?,) ;; ;’5

z

=R

Rl o

5 (since it contains no x; or y;!)

.V

In order to be able to use the fact that {P} B {Q} has been provec.i a}?ogt
the procedure body, we require that (12.2.3) be true before the cali, this is
the first conjunct in the precondition PR of the theorem. Therefore, n;)I
matter what values #, ¥ execution assigns to the result parameters, Q wi
be true in the indicated place in (12.2.2).

Now, we want to determine initial conditions thaﬁ guaramfee the tru;h
of R upon termination, no matter what values i, ¥ are‘assgneﬁ tolt :
result parameters and arguments. R holds after the call if, for a lvaTlllﬁ
i, v, the truth of Q in (12.2.2) implies the truth of R after the call. is
can be written in terms of the initial conditions as

(A 7,7 (12.2.4) >(12.2.5))

This is the second conjunct of the precondition of the theorem. O

Examples of the use of theorem 12.2.1

Each example illustrates an important point about the use of th.e
theorem, so read the examples carefully. In each, the procedure body is
omitted, since it is not needed to ascertain correctness of a call.

Example 1. Consider the procedure

proc swap (value result yI, y2: integer), 3
{Pryl=X Ay2=Y}B{Q:yI=Y Ay2=X}

We want to prove that
(122.6) {a=XAb=Y}swap(a,b){R:a=Y Ab =X}
holds, where ¢ and b are integer variables and identifiers Y and X de-
note ;heir final values, respectively. We apply theorem (12.2.1) to find a
satisfactory precondition PR:
PR =(@=XAb=Y)A ,
Aul,u2:(pl=Y Ap2=X)3 = @=Y 7 b=X)ij%
=@=XAb=Y)A
(Aul,u22(ui=Y rAu2=X)y>wl=Y Au2=2X))
=@=XAb=Y)AT

Section 12.2 Two Theorems Concerning Procedure Call 155
and this is implied by the precondition of (12.2.6). Henee, (12.2.6) is
correct. [

Example 2. Consider the procedure of Example 1. Suppose we want to
prove that

(1227 {a=A4 A b =Y} swap(a, b) fa=Yrb=4)

holds, where ¢ and » are integer variables and identifiers 4 and ¥
denote their initial values, respectively. The difficulty here is that dif-
ferent identifiers are used in the declaration and in the call to denote the
initial values X. We surmount this difficulty as follows. The following

has been proved about the procedure body —i.e. it is a tautology:
{Pyl=X Ay2=Y} B {Q:yIZY/\yZZX}
Therefore, it is equivalent to
AX.,Y: {yI=x Ay2=Y} B {yl=Y Ay2=X})H

Now we can produce an instance of the above quantified predicate by
replacing X by 4 and ¥ by Y, respectively, to yield

DI=A Ay2=Y} B pI=Y A y2=4}

Thus, this last line is also true about the procedure body B. Now apply

the theorem as in example | to yield the desired result. Hence, (12.2.7)
holds.

This illustrates how initial and Jinal values of parameters can be han-
dled. The identifiers that denote initial and final values of parameters can
be replaced by fresh identifiers —or any expressions— to yield another

proof about the procedure body, which can then be used in theorem
122.1. O

Example 3. We now prove correct a call that has array elements as argu-
ments. Consider the procedure of example I. We want to prove that
swap (i, b[i]) interchanges i and b[i] but leaves the rest of array b
unchanged. It is assumed that the value of i is a valid subscript. Thus,

-We want to prove

(122.8) {i=IAAj:b[j1=B[)
swap (i, b[i])
{R:i=B[I1Ab[I]=1 A Aj:1#j:b[j1=B[]}

Identifiers 7 and B denote the initial values of i and b, respectively. In
the proof of the body of the procedure declaration, we can replace the

156 Part I1. The Semantics of a Small Language

expressions X and Y by [and B[I], respectively, to yield
{P:yl=IAy2=B[I}} B{Q:yI=B[I]Ary2=1I}
Now apply theorem 12.2.1 to R of (12.2.8) to get the precondition PR

PR =i=] Ab[i]=B[I]A
2:ul =B[IYAu2=1 = ul=B[I]A .
b (Z; i:u2[)[}]:ul NAJTF](b; tud)j1=B[D
=i=1Ab[i1=Bl]A BI1=BU]A _
(bs ENUI=1 N (AJ:T#7:(b; D1=BUD
=i=IAb[i]=BIANT AI=IA(Aj:I#j:b[j1=B[j]

and this is implied by the precondition of (12.2.8). 0O
Example 4. Consider the procedure

proc p(value x; result z1, z 3
(Prx=X}zl, z2=x,x {Q: z] =z2=X}

which assigns the value parameter to both result parameters. Note that
postcondition Q does not contain the value parameﬁer. \Ye want to. ixle—
cute the call p(b[il,i,b[i+1]), which assigns b[i] to i and b[i+1].
Thus, it makes sense to try to prove

(122.9) {p[i1=C Ai =1} p(b[i}i,b[i+1]) {R: i =b[I1=b[I+1]=C}

First, replace the free variable X in the proof of the procedure body by
C:

{Prx=C}zl,z22'=x,x {Q: z =22=C}
Next, apply theorem 12.2.1 to yield the precondition

b[i1=C A
V2vi=v2=C=>
e :I=E)b; i1V I=(b; i +1v)[I+1]=C)
= bli]=C A (b; i+L:O)NI1=(b; i+1:O)I+1]=C

Since the last line is implied by the precondition of (12.2.9), (12.2.9)
holds. O

Section 12.2 Two Theorems Concerning Procedure Call 157

A theorem that is easier to use

In the precondition of theorem 12.2.1, it would be nice not to have the
complicated conjunct

T OVZ = pb,c
“ay: QE,V —>Rl7, v
If we restrict the postcondition R in some fashion, we may be able to

eliminate this complicated conjunct. This may be the case, for example, if
we allow only those R that satisfy

(12210) REE = @77 A |

where the free variables of I are disjoint from 5 and ¢. For then the
complicated conjunct may be simplified as follows:

= (dm,v: ;;=>Qﬂyé A D
=7 (since 7, V are not free in I)
Our task, then, is to determine predicaies R that satisfy (12.2.10). To do

this, we can textually replace #, ¥ by b, ¢ in (12.2.10) and use predicates
R that satisfy

(Lemma 4.6.3 and ex. 5 of 9.4)
ZA) ;—‘EV (12.2.10)

=QPiag (Lemma 4.6.3, def of 7)
‘Hence we restrict our attention to predicates R satisfying
(221D R=QFZ a

But this is not enough. From (12.2.11) we want to conclude that (12.2.10)
holds, but this is not always the case, because

7. Zvb, &
(QE,E Z, 7

is not always equal to

The two are equal, however, if &,) consists of distinct identifiers, as we
know from Lemma 4.6.3. Hence we have the following theorem, which is

158 Part II. The Semantics of a Small Language

more restrictive but easier to use

(12.2.12) Theorem. Suppose procedure p is defined as in (12.1.1). Sup-
pose (b,¢) is a list of distinct identifiers. Suppose none of the
free identifiers in predicate 7 appear in the argument lists 5 and
¢. Then

(PPIADy p@ b,o) {QFi a1} O

Predicate 7 of the theorem captures the notion of invariance: predicates
that do not refer to the result arguments’ remain unchanged throughout
the call of the procedure.

This theorem is simpler than theorem 12.2.1, and should be used when-
ever only identifiers are used as arguments. Examples of its use are left to
the exercises.

12.3 Using Var Parameters

A value-result parameter y with corresponding argument ¢ is handled
during a call as follows. The value of ¢ is stored in y; the procedure
body is executed; the value of y is stored in ¢. If y is an array, this
implementation can take much time and space.

Another method of argument-parameter correspondence is call by ref-
erence. Here, before execution of the body, the address of ¢ is stored in
y. During execution of the body, every reference to y is then treated as
an indirect reference to ¢. For example, the assignment y:= ¢ within the
body has the immediate effect of the assignment c¢:= e. In other words, y
and ¢ are considered to be different names for the same location.

Call by value-result requires space equal to the size of the argument,
while call by reference requires constant space. Call by value-result
requires time at least proportional to the size of the argument to prepare
and conclude the call, while call by reference requires constant time for
this. But call by reference does require more time for each reference to
the parameter during execution of the procedure body.

Especially for arguments that are arrays, call by reference is preferred.

A call by reference parameter is denoted by the attribute var, which is
short for “variable”. The procedure declaration given in (12.1.1) and
corresponding call of (12.1.2) are extended as follows:

(12.3.1) proc p(value ¥; value result 3; result 7; var)i

{P} B {0}

Section 12.3 Using Var Parameters 159

(1232) p(a, b, c, d)

How do we extend theorems 12.2.1 and 12.2.12 to allow for call by refer-
ence? Call by reference can be viewed as an efficient form of call by
value-result; execution is the same, except that the initial assignments to 7
and the final assignments to d are not needed. But the proof of the pro-
cedure body, {P} B {Q}, is consistent with our notion of execution for
value-result parameters only if value-result parameters occupy separate
locations —assignment to one parameter must not affect the value of any
other parameter. When using call by reference, then, we must be sure
that this condition is still upheld.

Let us introduce the notation disj(d) to mean that no sharing of
memory occurs among the d;. For example, disj(dl,d2) holds for dif-
ferent identifiers dI and d2. Also, disj(b[i1,b[i+1]) holds, while
disj(b[i],b[j]) is equivalent to i #j.

Further, we say that two vectors ¥ and ¥ are pairwise disjoint, written
pdisj(x;), if each x; is disjoint from each yj —le. disj(x;, y;) holds.
Theorems 12.2.1 and 12.2.12 can then be modified to the following:

(12.3.3) Theorem. Suppose disj(d) and pdisj(d; b, 7) hold. Then we

have
(PYLL A Aa,v,w bl »Rb G4y
p@, b,z d)
{R} O

(12.3.4) Theorem. Suppose (5,7, d) is a list of distinct identifiers. Let
ref (I) denote the list of free identifiers in predicate /. Finally,
suppose that

pdisj(b,z,d; ref (I))
holds. Then
A} O

As a simplification, if we restrict attention to call by value and call by
reference, theorem 12.3.4 simplifies to

160 Part 1. The Semantics of a Small Language

(12.3.5) Theorem. Suppose procedure p is defined and called using
proc p(value x; varr); {P} B {Q}
and p(@, d)

where d is a list of distinct identifiers. Suppose no free identif-
ier of 7 occurs in d. Then

(Pr;aly p@ d) {0y A1} O

Examples of the use of these theorems are left to the exercises.

12.4 Allowing Value Parameters in the Postcondition

In procedure declaration 12.1.1, the postcondition Q of the body may
not contain the value parameters X. There is a good reason for this.
Value parameters are considered to be local variables of the procedure
body. Therefore, they have no meaning once execution of the procedure
body has terminated. In general, one can not meaningfully use local vari-
ables of a command in the postcondition of a command.

But this restriction irritates, because it (almost) always requires the use
of an extra identifier to denote the initial value of a value parameter.
Perhaps there is a way of allowing the value parameters to occur in Q,
which would eliminate this problem.

Consider theorem 12.2.1:

{PR: PY7 MA@,y QP =>RED)
p@, b,7)
{R}

It would not make sense with respect to the model of execution if ¥
occurred in Q;’vf, because X cannot be referred to before the call (it is a

list of parameters of the procedure). What is meant by ¥ in this context?
Well, it really refers to the value arguments @, so let us try to textually
replace X by @ in Q. But this replacement makes sense with respect to
the model of execution only if, upon termination of B, the value parame-
ters still have the initial values of the value arguments. This we can
ensure by requiring that no assignments to value parameters occur within
Q and.the value arguments are not affected by assignments to the other
parameters. We then get the following counterparts of theorems 12.2.1, in
which X can be referred to in ¢. The counterparts of theorems 12.2.12,
12.3.3 and 12.3.5 are similar.

Exercises for Chapter 12 161

(12.4.1) Theorem. .Suppose procedure p is defined as in (12.1.1), but Q
may contain the value parameters X, no assignments occur to
value parameters, and the value arguments are not affected by

assignments to the other parameters during execution of the pro-
cedure call. Then

{PR: P2} A(A@5: QFF T = RE.&y)
p(@, b, 7)
{R}

holds. In other words, PR =wp (p(a, &, 7), R). O

Examples of the use of these theorems are left to the exercises.

Exercises for Chapter 12
1. Consider the three predicates

{Q)} S {R}
(A u: Q)} S {R}
{(Bu:Qm))} S {R}

where identifier & is not free in command S or predicate R, Suppose the first
has been proven to be true —i.e. it is a tautology. Is it equivalent to the second
or the third? Hint: use the fact that {Qw)} S {R} is equivalent to Q) =
wp (S, R). Also, it is equivalent to itself but with identifier 4 universally quanti-
fied, the scope of u being the complete predicate.

.2. Use the results of exercise 1 to reason why the quantifier 4 cannot be omitted
in theorem 12.2.1.

3. Find a counterexample to the conjecture that theorem 12.2.12 holds even if the
ar'gu.ments are not identifiers. Hint: there must be arguments that are disjoint but
still interact in some fashion.

4. Section 12.2 contained four examples of the use of theorem 12.2.1. Which of

'the procedure calls in the examples can be proved correct using theorem 12.2.12
instead? Prove them correct.

§. The 'following procedure inserts x in array b[0:k —17 if it is not present, thus
increasing k, and stores in p the position of x in b[0:k—1]. It assumed that the
element 5[k] can be used by the procedure for its own purposes.

162 Part II. The Semantics of a Small Language

{Pre: 0k Ax =X A b =B}
{Post: O0<p <k Ab[p]=X}
proc s(value x: integer;
value result b : array of integer;
value result k , p: integer);
D, blk]=0, x;
{inv: 0S<p <k Ax ¢b[0:p—17}
{bound: k—p}
dox #b[pl—p:=p+1 od

Is the procedure fully specified —i.e. has anything omitted from ?he specification
that can be proved of the procedure body? Which of the following calls can be
proved correct using theorem 12.2.1. Prove them correct.

@ {d=0}s(5,¢,d,j) {c[j1=5}

®) {0sm}s(f,c,m,) {cj1=1}

© {0<m}s(b[0],c,m,j) {c[j]1=c[O}}

(@) {0<m}s(5, ¢, m, m){c[m]=5}

6. Which of the calls given in exercise § can be proved correct using theorem
12.2.12? Prove them correct.

7. Suppose parameters k and p of exercise 5 have attribute var instead of value
result. Can call (d) of exercise 5 be proved correct using theorem 12.3.3? If s0,
do so. Can it be proved correct using theorem 12.3.42. 12.3.57 If so, do so.

Part III
The Development of Programs
Chapter 13 Introduction

Part III discusses a radical methodology for the development of pro-
grams, which is based on the notion of weakest precondition and exploits
our definition of a programming notation in terms of it. To the reader,
the methodology will probably be different from anything seen before.
The purpose of this introduction is to prepare the reader for the approach
~—to give reasons for it, to explain a few points, and to indicate what to
expect.

What is a proof?

mers have had little knowledge of what it means for a program to be
correct and of how to prove a program correct. The word proof has un-
pleasant connotations for many, and it will be helpful to explain what it
means.

A proof, according to Webster’s Third New International Dictionary, is
“the cogency of evidence that compels belief by the mind of a truth or
fact®. It is an argument that convinces the reader of the truth of some-
thing.

as can be seen by looking at how much time is spent debugging. The pro-
grammer must indeed feel frustrated at the lack of mastery of the subject!

Part of the problem has been that only inadequate tools for under-
standing have been available. Reasoning has been based solely on how

162 Part II. The Semantics of a Small Language

{Pre: 0k Ax=X Ab =R}
{Post: 0<p <k Ab[p]=X}
proc s(value x: integer;
value result b : array of integer;
value result k , p: integer);
P, blk]=0, x;
{inv: 0<p <k Ax ¢b[0:p—17}
{bound: k—p}
do x #b[p]—p:=p+1 od

Is the procedure fully specified —i.e. has anything omitted from t.he specification
that can be proved of the procedure body? Which of the following calls can be
proved correct using theorem 12.2.1. Prove them correct.

@ {d=0}s(5,¢,d,j) {c[j1=5}

®) 0sm}s(f,c,m,j){clil1=1}

© {0<m}s(b[0),c,m,j) {c[j1=c[0}}

(@ {0<m}s(5 ¢, m, m){c[m]=5}

6. Which of the calls given in exercise 5 can be proved correct using theorem
12.2.127 Prove them correct.

7. Suppose parameters & and p of exercise 5 have attribute var instead of value
result. Can call (d) of exercise 5 be proved correct using theorem 12.3.37 If $0,
do so. Can it be proved correct using theorem 12.3.47. 12.3.57 If so, do so.

Part 111
The Development of Programs
Chapter 13 Introduction

Part III discusses a radical methodology for the development of pro-
grams, which is based on the notion of weakest precondition and exploits
our definition of a programming notation in terms of it. To the reader,
the methodology will probably be different from anything seen before.

What is a proof?

The word radical, used above, is appropriate, for the methodology pro-
posed strikes at the root of the current problems in programming and pro-
vides basic principles to overcome them. One problem is that program-
mers have had little knowledge of what it means for a program to be
correct and of how to prove a program correct. The word proof has un-
pleasant connotations for many, and it will be helpful to explain what it
means.

A proof, according to Webster’s T, hird New International Dictionary, is
“the cogency of evidence that compels belief by the mind of a truth or
fact™ It is an argument that convinces the reader of the truth of some-
thing.

The definition of proof does not imply the need for formalism or
mathematics. Indeed, programmers try to prove their programs correct in
this sense of proof, for they certainly try to present evidence that compels
their own belief. Unfortunately, most programmers are not adept at this,
as can be seen by looking at how much time is spent debugging. The pro-
grammer must indeed feel frustrated at the lack of mastery of the subject!

Part of the problem has been that only inadequate tools for under-
standing have been available. Reasoning has been based solely on how

164 Part 111. The Development of Programs

programs arc executed, and arguments about correctness have been based
on a number of test cases that have been run or hand-simulated. The
intuition and mental tools have simply been inadequate.

Also, it has not always been clear what it means for a program to be
“correct”, partly because specifications of programs have been so impre-
cise. Part 11 has clarified this for us; we call a program S correct —with
respect to a given precondition Q and postcondition R — if {0} S {R}
holds. And we have formal means for proving correctness.

Thus, our development method will center around the concept of a for-
mal proof, involving weakest preconditions and the theorems for the alter-
native, iterative and procedure call constructs discussed in Part 1l. In this
connection, the following principle is important:

(13.1) ePrinciple: A program and its proof should be developed
hand-in-hand, with the proof usually leading the way.

It is just too difficult to prove an already existing program correct, and it
is far better to use the proof-of-correctness ideas throughout the program-
ming process for insight.

The balance berween formality and common sense

Our approach to programming is based on proofs of correctness of
programs. But be assured that complete attention to formalism is neither
necessary nor desirable. Formality alone is inadequate, because it leads to
incomprehensible detail; common sense and intuition alone —the
programmer’s main tools till now— are inadequate, because they allow
too many errors and bad designs.

What is needed is a fine balance between the two. Obvious facts
should be left implicit, important points should be stressed, and detail
should be presented to allow the reader to understand a program as easily
as possible. A notation must be found that allows less formalism to be
used. Where suitable, definitions in English are okay, but when the going
gets rough, more formalism is required. This takes intelligence, taste,
knowledge and practice. It is not easy.

Actually, every mathematician strives for this fine balance. Large gaps
will be left in a proof if it is felt that an educated reader will understand
how to fill them. The most important and difficult points will receive the
most attention. A proof will be organized as a series of lemmas to ease
understanding.

This balance between formality and common sense is even more
important for the programmer. Programming requires so much more
detail, which must be absolutely correct without relying on the goodwill of

Chapter 13 Introduction 165

the reader. In addition, some programs are so large that they cannot be
comprehended fully by one person at one time. Thus, there is a continual
need to strive for balance, conciseness, and even elegance.

The approach we take, then, can be summarized in the following

(13.2) ePrinciple: Use theory to provide insight; use common
sense and intuition where it is suitable, but fall back on
the formal theory for support when difficulties and com-
plexities arise.

However, a balance cannot be achieved unless one has both common
sense and a facility with theory. The first has been most used by pro-
grammers; to overcome the current imbalance it is necessary to lean to the
formal side for awhile. Thus, the subsquent discussions and the exercises
may be more formal than is required in practice.

Proof versus test-case analysis

It was mentioned above that part of the problem has been reliance on
test cases, during both program development and debugging. “Develop-
ment by test case” works as follows. Based on a few examples of what
the program is to do, a program is developed. More test cases are then
exhibited —and perhaps run— and the program is modified to take the
results into account. This process continues, with program modification
at each step, until it is believed that enough test cases have been checked.

The approach described in this Part is based instead on developing a
proof of correctness and a program hand-in-hand. It is different from the
usual operational approach. Experience with the new approach can actu-
ally change the way one deals with problems outside the domain of pro-

gramming, too. Two examples illustrate how effective the approach can
be.

Th? Coffee Can Problem. A coffee can contains some black beans and
white beans. The following process is to be repeated as long as possible.

Randomly select two beans from the can. If they have the
same color, throw them out, but put another black bean
in. (Enough extra black beans are available to do this.)
If they are different colors, place the white one back into
the can and throw the black one away.

Execution of this process reduces the number of beans in the can by one.
Repetition of the process must terminate with exactly one bean in the can,
for then two beans cannot be selected. The question is: what, if anything,
can be said about the color of the final bean based on the number of

166 Part 111. The Development of Programs

white beans and the number of black beans initially in the can? Spend
ten minutes on the problem, which is more than it should require, before
reading further.

It doesn’t help much to try test cases! It doesn’t help to see what happens
when there are initially 1 black bean and 1 white bean, and then to see
what happens when there are injtially 2 black beans and one white bean,
etc. I have seen people waste 30 minutes with this approach.

Instead, proceed as follows. Perhaps there is a simple property of the
beans in the can that remains true as beans are removed and that,
together with the fact that only one bean remains, can give the answer.
Since the property will always be true, we will call it an invariant. Well,
suppose upon termination there is one black bean and no white beans.
What property is true upon termination, which could generalize, perhaps,
to be our invariant? One is an odd number, so perhaps the oddness of the
number of black beans remains true. No, this is not the case, in fact the
number of black beans changes from even to odd or odd to even with
each move. But, there are also zero white beans upon termination
—perhaps the evenness of the number of white beans remains true. And,
indeed, yes, each possible move either takes out two white beans or leaves
the number of white beans the same. Thus, the last bean is black if ini-
tially there is an even number of white beans; otherwise it is white.

Closing the curve. This second problem is solved in essentially the same
manner. Consider a grid of dots, of any size:

Two players, A and B, play the following game. The players alternate
moves, with 4 moving first. 4 moves by drawing | or __ between two
adjacent dots; B moves by drawing a dotted line between two adjacent
dots. For example, after three full moves the grid might be as to the left
below. A player may not write over the other player’s move.

Chapter 13 Introduction 167

4 wins the game if he can get a completely closed curve, as shown to the
right above. B, because he goes second, has an easier task: he wins if he
can stop 4 from getting a closed curve. Here is the question: is there a
strategy that guarantees a win for either 4 or B, no matter how big the
board is? If so, what is it? Spend some time thinking about the problem
before reading further.

L(;)oking at ome trivial case, a grid with one dot, indicates that A cannot
win all the time —four dots are needed for a closed curve. Hence, we
look for a strategy for B to win. Playing the game and looking at test
cases will not find the answer! Instead, investigate properties of closed
curves, for if one of these properties can be barred from the board, 4
cannot win. The corresponding invariant is that the board is never in a
configuration in which 4 can establish that property.

What properties does a closed curve have? It has parallel lines, but B
cannot prevent parallel lines. It has an even number of parallel lines, but
B cannot prevent this. It has four anglesl, I, and 7, but B cannot
prevent A from drawing angles. It always has at least one anglel_, which
opens northeast —and B can prevent A from drawing such an angle! If
/'1 draws a horizontal or vertical line, as shown to the left below, then B
s.1mp1y fills in the corresponding vertical or horizontal line, if it is not yet
filled in, as shown to the right below. A simpler strategy couldn’t exist!

and

c e T L T4 move N 3
) “"“\'_»/B’smove/

These two problems have extremely simple solutions, but the solutions

168 Part 111. The Development of Programs

1 i i lems
are extremely difficult to find by simply trymg' test case/i. dT};enCperc;l;und
ier i ties that remain true. And, s
are easier if one looks for proper T : ‘
these properties allow one to see in a trivial fashion that a solution has
been found. ‘ ‘) .
Besides illustrating the inadequacy of solving by test cases, these p
lems illustrate the following principle:

(13.3) ePrinciple: Know the properties of the objects that are to
be manipulated by a program.

In fact, we shall see by examples that the more p.roperties.y‘ou krllow
about t’he objects, the more chance you have of creating an_efﬁc'len.t all go-
rithm. But let us leave further examples of the use of this principle to

later chapters.

Programming-in-the-small o
For the past ten years, there has been much research in prf)n
gramming-in-the-small”, partially because it see_med to lie z;n al;fear 1it
i ientifi de. More importantly, however,
which scientific headway could be ma : T,
was felt that the ability to develop small programs is a necessary condition
for developing large ones —although it may not be sufficient.

This fact is brought home most clearly with the follo?vmg arg:;ﬁrel;.
Suppose a program consists of n smal.l components —1.;; prrc:)cbabﬂit):
modules— each with probability p of bexr}g corre?ct. Then ne pS‘ apiliey

" P that the whole program is correct c;rtamly SaESﬁZStiaffhe. pr:;ram e
in any good-sized program, to have any hop
]ci)rrgr(;cltnreql}l,iris p to be very, very close to 1. For exa@ple,czrfgggrsg
with 10 components, each of which has 95% ‘chance of belng.th e ,SuCh
less than a 60% chance of being correct, wl'_ule a prog'rarn wi
components has less than a .6% chance of being correct!

Remark: Doug Mcllroy (Bell Laboratories) disagrees with this ;r%urtgz?lté
iming re made from incorrect parts. Telep
claiming that correct programs a . e cpnone
le, are more than half audi X
control programs, for example, T Sode, whose
i i intended states, and the audit co
business is to recover from unin 1 e has been
1l as hardware errors. Also, a
known to mask software as we : : rect
procedure may be called within our own program in a (gnknov;mglg()iures
tricted fashion so that the incorrectness never comes to light. ro.c res
that blow up for some input work perfectly well in prog{'ams. that msxfl o
them from these cases. Nevertheless, for most of the situations we fa s

the argument holds. O

Chapter 13 Introduction 169

Part 111 concentrates on the place where many programming errors are
made: the development of small program segments. All the program seg-
ments in Part 1] are between | and 25 lines long, with the majority being
between 1 and 10, It is true, however, that some of the programs are
short because of the method of development. Concentrating on princi-
ples, with an emphasis on precision, clarity and elegance, can actually
result in shorter programs. The most striking example of this is the pro-
gram The Welfare Crook —Ssee section 16.4.

A disclaimer

The methods described in Part 1] can certainly benefit almost any pro-
grammer. At the same time, it should be made clear that there are other
ways to develop programs. A difficult task like programming requires
many different tools and techniques. Many algorithms require the use of
an idea that simply does not arise from the principles given in this Part,
o this method alone cannot be used to solve them effectively. Some
important ideas, like program transformation and “abstract data types”
are not discussed at all, while others are just touched upon. And, of
course, experience and knowledge can make all the difference in the

Secondly, even though the emphasis is on proofs of correctness, errors
will occur. The wise programmer develops a program with the attitude

and concentration is used, and then tests it thoroughly with the attitude
that it must have a mistake in it. The frequency of errors in mathematica]
theorems, proofs, and applications of theorems is well-recognized and
documented, and the area of program-proving will not be ap exception,

We must simply learn to live with human fallibility and simplify to reduce
it to a minimum,

Nevertheless, the study of Part I will provide an education in
rigorous thinking, which is essential for good programming. Conscious

application of the principles and Strategies discussed will certainly be of
benefit.

The organization of Part 11T

In order to convey principles and strategies as clearly as possible, most
of the sections are organized as follows. A small example is used to illus-
trate one or two new points. The points are discussed. One or two exam-
ples are then developed in a manner calculated to involve the reader in
the use of the points. A question is asked about the development, and the
question is followed by blank space, a horizontal line and the answer (as
done above). The reader is encouraged to attempt to answer the question

A

170 Part 111. The Development of Programs

first before proceeding! Finally, the reader should do several of the exer-
cises at the end of the section.

Simply reading and listening to lectures on program development can
only teach about the method; in order to learn how to use it, direct
involvement is necessary. In this connection, the following meta-principle
is of extreme importance:

(13.4) ePrinciple: Never dismiss as obvious any fundamental
principle, for it is only through conscious application of
such principles that success will be achieved.

Ideas may be simple and easy to understand, but their application may
require effort. Recognizing a principle and applying it are two different
things.

Which typewriter do you choose?

Back in 1867, the typewriter was introduced into the United States. By
1873, the current arrangement of the keys on the typewriter, called the
QWERTY keyboard (after the first six letters of the upper key row), was
implemented, never to be changed again. At that time typing speed was
not important —most people used two fingers anyway. Moreover, the
typewriters often jammed, and the most-used letters were arbitrarily distri-
buted in order to reduce speed so jamming wouldn’t occur so easily.

Today, millions of excellent, speedy touch-typists use the inefficient
QWERTY keyboard, because that is the only one made. Every so often,
a new arrangement is designed and tested. The tests show that a good
typist can learn the new arrangement in a month or so, and thereafter will
type much faster with much less energy and strain. Yet the new keyboard
never catches on. Why? Too much is invested in hardware and training.
Because of the high cost of changeover, because of inertia, QWERTY
remains supreme.

Let’s face it: the average programmer is a QWERTY programmer. He
is stuck with old notations, like FORTRAN and COBOL. More impor-
tantly he has been thinking with two fingers, using the same mental tools
that were used at the beginnings of computer science, in the 1940s and
1950s. True, “structured programming” has helped, but even that, by
itself, is not enough. To put it simply, the mental tools available to pro-
grammers have been inadequate.

The work on developing proof and program hand-in-hand is beginning
to show fruit, and it may lead to a more efficient arrangement of the
programmer’s keyboard. Luckily, the hardware need not change. Mental
tools and attitudes are far more important in programming than the

Chapter 13 Introduction 171

notation in which the final program is expressed. For example, one can
use the principles and strategies espoused in this book even if the final
program has to be in FORTRAN: one programs into a language, not in
ft' To be sure, considerably more than one month of education an’d train-
ing will be necessary to wean yourself away from QWERTY program-

ming, for old habits are changed very slowly. Nevertheless, 1 think it is
worthwhile.

Let‘ us now turn to the elucidation of principles and strategies that may
help give the QWERTY programmer a new keyboard.

Chapter 14
Programming as a Goal-Oriented Activity

A simple example of program development

Consider the following problem. Write a program that, given fixed
integers x and y, sets z to the maximum of x and y. (Throughout, we
use the convention that variables called “fixed” should not be changed by
execution of the program. See section 6.3.) Thus, a command S is

desired that satisfies
(14.1) {7} S {R:z=max(x, y)}.

Before the program can be developed, R must be refined by replacing
max by its definition —after all, without knowing what max means one
cannot write the program. Variable z contains the maximum of x and y

if it satisfies
(142) R:zZ=ZxAzz2y AM(z=xVz=y)

Now, what command could possibly be executed in order to establish
(14.2)7 Since (14.2) contains z =x, the assignment z:= x is a possibility.
The assignment z:= x+1 is also a possibility, but z:= x is favored for at
least two reasons. First, it is determined from R: to achieve z =x assign
x to z. Second, it is simpler.

To determine the conditions under which execution of z:= x will actu-
ally establish (14.2), simply calculate wp(“z:= x>, R):

wp(fzi=x”, R)y=x=2xAx2y AM(x =x Vx=y)
=T Axz2y A(TVx=y)
=x=y

This gives us the conditions under which execution of z:= x will establish
R, and our first attempt at a program can be

Ch i
apter 14 Programmmg as a Goal-Oriented Activity

x>y —z=4 g

Command is needed.

aboAnoéher p(.)ssib‘le way to establish R is to execute z:=
Ve discussion it should be obvious that y >y ; o
Adding this guarded command yields o the

Y. From the
desired guard.

(14-3) ifxéy —z=x
Uy =2x — ZI:y
fi

Spzi=x Syzi=y

Bixzy Byy>=x

o: T R:z?x/\zéy/\(z=xvz=y)
Discussion

The above development illustrates the following

14, N .
(14.9) *Principle: Prograrnmmg 18 a goal-oriented activity

oy this we s goal, R, plays g i -
coursx;:o eQ maltslz)e I:i}z\;elopmelznt of a program than the greZondir?iZ;e 1Qmp(())rf
course, : $ a role, as will be se i :

insight is g?med from the postcondition. ;;:el?:;i —_ tore o o

To substantiate thj i
' is hypothesis of the I-ori
ming. o : goal-oriented nature of -
o §Side - :fjer the foHowmg. Above, the precondition wag morimgraljn
a program was developed that satisfied ey

{7} S {R: Z2=max(x, y)};

174 Part 1I1. The Development of Programs

develop a program .S satisfying only
{T1 5 {7}

Whenever S is thought to be complete, check whether T = wp(S,
z =max(x, y)), or T = wp(S,(14.2)). How many programs .S will you
write before a correct one is found?

Another principle used in the above development is:

(14.5) ePrinciple: Before attempting to solve a problem, make
absolutely sure you know what the problem is.

In programming, this general principle becomes:

(14.6) ePrinciple: Before developing a program, make precise
and refine the pre- and postconditions.

In the example just developed, the postcondition was refined while the
precondition, which was simply T, needed no refining.

A problem is sometimes specified in a manner that lends itself to
several interpretations. Hence, it is reasonable to spend some time mak-
ing the specification as clear and unambiguous as possible. Moreover, the
form of the specification can influence algorithmic development, so that
striving for simplicity and elegance should be helpful. With some prob-
lems, the major difficulty is making the specification simple and precise,
and subsequent development of the program is fairly straightforward.

Often, a specification may be in English or in some conventional nota-
tion —like max(x, y)— that is at too “high a level” for program develop-
ment, and it may contain abbreviations dealing with the applications area
with which the programmer is unfamiliar. The specification is written to
convey what the program is to do, and abstraction is often used to sim-
plify it. More detail may be required to determine sow to do it. The
example of setting z to the maximum of x and y illustrates this nicely. It
is impossible to write the program without knowing what max means,
while writing a definition provides the insight needed for further develop-
ment.

The development of (14.3) illustrates one basic technique for develop-
ing an alternative construct, which was motivated by theorem 10.5 for the
Alternative Construct.

(14.7) eStrategy for developing an alternative command: To
invent a guarded command, find a command C whose
execution will establish postcondition R in at least some
cases; find a Boolean B satisfying B = wp(C, R); and

Cha t =
pter £ gas g Goal Oliented ACtI 1ty
er 14 Pr() rammin a vit I 75

put them together tq form B —
the. theorem). Continue to
until the Precondition of the c
one guard is true (see assumpt

. C (see assumption 2 of
mvent guarded commands
onstruct implies that at Jeast

] ion 1 of the theorem)
his technique, and a gjm; |
s a i
similar one for the iterative construct, j
Let us return to Program (14.3) e s e

metry, which is posert for a moment. It has a pleasing sym-

le beca
use of ini
reason to choose between z= x and Zt.he noz})ldetermmlsm,
‘Zy when x

forced to
choose. Programming requires deep thin

spared a y irri
P n uflﬂCCCSSEiI‘ irTitation Co i
e ioe, y 1 . nventlonal,

mand notation,

If there is no
=.y, one should not be
king, and we should be

t .
f0e fe;l/elop many different guarded commands
ordei O;)ther. Any form of determinism, such
ment), drastically it o Occurrence (e.g. the PL/I Select state-
constructs.

A second example

Wri
rite a program that Permutes (interchan

iables x and y so that x
<
abos SY. Use the met

ges) the values of integer var-
hod of development discussed

As a first step, before r

st eadin i i
and postcondition f g further, write g suttable precondition 0

The problem is si
duction of notatiog:t?(; Iir:er than Fh.e‘ﬁrst one, for it requires the intro
Precondition Q is x =y Oti the initial and final valyes of variables-
initial values of variable g L Where identifiers X and ¥ denot h.
(_ $X and y, respectively. Postcondition R is ° e
148) R:x<y A(x:X/\y‘Y Vox

=YAy =Xx).

Remark: One could also
use the ;
* <y A perm(on. (.). éoncept of a permutation and write R as

Now, what simple comma
under some conditiong?

176 Part 111. The Development of Programs

Precondition Q, which is x =X Ay =Y, appears as part of R, so there
is a good chance that the operation skip could establish R under some
conditions. (This is a use of the precondition to provide additional infor-
mation). Another possibility is the swap x,y:=y, x, because it also
would establish the second conjunct of R. How does one determine the
guards for each of these commands, and what are the guards?

The guard B; of a guarded command B; — §; of an alternative construct
must satisfy @ A B; = wp(S;, R), according to the Theorem for the Alter-
native Construct. For the command skip; we have wp(skip, R) = R.
Hence, B of the guarded command B — skip must satisfy Q A B> R.
Since @ implies the second conjunct of R, the first conjunct x <y of R
can be the guard, so that the guarded command is x <y — skip.

For the second command we have

wp(“x,y:=y,x", R)
= ySxAQY=XAx=Y Vy=YAx=X)

Again, the second conjunct of this weakest precondition is implied by Q,
so that the first conjunct y <<x can be the guard. This yields the alterna-
tive construct

ifx<y —skip
lysx —x,p=y,x
fi

Since the disjunction of the guards, x <y Vy <X, is always true, the pro-
gram is correct (with respect to the given Q and R).

Note carefully how the theorem for the Alternative Construct is used
to help determine the guards. This should not be too surprising —after
all, the theorem simply formalizes the principles used by programmers to
understand alternative commands.

Keeping guards of an alternative command strong

Suppose variable j contains the remainder when k is divided by 10
(for kK >0). That is, j and k should always satisfy

j =k mod 10

Thus, j will only take on the values 0,1, - - - ,9. Let us determine a com-
mand to “increase ¥ under the invariance of j =k mod 107, assuming that
function mod is not available.

Chapter 14 Programming as a Goal-Oriented Activity 177

_ One ppssible cqmmand Is k,ji= k=1, j+1. However this does the
job onl.y if before its execution 7 <9, and so we have the, guarded com
mand j<<9 — k_’/:: k+1, j+1. However, initially we have 0<7 <10
so that tl}e cas.e J =9 must be considered also. The obvious command ir;
this case is k, ji= k+1, 0, and we arrive at the program segment

(14.8) i j <9 —k,ji= k+1, j+1I
0/=9—k,j=k+1,0
fi

(Note hon str‘ategy (14.7) was used, in an informal but carefu} manner.)
Th.e question is: which is to be preferred, (14.8) or segment (14 9) belo .
whlch is the same as (14.8) except that its second guard ji=9 i.s weak:V ’
At fllrst t'hought, (14.9) might be preferred because it’execu;es witho ri
ab_orFlon In more cases. If initially j =10 (say), it nicely sets 7 to 0 But
this is precisely why (14.9) is not to be preferred. Clearly ;2 IO‘is N
error caused by a hardware malfunction, a software error (;r an inad .
tant‘ modification of some kind —J is always supp:)sed to sa‘t\'/efr .
0<j <10. Execution of (14.9) proceeds as if nothing were wrong and 1tshy
error goes undetected. Execution of (14.8), on the other hand, ab i
J =10, and the error is detected. ne sborts

(14.9) <9 —k,j= k+1, j+1
0j=9—k,j=k+1,0
fi

This analysis leads to the following

(14.10) ePrinciple: All other things being equal, make the guards
of an alternative command as strong as possible, so that
some errors will cause abortion. ,

T}?e Phrase “all other thing§ being equal” is present to make sure that the
principle is reasonably applied. For example, at this point I am not even
prepared to advocate strengthening the first guard, as follows:

ifQ<j ANj<9 —k,j=k+I1, j+1

17=9 ~k,j=k+1,0

fi
As a final note, program (14.8) can be rearranged to

k=k+1; if j <9 —=JEjFL] j=9— =014

178 Part 111. The Development of Programs

Exercises for Chapter 14

1. Develop programs for the following problems in a fashion similar to the
development of the above programs. Remember, satisfactory pre- and postcondi-
tions should be developed first.

(a) Set z to abs(x).

(b) Set x to abs(x).

(c) Suppose x contains the number of odd integers in array b[0:k —1], where
k =20. Write a program to add | to k, keeping the property of x the same.
That is, upon termination k should be one more than it was initially and x
should still contain the number of odd integers in b[0:k —1].

(d) Suppose integer variables a and b satisfy 0<<a-+1<{b, so that the set
{a,a+1, - - - ,b} contains at least 3 values. Suppose also that the following
predicate is true:

P:a’<n Ab*>n.

Is it possible to halve the interval @:b, by setting either @ or b to (a+b)+2, at
the same time keeping P true? Answer the question by trying to develop a pro-
gram to do so.
2. (The Next Higher Permutation). Consider an integer of # decimal digits
(n >0) contained in an array d[0:n—1], with d[0] being the high-order digit.
For example, with 7 =6 the integer 123542 would be contained in d as
d =(1,2,3,5,4,2). The next higher permutation of d[0:n—1] is an array &’
that represents the next higher integer composed of exactly the same digits. In the
example given, the next higher permutation would be & =(1,2,4,2,3,5).

The problem is to define precisely the next higher permutation & for an
integer d[0:n—1]. Does your definition give any insight into developing a pro-
gram to find it?

Chapter 15

Developing Loops from Invariants and Bounds

This 'c‘hapter discusses two methods for
precqnd1txon Q. the postcondition R
f}mctxon I are given. The first method

c-ieveloping a loop when the
the invariant P and the bound

Checklist 11.9 will be
before proceeding. As
development that illustrat

formal and detailed man
mally.

.heavxly used, and it may be wise to review it
1S our practice throughout, the parts of the
¢ the principles to be Covered are discussed in a
ner, while other parts are treated more infor-

15.1 Developing the Guard First

Summing the elements of an array

imeC:rrlsldirOthe fol.lowin‘g problem. Write a program that, given fixed
ECr n =0 and fixed integer array b[0:n —1], stores in variable s the

sum of the elements of 4. Th iti is si
postcondin e . € precondition Q js simply 7 20; the

R:s =(2j:0<y <n:b[
A loop with the following invariant and bound function is desired

P O0<i<n As=(Zj:0<y <i:b[jD
. n—i

180 Part 111. The Development of Programs

Thus, variable i has been introduced. The invariant states that at any
point in the computation s contains the sum of the first i values of 4.

The assignment 7, s:= 0, 0 obviously establishes P, so it will suffice as
the initialization. (Note that i, s:= 1, b[0] does not suffice because, if
n =0, it cannot be executed. If n =0, execution of the program must set
s to the identity of addition, 0.)

The next step is to determine the guard B for the loop do B — S od.
Checklist 11.9 requires PA+B = R, so « B is chosen to satisfy it. Com-
paring P and R, we conclude that i =n will do. The desired guard B of
the loop is therefore its complement, i #n. The program looks like

i,5:=0,0; doi+*n —7? od

Now for the command. The purpose of the command is to make progress
towards termination —i.e. to decrease the bound function r— and an
obvious first choice for it is i:= i+1. But, this would destroy the invari-
ant, and to reestablish it 4[/] must simultaneously be added to s. Thus,
the program is

(15.1.1) i,5:=0,0; do i #n — i,s:= i+1, s+b[i] od

Remark: For those uneasy with the multiple assignment, the formal proof
that P is maintained is as follows. We have

wp(“i, s:= i+1, s+b[i]", P)
= 0<iHI <n As+b[i]=(5/:0<) <i+1:b[j])

and this is implied by P Ai#n. O

Discussion

First of all, let us discuss the balance between formality and intuition
observed here. The pre- and postconditions, the invariant and the bound
function were given formally and precisely. The development of the parts
of the program was given less formally, but checklist 11.9, which is based
on the formal theorem for the Iterative Construct, provided most of the
motivation and insight. In order to check the informal development, we
relied on the theory (in checking that the loop body maintained the invari-
ant). This is illustrative of the general approach (13.1) mentioned in
chapter 13.

An important strategy in the development was finding the guard before
the command. And the prime consideration in finding the guard B was
that it had to satisfy PA+B = R. So, 1 B was developed and then com-
plemented to yield B.

Section 15.1 Developing the Guard First 181

Some object at first to finding the guard this way, because Tradition
would use the guard / <z instead of i#n. However, i #n is better,
because a software or hardware error that made / >n would result in a
nonterminating execution. It is better to waste computer time than suffer
the consequences of having an error go undetected, which would happen
if the guard i <\n were used. This analysis leads to the following

(15.1.2) ePrinciple: All other things being equal, make the

guards of a loop as weak as possible, so that an error
may cause an infinite loop.

Principle 15.1.2 should be compared to principle 14.10, which concerns
the guards of an alternative command.

The method used for developing the guard of a loop is extremely sim-
ple and reliable, for it is based on manipulation of static, mathematical
expressions. In this connection, I remember my old days of FORTRAN
p'rogramming —the early 1960's— when it sometimes took three debug-
ging runs to achieve proper loop termination. The first time the loop
iterated once too few, the second time once too many and the third time
just right. It was a frustrating, trial-and-error process. No longer is this
necessary; just develop B to satisfy PA 1B = R and complement it.

. Ar{other important point about the development was the stress on ter-
mination. The need to progress towards termination motivated the
development of the loop body: reestablishing the invariant was the second

c'(.)nsideration. Actually, every loop with one guarded command has the
high-level interpretation

(15.1.3) {invariant: P}
{bound: r}

do B - Decrease 1, keeping P true od
{P A B}

This approach to loop development is summarized as follows:

(15.1.4) eStrategy for developing a loop: First develop the
guard B so that PA 1B = R: then develop the body
so that it decreases the bound function while reestab-
lishing the loop invariant.

182 Part Ill. The Development of Programs

Section 5.1 Developing the Guard First
Searching a two-dimensional array Since th 183
. . . . ¢ gua
Consider the following problem. Write an algorithm that, given a which meais t;itBés to be evaluated only when the i :
fixed array of arrays 6[0:m —1][0:n~1], where 0 < and 0 <n, searches LS s true, it can pe simplified to vaniant £ is true
b for a fixed value x. If x occurs in several places in &, it doesnt matter Biistm A (=
which place is found. For this problem, we will use conventional two- oeor x #p[i, i)
dimensional notation, writing b as b[0:m—1,0:n—1]. Using variables i and finally to
and j, upon termination either x =5[i,] or, if this is not possible,)
i =m. To be more precise, execution of the program should establish B:ism cand x ¢b[i,j].
. The fi
(515 R:(0<i<m AO<j<n Ax=b[i,jh V (i=m A x¢b). mine tiillgge 1; therefore the guard of the loop. The
P body. Do it before reading further NEXt step is to deter-

The invariant P, given below using a diagram, states that x is not in the
already-searched rows b[0:/—1] and not in the already-searched columns
b[i,0:5—1] of the current row i.

. _ the cond; d sect -
0 J n-1 and xl;lbtl[qn~ under which the body is executedloi; (1’" z)*n.‘/ PAB
0 x not here can be movle,{j]" SO that element bli, j1, which ’1s 15 :;S that i <m, j <p
(15.1.6) P 0<i<m AO0<j<m A | l = 4, but itlr:;'t}:e' tested section. A possible cOm;;ﬂdtetsted section
> Intains the : . nd to do th
] the guardeq commang € Invariant p only if j <p— So we hleSwl:

The bound function 7 is the number of values in the untested section: J<n-l AL

(m—i)*n ~j. As a first step in the development, before reading further ” What do we go s

determine the initialization for the loop. have j =, J=n

b . . . ° . .

teg;;] o he rightmos T =n—1, ie if

section requires i . O move p[;, i1 ;

The obvious choice is 7, j:= 0, 0, for then the section in which “x is not cuting ji= i+1q 0 moving to the begmm’ng of the next[r’on] {nto the

> Ve > Le. exe-

here” is empty. Next, what should be the guard B of the loop?

The loop body is therefore

Ex . . if j <n-—l] = ji=j4] 0j=
pression 1B must satisfy PA+B = R. It must be strong enough so J=n
that each of the two disjuncts of R can be established. To provide for the The program is therefore
first disjunct, choose i <m cand x =5[i,j]; to provide for the second, A5.17) : -

choose i =m. The operator cand is needed to ensure that the expression 1.7y, 7:=0,0;

is well-defined, for b[i, j] may be undefined if i =>m. Therefore, choose do i 5, cand x ¢b[z’,]‘] -

Btob Hj<n—] ;- ;)
b O De od n—] Jj:]+1 Uj:n

=1 - Li=i+1, 0§

-1 - i,ji= i+1,0f
A Bii=mV(i<m cand x =5b[i,j]) .
If desired, the bod
’ ¥ of the loop can pe
Téarranged to yield

Using De Morgan’s laws, we find its complement B:

Bii#m A(izm cor x #b[i,j])

184 Part 111. The Development of Programs

i,j=0,0;
doi#m cand x #b[i,j]—
ji=jtL
if j<n —skip [j=n —ij=i+],0fi
od
Discussion

Note that operation cand (instead of A) is really necessary.

Note that the method for developing an alternative command was used
when developing the body of the loop, albeit informally. First, the com-
mand j:= j+1 was chosen, and it was seen that it performed as desired
only if j <n—I. Formally, one must prove

(P ABAj<n—1) = wp(“j:= j+17, P)

but this case is simple enough to handle informally —if care is used.
Second, the command i, j:= i+1, 0 was chosen to handle the remaining
case, j =n.

Note that the alternative command has the guards j <n—1 and j =
n—I1, and not j <n—1 and j=n—1. The guards of the alternative com-

mand have been made as strong as possible, in keeping with principle
14.10, in order to catch errors.
We will develop another solution to this problem in section 15.2.

Exercises for Section 15.1
1. Develop a second program for the first example of this section. This time use
the invariant and bound function

PO0isnAs=Zji<j<n:bjD

t i
2. The invariant of the loop of the second example was given in terms. of a
diagram (see (15.1.6)). Replace the diagram by an equivalent statement in the
predicate calculus.
3. Write a program that, given a fixed integer array b[0:n—1], where n >0, sets
x to the smallest value of &. The program should be nondeterministic if the
smallest value occurs more than once in . The precondition), postcondition

R, loop invariant P and bound function ¢ are
0:0<n
R: x<b[0n—1]A(Ej: 0<j<n: x=b[j]
P:I1<isn Ax<b[0i—1]A(Ej: 0<j<i: x=b[j])
t: n—i

Section 15.2 Making Progress Towards Termination 185

. g f >
4 Wllte a program for the pr Ob]em of exercise 3 but . e
se th mvariant and bOuIld

P:O0<i<n A XSb[im—1]A (Ej: ISf<n:x =b[j)]
ti1

5. Write a program that, given a fixed integer 1 >0, sets variable 7 to the highest

power of 2 that is at most 7. The iti iti
. precondition @, postcondition R . | i i-
ant P and bound function ¢ are g oop e

Q:0<n

R:0<ign <2*iA(Ep:i=2P)
P: O<i<nA(Ep:i=2P)

t: n—i

6. Translate program (15.1.7) into the language of your choice —PL/1, Pascal

OR R s C.— b g . p
{ I AN (et)le][le]n ering the need 1()1' the operation cand COIH are your

15.2 Making Progress Towards Termination

Four-tuple Sort

. Consxde'r the following problem. Write a program that sorts the four
Integer variables g0, g7, g2, g3. That is, upon termination the followin
should be true: g0 <ql<g2<q3. ¢
Implicit is the fact that the values of the variables should be permuted
—for examplfz, the assignment q0, ql, g2, g3:= 0,0,0,0is not a solution
even though it establishes 90<q1<g2<q3. To convey this information’

explicitly, we use Qi to denote the initi 2 i
£ al value of ¢/, and writ -
mal specification 7 e the for

Q:90=Q0A qI=Q1 A g2=02 A 93=03

R: 9091 <42<g3 A perm((q0,q1, g2, 93),(Q0, @1, 02, 03))
whc?rc the second conjunct perm(- -, .-+ of R means that the four
variables g0, g1, g2, g3 contain a permutation of their original values,

A loop will be written. Its invariant expresses the fact that the four
variables must always contain a permutation of their initial values:

P: perm((q0,q1,q2, g3), (00, 91, 02, 03))

The bound function s the number of inversions in the sequence (g0

tqh], q2, g3). For a sequence (go, - -+ ,g,_,), the number of inversions is
€ number of pairs (9:59), i <j, that are out of order —ie. q; >q;
;-

186 Part I1l. The Development of Programs

Note that this includes a/l pairs, and not just adjacent ones. Fgr e).(ample,
the number of inversions in (1,3,2,0) is 4. So the bound function is

t(Nij: 0<i <j <4 qi >gqj).

The invariant indicates that the four variables must alv.va'y.s contain a
permutation of their initial values. This is obviously true initially, so no
initialization is needed.

In the last section, at this point of the development the guard of the
loop was determined. Instead, here we will look for a numb.er qf guarded
commands, each of which makes progress towards termination. The
invariant indicates that the only possible commands are those that swap
(permute) the values of two or more of the variables. To k'eep thn}g§ 'S{m?
ple, consider only swaps of two variables. There are six possibilities:
q0,ql:= gl, q0 and ql, g2'= g2, ql, etc. .

Now, execution of a command must make progress towards termina-
tion. Consider one possible command, q0, ql:= gI, g0. It decreases the
number of inversions in (g0, gl, g2, q3) iff g0 >ql. Hence, the guar'dt.:d
command g0 >qgl — q0, gl:= gl, g0 will do. Each of the other 5 possibil-
ities are similar, and together they yield the program

do g0>ql — q0, qI'= ql, q0
0 gl>q2 —ql, q2= g2, q1
0 92>93 — g2, g3:= q3, g2
0 g0>q2 — q0, g2:= g2, q0
0 g0>qg3 — q0, g3:= g3, q0
0 gI>q3 — ql, g3:= g3, ql
od

It still remains to prove that upon termination the result R is established
—this is point 3 of checklist 11.9, PA+BB = R'. Suppose all the guards
are false. Then g0< q! (because the first guard 1s.false), gl < g2 (because
the second is false) and g2<Cg3 (because the third is false); therefore

g0<ql<g2<gq3.

Together with invariant P, this implies the desired result. Bu‘t note that
only the first three guards were needed to establish the desx.red'result.
Therefore, the last three guarded commands can be deleted, yielding the
program

Section 15.2 Making Progress Towards Termination 187

do g0>ql — q0, gI:= ql, g0
0 9/>q2—q1, g2:= g2, g1
0 92>q3 — g2, g3:= ¢3, q2
od

Discussion

The approach used here can be summarized as follows.

(15.2.1) eStrategy for developing a loop: Develop guarded
commands, creating each command so that it makes
progress towards termination and creating the corres-
ponding guard to ensure that the invariant is main-
tained. The process of developing guarded commands
is finished when enough of them have been developed
to prove PA BB = R.

Developing the commands as indicated ensures that points 2, 4 and 5 of
checklist 11.9 are true. The last sentence of the strategy indicates that the
loop is completed when point 3 of the checklist is true. Of course, initiali-

zation to make the invariant true initially (point 1 of the checklist) may
need to be written.

The emphasis in the strategy is on points 2 and 4 of checklist 11.9,
which concern progress towards termination and maintenance of invari-
ance. In the approach used in section 15.1, the emphasis was first on
proving point 3, that upon termination the result R is true.

Let us discuss the seemingly magical step of deleting three guarded
commands from the loop. Once a correct loop has been developed, a
shorter and perhaps more efficient one can sometimes be derived from it.
Each guarded command already satisfies points 2 and 4 of checklist 11.9,
Strengthening the guards cannot destroy the fact that points 2 and 4 are
satisfied, so that the guards can be changed at will, as long as they are

strengthened. The only problem is to ensure that upon termination the
result still holds —i.e. PA BB = R is still true.

If it is possible to strengthen a guard to F (false) without violating
P A+BB = R, then the corresponding command can never be executed,
so that the guarded command can be deleted. This is what happened in
this example. Only the first three guards were needed to prove P A - BB
= R, so that the last three could be strengthened to F and then deleted.

We will return to this point in chapter 19 on efficiency.

This little program is nondeterministic in execution, because two, and

evan thrao msaedn ane e ao. . .

88 Part I11. The Development of Programs
1

i m
there is exactly one final state, so that in terms of the result the progra
is deterministic. -

i er-
The number of iterations of the loop is equal to the number of inv
sions, which is at most 6.

Searching a two-dimensional array ' N

Consider again a problem discussed in section 15.1: VYrmEg a p;(l)g;arirsl

i i . The only difference in the proble
to search a two-dimensional array Th .
that here the array may be empty (i.e. it ma3(; iave 0 (rio(\)vs<(’)1r Oa:z;lir?:i)o
1 i :m~1, 0:n—1], where 0<<m and 0<n, ‘

The fixed array is b[0:m—1, O:n 3 (: . i
be searched for a fixed integer x. Using var.1able§ i and j, upon terénu;eet-
tion either x =5b{i,j] or, if this is not possible, i =m. To be more p
cise, R should be established:

(1522) R:O0<i<m AO<j<nAx=b[i,jhV{i=mAx¢Eb).

The invariant P, given below in a diagram, states that x is rdlot ;nr;}rllz
already-searched rows 5[0:/—1] and not in the already-searched colu

b[i,0:j—1] of the current row i.

0 J n—I1
0 X not here
(I523) P 0<ism ANO<j<sn A i]
m—1

The bound function is the sum of number of yalues in thi\'lrltesie-d_::tio:
and the number of rows in the untested section: ¢ .—(m) _z_) n i Fmt
The additional value m—i is needed l?e.cz.xus.e ppsmbly Jh—ln;).
step in the development, determine the initialization for the loop.

The obvious choice is i, j:= 0, 0, for then the secti.on in wh’ich “x. 18 no(’;
here” is empty. Note carefully how the invariant includes j <n, mls(;e';l)
of j<<m. This is necessary because the number of columns, n, cou e
0. '

Next, guarded commands for the loop must be developed.' ?What is the
simplest command possible, and what is a suitable guard for it?

Section 15.2 Making Progress Towards Termination 189

The obvious command to try is ji= j+1, because it decreases 7. (Another
possibility, to be investigated subsequently, is 7:= i+1). A suitable guard
must ensure that P remains true. Formally or informally, we can see that

[¥mAj#n cand x#b[i,j] can be used, so that the guarded com-
mand is

i##m Ajs%n cand X #b[i, j]— ji= j+]

Note that this guard has been made as weak as possible.
loop with this single guarded command solve the problem?
not? If not, what other guarded command can be used?

Now, does a
Why or why

A loop with only this guarded command could terminate with ;i <\m A
J=n, and this, together with the invariant, is not enough to prove R.
Indeed, if the first row of b does not contain x, the loop will terminate

after searching through only the first row! Some guarded command must
deal with increasing ;.

The command i:= j+] may only be executed if i <. Moreover, it
has a chance of keeping P true only if row i does not contain X, SO con-
sider executing it only under the additional condition j =n. But this
means that ;j should be set to 0 also, so that the condition on the current
row i is maintained. This leads to the program

(15.2.4) 1, j:=0,0;
doi#m Aj+#n cand X#b[i,j]— ji= j+1
Di#maAaj=n —=1,j=i+1,0
od

It still remains to show that upon termination R is true —ie. P A - BB
= R. Suppose the guards are false. Two cases arise, First, i =m could
hold. Secondly, if i #m, then the falsity of the second guard implies
J #n; therefore the falsity of the first guard implies x =5[;, 7. Thus, if
the guards are false the following must be true:

I=m cor (i#mAj#pn A x=bli, j],
and this together with P implies the result R. Hence, the program is

correct. Note that in the case i = the invariant implies that x ig not in
rows 0 through m —1 of b, which means that x &b,

190 Part 111. The Development of Programs

Discussion

This loop was developed by continuing to develop simple guarded
commands that made progress towards termination until P A+ BB = R.
This led to a loop with a form radically different from what most pro-
grammers are used to developing (partly because they don’t usually know
about guarded commands). It does take time to get used to (15.2.4) as a
loop for searching a two-dimensional array.

This problem is often used to argue for the inclusion of gotos or loop
“exits” in a conventional language, because, unless one uses an extra vari-
able commonly called a “flag”, the conventional solution to the problem
needs two nested loops and an “exit” from the inner one:

(15.2.5) i,j=0,0;
while i #m do
begin while j %n do
if x =b[i,] then goto loopexit
else j:= j+1;
i,j=i+4L0
end;
loopexit:

We see, then, that the guarded command notation and the method of
development together lead to a simpler, easier-to-understand, solution to
the problem —provided one understands the methodology.

How could program (15.2.4) be executed effectively? An optimizing
compiler could analyze the guards and commands and determine the
paths of execution given in diagram (15.2.6) —in the diagram, an arrow
with F (T) on it represents the path to be taken when the term from
which it emanates is false (true). But (15.2.6) is essentially a flawchart for
program (15.2.5)! At least in this case, therefore, the “high level” pro-
gram (15.2.4) can be simulated using the “lower-level” constructs of Pas-
cal, FORTRAN and PL/L

Program (15.2.4) is developed from sound principles. Program (15.2.5)
is typically developed in an ad hoc fashion, using development by test
cases, the result being that doubt is raised whether all cases have been

covered.

Exercises for Section 15.2 191

(15.2.6) i,/:= 0, 0:

L L)

do i AY i cand X #b[i,] — = j
F F /F
li#FmAj=n —

od

i, j=i+1,0

Exercises for Section 15.2

1. Write a. program for the following problem. Given is a fixed three-dimensional
irra%:‘h[](g).rg];;é,&fz;i,O:'p*tl], w}}cere m,n,p=0. Given is a fixed variable

. variables 7, j and k, find a val [,] i ;i
e aong three var ve cli,j, k] with value x: if

2. Write a program that, given fixed inte
 that, gers X and Y, X >0, ¥ >0, finds the
g;eatest common dlylsor ged(X, Y). The greatest common divisor of X and Y
; a;t,(z}rel;xot ;)oth ‘(i) x; the greatest integer that divides both of them For example
C , =1, gc s 5= = i . i ;
ey 0 ;é%: (2,5 =1and gcd(lO, 25)=35. The following properties hold

ged(x, y)=ged(x, y—x)=ged(x—y, y)
ged(x, y)=ged(x, x+y)=ged(x+]
Sl =8 ged(xty, y)
ged(x, y)=ged(y, x)

ged(x, 0)=gcd(0,x)=x

The first two lines hold because any divi i ivi
. y divisor of x and y is also a divisor of x4+
and x—y —since x /d +y /d=(x *y)/d for any divisor d of x and p. g

Your program has the result assertion
R:x=y=ged(X, Y) "

The program should not use multiplicati ivisi
Joe Prod plication or division. It sho i
initialization) with invariant uld be a loop (with

P:0<x A0<y Aged(x, y)=ged(X, Y)
and bound function #: x+y. Use the ies gi
: . properties given ab i i
ble guarded commands for the loop. P en ghove to determine possi-

3. Redo the program of exerci i
cise 2 to determine the greatest com ivi
mon
three numbers X, Y and Z that are >0, divisor of

:. Wrm(:i an fi%gorithm to d'etermine ged(X, Y) for X, Y =0 using multiplica-
1Ion efm division (see exercise 2). For example, it is possible to subtract a multi-
ple of x from y. The result assertion, invariant and bound function are

192 Part 111. The Development of Programs

R:x=0Ay=gcd(X, 7)
P:Os<x A0y A(0,0)F(x,y) A ged(x, y)=ged(X, Y)
t: 2xx+y

5. This problem concerns that part of a scanner of a compiler —or any program
that processes text— that builds the next word or sequence of nonblank symbols.
Characters b[j:79] of character array b[0:79] are used to hold the part of the
input read in but “not yet processed”, and another line of input can be read into
b by executing read (b). Input lines are 80 characters long.

It is known that b[j:79] catenated with the remaining input lines is a
sequence

W | '—'| REST

where ‘{7 denotes catenation, “—” denotes a blank space, W is a nonempty
sequence of nonblank characters, and REST is a string of characters. The pur-
pose of the program to be written is to “process” the input word W, deleting it
from the input and putting it in a character array s. W is guaranteed to be short
enough to fit in 5. For example, the top part of the diagram below shows sample
initial conditions with 10-character lines. The bottom diagram gives correspond-
ing final conditions.

W:'WORD'
REST: 'NEXT—ONE—IS—IT—" |E—IS—IT——
B[j:79] ‘WO’ input: | RD—NEXT—ON
Initial Conditions
b[j:79): '~NEXT—ON input: |E—IS—IT———| s[0:v—1]: "WORD'

Final Conditions

A loop with initialization is desired. The precondition @, postcondition R,
invariant P and bound function ¢ are:

1 0<<j <80 A b[j:79]]| “the input lines” = W | '~'| REST
10K j <80 A s[O:length(W)—1]1=W A
(b[j:79]] the input lines) = '—| REST
080 A Oy <length(W) A
(s[0:v—1]]| B[j:79D) = (W | '~'| REST)
2xlength(W)—2%v +j

L1\

-

Chapter 16
Developing Invariants

. Assume we want to develop a program S to satisfy {Q} S {R} for
given Q .and R, and that we have decided to use a loop (possibly with
some Initialization). How do we find a suitable invariant and bound func-

tion for the loop —before writing the loop? This chapter explores this
question.

Section 16.1 shows how a loop invariant can be seen as a weakening of
the result assertion R and outlines various ways of performing this weak-
ening. This illustrates again that programming is a goal-oriented activity.
Each of the sections 16.2-16.5 discusses in detail one way of weakening
the result assertion and illustrates the technique with several examples.

16.1 The Balloon Theory

This section provides some understanding of the nature of an invariant
P of a loop {Q} do B — S od {R}. Fig. 16.1.1(a) represents the set of
all states, with those represented by postcondition R encircled. Also
encircled is the set of possible initial states IS, which could be established
py some simple assignments. (Actually, IS and R could overlap, but this
1s not shown in the Figure.) Now, an invariant, P, of the loop is a predi-
cate that is true before and after each iteration.

(a) (b)
Figure 16.1.1 Blowing up the balloon

194 Part 111. The Development of Programs

Hence, the set of states represented by P must contain both the set of
possible initial states represented by /S and the set of final states repres-
ented by R, as shown in Fig. 16.1.1(b).

Consider R to be the deflated state of a balloon, which is blown up to
its complete inflated state, P, just before execution of the loop. Each
iteration of the loop will then let some air out of the balloon, until the
last iteration reduces the balloon back to its deflated state R. This is
illustrated in Fig. 16.1.2, where Py= P is the balloon before the first itera-
tion, P; the balloon after the first iteration and P, the balloon after the

second iteration.

Py

Py

P,

Is

Figure 16.1.2 Letting the air out

Remark: The balloon and its various states of deflation is defined more
precisely as follows. P is the completely inflated balloon. -Consider the
bound function ¢. Let 74 be the initial value of 7, which is determined by
the initialization, ¢, the value of ¢ after the first iteration, ¢, the value of ¢

after the second iteration, etc. Then the predicate
PAO<y;

denotes the set of states in the balloon after the ith iteration. Thus, ini-
tialization deflates the balloon to include only states in P A 0<{7 < ¢y, the
first iteration deflates it more to P A 0<<¢ ¢y, etc. DO

The problem, of course, is to know how to blow up the balloon, so
execution of the loop can deflate it. That is, how does one find P and
the bound furction z? What information is available? Clearly, only the
result assertion R and the set of initial states IS. Since the balloon
begins as R and is blown up to encompass the initial state but is then
deflated, it seems that R would the more important of the two. This
becomes more plausible when we consider that the initial conditions may
not even be known until P is known. Subsequently, methods will be
investigated to blow up a balloon —actually to weaken a relation— until
it encompasses a set of states IS that can be easily established.

Section 16.2 Deleting a Conjunct
195

Weakening a predicate

Here are four ways of weakening a predicate R-

I. Delete a conjunct. For exa ;
. mple
be weakened to 4 A C. ple, predicate 4 A B A C can

i.;?;;h;;i a gonstant by a variable. For €xample, predicate
SO1110), where x is a simple variable, can be w’

3 : . s eakened t

X §b[l.z] Al < 10, where i is a fresh variable, Since a ne\i
variable has been introduced, its possible set of values must be

precisely stated. Of course, the r i
. X ange must incl
the replaced constant. e the value of

3. Enlarge the range of a vari
. ariable. For exa ;
5<i <10 can be weakened to 0<; < [0, mPle, predicate

4. Add a disjunct. For exam i
. ple, predicate 4 ca
to A V B, for some other predicate B. " be weakened

ingTJ};e frst thzge rmlethods are quite useful. In each insight for weaken

omes directly from the form and content ; i X
lirect . of R itself

number of possibilities to try 1s generally small. The methods r;la?fn&etr};e

fore provide the kind of dj iscipli
o trected, disciplined development we are looking

gragl:; rfcg)mi'rtlha;?;thod of ;\.feakening a predicate is rarely useful in pro-

: . 1ts generality. There is no reason to tr i
y to add -

Junct rather than another, and hence adding a disjunct would be a (r):r?dilrsn

task with an infinite number of ibiliti
o o an I ol possibilities. We shall not analyze this

16.2 Deleting a Conjunct

s p p y de € lllg a
In thls section the develo ment Of an invariant 01 a 100 b I t
Con]unct Of the deSlICd IeSult assertion 15 lllustrated and dISCuSSed

Approximating the square roor of a number
Write a program th i i i
o prog at, given a fixed integer n >0, establishes the truth
(16.2.1) R:0<a’<n <(qa+1)?
Taking the square root of all te i i
rms In R, we find that R i i
2 . , 1s equivalent
0<a <~./;1—<a +1. Hence, g is the largest integer that is at mgst \’;;n ©
The first step is to rewrite R as a set of conjuncts:

196 Part 111. The Development of Programs

R:0<da” A a®<n A n<(a+1)?
Deleting the third conjunct of R yields a possible invariant:
P 0<a’<n.

Because n =20, P can be established by the assignment a:= 0. For the
guard of the loop, use the complement of the deleted conjunct, so that
when the loop terminates because the guard is false, the deleted conjunct
is true. This yields the almost-completed program

a:=0; do (a+1)’<n — ? od

The purpose of the command of the loop is to progress towards termina-
tion. Clearly, if the guard of the loop is true then a is too small, so that
progress can be made by increasing a. Since a is bounded above by Va,
a possible bound function is t =ceil(Vn)—a. Using the easiest way to
increase a, incrementing by 1, yields the program

(16.2.2) a:=0; do (a+1)°’<n — a:=a+1 od
We show that P is indeed an invariant of the loop:

P AB =0<d’<n A(a+1)*<n
=0<(a+1)’<n
=wp(“a:= a+1”, P)

Discussion

Here, strategy 15.1.4 was used to develop the loop —first the guard
was created and then the loop body. The guard was created in such a
simple and useful manner that it deserves being called a strategy itself.

(16.2.3) eStrategy: When deleting a conjunct from R to pro-
duce an invariant P, try using the complement of the
deleted conjunct for the guard B of the loop.

Choosing B in this manner will ensure that the necessary condition
P As1B 2 R (point 3 of checklist 11.9) is automatically satisfied.

Exercise 1 is to develop a program by deleting the second conjunct
instead of the third.

The execution time of the program is proportional to vi. A faster
program to approximate the square root of a number will be developed in

section 16.3.

Section 16.2 Deleting a Conjunct
197

Linear search

As a second example of deletin j
: . . £ a conjunct, consid
prqblem‘ Given is a fixed array b[0:m —1] where 0<njl P
a fixed value x is in b[0:m—1]. Write a program to c.le

occurrence of x in b —ie. to store j 1)
‘ .€. 1n a variable
that x =5[i]. el

lowing
It is known that
termine the first
east integer such

. .The first task is to §pecify the program more formally. This is eas t
0; we have the following precondition Q and postcondition R: e

Q:0<m A X €b[0:m —1]
R:0<i<m AxEb[0:i—1] A x =b[i]

R can be written in more detail as follows:
R:O<i<m A AjO<j<i:x FZoiPAx =b[i]

N R con ainS three C nj —W i S]l()u (l be (le
. 0 W, ont On_] uncts hlch)
g \ leted to Obtaln

A goc?d Invariant should be easy to establish. The first two conjunct

estabhshec} by the assignment i:= 0, while most of the difficuljt ncfs al:e
program .hes In establishing the third. Hence, it makes sense t dyl e the
third conjunct, yielding the following invariant: ° felete the

(16.2.4) P 0<i<m A(4j:0<)<i:x #“b[iD

What should be the guard of the loop?

Use the complement of the deleted conjunct. Thus far, the program is
i=0; dox#b[i]—? od

Choose the command for the loop, explaining how it was found

ggseSiSzkbof tgefcom.mand is to make progress towards termination. A
ound function is ¢: m—i, which is alwa iny
: s ys >0 (see the invari-
ant), and the obvious way to decrease it is to increment ; by 1. It is fairl
;flsy to see _that executlo.n of i'= i+] under the condition x #b[i] leavez
true. This leaves us with the program well-known as Linear Search:

(1625) {Q}i:=0; do x#b[i] — i:= i+1 od (R}

198 Part II1. The Development of Programs

Discussion

The program is certainly correct, but let us try formally to prove it
using checklist [1.9. First, show that invariant (16.2.4) is initially true:

%
wp(“i:=07,(16.24)) = 0<<0<m Ax ¢b[0:—1]

which is certainly implied by Q. Next, prove that (16.2.4) is indeed an
invariant of the loop. This requires showing that

(16.2.4) A x #b[i] = wp(“ii= i+17, (16.2.4))
or O0<i<<m Ax@&b[0:] = 0<<i+1<<m A x €b[0:i]

Is this true? Certainly not —the antecedent is not enough to prove that
i+I1<<m! The problem is that we have neglected to include in the invari-
ant the fact that x €5[0:m —1]. Formally, the invariant should be

(16.2.6) P:0<i<<m Ax&b[0:i—1]AXxEDL[O:m—I]

With this slight change, one can formally prove that the program is
correct (see exercise 5).

In omitting the conjunct x €b[0:m—1] we were simply using our
mathematician’s license to omit the obvious. Note that all the free identif-
lers of x €b[0:m —1] are fixed throughout Linear Search: x, b and m are
not changed. Hence, facts concerning only these identifiers do not
change. It can be assumed that the reader of the algorithm and its sur-
rounding text will remember these facts, so that they don’t have to. be
repeated over and over again.

Later on, such obvious detail will be omitted from the picture when it
doesn’t hamper understanding. For now, however, your task is to gain
experience with the formalism and its use in programming, and for this
purpose it is better to be as precise and careful as possible. It is also to
be remembered that text surrounding a program in a book such as this
one rarely surrounds that same program when it appears in a program
listing, as it should. Be extremely careful in your program listings to
present the program as clearly and fully as possible.

The program illustrates an important —but often forgotten— principle:

(16.2.7) The Linear Search Principle: to find a minimum value
(at least equal to some lower bound) with a property,
investigate values starting at that lower bound in
increasing order. Similarly, when looking for a maxi-
mum value investigate values in decreasing order.

Section 16.3 Replacing a Constant By a Variable 199

Exercises for Section 16.2

1. A program was developed to find an approximation to the square root of # by
deleting the conjunct n <(a-+1)? of result assertion (16.2.1). Develop a different
program by deleting the conjunct a“<# instead. Compare the running times of
the two programs (see Appendix 4).

2. Write a program that, given a fixed integer 7 >0, finds the largest integer that
is (1) a power of 2, and (2) at most n. (First write down a formal specification
and then derive the invariant by deleting a conjunct.)

3. Write a program that, given two fixed integers x and y satisfying x =0 and
¥y >0, finds the quotient q and remainder r when dividing x by y. That is, it
establishes 0<<r Ar <{y A g*y+r =x. The program may not use multiplica-
tion or division. Develop the invariant of the loop by deleting a conjunct.

4. Write a program that, given a fixed array b[0:m —1, O:n —1] and a fixed value
X in b, determines the “first” position of x in &. By “first” is meant that x is
not in a previous row or in a previous column of the current row. That is, using
two variables { and j, the program should establish the predicate

R = 0<i<m AO<j<m Ax=b[i, j]A
x $0[0:i—1,0:n—1] A x € b[i,0:j—1]

5. Prove with the help of checklist 11.9 that program (16.2.5) is correct, using loop
invariant (16.2.6) and bound function ¢: m —i .

16.3 Replacing a Constant By a Variable

Summing the elements of an array

A second method for weakening a predicate, replacing a constant by a
variable, is illustrated with the following problem. Write a program that,
given a fixed integer n =0 and fixed integer array 5[0:n—1], stores in
variable s the sum of the elements of b. The result assertion R can be
expressed as

(16.3.1) R:s=(Xj:0<j<n:b[j]

The fact that each array element is involved in the sum suggests that a
loop of some form should be developed, so R should be weakened to
yield a suitable invariant P. R contains the constant n (i.e. n may not
be changed). R can therefore be weakened by replacing n by a fresh
variable i, yielding

s=(Zj:0<; <i:b[jD

Part 111. The Development of Programs
200

At the same time, however, reasonable bounds shot-ﬂd be Placefl otninzi;

Motivating the choice of bounds is the need to estabhs}}i th(z)mvarlaer(liicate
i i, which is n. The above pr

i d the probable final value of i, w : deate

Z?rlllyb:nestablighed by i,5:=0,0, so a p0551bl§ Iow‘er bound for { is 0

Therefore, the range 0:n is chosen, yielding the invariant

P O<i<nAs=(3j:0<;<i:b[j]

Program (15.1.1) for this problem was developed using this loop invariant
and the bound function r =n —i:

i,5:=0,0; doi#n —i,s:=i+l, s+b[i] od

Discussion . . -
1ant.
Two other constants of R could be replaced to yield an invar

Replacing the constant 0 yields the invariant
IisnAs=CZji<j<n:blj)

ments
Using this as an invariant, one can develop a lopp that adés t?eoilzection
b[j] to s in decreasing order of subscript value j (see exercise
15.1).
If result assertion R is written as

s = 0<j<n—Lb[j])
the constant expression n —1 can be replaced to yield the invariant
—I<i<n—lAs=Cj 05 <i:b[j]

Note carefully the lower bound on i this .tlme. Be-calfeonbc[gal Zef::(r)(;:
the array can be empty. Therefore the assignment 1,.;.;16;6 Ty;e Javor
ite of many for initializing such a 1oop3 cannot be use .
zation must be 7,5:= —1, 0. (See exercise 1). R
This example illustrates that there may be several corist?;escon.stam *
from when replacing a constant by a variable. I.n gene;ail's,hed constan 1
chosen so that the resulting invariant can be easily ;stathle Cor;lmand(s) e
guard(s) of the loop are simple and., qf course, 5o that ommand(s) of
the loop can be easily written. This is a trial-and-error pr ,

gets better at it with practice.

. . ro-
Too often, variables are introduced into a program w1thd01(11t ’LII1Ie1 ;g)en-
grammer really knowing why, or whether they are even needed.

eral, the following is a good principle to follow.

Section 16.3 Replacing a Constant By a Variable 201

(16.3.2) ®Principle: Introduce 2 variable only when there is a
good reason for doing so.

We now have at Jeast one good reason for introducing a variable: the
need to weaken a result assertion to produce an invariant. [t goes without
saying that each variable introduced will be defined in some manner.
Part of this definition, which is often forgotten, is the range of the vari-
able. We emphasize the need for this range with the following

(16.3.3) ¢Principle: Put suitable bounds on each variable introduced.

Approximating the square root of a number

As a second example of replacing a constant by a variable, consider

the following problem. Write a program that, given a fixed integer »n >0,
establishes the truth of

(16.3.4) R:a’<n<(q +1)?

A program for this problem was developed in section 16.2 by deleting the
conjunct » <(a+1)%; the program took time proportional to V. Here
we use the method of replacing a constant by a variable.

First try replacing the expression a+1 by a fresh variable b to yield

a’<n <p?

Clearly, b must be greater than q if this predicate is to be true. More-
over, the predicate can be established by executing a, b:= 0, n+1.
Hence, b is bounded by ¢ +1 and n-+1, and the invariant is

P:a<b<n+la a’<n <p?

The guard B for the loop, obtained by investigating P A 4 B =R, is
a+1#b. Thus far, the program is

a,b:=0, n—+l;
doa-+lstp —) od

Since P indicates that a+1<b and the loop should terminate with
a+l=5, the task of each iteration is to bring ¢ and b closer together,
Le. to decrease the value of p-¢q. Execution should continue unti]
b—a=1. Hence, a possible bound function ¢z is b—g —1.

The size of the interval (a,b) could be decreased by one at each itera-
tion, but perhaps a faster technique exists. Perhaps the interval could be
halved, by setting either ¢ or b to the midpoint (a+b)+2. 1f S0, the
command of the loop could have the form

202 Part 1I1. The Development of Programs

(163.5) if? ~ai=(a+b)+2 [7 = bi= (a+b)+2 fi

Each command must maintain the invariant P. To find a suitable guard
for the first command, first calculate

(16.3.6) wp(“a:= (a+b)+2”, P)
=(a+b)22<b<n+l A ((a+b)=2°<n A b*>n.

The precondition of (16.3.5) will be the invariant together with the guard
of the loop:

P Aa+15b.

The extra condition needed to imply (16.3.6) is ((a+b)=2)*<n, so we
take it as the guard for the first command. In a similar fashion, the guard
for the second command is found to be ((a+b)+2)2>n, Introducing a
fresh variable d to save local calculations, we arrive at the program

(16.3.7) a,b:=0,n+1;
{invariant P: a <b<n+1Aa’<n<b%}
{bound t: b—a+1}
doa+tls#b —d:=(a+b)+2;
ifdxd<n —a=d Jdxd>n —bi=d fi
od

Discussion

It may seem that the technique of halving the interval was pulled out
of a hat. It is simply one of the useful techniques that programmers must
know about, for its use often speeds up programs considerably. The exe-
cution time of this program is proportional to logn, while the execution
time of the program developed in section 16.2 is proportional to V.

Program (16.3.7) illustrates another reason to introduce a variable: d
has been introduced to make a local optimization. The introduction of 4
not only reduces the number of times the expression (a+b)=2 is
evaluated, it also makes the program more readable.

Note that no definition is given for d. Variable d is essentially a con-
stant of the loop body. It is assigned a value upon entrance to the loop
body, and this value is used throughout the body. It carries no value
from iteration to iteration. Moreover, d is used only in two adjacent
lines, and its use is obvious from these two lines. A definition of d would
belabor the obvious and is therefore omitted.

A similar program can be developed by replacing the second occur-
rence of a in (16.3.4) by a variable —see exercise 3.

Section 16.3 Replacing a Constant By a Variable 203

The Plateau problem

leafl(:/fertlhis a fixe_d, ordered (by <) array b[0:n—1], where n >0. A pla
' € array 1s a sequence of equal valu i ‘ i
In variable p a value to establish ! % Write @ program to store

(16.3.8) R:p is the length of the longest plateau of 5[0:n—1].
It may be possible to develop a satisfactory program without defining

the length of the longest i i
! plateau in more detail, Neverthel i
step, rewrite (16.3.8) in the predicate calculus, T we it

The value p is the len i
gth of the longest plateau if there is a
se
equal values and no sequence of p+1 equal values. That is Auence ofp

b[0:n—1] contains a plateau of length p A
b[0:n—1] does not contain a plateau of length p +1

Because the array is sorted, a subsection & [k:] is a plateau if and only if

its end elements blk] and b[j] are equ i
. al. Th i i
the predicate calculus as follows: ! = ellows s to write R in

(16.3.9) R: (Ek: 0<k <n—p- blk]1=b[k+p—I]) A
(Mk: 0Sk<n—p—1: b[k]#b[k+p])

g’he ((;nly difficulty in writing (16.3.9) might have been in getting ks
bo:m $ correct. Subsequently, we will work with R as written in (16.3.8)
ut we will turn to the more formal definition (16.3.9) when insight- i;

, C%early,. iteration is needed for this program. Remembering the point
of this section, what loop invariant would you choose?

;Ic')};: Ite}?gtfhuof t'he plateau of an array of length 1 is obviously 1. There-
» the lollowing invariant, found by replacing the t .
fresh variable i , can be easily established: ¢ constantn of Kby a

16.3. : / i
(16.3.10) P: 1<i<n A p is the length of the longest plateau of bl0:i—1]

What should be the b i e e
loog? ound function, the initialization and the guard of the

Tlile :o?nd functiqn .is ! =n—i. The loop initialization isi,p:=1, 1. The
guard of the loop is i 5. What should be the command of the l(’)op"

Part 111. The Development of Programs
204

i i ei byl
Each iteration must increase i, and it seems reasonal?le to. mcrce;i . re}; N
(bit see exercise 10). But this may call for a change in p 13 o;_ o rees
i i ider the two commands i:= '
i invariant. Thus, we consi th ; ”
t'abh'Sh't—l}}? p+1. We deter’mine the conditions under which execution
i,p=itl, .

the first maintains P:
1 he
“i=i+1” = i+1<n A p is the length of t .
wp T B = longest plateau of b{0:i]

ondi-
The first conjunct is implied by the gu.ard of the loop. What extra ¢
tion is needed to imply the second conjunct?

i th of the longest plateau of
oo 'already }lino‘;/:r,efromisptsll::h?;n;: ct)}flilllznlgongest plateau }of b[0:1] iff
b[('):l‘—'l']]. isTnsiea pI;tIeJau. Looking carefully at deﬁnit.ion (16.b3.?) ofT thhles
lbo[rllgezs)t.lplateau, we determine that this holds iff bd[; ,-‘-D:]f-}- 1[;]1;(1 o
leads directly to the guards for both of the comman :

:= j+1, p+1, and the loop body is

. . . — i=i+1

if b[i]#bli—p] — i= i+
D6[i=bli—p] = i.pi=i+l, pt]
fi

The final program is given in (16.3.11).

(163.1) i,p== 1, I ,

i] I<i<n A i

Uinvariant F p is the length of the longest plateau of 5[0:i —1]}

{bound t: n—i}) _)

doi#n —if bli]#bli—p]— i:= i+] 11
0b[]=bli—p]~i.p=i+lp
fi

od

Discussion

. . L too
A common mistake in developing this prograrri is tfoﬂllr;tizi\sltce,lo I:)g_

i 1 hat contains the value o t,
ly in the game, a variable v t tains il ne lasest, Jong-
::tr gléteau so that the test would be b[i] ——vdu}(;teadr‘c)); IZI[;] Bbu[tz itpgnly

is mi ime 1 develope ep - Bt

this mistake the first time : on
::I:)i;i;licates the program. Principle (16.3.2) —introduce a variable y

Exercises for Section 16.3 205

when there is good reason to do so— should be followed.

Carefully writing definition (16.3.9) of the length of a longest plateay
did help subsequently in determining the body of the loop. Without
(16.3.9), it is too casy to overlook the simple test blil=bli—p]. This
once again illustrates the usefulness of writing simple, clear definitions.

This program finds the length of the longest plateau for any array,
even if not sorted, as long as all equal values are adjacent. It is possible
to speed up the program by increasing i by more than | ~—example, by
P — but the program becomes more complicated.

Exercises for Section 16.3

1. Write a program to sum array elements 5[0:n—1]. The result assertion is

R:s = (Zj:0<j<n_11b[i])

n—1 by a variable.

2. Prove formally that the body of the loop of program (16.3.7) actually decreases
the bound function (point 5 of Checklist 11.9). The important point here is that,
when the body of the loop is executed, g +1<p

3. Develop a program for approximating the square root of n by replacing the
second occurrence of ¢ in (16.3.4) by b, yielding the invariant

a’<n <(b+1)>?
Don’t forget to choose suitable bounds for 4. Compare the resulting program,
and the effort needed to derive it, with the development presented earlier.

4. (Binary Search). Write a program that, given fixed x and fixed, ordered (by
) array b[l:n] satisfying b[1]<x <b[n 1 finds where x belongs in the array.
That is, for a fresh variable ; the program establishes

R:1ISi<n AB[I1<x <b[i+1]

The execution time of the program should be proportional to logn.

After writing the program, incorporate it in a program for a more general
search problem: with no restriction on the value X, determine § to satisfy

E=0Arx<plipv
(ISi<n Ab[I1<x <b[i+1] v
(i=nAblnl<x)

5. Write a program that, given fixed, ordered array b5[0:n —17] where n >0, finds
the number of plateaus in b[0:n—1].

6. Write a program that, given fixed array b[0:n—1] where » >0, finds the posi-
tion of @ maximum value in b —i.e. establish

206 Part 111. The Development of Programs

R:0<k <n Ab[k]=b[0:n—1].

The program should be nondeterministic if the maximum value occurs more than
once in b. .

7. Write a program that, given fixed array b[0: —1] where n =0, stores in d
the number of odd values in 6[0:n—1].

8. Given are two fixed, ordered arrays f[0:m —1] and g{0:n—1], where m,n

= 0. It is known that no two elements of f are equal and that no two elements
of g are equal. Write a program to determine the number of values that occur

both in f and g. That is, establish
E=(Ni,j:0<i<m AO<j<n: f[i1=g[iD

9, Write a program that, given fixed array b[0:n —1]}, where n =0, .determines
whether b is zero: using a fresh Boolean variable s, the program establishes

R:s=(Aj:0<j<n: b[j1=0)

10. Write another program to find the length of the longfest plgteau of b[0:n—1].
This algorithm uses the idea that the loop body should investigate one plateau at
each iteration. The loop invariant is therefore

0<i<n A p =length of longest plateau of 5[0:i—1] A
(i=0 cor i =n cor b[i—1]#b[i)

You may use the fact that the length of the longest plateau of an fampty array is
zero. This exercise is illustrative of the fact that not all loo_p invariants wyﬂ.l arise
directly from considering the strategies for developing mvana_nts dxscvtlssed. in this
chapter. Here, we actually added a conjunct, thus strengthening the invariant, to
produce another program.

16.4 Enlarging the Range of a Variable

Another look at Linear Search

The next method for weakening the result assertion is ill}xstrated by an
example that was already discussed, Linear Search. erte. a program
that, given a fixed integer n >0 and an array b[f):n-—l] that is known to
contain a value x, finds the first occurrence of x in b. v

Denote by iv the least value i satisfying 0<<i A x =b[i] iv is guar-
anteed to exist, by the definition of the problen}. Then, using a variable
i, the result assertion for this program can be written as

R:i=iv

The Linear Search Principle indicates that a search fqr a va}ue i satisfying
R should be in order of increasing value, beginning with the lowest.

Section 16.4 Enlarging the Range of a Variable 207

The Linear Search Principle indicates that a search for a value { satisfying
R should be in order of increasing value, beginning with the lowest.
Thus, the invariant for the loop will be

P 0<i<iv
The loop is then written as

i:=0; dox #b[i]— i:=i+1 od {i=iv}

Discussion

The method used to develop the invariant was zo enlarge the range of a
variable. In R, variable i/ could have only one value: jv. This range of
values is enlarged to the set {0,1, - - - ,iv}. In this case, the enlarging
came from weakening the relation i =jv to i <iv and then putting a
lower bound on i. This method is similar to the last one, introducing a

variable and supplying its range —it just happens that the variable is
already present in R.

The example illustrates another important principle:

(16.4.1) *Principle: Introduce a name to denote a value that is
to be determined.

Sometimes, introduction of such a name allows us to be more informal
—but not less precise. It may be quite easy to describe a relation in
English but less easy to put it in the predicate calculus and, moreover, the
English description may be enough to give the desired insight. But don't
use this technique as a license to avoid the predicate calculus completely,

for the calculus enables us to reason more effectively about the programs
we are creating.

The Welfare Crook

We now proceed to a second example where enlarging the range of a
variable is useful. Suppose we have three long magnetic tapes, each con-
taining a list of names in alphabetical order. The first list contains the
names of people working at IBM Yorktown, the second the names of stu-
dents at Columbia University and the third the names of people on wel-
fare in New York City. Practically speaking, all three lists are endless, so
no upper bounds are given. It is known that at least one person is on all

three lists. Write a program to locate the first such person (the one with
the alphabetically smallest name).

To get at the essence of the problem, consider searching three ordered
arrays (with no upper bounds) f[0:7], £[0:?] and A[0:?] for the least

208 Part I11. The Developiment of Programs

value that is on all three of them; this least value is known to exist.

This program is often written in 10 to 30 lines of code in FORTRAN,
PL/1 or ALGOL 68 by those unexposed to the methods given in this
book. The reader might wish to develop the program completely before
studying the subsequent development.

What is the first step in writing the program? Do it.

The first step is to write pre- and postconditions Q and R. Since the lists
f, g and h are fixed, we will use the fact that they are alphabetically
ordered without mentioning it in @ or R. So Q is simply T. Using iv,
jv and kv to denote the least values satisfying f{iv] =g[jv]=h[kv], and
using three simple variables i, j and k, the postcondition R can be writ-
ten as

R:i=ivAj=jv Ak=kv

Notice how the problem of defining the values iv, jv and kv in detail has
been finessed. We know what least means, and hope to proceed without a
formal definition. Now, why should a loop be used? Develop the invari-
ant and bound function for the loop.

The program must search through a variable number of entries in the -

lists, and this suggests using iteration. The Linear Search Principle,
(16.2.7), suggests that one search from the beginning of the lists. Enlarg-
ing the range of the three variables i, j and k yields the invariant

P O0<i<iv AO<j<jv AO<k<kv

The bound function is t =iv—i +jv—j +kv—k.
Now, what is the initialization, and what commands would one first
think of in order to make progress towards termination?

The initialization is #,j,k:=0,0,0. The simplest ways to’ decrease the
bound function are: i:= i+1, ji= j+1 and k:= k+1. Generally speaking,
it will be necessary to increment all three variables, so a loop of the fol-
lowing form is suggested.

Section 16.4 Enlarging the Range of a Variable 209

(164.2) i,7,k:=0,0,0;
do? —i:=i+l

0?2 —j=j+l
0?2 —k=k+1
od

Now, develop a suitable guard for the command i:= i+1.

We have:
wp(“it= i+17, P) = 0<i+I<iv A0 <jy A<k <kv

The last two conjuncts, and also 0<<i+1, are implied by the invariant, so
(_)nly i+1<iv must be implied by the guard. The guard cannot be H—i <
iv, because the program may not use iv. But, the relation i+l < iv

together with P, means that f(i) is not the crook, and this is true it,'
SLi1<glj]. Thus, the guard can be f[i]<g[j]. In words, since the
crook does not come alphabetically before g[/], if f[i] comes alphabeti-
cally before g[j], then f{i] cannot be the crook.

But the guard could also be f[i]<Aa[k] and, for the moment, we
choose the disjunction of the two for the guard:

Sl1<glilv fli1<hlk]
The other guards are written in a similar fashion to yield the program

(16.43) i,j,k=0,0,0;
do f[i] <g[j1V fi] <h[k] —i:=i+]
0 glil <hlk]VgljI<f[i] —j:=j+I
E'i RLEI<Si1V h[k1<gli] — k= k+1
(¢]

This program terminates, and, upon termination, P is true. But we have
not yet proved that upon termination the desired result holds. Do so.

Point 3 of checklist 11.9 is proved done by showing that

(1644) PA-.BB=R
bolds, where P is the invariant, BB is the disjunction of the guards and R
1s the result assertion.

So suppose the guards are false. Looking at the first disjunct of each
guard, and assuming it is false, we have:

210 Part 111. The Development of Programs

Flil=glil1=hlk]1=11i]

Hence, upon termination we have f{i]=g[j]=h[k] and R holds.
Can any further simple change be made to make the program more
efficient?

Note that only the first disjunct of each guard is r{eeded to prove (16.4.4).
Hence, the second disjuncts can be eliminated to yield the program

(16.4.5) i,j,k:=0,0,0;
do i1 <g[jl —i:=i+l
0gll<alk]—j=j+l
0 AlKI<S[i] — k= k+I1
od

n

Discussion . ' N

In developing this program, for the first g.uardf _at first f[l]W<th'] li
developed, and then weakened to f[i]1<g[j]V fli]1<A[k]. y is 1
weakened?

Well, the first concern is to obtain a correct program; the second con-
cern is to obtain an efficient one. In proving correctness, one tasl.< 1sﬂt10
prove that, upon termination, (16.4.4) h01d§. The s"tronger -+ BB 1s,t 6;
more chance we have of proving (16.4.4). Since BB is the complen;en 0
1+ BB, this means that the weaker BB is, the .mo.re chance we have of prov-
ing (16.4.4). Thus, we have the following principle:

(16.4.6) ePrinciple: The more guarded commands and the
weaker their guards, the easier it may be to develop a

correct program.

Of course, this principle does not provide a license t.o develop ht.mdgeds of
cases; simplicity and minimum case analysis must still be maintained.

The concern for efficiency caused us to simplify' tl.le gugrds to yield
program (16.4.5). This will be discussed in some detail in section 19.1.

Section 6.5 Combining Pre- and Postconditions 211

16.5 Combining Pre- and Postconditions

Sometimes the use of Just one of the three methods described thus far
for weakening an assertion will not yield a suitable loop invariant. This
may happen, for example, when the input variables are themselves to be
modified to form part of the resujt of execution. Thus, one may have to
use a combination of methods.

In many cases, it is useful to remember from our balloon theory (sec-
tion 16.1) that both the pre- and postcondition of a loop imply the invari-
ant and, therefore, to consider both of them when developing the invari-
ant. Can both the pre- and postcondition be put in the same form, so
that the invariant is seen as a simple generalization of both? Can the
Invariant be considered as a sort of union of both?

In this section, we illustrate this approach with two problems.

Inserting Blanks

Consider the following problem. Write a program that, given fixed
n 20, fixed p >0, and array b[0:n—1], adds p*i to each element bli] of
b. Formally, using B; to represent the initial value of b[i], we have

Precondition Q: (4i: 0<i <n: bli]=5;)
Postcondition R: (4i: 0<i <n: bli]l=B; +p*i)

This problem arose when writing a program to insert blanks between
words of a line in order to right-justify the line. The B; are the numbers
of the columns of the beginning of successive words on a line, and p is
the number of blanks to be inserted between each pair of words. After
insertion, the first word will begin in column By, the second in column
B +p, the third in B, +2*p, and so forth.

The problem suggests a loop that changes one b[i] at each iteration.
To derive an invariant, first replace the constant n of R by a variable ;:

POSi<n AMAi: 0<i <j: b[i]=B, +p*)

P states that the first J elements of b have their final values. But the
fact that the other n—j elements have their initial values should also be
included, and the full invariant is
PO<js<n A(4i: 0<i<j: b[i]=B; +p*i) A
Adi:j<i<n: blil=8;)

This leads to the program

212 : Part 111. The Development of Programs

(16.5.1) j:=0; _ _ _
doj#n — j,b[j}=j+L blj1+p*j od

The development of the invariant was a two—s?ep process; a gc?nstant wla(xs
replaced by a variable and the resulting predicate was modified tE ta.t}e1
into account initial conditions. (See section 20.1 for further work wi

this example.)

Swapping Equal-Length Sections -
The next problem is as follows. Write a program t'hat, given ag a;r;y./
b[0:m —1] with two non-overlapping sections b.[z:z—l-n —1] an z h.c
j+n—1], both of length n =0, swaps the two sections. For examp tf
the two sections have the values given in Q below, theg upon termmadm)r,l
they have the values displayed in R below. I.n .the diagrams, X z;n
denote the initial values of b[i:i +n—1] and b[j:j+n —1], respectively.

i itn—1 J jtn—1
0: b| x[0n—1] A b Y{0:n—1]
i itn—1 J jin—1

R: b Y[0:n—1] A b X[0:n—1]

For the rest of the development, a less formal app.r(?ach will bef usedi
which uses the insight gained thus far without. requiring all the Q}l('im;i
details. We take for granted that only the sections ment‘loneq shou . €
changed and that they do not overlap, and use“.the follo”wmg dlagrtz;mts tl:;
the pre- and postconditions —“unswapp.ec%”_ (sv.vapped) m.eans a
values in the indicated section have their initial (final) values:

i i+n—I J jtn—l1
0: b[unswapped | A b[unswapped |
i i+n—1 j jt+n—1

R: b swapped | A b[swapped |

Since each element of the two sections must be swapped, a Ioop.1s_f§u§—
gested that will swap one element of each at a time. The ﬁ‘rst step in find-
ing the invariant is to replace the constant n of R by a variable k:

Section 16.5 Combining Pre- and Postconditions 213

i i+ ~1 j j+k—1
P:0<k<n A b| swapped 7 A bL swapped 7

But P does not indicate the state of array elements with indices in 7 +k:
i+n—1 and j+k:j+n—1. Adjusting P suitably yields invariant P as the
predicate 0<<k <\n together with

i i+k—1 i+k i+n-—1 J jTk—1 j+k j+n—1
(16.5.2) b stapped unswappeﬂ A bstapped unswapped]

The obvious bound function is #—k, and the program is

k:=0;
do k#n — k,b[i+k],b[j+k]= k+1, blj+k], b[i+k] od

For later purposes (section 18.1), we write this as a procedure in (16.5.3).

Review chapter 12 for parameter-argument correspondence conventions, if
necessary.

(16.5.3) {Swap non-overlapping sections blizi+n—1] and b[j:j+n—I1]}

proc swapequals(var b: array of integer,

' value i, j, n: integer);
begin var k: integer;

k:=0;

{invariant: see above, bound: n—k}

dok#n — k,bli+k],b[j+k]= k+1, blj+k1,bli+k] od
end

Discussion

Again, the invariant was developed by replacing a constant of R by a
variable and then adding a conjunct in order to reflect the initial condi-
tions. We used diagrams in order to avoid some formalism and messy
detail. For some, pictures are easier to understand. But be especially
careful when using them, for they can lead to trouble. It is too easy to
forget about special cases, for example that an array section may be
empty, and this can lead to either an incorrect or less efficient program.
To avoid such cases, always define the ranges of new variables carefully
and be sure each picture is drawn in such a way that you know it can be
translated easily into a statement of the predicate calculus.

The development of the invariant was a two-step process. The invari-
ant can also be developed as follows. Both Q (or a slightly perturbed ver-
sion of it due to initialization) and R must imply the invariant. That is,
QO and R must be instances of the more general predicate P. (states

214 Part 111. The Development of Programs

that the sections are unswapped; hence, the invariant must include, for
each section, an unswapped subsection, which could be the complete sec-
tion. On the other hand, R states that the sections are swapped; hence,
the invariant must include, for each section, a swapped subsection, which
could be the complete section. One is led to draw diagram (16.5.2), using
a variable k to indicate the boundary between the unswapped and
swapped subsections.

Exercises for Section 16.5

1. Formally define the pre- and postconditions for the program to swap two non-
overlapping array sections of equal size (without using pictures or diagrams).

2. (Array Reversal). Write a program that reverses an array section bli:j]. That
is, if initially bli:j] = (B;, B;i+1, * - * > Bj), then upon termination b[i:j] =
B, -, Biyi, B;)). Assume that { and j are within the array bounds and that
i<j+l qi=j 1 the array section is empty; this is permitted.)

3. Write a program that, given fixed x, fixed m and n, m <n, and array section
b[m:n—1], permutes the values of b and sets an integer variable p 10 achieve

m p—lp n—l
R:m<p<n/\b[i<x | >x |

More formally, if initially b{m:n —1]=B[m:n—1], then the program estab-
lishes

Rom<p<snA b[m:p—l]<x <b[p:n—1] A perm(b, B).

4. (Partition). Write 2 procedure Partition(b, m, n, p) that, given fixed m
and n, m <n, and array b[m:n—1] with initial value B[m:n—1], permutes
the values of b and sets p to achieve

n—1

m p
R: m<p <n Aperm(b, ByAb [g[m]\B[m}bB[mjj

Procedure Partition is a slight modification of the answer to exercise 3.

5, (The Dutch National Flag). Given is an array b{0:n—1] for fixed n =20, each
element of which is colored either red, white or blue. Write a program to permute
the elements so that all the red elements are first and all the blue ones last. That
is, the program is to establish

b ‘ red elements lwhite elementsl blue elementil

The color of an element may be tested with Boolean expressions red(b[i]),
white(b[i]) and blue(b[i]), which return the obvious values. The number of
such tests should be kept to a minimum. The only way to permute array elements

dimensional array b[0:m—1,0:n
§ach column of & is ordered ,(b.y
in b —ie. using variables i and
X occurs in several places in b
m{mmx‘ze the number of comp
arises in multiplying sparse
ficient-exponent pairs.

9. (Decimal to Binary).
Write a program to calculate an inte

binary representation
i of X, wh]
high order bit, v[k —1] e

. (- .
10 . DeCHnal to BaSC B . G ven]-S an i te varl -
: > . !) nin ger arlab!e X

that gives the base B
base & representation of X, wh — izh on e
the representation, is nonzero. The value i’n X er;ea;g)k) ihe (e order et of
e

Exercises for Section 16.5
215

1S tOo swap t (] ps.
P f h m; hi program Should mak at most n s
WO of the the ¢ at ost waps

6. (Link Reversal) imple variable p WO arrays v] and s are

. A simpl riabl d

‘ p and t 0: 0

used to contain a sequence of values V, Vi, -+ I/rr_ i }? k (0:27 ar
, N s ¥n—1 as a linked list:

v s
vV
0 4 Va—t]| -1

That is,

(1) v[p] contains the first value Vos

(2) f()r H<i <n I i VI I contains the value P I I ” -
/ 5 if k i 1% n
o Iu is then S k cO

(3) if v[k] contains the last value Va—i, then s[k]=—1

No ordering of val i
I Ues in array elements is i 1
is followed by ¥, in the linked list do ot e ey mple the fact hat o

Wi es not
fite a program that reverses the links mean that v[p-+1] contains V.

Array 5 e ——the arrows impleme
not be altered, and upon termination the Iirf)ked Ii:tte:h:ylda;ray >
uld be

7. Wri
; rite formal pre- and postconditions for problem 6
- (Saddleback Search). It is known that a '

i fxxed‘in'teger X occurs in fixed, two-
. .urther, it is known that each r
). Write a pr M
S program to find the position of x
.]t,d € program should establish x =5[i,j]. If
;rzs oe§ not matter which place if found ’Tr}‘/ to

ons in the worst case. This ki '

- ; . s kind of probl

polynomials, each given by an ordered list Ic))f co(::rz

Given is an integer variable x = X where X >0

]gfirt/f1 and array v[0:k —17 that gives the
o s the 7th bit of the representation and th
zero. The value in x may be destroyed)

X,
program to calculate an integer k an:iivhere o

destroyed.

Chapter 17
Notes on Bound Functions

A bound function serves two purposes. First, it is used to show tbat a
loop terminates. Secondly, it gives an upper bound on hqw many 1t§rf.-
tions can be executed before termination occurs, and thus c?an be u;e (;
approximate the time required to execute the program. D1ffer;n’th outr;1e
functions may be used for the same program, dependmg on w .et e}r1 :
programmer is interested in just showing termination or in showm% t }aonat
program is almost optimal or faster than another one. For example, ¢

sider program (16.3.7), which approximates the square root of a positive
integer:

{n=0}

a, b:=0,n+l; ,

(inv: a<b<n+1ra*<n<b%}

doa+1#b — di=(at+b)+2; -
fdsd<n —a=d [|d«d>n —b=dfi

od {a’<n <(a+1)}

i termination. But the
The bound function b—a+1 was used to prove ftci B
smaller bound function ceil (log(b—a)) shows that this program is ml()iiad
much faster than program ((16.2.3)), which performs approximately a

iterations:
a:=0; do(a+1’<n —a=a+l od

Comparison of speeds of execution is treated briefly in Appendix 4.

Usually, the invariant of a prospective loop will suggest a bm‘md fur.lc-
tion. This was the case in most of the programs develope.d in earhell;
chapters —e.g. summing the elements of an array (15.1.1), Linear Séezr;
(16.2.2), the Plateau Problem (16.3.11) anq th‘e Welfare Crook (1 4.2).
However, we give two pointers here to help in finding bound functions.

Chapter 17 Notes on Bound Functions 217

Using the notation of the problem and its solution

Consider a problem from section 16.3, searching a non-empty, two-

dimensional array 5[0:n—1,0:m —1] for a value x. The invariant for this
algorithm was:

0 J n—1
0 x not here
POS<i<m AOLj<<n A | ‘
m—1

Since x has to be in the untested section, a possible bound function is
the number of elements in the untested section
which is (m—i)*n —j. It can be formally proven that this is indeed a

bound function for the loop.

The general idea is the following:

(17.1) eStrategy: Express the bound function, in words, as a sim-
ple property of the invariant and the problem, and then
formalize it (if necessary) as a mathematical expression.

A second example of the use of this strategy is the problem Four-tuple
Sort of section 15.2. Four variables g0, gl, g2, g3 were to be permuted
to achieve g0<<gl<g2<g3. The bound function was chosen to be the
number of inversions in the sequence (q0,ql,q2,g3). (Of course, not
knowing what an inversion is might present some initial difficulties.)

Using lexicographic ordering

Consider pairs of integers (i, j). We say that one pair (i, j) is less than
another pair (&, k), written (i, j)<<(h, k), if either

i<h or i=hAj<k
For example, (—1, 5)<<(5, 1) <(5, 2). This is called the lexicographic ord-
ering of integer pairs. It is extended in the natural way to the operators
<, > and 2. It is also extended to triples, 4-tuples, etc. For example,

(3,5,5<(4,5,5<(4, 6,0)<(4, 6, 1).

Now consider program (17.2), whose only purpose is to illustrate using
lexicographically ordered tuples to prove termination.

218 Part 111. The Development of Programs

(17.2y {0<m AO0<n}
i,j=m—1, n—l;

do j #0 —-j=j—1
[i#0Aj=0—1i,j=i—1, n—l
od

Execution is guaranteed to terminate, because

(1) Variable i satisfies 0<<i <{m and j satisfies 0<{j <n.

(2) Each iteration transforms the pair (i,j) into a smaller pair
(lexicographically speaking). By (1), this, can only happen a finite
number of times.

But what bound function should be used to prove termination? Pre-
sumably, it should include a term i and a térm j, since both variables are
decremented. However, in the second guarded command the decrease of
[in i is accompanied by an increase of n—1 in j. In order to have an
effective decrease, the term i should be weighted: i*n. Therefore the
bound function is

t:i*n +j.

Each iteration decreases ¢ by exactly 1, so that ¢ indicates exactly how
many more iterations are to be performed.

We state the general idea in the following theorem, which is given
without formal proof since it is obvious from the previous discussion.

(17.3) Theorem. Consider a pair (i, j), where i and j are expressions
containing variables used in a loop. Suppose each iteration of the
loop decreases (i, j) (lexicographically speaking). Suppose further
that i satisfies mini <<i <maxi and j satisfies minj <j <maxj,
for constants mini, maxi, minj and maxj. Then execution of the
loop must terminate, and a suitable bound function is

(i —mini)*(1+maxj—minj) + j —minj

A similar statement can be made concerning a triple (i, j, k), 4-
tuple (7, 7, k, 1), etc., instead of pair (i, j). O

If one can exhibit a pair (triple, etc.) that satisfies theorem 17.3, there
is no need to actually produce the bound function, unless it makes things
clearer or is needed for other reasons. We give three examples.

In section 15.2 the following program (15.2.4) was written. for searching
a (possibly empty) two-dimensional array.

Chapter 17 Notes on Bound Functions

219

0<m A0<n}
,j=0,0;
d{(})z’#m Aj*n cand XFb[i,j]— j= j+1

i#mAj=p —~i, =i
g I, ji=i+1,0
0<i<m r0<j<n AX=blE, jDV(G=m AxEb)}

The pair (i, j) is initially (0,0) and each iteration increases it. Therefore

(t)hi palr. ém ~i,n—j) is decreased at each iteration. Further we have
Sm—ism and 0<n—j <n. Hence, theorem 17.3 can be applied and

the IOOp ter minates. I he bOund fu t at ar 1S€s 1] om ”le use ()! the
nction th
theo}enl 1S (‘” l) (‘z 1) n 7. S h

As a second example, consider program Four-

. t .
15.2, which permutes variables uple Sort from section

90, g1, g2 and ¢3 to achieve 90 < gl <

do q0>q] — qo’ ql:= ql, q0
0 91>q2 —~ql, q2:= g2, g1
0 g2>g3 — q2, g3'= g3, q2
od

The t.uple (qq, q1, 92, g3) is decreased (lexicographically speaking) by each
lteration. It is bounded below by the tuple whose values are min((5)/ 1

92, g3) and is bounded above by the 4-tuple whose values are o ‘]0:
ql, g2, q3). Hence, the loop terminates. el

As a final example, consider the Railroad Shunting Yard probie A
shunting .yard contains a number of trains, each with one orpmorem.
An algorithm is to remove all cars from the yard, but under the condftz'trs.
tha.t f)nly one car be removed at a time. This means that trains mustli))n
split into smaller trains, and the following algorithm is proposed)

do shunting vard is not empty —
Select a train rain;
if train has exactly one car

[train has more than one car
fi

od

— Remove train from yard
— Split train into two trains

220 Part 111. The Development of Programs

(number of cars in the yard, —(number of trains in the yard))

Each execution of the loop reduces (lexicographically speaking) the pair.
Further, we have

0 << number of cars<initial number of cars

— (initial number of cars) < —(number of trains)< 0

By theorem 17.3, the loop terminates.

Exercises for Chapter 17

1. Find the bound function of theorem 17.3 for the Four-tuple Sort program
whose termination is proved using the 4-tuple (g0, g1, g2, g3).

Chapter 18
Using Iteration Instead of Recursion

A procedure or function is recursive if during its execution it may be
called again. Recursive procedures often arise from recursive definitions
in mathematics. The usual example given is the factorial function, n!,
which for nonnegative integers is defined

0 = 1
n! = n*@m—-1)! forn>0.

Note how n! is defined in terms of (n—D); it is recursively defined.

This definition can be translated easily into a recursive procedure to
compute n !

{Given n 20, store n! in answer }

proc fac(value n: integer ;result answer: integer);
if n =0 — answer:= 1
[n>0— fac(n—1, answer); answer:= n*answer
fi

Recursion is useful, and it definitely belongs in the programmer’s tool kit.
For example, top-down parsing using recursive procedures (sometimes
called recursive descent) has been a favorite of mine in compiler construc-
tion courses for over ten years.

At the same time, in theory at least, any recursive program can be
written iteratively (and vice versa), and in practice it may make sense to
do so. Perhaps the available programming notations force the use of
Iteration, perhaps problems of efficiency of space and time force the use
of iteration, or perhaps an algorithm just seems easier expressed itera-
tively. .

Through a series of examples, we provide some tools and techniques

222 Part 11I. The Development of Programs

for writing programs iteratively that could have been written recursively.
One trick in doing so will be to think iteratively right from the beginning.
That is, if the program will be written using iteration, then the invariant
for the loop will have to be developed before writing the loop (as much as
possible).

The topic will allow us to bring up two important strategies and dis-
cuss the relation between them, for recursive procedures often evolve from
their use. These strategies are: —solving problems in terms of simpler
ones, and divide and conquer. While not on the same level of detail and
precision as some of the strategies presented earlier, these two old
methods can still be useful when practised consciously.

At the end of section 18.3, some comments are made concerning the
choice of data structures in programming and the use of program
transformations.

18.1 Solving Simpler Problems First

Sometimes, we simply don’t know how to begin solving a problem, and
the methods analyzed thus far don’t seem to help. In such situations, the
following may help.

(18.1.1) eStrategy: Try to solve a problem in terms of simpler ones.

“Simpler” may mean different things at different times. A problem may
be simpler because some restrictions have been omitted (this is generaliza-
tion). It may be simpler because restrictions have been added. Whatever
the change in the problem, if it leads to a solution of the simpler problem
it may be possible to solve the original problem in terms of it.

In order to illustrate the technique, let us develop a program for the
problem Swapping Sections. Given are fixed integer variables m, n and
p satisfying m <n <p. Given is (part of) an array, b{m:p—1], con-
sidered as two sections:

m n p—1

Q: blB[m:n—l]l Bln:p—1]]

where B denotes the initial value of array 4. The program should swap
the two array sections, using only a constant amount of extra space
(independent of m, n and p), thus establishing the predicate

Section 18.1 Solving Simpler Problems First 223

m p—1
(18.1.2) R: b | Bln:p—11 |B[m:n—1]|

How should one begin? Well, a procedure swapequals, (16.5.3), has
already been written to swap non-overlapping sections of equal size. Per-
haps the current problem, which involves sections of unequal size, can be
solved in terms of this simpler one.

So suppose for the moment that section b[m:n—1] is bigger than
b[n:p—1]. Consider b[m:n—1] to consist of two sections, the first of
which is the same size as b[n:p—1] (diagram (2) below). Then the equal-
sized sections containing ¥; and 7 can be swapped to yield diagram (b)
below; further, the original problem can then be solved by swapping the
tyvo sections containing ¥, and ¥,. These two sections may be of unequal
sizes, but at least one of them is smaller than in the original problem, so
that progress has been made.

m m-+p—n n p—I m n mtp—n p-—1
(a)bLfl i Xy ' ?j (C)bL7) X , X]
m m-+p—n n p—I m n_ mtp-—n p-—I
ey [®» [x| @e[m] = |7]

Now suppose that the second section, b[n :p—1], is larger. Then the case

is as given in diagram (c), and procedure swapequals can be used to
transform it into diagram (d).

. Now let’s try to work this idea into a program. Diagrams (b) and (d)
indicate that, after execution of swapequals, n is always the left boundary
of the rightmost section to be swapped. But this is also true initially.
Therefore, an invariant can be obtained by replacing constants m and p
by variables and taking into account initial conditions:

m h n k p—1
already |swap with|swap with| already
b [swapped |b[n:k—1]|b[h:n—1] swapped

However, note that the algorithm requires comparison of the lengths of
bln:k—1] and b[h:n—1]. Also, procedure swapequals requires the
lengths of sections. Therefore it may be better to represent the lengths of
the sections rather than their endpoints. The invariant P becomes the
predicate 0 <i <n—m A 0<j <p—n together with the following:

224 Part I11. The Development of Programs

m n—i n n+j p—1
b | already | swap with | swap with already
swapped |b[n:n+j—1]|b[n—i:n—1]| swapped

Using the bound function 1 =max (i, j), the program is written as

i,j'=n—m, p—n; {P}

do i >j — swapequals(b, n—i, n, j); i:= i—j
1i<j — swapequals(b, n—i, n+j—ii); ji= j—i
od;

{Pri=j}

swapequals(b, n—i, n, i)

Discussion
This program could also have been written in recursive fashion as

{Swap sections b[m:n—1] and b[n:p—1], where m <n <p}
proc swap_sections(var b: array of integer;
value m, n, p: integer);
if n—~m =p—n - swapequals(b, m, n, p—n)
ln—m>p—n — swapequals(b, m, n, p—n);
swap..sections(b, m+p—n, n, p)
n—m <p—n — swapequals(b, m, p+m—n, n—m);
swap_sections(b, m, n, m+p—n)
fi

In this case, 1 like the iterative version better. It was not difficult to
discover the invariant, and it is, to me, easier to understand (this is not
always the case). The iterative version does require two extra variables i
and j, which are not needed in the recursive version.

The iterative version has the neat property that deleting all the calls of
swapequals results in program (18.1.3) to compute the 'greatest common
divisor, ged(n—m, p—n), of the initial array-section sizes. Tq see this
old, elegant program emerge from a useful, practical programming prob-
lem was a delightful experience!

(18.1.3) {m<n<p}
i,ji=n—m, p—n;
{inv: 0<i AO<j A ged(n—m, p—n)=ged(i, j)}
doi>j —i=j~j
i<j—ji=j—i
od
{i=j=ged(n—m, p—n)}

Exercises for Section 18.1 225

The program could have been developed by first replacing n and p by
variables A and k, and then determining how to reduce the size of the
unswapped portion. There are often many ways to arrive at the same pro-
gram, and one cannot really say that one is better than the other. Redo-
ing a problem once done, using the principles and asking why they weren’t
used the first time, can increase programming skill and lead to better pro-
grams. The following confession concerns this point.

Confession: When 1 first developed this program, my old habits got in
the way and I failed to follow the principles of introducing variables only
when needed and finding the invariant by replacing constants by variables.
I immediately introduced Jour variables, which indicated the beginning of
the two sections to be swapped and their lengths. A student recognized
that one variable wasn’t needed because the beginning of the rightmost
section was always n. This caused me to stop and redo the development
as shown above, this time adhering to principle 16.3.2 and introducing
variables only when there is a good reason to do so. This led to the
recognition that the ged algorithm was embedded in the solution.

Exercises for Section 18.1

L. Consider a procedure reverse (b, i, J), which reverses the list of values in
b[i:7] —see exercise 2 of section 16.5. Use this procedure, which solves a simpler
problem, to write a program to swap adjacent sections.

This exercise illustrates that the simpler problems used to solve a given prob-
lem may be difficult to find. It is difficult to give a methodology to develop any
program. Some programs arise just out of new ideas, and without those ideas the
solutions wont be found.

2. The Fibonacci numbers S are defined as follows:

Jo =10
S =1
Sfn = fn—l+fn—2 forn >1

The first eight Fibonacci numbers are 0,1,1,2,3,5,8, 13.
The definition of f, for n > 1 can be written in matrix notation as follows:

I T R

h 10 fn—2

It is fairly easy to write a program that takes time proportional to 1 to calculate
n- However, in a subsequent section, 19.1, a program is given to perform

exponentiation " for positive integers n in time proportional to logn, where i

could be a matrix. Write a program to calculate f,, in logarithmic time using the

simpler(?) problem of exponentiation.

226 Part 111. The Development of Programs

18.2 Divide and Conquer

In the preceding section, we discussed solving a problem in terms of a
known, simpler problem. In this section, we discuss a related strategy,
which has been around for some time:

(18.2.1) eStrategy: Divide and Congquer

In programming, this strategy is often used in the following sense. One
tries to divide a problem into two or more smaller, similar problems. If
the division can be done, then the same process can be performed on the
smaller problems. If the division can be done without too much effort
(during execution), then an effective, efficient algorithm may have been
developed.

This strategy usually leads to dividing something in half and then pro-
cessing each part in the same manner, until the parts are small enough to
process directly. This often leads to a logarithmic factor in the formula
describing the speed of execution.

The difference between strategy 18.1.1, solving a problem in terms of
simpler ones, and strategy 18.2.1, divide and conquer, may be slight. For
some problems, it may be more a matter of what question motivates the
development than anything else. In strategy 18.1.1, one first recognizes a
simpler problem and then asks how it can be used effectively. This was
the case in the development of program Swapping Sections. In strategy
18.2.1, on the other hand, one first asks what it would mean to divide the
problem into smaller pieces, and then looks for ways to solve the original
problem in terms of the pieces.

In strategy 18.1.1, the simpler problem motivates the development. In
strategy 18.2.1, the idea of division leads the way, although it may lead to
using a simpler problem.

We illustrate the approach by developing the program Quicksort, one
of the faster sorting algorithms. Given is a fixed integer n =0 and an
array b[0:n—1]. The array is to be sorted.

If the array is small enough, say n <2, then any simple algorithm may
be used to sort it —for example

Sort b[0:n —1] directly, assuming n <2:
if n 72 cor B[O]1<<H[1] — skip
[[n =2 cand b[0]>H[1]— b[0], b[1]:= b[1], b[0]
fi

However, if n >2 then a more general method must be used. The divide
and conquer strategy invites us to perform the sort by sorting two (or
more) sections of the array separately. Suppose the array is partitioned as

Section 18.2 Divide and Conquer 227

follows.

What condition must be placed on the two sections so that sorting them
separately yields an ordered array?

Every value in the first section should be < every value in the second sec-
tion:

0 k n—1
(18.2.2) b |[<b[k:n—1][=b[0:k—1]

This means that if the values of b can be permuted to establish the above
predicate, then to sort the array it remains only to sort the partitions
b[0:k—1] and b[k:n—1].

Actually, a procedure similar to one that establishes (18.2.2) has
already been written —see exercise 4 of section 16.5— so we will make
use of it. Procedure Partition splits a non-empty array section b [m:n—1]
into three partitions, where the value x in the middle one is the initial
value in b[m]:

m D n—1
(1823) Rim<p<nAb| <x |x| >x

After partitioning the array as above, it remains to sort the two parti-
tions b[m:p—1] and b[p+I1:n—1]. If they are small enough, they can be
sorted directly; otherwise, they can be sorted by partitioning again and
sorting the smaller sub-partitions. While one sub-partition is being sorted,
the bounds of the other must be stored somewhere. But sorting one will
generate two more smaller partitions to sort, and their bounds must be
stored somewhere also. And so forth.

To keep track of the partitions still to be sorted, use a set variable s to
contain their boundaries. That is, s is a set of pairs of integers and, if
(i,j) isin s, then b[i:j] remains to be sorted. We write the invariant

(18.2.4) P:s is a set of pairs (i, j) representing disjoint array
sections b[i:j] of b. Further, b[0:n—1] is ordered
iff all the disjoint partitions given by set s are.

228 Part 111. The Development of Programs

Note how English is used to eliminate the need for formally introducing
an identifier to denote the initial value of array 5.

Thus, we arrive at the following program:

(18.2.5) s:= {0, n—D};

{Invariant: (18.2.4)}

do s #{} — Choose((i, j), s); s:==s—{(i,)}
if j—i <2 — Sort b[i:j] directly
ij—i =2 — Partition(b, i, j,p);

s=s Vi, p— D Vit

fi

od

Operation Choose((i, j), s) stores in i and j the value qf a pair (i‘, 7
that is in s, without changing s. This is a nondeterministic action, since
any member of s may be chosen. See Appendix 2.

Discussion

Program (18.2.5) describes the basic idea behind Quicksort. 'Proof qf
termination is left to exercise 1. The execution time of Quicksort is
O(n logn) on the average and O(n?) in the worst case. The space needed
in the worst case is O(n), which is more than it need be; exercise 2 shows
how to reduce the space.

In the development of this program, the guiding motivation was the
desire to divide and conquer. The simpler problem needed to e'ffect the
divide and conquer was procedure Partition. Had we first noticed that
procedure Partition was available and asked how it could have. been userd,
we would have been using strategy 18.1.1, solve the problem in terms of
simpler ones.

Exercises for Section 18.2

1. Prove termination using the method developed in chapter 17 (theorem 17.3).
Be careful: a partition b[i:j] can be empty.

2. How big can set s of program (18.2.5) get? The maximl{m si;e of 5 can be
reduced tremendously by maintaining a sequence (see Appendix 2) 1nsteaf:i o'f a set
v‘and, after partitioning, putting the two pairs (i,p—1) and~(p+1:j) in the
sequence in a certain order. Revise algorithm (18.2.5) to do this and recalculate
the maximum size the sequence.

Section 18.3 Traversing binary trees 229
18.3 Traversing binary trees

Definitions and notations

An ordered binary tree is a finite set of nodes, or values, that either is
empty or consists of one node, called the roor of the tree, and two disjoint
ordered binary trees, called the left subtree and right subtree, respectively.

An ordered binary tree is represented in Fig. 18.3.1. Its root is A its
left and right subtrees consist of the nodes {B, E, I, J} and {C, F, G,

K, L}, respectively. The roots of A’ left and right subtrees are B and
C.

A
AN RN
E F G
SN /N
I J K L
Figure 18.3.1 Example of a Binary Tree

The adjective “ordered” is used to indicate that an ordering on subtrees
is involved: the left subtree is always listed first (or to the left). The
adjective “binary” is used to indicate that there are at most two subtrees.
From now on, we use the shorter term “tree” for “ordered binary tree”,

The tree whose root is B in Fig. 18.3.1 has an empty left subtree.

Nodes with two empty subtrees are called legves. In Fig. 18.3.1, G, 1, J,
K and L are leaves.

If p is a tree, then empry(p) has the value of the sentence “tree p has
no nodes.” Further, if + empty(p), then left[p] and right[p] are used to
denote the left and right subtrees, respectively. Finally, if tree p is not
empty, root[p] denotes the value of the root node of r.

Trees, graphs and related mathematical structures play an important
role in computer science. They make some ideas easier to understand,
their properties allow the understanding of efficiency of many algorithms,
and they are fundamental parts of many algorithms. The (ordered binary)
tree, for example, is an important concept in several sorting algorithms, in
some storage allocation algorithms, and in compilers. Thus, it is impor-
tant to understand the basic algorithms that manipulate these structures.

230 Part I1I. The Development of Programs

Above, the term tree is defined in the easiest possible manner: recur-
sively. For that reason, many algorithms that manipulate trees are given
recursively also. Here, we wish to describe a few basic algorithms dealing
with trees, but using iteration. With a firm grasp of this material, it
should not be difficult to develop other algorithms that deal with trees,
graphs and other structures.

Implementing a tree

We describe one typical implementation of a tree, which is motivated
by the need in many algorithms to insert nodes into and delete nodes
from a tree. The implementation uses a simple variable p and three
arrays: root[0:7], left[0:?] and righz[0:?].

Variable p contains an integer satisfying —1<{p. It describes, or
represents, the tree.

If integer k describes a tree or subtree, then the following holds:

1. empry(k) is equivalent to k =—1.

2. 1 empty(k) is equivalent to 0<<k. If 1 empty(k) holds, the
value of the root is in root[k], the left subtree of the root is
given by lefi{k] and the right subtree by right{k].

For example, the tree of Fig. 18.3.1 could appear as given in (18.3.1).

0123456 7 8 9 10

root| B |A CIEVFIT{J|K|L|G

(183.) p=1 left|—1|0 5|68 |—1|—1|—1|—1|~1
right| 4 |3 107 (91|l |—1|—1|—1

Some comments are in order. First, p need not equal 0; the root node
need not be described by the first elements of the arrays, root[01, lefi[0]
and right[0]. In fact, several trees could be maintained in the same three
arrays, ‘using pl, p2 and p3 (say) to “point to their roots”. This, of
course, implies that the nodes of the trees in the arrays need not be in any
particular order. In (18.3.1), the elements with index 2 of the three arrays
are not used in the representation of tree p at all. Moreover, the root of
the left subtree of A4 precedes A in the array, while the root of its right
subtree follows it. This means that one can not process the tree by pro-
cessing the elements of roor (and left and right) in sequential order.

In the rest of this section, we will deal with a tree p using the original

notations empty(p), root[p], lef{p] and right[p]. Note, however, that
this notation is quite close to what one would use in a program dealing

with a tree implemented as just shown.

Section 18.3 Traversing binary trees 231

Counting the nodes of a tree

As a first exar}lple, we write a program, Node Count, to calculate the
number of nodes in a tree D . As an abbreviation, let

#p

denot.e the number of nodes in tree P. Thus, using a simple variable ¢ to
contain the number of nodes, the program should establish

(183.2) R:#p=c

. The ﬁrst §tep, of'course, is to give a definition of #p, in the hope that
it will yield msxg}}t Into the program. Write a definition of #p —it may
help to use recursion since tree is defined recursively.

18.3.3 _ fempiy () =0
(18.3.3) #p Laempty(p) — 1+itlef1[p]+iright[p]

This definition gives us the germ of an idea for the algorithm: if
em_pty(p), use the result 0; otherwise evaluate l+#left[p]+#right[;v]
This evgluation requires calculating the number of nodes in left{p] anci
calculgtmg the number of nodes in right[p]. But #left[p] is defined
recursively by (18.3.3) also, and therefore calculating it can be expected to
force us to calculate the number of nodes in its subtrees in the same
manner. Thus, we see the need for counting the number of nodes in
several subtrees of p, and it seems wise to consider using a set variable s

(s.ay) to maintain the set of trees whose nodes must be counted. And this
hints at iteration. '

We devel‘op a loop invariant by extending the range of variable ¢ in
re§u1t assertion R and taking into account the fact that s contains trees
still to be counted:

(18.3.4) P:#p =¢ +(Zrir€s: #r)

where .each merr.lber r of s is some subtree of 2. That is, the number of
nodes in tree p is ¢ plus the number of nodes in the trees given in set .

The invariant is easily established by ¢, s:=0, {p}. Each iteration of a
loop should lead closer to termination, and this means that it should pro-
cess a subtree of s in some manner., Using definition (18.3.3), the pro-
gram 1s easily written as ,

232 Part 111. The Development of Programs

(18.3.5) ¢,s5=0,{p}
{inv: (18.3.4)}
{bound: 2+(#ip—c)+|s|}
do s #{} — Choose(q, s); S:Z-S —{g};
. - skip
ﬂ[; ing');;t(g()q)—' i si=c+1, s Viright[q1}Vileft[q]}

fi
od {c =#p}
The bound function was discovered by noting t'hat the pair (#pc:lc, tlesr 11)715
decreased (lexicographically speaking) by each iteration —see . ap .
Note that it does not matter in which order th.e subtrees in set ..vu aé:
processed. This is because the numbe? of nodes. in each §ubtree :;7116 e
added to ¢ and addition is a commutative operation. In this case,

i i itrar
of the nondeterministic operation Choose(q, .s), which stores an aer:essarz
value in s into g, nicely frees us from having to make an unn

choice.

Preorder traversal ')
The preorder list of the nodes of a tree p, written preorder.(pt)ﬂei_
defined as follows. If the tree is empty, it is the empty sequence (); o

wise, it is the sequence consisting of

1. The root, followed by
2. The nodes of the left subtree, in preorder, followed by

3. The nodes of the right subtree, in preorder.

For example, for the subtree e of Fig. 18.3.1 with root £ we have
preorder(e)=(E,I,J)

For the whole tree a of Fig. 18.3.1 we have
preorder(a)=(4,B,E,I,J,C,F,K,L,G)

i as
Using | to denote catenation of sequences, preorder(p) can be written

= vt O | (leftIp] |
d = < sempty(p) — (root(p))| preorder(le
(18.3.6) preorder(p) { ‘ A

Note that preorder(p) is defined recursively. This not.atlocxil tand ltll(;; d:;
initi i f catenation has been designed to a '
finition of preorder in terms o : . . '
to state and analyze various properties and algorithms in a simple, crisp

Section 18.3 Traversing binary trees 233

manner; it is illustrative of the use of notation to help promote under-
standing.

A preorder traversal of a tree consists of “walking” through the tree in
the order given by its preorder list, “visiting” each node in turn in order to
perform some operation on it. We now consider developing a program
that performs a preorder traversal, storing the values of the nodes in an

array. More precisely, for a tree P, execution of the program should es-
tablish

(183.7) R:c=#p /\preorder(p)Zb[():c-l]

Note the similarity between definitions (18.3.3) and (18.3.6). They have
the same form, but the first uses the commutative operator + while the
second uses the non-commutative operator |. Perhaps the program to
calculate the preorder list may be developed by transforming program
Node Count so that it processes the trees of set s in a definite order.
First, let’s rewrite Node Count in (18.3.8) to store the node values into
array b, instead of simply counting nodes. The invariant is

O0<c<#p A
set of nodes of p = b[0:c—1]U{nodes of trees in s}

(183.8) ¢,s5:=0, {p};

{bound: 2+(#ip—c)+|s|}

do s #{} — Choose(q, s); si=s—{q};
if empty(q) — skip
0+ empty(g)—c, ble)=c+1, root[q];

$= s Viright[ql}V{lefiq]}

fi

od {c=#p A b[0:c—1] contains the nodes of p}

Now transform (18.3.8) as follows. Instead of a set § use a sequence r.
The key is to insert trees into r and take them out in a manner that
allows us to conclude that b contains the preorder list of p. This is easily
done by observing the definition of preorder, and we have the invariant

(183.9) P:0<c<#p A
preorder(p) = b[0:c—1]| preorder(rg)| - - - |
preorder(r,|_)

Each iteration of a loop will then process tree ro. 1If it is empty, it is
deleted from the sequence of trees to be visited; if not, its preorder is

given by (18.3.6), and the preorder list & and the sequence of trees r are
changed accordingly:

34 Part 111. The Development of Programs
2

(183.10) ¢, r=0, (p);

{bound: 2*(#p—c)+|r|}

dor#() —q,r=r[0},r[1.]; .
if empty(q) — skip .
[+ empty(q)— c, blc]= c+1, rootlq];

r:=lefiql| right[q] | r

fi

od {c=#p}

Discussion ' .
In (18.3.5), the order in which the left and rlght.subtrees are stor o
set s is immaterial, because addition, which is bCl;l% f)g)rfo;med :rn the
i 1 mutative. In (18.3.10), however,

number of nodes in each, is com In °
order in which nodes are stored in sequence r is important because opera
tion | is not commutative. -
My first development of this program, done over 5-y§a§.st3goéivrv;sﬁon

i i d hoc process, with little s

erformed like this. It was an a

gecause I was new at the game and had to struggle to learn and perfect

techniques. ‘
i 1 1 ota-

Without the sequence notation (see Appendu_(2), mcludx?g thearr:l 2
tion for catenation, one tries to work with English phrases, for example,

writing the invariant as

t{1:i] is a sequence of pointers to subtrees that have not be;n
visited, and preorder(p) is equal to b[0:c—1], followed by the
preorder list of these trees.

. t was
The use of English is worthwhile in some contexts, for eIxartr}llple ;ztiv(vm
i i i is s s
ily i i to discuss swapping sections. In '
used heavily in section 18.1 wapp n e on
«“ 1 tree” and “visiting nodes” are u
the concepts of “traversing a ' : re uselul In gon-
i 1 1 in developing this algorithm
eral discussions. But their use in ' R can be conus
i it i to see from the algorithm wha .
ing, for it is not at all easy ‘ '
m;gt been visited. Far better is to make the result assert{on and Tnvar;a:;
more formal, as has been done, because it leads to a crisp, precise, cle

explanation. ‘ ' ' -
The ability to easily write such iterative traversal algorithms is neces

sary in many applications. Study of these two algorithms and mastery of

the few execises is essential.

Section 8.3 Traversing binary trees 235

A note on data refinement

In developing Quicksort in section 18.2 and Node Counting in this sec.
tion, we used objects (and operations on them) that suited the problem
—sets of pairs of integers and sets of trees— and operations on them.

principle
(18.3.11) ®Principle: Program inzo a programming language, not in it

In general, this principle deals with data and jts representation, as well ag
with commands. We should use data structures that suit the problem,
and, once a correct program has been developed, deal with the problem of
changing the data structures to make their use more efficient and imple-
menting them in the programing language. This latter task, often called
“data refinement”, has not received the attention that “program refine-
ment” has.

In a “modern” programming notation allowing “data ¢ncapsulation”,
data refinement may just mean appending a program segment that des-
cribes how the objects are to be represented and the operations are to be
implemented. In other programming notations, it may mean transforming
the program so that it oOperates on allowable objects of the language.

A note on program transformation

Program transformation is a hot topic these days; many advocate using
an interactive system to transform a problem description into an efficient
program through a series of such transformations. In this section, we
used program transformation to transform program Node Count into a
program to derive a preorder list of a tree.

This is not the place to give a detailed account of program transforma-
tion systems, but one comment should be made. When making a trans-
formation, as we did, always make sure the result can be understood by
itself, without having to study the transformation. Thus, the result should
have its own proof of correctness in terms of loop invariants and so forth.

236 Part 111, The Development of Programs

Exercises for Section 18.3
1. Write a program to count the number of leaves of tree p.

2. Write a program to store in array b the inorder list of nodes. of .tree D. T}tle
ir;order list is defined as follows. If p is. err}pty the inorder list is the empty
sequence (). If p is not empty, the inorder list is:

1. The nodes of left[p], in inorder, followed by
2. The root, followed by
3. The nodes of right[p], in inorder.
3. Write a program to store in array b the postorder list of nodes of tree p. The

postorder list is defined as follows. If p is ex_np?y the postorder list is the empty
sequence (). If p is not empty, the postorder list is

1. The nodes of left[p], in postorder, followed by
2. The nodes of right{p], in postorder, followed by
3. The root.

4. The root of a tree is defined to have depth 0, the roots of 1(tis s;t;bt}e:;ehtz;\;:
depth 1, the roots of their subtrees have depth 2, and so on. The etp i0S fhetree
itself is the maximum depth of its nodes. The depth of an empt;fl 1:36:e itse.lf o
example, in tree (18.3.1), A has depth 0, F has depth 2, and the tre

depth 3. Write a program to calculate the depth of a tree.

Chapter 19
Efficiency Considerations

The programmer has two main concerns: correctness and efficiency.
Thus far, this book has dealt mainly with the issue of correctness. This
does not mean that efficiency is unimportant. When faced with any large
task, it is usually best to put aside some of its aspects for a moment and
to concentrate on the others, and that is what we have been doing. This
important principle is called Separation of Concerns.

The two main concerns of the programmer can be handled by different
mechanisms. The correctness concern is handled using a theory of
correctness, such as the one developed in Part II. The formal definition
of correctness is given not in terms of how a program is executed, but,
instead, in terms of how theorems of the form {@} S {R} are to be

proved. It is mathematical in nature, relying heavily on the predicate cal-
culus.

On the other hand, at this time, efficient use of time and space can
best be discussed in terms of some model of execution. Knowledge is
required of the space needed by integer variables, arrays, etc., and one
must understand how the commands of the programming notation are
executed on a computer,

Actually, we have been dealing with both concerns to some extent all
along. For example, in the Four-tuple Problem (section 15.2) three
guarded commands were deleted in order to make the program shorter
and perhaps more efficient. We also developed two programs for approx-
imating the square root of an integer (sections 16.2 and 16.3) and dis-
cussed their relative speeds. However, as it should be, our first concern
has been correctness. An efficient program is useless if it does not do
what it is supposed to do.

In this chapter, we turn our attention to a few general techniques for
improving the efficiency of programs.

238 Part III. The Development of Programs

19.1 Restricting Nondeterminism

Nondeterminism arises when two or more guards of an alternative con-
struct or a loop can be true at the same time. It also arises when com-
mands like Choose(q, s) are used (see Appendix 2). Sometimes, a pro-
gram can be made more efficient by restricting or deleting the nondeter-
minism.

Recall from section 15.2 that, in a correct loop, the guards can be
strengthened without disturbing correctness as long as point 3 of checklist
11.9, P A 1BB = R, remains true (P is the invariant, R the result asser-
tion and BB the disjunction of the guards). Thus, one may restrict the
nondeterminism by strengthening the guards. And, if a guard is streng-
thened to the everywhere-false predicate F, then the corresponding guard-
ed command may be deleted because the command will never be exe-
cuted.

Nondeterminism can be eliminated without fear of destroying point 3
of checklist 11.9 using the following simple theorem.

(19.1.1) Theorem. Suppose a loop has (at least) two guarded commands,
with guards Bl and B2. Then strengthening B2 to B2A Bl
leaves BB, and hence P A +BB = R, unchanged.

Proof. BB contains the disjunct BIV B2. Strengthening B2 as indicated
changes this disjunct (and only this part of BB) to BI V (B2A . BI). Using
De Morgan’s law and simplifying, we see this is equivalent to the original
disjunct BIV B2. Hence, BB remains unchanged. 0

Use of theorem 19.1.1 eliminates nondeterminism because then the two
guards cannot both be true in the same state.

A few examples of strengthening guards and using theorem 19.1.1 may
provide a better understanding.

Revisiting the Welfare Crook

In section 16.4 and exercise 1 of section 16.4, a program for the Wel-
fare Crook was developed. We re-analyze it here. Given are three alpha-
betically ordered lists of names, stored in fixed, ordered, arrays f[0:7],
g[0:7] and A[0:?]. Some names appear on all three lists; the problem is
to find the first such name. Let iv, jv and kv be the smallest integers
satisfying f[iv]l=g[jv]l=h[kv]. Then, using variables i, j and k, the
following should be established:

R:i:jvl\j:jv/\k:kv

e 7]

Section 19.1 Restricting Nondeterminism 239

The invariant for a loop is found by using the Linear Search Principle
(16.2.7), and enlarging the range of variables in R: ’

PrOSIi<iv A0S v A0Sk <hy

The obvious bound function is 7:iv—i +jv—j +kv—k and the first pro-
gram developed ((16.4.3)) is

(19.1.2) i,j,k:=0,0,0;
do f[i1<g[j]1V flil1<hl[k] —i:= i+l
0 eyl <alklvg[i1<fLi] —j:=j+1
]‘]1h[k]<f[i] VRk]1<g[j] — k= k+1
(3]

Now comes the concern for efficiency. Point 3 of checklist 11.9
P A<BB = R (where P is the invariant, BB the disjunction of the guard;
and R the result assertion) can be proved using only the first disjunct of
each guard. Therefore, the guards can be strengthened by deleting their

second conjuncts without violating point 3. This yields the shorter and
more efficient program

i,j,k=0,0,0;
do fi] <g[j]1—1i:=i+1
0 eU] <hlkl—j:=j+1

0ALLI<[f[i] — k= k+1
od

Note that theorem 19.1.1 could now be used to strengthen two of the
guards, but it is better not to. There is no reason for preferring one of the
commands over the others, and strengthening the guards using the
theorem will only complicate them and make the program less efficient
In this case, the nondeterminism aids in producing the simplest solution. .

Revisiting Four-tuple Sort

In the Four-tuple Sort problem of section 15.2, three guards could be
strengthened to F, the everywhere-false predicate, and therefore the

corresponding guarded commands could be deleted. This eliminated some
of the nondeterminism, but not all of it.

Exponentiation

Consider writing a program that, gi i i
, given two fixed integers X and Y
X 20 and Y =0, establishes ¢ ’

240 Part 111. The Development of Programs

R:z=x".

(Define 0°=1.) The program is to consist of a loop with the following
invariant and bound function:

P O<y Azsx¥ =Xx7.

iy
P is easily established using x, y, z:= X, ¥, |, and (at least) two simple
commands can be used to reduce the bound function: y:= y—I1 apd
y=y=+2. Finding the weakest preconditions of these commands with
respect to the invariant leads directly to the program

0<X A0S Y}

x,y,z=X,Y, 1

do 0y Aeven(y) — y,x = y+2, x*x
po<y —y,z=y—l, z¥x
od {z=Xx7}

Now consider the efficiency of the program. Dividing by 2 generally
reduces y more than subtracting 1; hence, division is prgferred. Ho»Yeve.r,
if is >0 and even, then both guards are true, and an implementation is
free to choose to execute either command. Using theorem 19.1.1, replace

the guard 0<<y by
0<y A 2(0<y Aeven(y))
and simplify it to yield

{0<X A0 Y}

x,y,z2=X,%Y,1;

do0<y Aeven(y) — y,x = y+2 x#*x
D 0<y Aodd(y) —y,z=y—1, zx
od {z=XY}

With the preliminary, nondeterministic version the loop could itefate
up to Y times; in the final, deterministic version, the number of iterations
is at most 1-+2=xceil(log Y). The algorithm can be rewritten once more

as

x,y,2=X, Y, 1;

do0<y — doeven(y) — y,x:=y+2 x+*x od,
y,z=y—l, z%x

od

Section 19.2 Taking an Assertion Out of a Loop 241

19.2 Taking an Assertion Out of a Loop

Consider the following program segment, where dots - - - represent
arbitrary pieces of code that do not assign to i:

doi<ln — - - ki=5%;
csimit2;
od

This program can be transformed to use the faster arithmetic operation
addition instead of multiplication as follows. First, introduce a fresh vari-
able z to contain the value 5* and transform the program as follows:

doi<{nm — ---;z:=5%; ki=z;
UM A S/

od

Next, make z =5*i part of the invariant of the loop. This means that the
assignment z:= 5% within the loop becomes unnecessary, but whenever i
is increased z must be altered accordingly:

z:= *§;
{Part of invariant: z =5%;}
doi<<ln — ---;ki=z;
s b,z i2, z410; - - -
od

Compiler writers call this transformation strength reduction. It has been
used as early as the late 1950’ and early 1960, in both FORTRAN and
ALGOL compilers, to make references to two-dimensional arrays more
efficient. For example, suppose an array b[0:99,0:50] is stored in row-
major order. The calculation of the address of an element b[i, ;] is per-
formed as

address(b[0,0]) +i*51+;

Then, within a loop that increments i with each iteration, all calculations
of the address of b[i, j] can be transformed as above to make them more
efficient. This optimization is also effective because it allows the detec-
tion and elimination of certain kinds of common arithmetic expressions.

In general, this transformation is called taking an assertion out of a
loop (and making it part of the loop invariant). In this case, the assertion
z =5* was taken out of the loop to become part of the invariant. The
technique can be used wherever the value of some variable like z can be
calculated by adjusting its current value, instead of calculating it afresh
each time.

242 Part III. The Development of Programs

In the above example, taking the relation out of the loop can reduce
execution time by only a constant factor, but examples e.xist ?hat show
that the technique can actually reduce the order of execution time of an
algorithm.

Horner’s rule 1
3 H 1 e ¥y,
Consider evaluating a polynomial ag+a*x + +a,—; X" for
n =1 and for a value x and given constants a;. The result assertion is

n—1
R:y =ag*x"+ -+ +a,1*x

An invariant can be produced by replacing the constant n by a variable i,
and the following program can be developed:

i,y=1,aq . s
{invariant: 1<i<n Ay =ag*x + - +a-*x'"}
{bound: n—i}

doi#n —i,y=i+l, y+a;*x' od

But note that calculating x’ each iteration is cospljg, requiring, in. general,
time proportional to logi. Noting that x’ =x*x'"", we see that introduc-
ing a fresh variable z and making

z=x'

part of the invariant of the loop allows us to transform the program into

i,y,z:= 1, ap, x; _ . .
{invariant: 1<i<n Az=x' Ny =ag*x"+ -+ +a*x'"'}
{bound: n—i}

doi#n —i,y,z:=i+l, y+ta;*z, z*x od

This transformation can also be called strength reduction; the 'op.eragon
exponentiation has been replaced by the faster operation multiplication.
Its use here reduces the order of execution time of the program from

O(nlogn) to O(n).
Remark: One can rewrite the polynomial as
(-~ (@ Fay)*x + o)*x+a

This form leads directly to the slightly simpler program

Section 19.2 Taking an Assertion Out of a Loop 243

Y, i=a,, n—l
{invariant: 0<<i <n A
y :((T (an—l*x +an—2)*x R)*X +ai}
{bound: i}
doi#0 —i=i—1; y:= y*x +4; od

This method of computing a polynomial is named after W.G. Horner,
who gave it in connection with another famous problem in 1819, but it
was, in fact, proposed over 100 years earlier by Isaac Newton. This illus-
trates that first analyzing the specification of a program and transforming
it into a slightly different form can be of more help than looking for effi-
cient programs for the original specification. O

An exercise attributed to Hamming

Consider the sequence g =1,2, 3,4,5,6,8,9,10,12, - - - of all numbers
divisible by no primes other than 2, 3 and 5. We shall call this sequence

Seq. Another way to describe Seq is to give axioms that indicate which
values are in it:

Axiom 1. 1 is in Seq. .
Axiom 2. If x isin Seq, so are 2*x, 3*x and 5*x.
Axiom 3. The only values in Seq are given by Axioms 1 and 2.

The problem is to write a program that stores the first 1000 values of
Seq, in order, in an array ¢[0:999], i.e. that establishes

R: g[0:999] contains the first 1000 values of Segq, in order

A loop of some form is needed. What is a possible loop invariant?

Since Axiom 2 specifies that a value is in Seq if a smaller one is, it may
make sense to generate the values in order. A possibility, then, is to
replace the constant 1000 of R by a variable i, yielding the invariant

P = 1<<i <1000 A g[0:i—1] contains the first i values of Seq .

With this invariant, the obvious program structure is

i,q[0=1,1; {P}

{invariant: P; bound: 1000—i}

do i #1000 — Calculate xnexz, the i* value in Seq;
i, gli}=i+1, xnext

od

244 Part 111. The Development of Programs

It remains to determine how to calculate xnext, the next value of Seq to
be generated. Since the values of Seg are generated in order, xnext must
be >q[i—1]. Secondly, since 1 is already in g[0:i —1], xnext must satisfy
Axiom 2 above. This means that xnext must have the form 2*x, 3*x or
5*x for some value x already in g[0:i—1]. Therefore,

xnext is the minimum value > g[i—!] of the form 2*x, 3*x or
5*x for x in g[0:i—1].

So, we introduce three variables x2, x3 and x5 with meaning as expressed
in the following assertion:

PI: x2 is the minimum value > g[i—1] with form
2*x for x in qf0:i—1],

x3 is the minimum value > ¢g[i—1] with form
3*x for x in qf0:i—1],

x5 is the minimum value >g[i—1] with form
5*x for x in q[0:i—1].

Value xnext is the minimum of x2, x3 and x5. We see, then, that vari-
able xnext is not really needed, and we modify the program structure to

i,q[0]=1,1; {P}

{invariant: P; bound: 1000—i}

do i 5% 1000 — Calculate x2, x3, x5 to satisfy PI;
i, q[i}=i+1, min(x2,x3, x5)

od

We now illustrate taking an assertion out of a loop. Calculating x2, x3
and x5 to establish PI at each iteration can be time-consuming. How-
ever, they change quite slowly as i is increased (and P is kept invariant),
and it may be possible to speed up the algorithm by taking PI out of the
Joop and making it part of the loop invariant. The fact that g[0:i—1] is
ordered gives additional hope. Thus, we investigate the program structure

i, gl0}= 1, 1; {P}

Establish PI for i =1;

{invariant: P A PI; bound: 1000—i}

do i #1000 — i, q[i]'= i+1, min(x2, x3, x5);
Reestablish PI

od

Now, how is PI to be reestablished? Consider x2. For some j, x2 =
2%q[j]. Further, x2 can only be increased, and not decreased, to
2*q[j+1] or 2*g[j+2], etc. This suggests maintaining the position j. A
similar statement holds for x3 and x5. We therefore introduce three

Exercises for Section 19.2
245

variables j2, j3 and J5 and modify P! as follows:
PI: x2=2%g[j2] is the minimum value >q[i~1] with for
2*x for x in ql0:i—1], "
q[731 is the minimum value >qli—1] with form
3*x for x in g[0:i—1] and
q[j5] is the minimum value >q[i~1] with form
5*x for x in ql0:i~1]

x3=3%

x5 =5%

We are now able to develop the final program:

L g[0)F=1,1; {P}
]%stablish PI: x2, x3, x5, j2, J3,75=2,3,5,0,0, 0
{znv.ariant: P A PI; bound: 1000——1’}’ T
do i #1000 — 4, qlil=i+1, min(x2, x3, x5);
Reestablish PI: ’
do x2<q[i—1] — j2:= J2+1; x2:= 2%q[;2] od:

i

do x3Sqli—1] = j3:= j3+1; x3:= 3%g[3] od.

do x5 < aglim1] — 5= ety . ,
o x5sqfi—1] P=j5+1; x5= 5*q[75] od

Exercises for Section 19.2

.1. Writing a Value as the Sum of Squares.
integer r 20, generates all different ways in
two squares —i.e. that generates all pairs (x

W.rite a program that, given a fixed
which 7 can be written as the sum of
» V) satisfying

2
(9.2 x*+y’=r A 0<y <x

To help in writing it (and to arran
a loop), assume the following. T

he pairs are to b 1
: g : € generated in
values, and a variable x is used to indicate that al]

n x have been generated. Thus, the first approxima-

tion to the invariant of the main loop of the program will be

PIO<i A ordered(xv[0:i—1]) A

th.e pairs (xv[71, pv[1),0<j <i, are all the pairs
with x-value < x that satisfy (19.2.1).

246 Part 111. The Development of Programs

19.3 Changing a Representation

It is sometimes useful to transform a program into one that uses a dif-
ferent representation of the data. As simple examples of different
representations for some value, we use both rectangular coordinates and
polar coordinates for points on a plane. The day of the year, which may
be kept in the form (month, day) or in the form (day number within the
year), is another example.

The motivation for changing representation often comes from the de-
sire to apply one of the following two strategies, in the hope that they will
yield a simpler or more efficient program:

eStrategy: Replace an expensive operation by a cheaper one.

eStrategy: Defer an expensive operation, so that it won’t be
executed as often.

Other reasons will probably suggest themselves once familiarity with the
technique is acquired. We illustrate with three examples.

Approximating the Square Root

In section 16.3 the following program was developed to approximate
the square root of a fixed integer n =20:

(19.3.1) a,b:=0,n+1;
{invariant P: a <b<n+l A a?<n <b}
{bound t: b—a+1}
doat+1#b — d:=(a+b)=2,;
ifd*d<n —a=d [Jd*d>n —b=dfi
od {a’<n<(a+1)}

We present a minor transformation of this program to illustrate changing
a representation. A less trivial one is required in exercise 2.

Let us assume we want to replace operator < in the program by divi-
sion /. This can be done easily if a+b is always even, since then the two
will yield the same result. Keeping a-+b even may not be so easy, but if
the difference b —a is always even, then d can be calculated using

d=a+((b—a)/2

Therefore, let us attempt to deal with the difference ¢ (say) between b
and a and to keep this difference even. This will be easiest if ¢ is always
a power of 2. Thus we have:

Section 19.3 Changing a Representation 247

b=a+tc
d=a+c/2
(Ep: 1<p: c=2?) (therefore ¢ is even)

Because b and d are defined in terms of ¢ and ¢, we may be able to

write the program using only @ and i i
¢. Thus, we try the loop invaria
and bound function ’ "

P:a’<n<(a+cP A(Ep: 1<p: c =27)
t: ¢+l

The initialization will require a loop to establish P, since ¢ must be a
power of 2. The rest of the program is derived from program (19.3.1)

essentially by del;ting the assignments to » and 4 and transforming the
other commands into commands involving c¢:

(193.2) a,c=0,1; doc’<n — c:= 2%¢ od; {P)
doc#1 —ci=c /2
if (@+cP’<n —a:= a+c 0(@a+c)>n — skip fi
od {a’<n <(a+1)3 e

Controlled Density Sorting

In solving this problem, we attempt to convey the idea of the develop-

ment without presenting all the formal details. The complete details are
left as an exercise.

A table of (not necessarily different) numbers, which is initially empty

must be maintained. At any time, one of the following three operations
may be performed.

(1) Insert(V;): insert a new value V; into the table.

2) Search(x,'p.): Return in p the position in the table of a
value x (“position” must be further specified later on).

(3) Print: Print the list of values in the table, in ascending order.

O;l)erati.on (h3) should be performed in time proportional to the number of
values in the table. Furthermore, the total time spent in i i
searching should be “small”. pemt 1 fnserting and

T}‘1e requirerflent for operation (3) suggests that the table of values be
k.ept in (ascen(.img) order. In fact, one is led to think of algorithm Inser-
tzq;_.z l;S‘lc;rt. U}slmg an array v[0:n—I] to contain the values and a simple
variable i, the table of values Vy, - -, V,_; that ha
inserted will satisfy . ve eiready been

248 Part 1II. The Development of Programs

(19.3.3) P:0<i A ordered(v[0:i—1]) A perm(v[0:i—11,{Vy, - - -, Vii})

Printing can be done in linear time and searching can be done in time
proportional to the logarithm of the current size of v, using Binary
Search. '

But what about inserting a new value x? Inserting will require finding
the position j where x belongs —i.e. finding the value j such that v[j—1]
< x < v[j]— then shifting v[j:i—1] up one position to v[j+i:i], and
finally placing x in v[j]. Shifting v[j:i—1] may take time proportional
to i, which means that each insertion may take time proportional to i,
and therefore, in the worst case the total time spent inserting n items may
be on the order of n2. This is expensive, and a modification is in order.

Shifting is the expensive operation, so we try to change the data repre-
sentation to make it less expensive. How can this be done, perhaps to
eliminate the need for shifting altogether?

A simple way to make shifting less expensive is to spread the values out,
so that an empty array element, or “gap”, appears between each pair of
values. Thus, an array v[0:2n —1] of twice the size is defined by

(19.3.4) P:0<<i Aordered(v[0:2i—1}) A{Vy, - -+, Vio}Ev[0:2i—1] A
v[0:2i —1]=(gap, value, gap, value, ..., gap, value)

Gaps can be implemented by using a second array gap[0:2n—1] of
bits, where gap[j] has the value “v[j] is a gap”. It is advantageous to let
a gap v[j] contain the non-gap value occurring in v[j+1], so that Binary
Search can still be used for searching.

Remark: If all values are known to be positive, then the sign bit of v[j]
can be used to distinguish values from gaps. O

Now, shifting and inserting takes no time at all, because the new value
can be placed in a gap. But shifting and inserting destroys the fact that a
gap separates each pair of values, and after inserting it necessary to recon-
figure the array to reestablish (19.3.4). Reconfiguring can be costly, so we
must find a way to avoid it as much as possible.

We can defer reconfiguring the array simply by weakening the invari-
ant to allow several values to be adjacent to each other. However, there
are never adjacent gaps; the odd positions of v always contain values.
We introduce a fresh variable k to indicate the number of array elements
being used, and use the invariant

Section 19.3 Changing a Representation 249

(19.35) P:0<i A ordered(v[0:k—1]) A {Vy, - - -, Vi3 €v[0:k—1] A
(Aj: 0<j <k Aodd(j): v[j]is not a gap) A
v[0:k —1] contains k—i gaps A
Aj:0<j<k:v[ilagap > vljl=v[j+1)

Note, now, that when inserting the first value no shifting is required, since
it can fill a gap. The second value is likely to fill a gap also, but it may
cause a shift. The third value inserted may fill a gap also, but the proba-
bility is greater that it will cause some shifting because there are fewer
gaps. At some time, so many values will have been inserted that shifting
again becomes too expensive. At this point, it is wise to reconfigure the
array so that there is again one gap between each pair of values.

To summarize, the table is defined by (19.3.5), with (19.3.4) also being

true initially. That is, values are separated by gaps. The table is initially
set to empty using

i, k=0,0
{(19.3.4) and (19.3.5) are true}

Inserting a value ¥; is done by

(19.3.6) {(19.3.5)}
if shifting too expensive — Reconfigure to reestablish (19.3.4)
[shifting is not too expensive — skip
fi;
Find the position j where V; belongs;
Shift v[j:...] up one position to make room for N
Lvj=i+l, v

When does shifting become so expensive that reconfiguring should again
be considered? Analysis has shown that reconfiguring is best performed
either when a previous shift requires at least Vi values to be moved or
when /2 values have been inserted since the last reconfiguration. This
makes the total time spent shifting roughly equal to the total time spent
reconfiguring, so that neither one overshadows the other. Under these cir-
cumstances, the worst-case total time spent shifting or reconfiguring is
prloportional to nv'n, while the average-case total time is proportional to
nlogn. '

The development of a complete algorithm is left to the reader (exercise

1).

350 Answers to Exercises

Answers for Section 19.3

2. Program 19.3.2, which determines an approximation to the square root
of a nonnegative integer n, is

{n =20}
a,c=0,1; doc*<n — ¢c:= 2% od;
{inv: a®><n <(a+c)* A (Ep: 1<p: ¢ =27}
{bound: vn —a}
doc#1 ~ci=c¢c/2;
if (a+c)’<n —a=a+tc
H(a+c)2>n — skip
fi
od
{a*<n <(a+1)3

We attempt to illustrate how a change of representation to eliminate
squaring operations could be discovered.

Variables ¢ and ¢ are to be represented by other variables and elim-
inated, so that no squaring is necessary. As a first step, note that the
squaring operation ¢ must be performed in some other fashion. Perhaps
a fresh variable p can be used, which will always satisfy the relation

p=c’

Now, which operations involving ¢ can be replaced easily by operations
involving p instead?

Command c:= 1 can be replaced by p:= 1, expression ¢ by p, ¢:= 2*¢ by
p=4*p,c7#1byps1and c:=c/2 by p:= p/ 4.

The remaining operations to rewrite are a:= 0 (if necessary), a:= a+c,
(@a+c¥<n and (a +c)*>n. Consider the latter two expressions;, which
involve squaring. Performing the expansion (a-+c)* = (a®+2%a*c +c?)
isolates another instance of ¢? to be replaced by p, so we rewrite the first
of these as

(E3.1) a’+2*a*c+p —n <0

Expression (E3.1) must be rewritten, using new variables, in such a way
that the command a:= a+c can also be rewritten. What are possible new
variables and their meaning?

Answers for Section 19.3 351

There are a number of possibilities, for example g =a?

2

, g =a*c, g =
a“—n, and so forth. The definition .

(E3.2) g =a*c

is promising, because it lets us replace almost all the operations involving
a. Thus, before the main loop, g will be 0 since a is 0 there. Secondly,
to maintain (E3.2) across ¢:= ¢ /2 we can insert g:= g /2. Thirdly, (E3.2)
maintained across execution of the command «:= a-+¢ by assigning a new
value to g —what is the value?

To determine the value x to assign to g, calculate
wp(“a,q=atc, x”, g =a*c) = x=(a+tc)*c

The desired assignment is therefore

g:= (a+tc)*c, which is equivalent to
q:= a*c +c?, which is equivalent to
g:=q+p

With this representation, (E3.1) becomes
(E3.3) a*+2*q+p—n<0

Now try a third variable r to contain the value n —a?, which will always
be =20. (E3.3) becomes

2*q +p —r<0

And, indeed, the definition of r can also be maintained easily.

To summarize, use three variables p, ¢ and r, which satisfy

— 2
p=c?, gq=a*c, r=n—a

and rewrite the program as

352 Answers to Exercises

{n =20}

p,q,r=1,0,n; dop<n — p:=4%p od,

dop#1 —p=p/4; q:=q/ 2
if2*q +p Sr —’q,r:: q—l—p” r—z*q—p
02*q +p >r — skip
fi

od

{g*<n <(g+1)}

Upon termination we have p =1, ¢ =1, and g =a*c =a, so that the
desired result is in g. Not only have we eliminated squaring, but all mul-
tiplications and divisions are by 2 and 4; hence, they could be imple-
mented with shifting on a binary machine. Thus, the approximation to
the square root can be performed using only adding, subtracting and shift-
ing.

Answers for Chapter 20

1. Call a sequence (of zeroes and ones) that begins with 0000 (4 zeroes)
and satisfies property 2 a good sequence. Call a sequence with k bits a
k-sequence.

Define an ordering among good sequences as follows. Sequence s/ is
less than sequence 52, written s/.<.s2, if, when viewed as decimal
numbers with the decimal point to the extreme left, s/ is less than s2. For
example, 101.< 1011 because .101 <.1011. In a similar manner, we write
101.=.101000, because .101=.101000. Appending a zero to a sequence
yields an equal sequence; appending a one yields a larger sequence.

Any good sequence s to be printed satisfies 0.<. s .<. 00001, and must
begin with 00000.

The program below iteratively generates, in order, all good sequences
satisfying 0.<C. s .<<. 00001, printing the 36-bit ones as they are generated.
The sequence currently under consideration will be called s. There will be
no variable s; it is just a name for the sequence currently under considera-
tion. s always contains at least 5 bits. Further, to eliminate problems
with equal sequences, we will always be sure that s is the longest good
sequence equal to itself.

PI: good(s) A ~good(s | 0) A5<| 5] A0.< s .<.00001 A
All good sequences .<s are printed

Sequence s with n bits could be represented by a bit array. However,
1t is better to represent s by an integer array c[4:n—1], where c[i] is the
decimal representation of the 5-bit subsequence of s ending in bit i.
Thus, we will maintain as part of the invariant of the main loop the asser-
tion

Answers for Chapter 20 353

P2 5<n=|s| <36 A
e[i] = s[i—41¥2* +s[i—31*2> +s[i —2]* 2 + s[i—1]* 2 +s[i]
(for4<<i <n)

Further, in order to keep track of which 5-bit subsequences s contains, we
use a Boolean array in[0:31]:

P3: (Ai: 0<<i<32: in[i] = (i €c[4n—1]))
With this introduction, the program should be easy to follow.

n, ¢[4],in[0}= 5,0, T;
in[1:311:= F; {5 =(0,0,0,0,0)}
{inv: PI A P2 A P3 A agood(s| O}
do c[4]#1 —
if n =36 — Print sequence s
I n #36 — skip
fi;
Change s to next higher good sequence:
do in[(c[n—11*2+1) mod 32] {(i.e. agood(s| 1)}
— Delete ending 1's from s:
do odd(c[n—1]) — n:= n—1; in[c[n]}= F od;
Delete ending 0O:
n:=n—1; inlc[nll= F
od;
Append 1 to s:
c[nl= (c[n—11*2+1) mod 32; in[c[n]]= T; n:= ntl
od

7. The result assertion is

R: (,:Z(Ni: O0<i<F: flil¢gl0:G—1D+
(Nj:0<j<G: gl ¢ fI0:F—1])

We would expect to write a program that sequences up the twq arrays
together, in some synchronized fashion, performing a count as it goes.
Thus, it makes sense to develop an invariant by replacing the two con-
stants F and G of R as follows:

OSASFAOSE<G A
c=WNi: 0<<i<h: flil¢g[0:G—1D+
WNJj:0<j<k:gUl ¢ fl0:F—1])

Now, consider execution of h:= A+1. Under what conditions does its
execution leave P true? The guard for this command must obv1ously
imply f[h] ¢ g[0:G—1], but we want the guard to be simple. As it

354 Answers to Exercises

stands, this seems out of the question.

Perhaps strengthening the invariant will allow us to find a simple job.
One thing we haven’t tried to exploit is moving through the arrays in a
synchronized fashion —the invariant does not imply this at all. Suppose
we add to the invariant the conditions STh=11<g[k] and g[k—1]<g[h]

—this might provide the synchronized search that we desire. That is, we
use the invariant

P:OSASF A0Sk <G A fIA—1]1<g[k] A glk—1]<f[A]
c=(Ni: 0<i <h: f[i] ¢ g[0:G—1]) +
N0/ <k:g[jl1¢ fI0:F—1])

Then the additional condition STh1<glk] vields
glk—11<f[h]1<g[k]

so th'at f[h] does not appear in G, and increasing # will maintain the
invariant. Similarly the guard for k:= k41 will be glk]<f[h].

. This gives us our program, written below. We assume the existence of
virtual .values SI-11=g[i—1]=-o and f[F] =g[G]=+c0; this allows
us to dispense with worries about boundary conditions in the invariant.

h,k,c=0,0,0;
{inv: P; bound: F—p +G—q}
dof #FANg#G —
if f[h]<g[k]l— h,c:= h+1, ¢+1
Ufthl=glk]l — h, k= h+1, k+1
Uf1R1>glk] — k, ¢:= k+1, c+1
fi
od;
Add to ¢ the number of unprocessed elements of f and g:
c=c+F—h+G—k

References

[1] Allen, L.E. WFF'N PROOF: The Game of Modern Logic. Auto-
telic Instructional material Publishers, New Haven, 1972.

[2] Bauer, F.L. and K. Samelson (eds.). Language Hierarchies and

Interfaces. Springer Verlag Lecture Notes in Computer Science 46,
1976.

{ 3] Bauer, F.L. and M. Broy (eds.). Software Engineering: an Advanced
Course. Springer Verlag Lecture Notes in Computer Science 30,
1975.

[4] —— and —_ (eds.). Program Construction. Springer Verlag Lecture
Notes in Computer Science 69, 1979.

[5] Burstall, R. Proving programs as hand simulation with a little in-
duction. Information Processing 74 (Proceedings of IFIP 74),
North-Holland, Amsterdam, 1974, 308-312.

[6] Buxton, J.N., P. Naur, and B. Randell. Software Engineering,
Petrocelli, 1975. (Report on two NATO Conferences held in Gar-
misch, Germany (Oct 68) and Rome, Italy (Oct 69)).

[7] Constable, R.L. and M. O'Donnell. A4 Programing Logic. Winthrop
Publishers, Cambridge, 1978.

[8 Cook, S.A. Axiomatic and interpretative semantics for an Algol
fragment. Computer Science Department, University of Toronto,
TR 79, 1975.

[9] Conway, R., and D. Gries. An Introduction to Programming.
Winthrop Publishers, Cambridge, Mass., 1973 (third edition, 1979).

[10] De Millo, R.A., R.J. Lipton and A.J. Perlis. Social processes and
proofs of theorems and programs. Comm. of the ACM 22 (May
1979), 271-280.

[11] Dijkstra, E.W. Some meditations on advanced programming. IFIP
1962, 535-538.

[12] —. Go to statement considered harmful. Comm. ACM 11 (March

354 Answers to Exercises

stands, this seems out of the question.

Perhaps strengthening the invariant will allow us to find a simple job.
One thing we haven’t tried to exploit is moving through the arrays in a
synchronized fashion ——the invariant does not imply this at all. Suppose
we add to the invariant the conditions SIh—11<g[k] and g[k—1]<g[h]

—this might provide the synchronized search that we desire. That is, we
use the invariant

POSA<FAOILSEG AfTh—1]1<g[k] A g[k—11<f[h]
¢ =(Ni: 0<i<h: f[i] ¢ gl0:G—1]) +
Nj0<j<k:g[jl1¢ F[0:F—1]

Then the additional condition f[h]<g[k] yields
glk—11<f[r]1<g[k]

so th_at f[h] does not appear in G, and increasing % will maintain the
invariant. Similarly the guard for k:= k+1 will be glk]<fIh].

. This gives us our program, written below. We assume the existence of
virtual .Values f-[—l] =gli~1}=—c and f[F]=g[G]=o0; this allows
us to dispense with worries about boundary conditions in the invariant.

h,k,c=0,0,0;
{inv: P; bound: F~p + G—q}
dof #FAg#G —
if fTh]1<glk]—h,c:= h+1, c+1
0fThl=glk] — h, k= h+1, k+1
Nf1A1>glk] =k, c:= k+1, c+1
fi
od;
Add to ¢ the number of unprocessed elements of f and g:
c=c+F—-h+G—*%

References

[11 Allen, LE. WFF'N PROOF: The Game of Modern Logic. Auto-
telic Instructional material Publishers, New Haven, 1972.

[2] Bauer, F.L. and K. Samelson (eds.). Language Hierarchies and

Interfaces. Springer Verlag Lecture Notes in Computer Science 46,
1976.

[3] Bauer, F.L. and M. Broy (eds.). Software Engineering: an Advanced
Course. Springer Verlag Lecture Notes in Computer Science 30,
1975.

[4] — and ___(eds.). Program Construction. Springer Verlag Lecture
Notes in Computer Science 69, 1979.

[5] Burstall, R. Proving programs as hand simulation with a little in-
duction. Information Processing 74 (Proceedings of IFIP 74),
North-Holland, Amsterdam, 1974, 308-312.

[6] Buxton, J.N.,, P. Naur, and B. Randell. Software Engineering,
Petrocelli, 1975. (Report on two NATO Conferences held in Gar-
misch, Germany (Oct 68) and Rome, Italy (Oct 69)).

[7] Constable, R.L. and M. O’Donnell. A Programing Logic. Winthrop
Publishers, Cambridge, 1978.

[8] Cook, S.A. Axiomatic and interpretative semantics for an Algol
fragment. Computer Science Department, University of Toronto,
TR 79, 1975.

[9] Conway, R., and D. Gries. An Introduction to Programming.
Winthrop Publishers, Cambridge, Mass., 1973 (third edition, 1979).

[10] De Millo, R.A., R.J. Lipton and A.J. Perlis. Social processes and
proofs of theorems and programs. Comm. of the ACM 22 (May
1979), 271-280.

[11] Dijkstra, E.W. Some meditations on advanced programming. [FIP
1962, 535-538.

[12] —. Go to statement considered harmful. Comm. ACM 11 (March

356 References

1968), 147-148.

[13] . A short introduction to the art of programming. EWD316,
Technological University Eindhoven, August 1971.
[14] __. Notes on Structured Programming. 1In Dahl, O0.-J., C.A.R.

Hoare and E.W. Dijkstra, Structured Programming, Academic Press,
New York 1972. (Also appeared a few years earlier in the form of a
technical report).

[15] —. Guarded commands, nondeterminacy and the formal derivation
of programs. Comm. of the ACM 18 (August 1975), 453-457.

[16] . A4 Discipline of Programming. Prentice Hall, Englewood
Cliffs, 1976.

[17] —. Program inversion. EWD671, Technological University Eind-
hoven, 1978.

[18] Feijen, W.H.J. A set of programming exercises. WE25, Technologi-
cal University Eindhoven, July 1979.

[19] Floyd, R. Assigning meaning to programs. In Mathematical As-
pects of Computer Science, XIX American Mathematical Society
(1967), 19-32.

[20] Gentzen, G. Untersuchungen ueber das logische Schliessen. AMath.
Zeitschrift 39 (1935), 176-210, 405-431.

[21] Gries, D. An illustration of current ideas on the derivation of cor-
rectness proofs and correct programs. IEEE Trans. Software Eng. 2
(December 1976), 238-244.

[22] — (ed.). Programming Methodology, a Collection of Articles by
Members of WG2.3. Springer Verlag, New York, 1978.

[23] — and G. Levin. Assignment and procedure call proof rules.
TOPLAS 2 (October 1980), 564-579.

[24] — and Mills, H. Swapping sections. TR 81-452, Computer Science
Dept., Cornell University, January 1981.

[25] Guttag, J.V. and J.J. Horning. The algebraic specification of data
types. Acta Informatica 10 (1978), 27-52.

[26] Hoare, C.A.R. Quicksort. Computer Journal 5 (1962), 10-15.

[27] —. An axiomatic basis for computer programming. Comm ACM
12 (October 1969), 576-580, 583.
[28] . Procedures and parameters: an axiomatic approach. In Sym-

posium on Semantics of Programming Languages. Springer Verlag,
New York, 1971, 102-116.

[29] ——. Proof of correctness of data representations. Acta Informatica
1(1972), 271-281.
[30] — and N. Wirth. An axiomatic definition of the programming

language Pascal. Acta Informatica 2 (1973), 335-355.

[31] Hunt, JJW. and M.D. Mcllroy. An algorithm for differential file
comparison. Computer Science Technical Report 41, Bell Labs,
Murray Hill, New Jersey, June 1976.

References 357

[32] Igarashi, S., R.L. London and D.C. Luckham. Automatic program
verification: a logical basis and its implementation. Acta Informatica
4 (1975), 145-182.

[33] Liskov, B. and S. Zilles. Programming with abstract data types.
Proc. ACM SIGPLAN Conf. on Very High Level Languages, SIG-
PLAN Notices 9 (April 1974), 50-60.

[34] London, R.L., J.V. Guttag, J.J. Horning, B.W. Mitchell and G.J.
Popek. Proof rules for the programming language Euclid. Acta
Informatica 10 (1978), 1-79.

[35] McCarthy, J. A basis for a mathematical theory of computation.
Proc. Western Joint Comp. Conf., Los Angeles, May 1961, 225-238,
and Proc. IFIP Congress 1962, North Holland Publ. Co., Amster-
dam, 1963.

[36] Melville R. Asymptoric Complexity of Iterative Computations.
Ph.D. thesis, Computer Science Department, Cornell University,
January 1981.

[37] — and D. Gries. Controlled density sorting. IPL 10 (July 1980),
169-172.

[38] Misra, J. A technique of algorithm construction on sequences.
IEEE Trans. Software Eng. 4 (January 1978), 65-69.

[39] Naur, P. et al. Report on ALGOL 60. Comm. of the ACM 3 (May
1960), 299-314.

[40] Naur, P. Proofs of algorithms by general snapshots. BIT 6 (1969),
310-316.

[41] Quine, W.V.O. Methods of Logic. Holt, Reinhart and Winston,
New York, 1961.

[42] Steel, T.B. (ed.). Formal Language Description Languages for Com-
puter Programming. Proc. IFIP Working Conference on Formal
Language Description Languages, Vienna 1964, North-Holland,
Amsterdam, 1971.

[43] Szabo, M.E. The Collected Works of Gerhard Gentzen. North Hol-
land, Amsterdam, 1969.

[44] Wirth, N. Program development by stepwise refinement. Comm
ACM 14 (April 1971), 221-227.

Index

abort, 114
abs, 314
Abstraction, 149
Addition, 314
identity of, 72
Aho, A.V., 309
Allen, Layman E., 42
Alternative command, 132
strategy for developing, 174
Ambiguity, 308
An Exercise Attributed to Hamming,
243, 302
and, see Conjunction
and-simplification, 21
Annotated program, 104
Annotation for a loop, 145
Antecedent, 9
Approximating the Square Root, 195,
201, 246, 350
Argument, 152
final value of, 155
initial value of, 155
Array, 88
as a function, 89
domain of, 89
two-dimensional, 96
Array of arrays, 96
Array picture, 93
Array Reversal, 214, 302
Array section, 93

Assertion, 2, 100
output, 100
result, 100
placement of, 278
Assignment, simple, 117
forward rule for, 120
multiple assignment, 121, 127
to an array element, 124, 90
Associative laws, 20, 69
proof of, 48
Associativity of composition, 316
Atomic expression, 67
Axiom, 25

Backus, John, 304
Backus-Naur Form, 304
Balloon theory, 193
Bauer, F.L., 296
BB, 132
Binary relation, 315
Binary Search, 205, 302, 344
Binary tree, 229
BNF, 304

extensions to, 309
Body, of a procedure, 150-151
Boole, George, 8, 20
Boolean, 8, 66
Bound function, 142
Bound identifier, 76-77
Bound variable substitution, 80,

¢

Index

85
Bounded nondeterminism, 312

Calculus, 25
propositional calculus, 25
predicate calculus, 66
Call, of a procedure, 152
by reference, 158
by result, 151
by value, 151
by value result, 151
cand, 68-70
cand-simplification, 80
Cardinality, of a set, 311
Cartesian product, 315
Case statement, 134
Catenation, 75
identity of, 75, 333
of sequences, 312
ceil, 314
Changing a representation, 246
Chebyshev, 83
Checklist for understanding a loop,
145
Chomsky, Noam, 304
Choose, 312
Closing the Curve, 166, 301
Closure, of a relation, 317
transitive, 317
Code, for a permutation, 270
Code to Perm, 264, 272-273, 303
Coffee Can Problem, 165, 301

Combining pre- and postconditions,

211
Command, 108
abort, 114
alternative command, 132
assignment, multiple, 121, 127
assignment, simple, 128

assignment to an array element, 124

Choose, 312
deterministic, 111
guarded command, 131
iterative command, 139

359

nondeterministic, 111

procedure call, 164

sequential composition, 114-115

skip, 114
Command-comment, 99, 279

indentation of, 279
Common sense and formality, 164
Commutative laws, 20

proof of, 48
Composition, associativity of, 316
Composition, of relations, 316
Composition, sequential, 114-115
Concatenation, see Catenation
Conclusion, 29
Conjecture, disproving, 15
Conjunct, 9
Conjunction, 9-10

distributivity of, 110

identity of, 72
Conjunctive normal form, 27
Consequent, 9
Constable, Robert, 42
Constant proposition, 10
Constant-time algorithm, 321
Contradiction, law of, 20, 70
Contradiction, proof by, 39-41
Controlled Density Sort, 247, 303
cor, 68-70
cor-simplification, 79
Correctness

partial, 109-110

total, 110
Counting nodes of a tree, 231
Cubic algorithm, 321
Cut point, 297

Data encapsulation, 235

Data refinement, 235

De Morgan, Augustus, 20

De Morgan’s laws, 20, 70
proof of, 49

Debugging, 5

Decimal to Base B, 215, 302

Decimal to Binary, 215, 302

360

Declaration, of a procedure, 150
Deduction theorem, 36
Definition, of variables, 283
Deleting a conjunct, 195
Demers, Alan, 302
Depth, of a tree, 236
Derivation, 308
Derived inference rule, 46
rule of Substitution, 4647
Determinism, 111
Deterministic command, 111
Difference, of two sets, 311
Different Adjacent Subsequences,
262, 303
Dijkstra, E.W., 295-296, 300-303
disj, 159
Disjoint, pairwise, 159
Disjoint vectors, 159
Disjunct, 9
Disjunction, 9-10
distributivity of, 111
identity of, 72
Disjunctive normal form, 27
Distributive laws, 20, 69
proof of, 48
Distributivity of Conjunction,
110
Distributivity of Disjunction,
111
Divide and Conquer, 226
DO, 138-139
domain, 89, 117
Domain, of an array, 89
Domain, of an expression, 117
Dutch National Flag, 214, 302
Dynamic Programming, 261

Efficient Queues in LISP, 250,
303

Eliminating an Implication, 24

Elimination, rule of, 30

Empty section, 93

Empty set, 310

Empty tree, 229

Index

Enlarging the range of a variable,
206

Equality, 9-10

law of, 20
equals, see Equality
Equivalence, 19

laws of, 19-21
Equivalent propositions, 19
Euclid, 301
even, 314
Excluded Middle, law of, 20, 70
Excluded Miracle, law of, 110
Exclusive or, 11
Existential quantification, 71
Exponential algorithm, 321
Exponentiation, 239, 252, 302
Expression, atomic, 67
Expression, domain of, 117

F,8
Factorial function, 221
Feijen, W.H.J., 264, 302
Fibonacci number, 225
Final value, of a variable, 102
of an argument, 155
Finding Sums of Squares, 245,
302, 348
Flaw chart, 138, 190-191
disadvantages of, 275
floor, 314
Floyd, Robert, 297
Formality and common sense, 164
Forward rule for assignment, 120
Four-tuple Sort, 185, 239, 301
Free identifier, 76-77
Function, 318
bound function, 142
n-ary function, 319
of an Identifier, 318
variant function, 142

ged, 191, 224-225, 301, 343
Gentzen, Gerhard, 42
Gill, Stanley, 296

Index

Global reference, 38
Grammar, 305
ambiguous, 308
sentence of, 305
unambiguous, 308
Greatest common divisor, see
ged
Griffiths, Michael, 301
Guard, 131
Guarded command, 131

Halving an interval, 202
Hamming, R.W., 302

Heading, of a procedure, 282
Hoare, C.A.R., 295, 297-299, 302
Hopcroft, J.E., 309

Horner, W.G., 243

Horner’s rule, 242

Identifier, 9
bound, 76-77
free, 76-77
quantified, 71
quantified, range of, 82
quantified, type of, 83
restriction on, 76
Identity element, 72
Identity, law of, 21
Identity relation, 316
Identity, of addition, 72
of and, 72
of catanation, 75, 333
of multiplication, 72
of or, 72
IF, 132
Iff, ix
IFIP, 295, 300
imp, see Implication
Implementation of a tree, 230
Implication, 9-10
elimination of, 24
.law of, 20
Implicit quantification, 83-84
Inclusive or, 11

361

Indentation, 275
of command-comments, 279
of delimiters 279
Inference rule, 25, 30
bound variable substitution, 85
derived, 46
E-E, 85
E-1, 84
A-E, 84
A4-1, 84
=-E, 34, 43
=1, 34, 43
=>-E, 33, 43
=>-1, 36, 43
A-E, 31, 43
A-1, 30-31, 43
V-E, 33, 43
V-1, 31, 43
1-E, 40, 43
1-1, 40, 43
Initial value, of a variable, 102
of an argument, 155
Inorder traversal, 236
inrange, 125
Insertion Sort, 247
Integer, 67, 314
Integer set, 67
Intersection, of two sets, 311
Introduction, rule of, 30
Invariant, 141
Invariant relation, see Invariant
Inversion, 185-186
Inverting Programs, 267
Iteration, 139
Iterative command, 139
strategy for developing, 181, 187
Ithacating, 31

Justifying Lines, 253,
289-293, 303

Knuth, Donald E., 302

362

Laws,
and-simplification, 21
proof of, 51 _
cand-simplification, 70
Associative, 20, 69
Commutative, 20
Contradiction, 20, 70
proof of, 51
cor-simplification, 70
De Morgan’s, 20, 70
Distributive, 20, 69
Distributivity of Conjunction,
110
Distributivity of Disjunction,
i11 :
Equality, 20
proof of, 51
Equivalence, 19-21
Excluded Middle, 20, 70
proof of, 50
Excluded Miracle, 110
Identity, 21
Implication, 20
proof of, 51
Monotonicity, 111
Negation, 20
proof of, 50
or-simplification, 21
proof of, 51
Leaf, of a tree, 229
Left subtree, 229
Length, of a sequence, 312
Levin, Gary, 302
Lexicographic ordering, 217
LHS, Left hand side (of an
equation)
Linear algorithm, 321
Linear Search, 197, 206, 301
Linear Search Principle, 197, 301
Line Generator, 263
Link Reversal, 215, 302, 346
List of nodes,
inorder, 236
postorder, 236, 347

Index

preorder, 232
log, 314
Logarithm, 314, 321
Logarithmic algorithm, 321
Longest Upsequence, 259, 303
Loop, 139, see Iterative command
annotation for, 145
checklist for understanding, 145
iteration of, 139
lower, 89
lup, 259

make-true, 116

Many-to-one relation, 316
max, 314

Maximum, 301

McCarthy, John, 295
Mcllroy, Douglas, 168
Melville, Robert, 303
Meta-theorem, 46

Mills, Harlan, 302

min, 314

Misra, J., 303

mod, 314

Modus ponens, 34 ¢
Monotonicity, law of, 111
Multiple assignment, 121, 127
Multiplication, identity of, 72

n-ary function, 319

n-ary relation, 319

Natural deduction system, 29-43

Natural number, 67, 313

Naur, Peter, 297, 304

Negation, 9-10

Negation, law of, 20

Nelson, Edward, 302

Newton, Isaac, 243

Next Higher Permutation, 178,
262, 301, 342

Node Count, 231, 302

Node, of a tree, 229

Non-Crooks, 353, 264

Nondeterminism, 111

Index

bounded, 312

restriction of, 238

unbounded, 312
Nondeterministic command, 111
Nonterminal symbol, 304
Normal form, conjunctive, 27
Normal form, disjunctive, 27
not, see Negation
Null selector, 96
Numerical quantification, 73-74

odd, 314
O’Donnell, Michael, 42
One-to-many relation, 316
One-to-one relation, 316
Onto relation, 316
or, see Disjunction
Order f(n), 321
ordered, 94, 126
Ordered binary tree, 229
Order of execution time, 321
Or, exlusive, 11

inclusive, 11
or-simplification, 21
Outline of a proof, 104
Output assertion, 100

Pairwise disjoint, 159
Paradox, 21
Parameter, 150
var, 158
final value of, 155
initial value of, 155
result, 151
specification for, 150
value, 151
value result, 151
Partial correctness, 109-110
Partial relation, 316
Partition, 214, 302, 345
pdisj, 159
Perfect number, 85
Period, of a Decimal Expansion,
264

perm, 91
Perm, see Permutation
Perm to Code, 263, 270, 303
Permutation, 75
Placement of assertions, 278
Plateau, of an array, 203
Plateau Problem, 203, 206, 301
Postcondition, 100, 109
strongest, 120
postorder, 347
Postorder list, 347
Postorder traversal, 236, 347
Precedence rules, 12, 67
Precondition, 100, 109
weakest, 109
Predicate, 66-87
evaluation of, 67-68
Predicate calculus, 66
Predicate transformer, 109
Predicate weakening, 195
Premise, 29
preorder, 233
Preorder list, 232
Preorder traversal, 232
Prime number, 83
Problems,
An Exercise Attributed to
Hamming, 243, 302
Approximating the Square Root,
195, 201, 246, 350
Array Reversal, 214, 302
Binary Search, 205, 302, 344
Closing the Curve, 166, 301
Code to Perm, 264, 272-273, 303
Coffee Can, 301, 165
Controlled Density Sort, 247,303
Decimal to Base B, 215, 302
Decimal to Binary, 215, 302
Different Adjacent Subsequen-
ces, 262, 303
Dutch National Flag, 214, 302
Efficient Queues in LISP, 250,
303
Exponentiation, 239, 252, 302

364

Problems (continued)

Finding Sums of Squares, 245,
302, 348

Four-tuple Sort, 185, 239, 301

ged, 191, 224-225, 301, 343

Insertion Sort, 247

Justifying Lines, 253,
289-293, 303

Linear Search, 197, 206, 301

Line Generator, 263

Link Reversal, 215, 302, 346

Longest Upsequence, 259, 303

Maximum, 301

Next Higher Permutation, 178,
262, 301, 342

Node Count, 231, 302

Non-Crooks, 353, 264

Partition, 214, 302, 345

Period of a Decimal Expansion,
264

Perm to Code, 263, 270, 303

Plateau Problem, 203, 206, 301

Quicksort, 226, 302

Railroad Shunting Yard, 219

Saddleback Search, 215, 302, 346

Searching a Two-Dimensional
Array, 182, 188, 301

Swap, 103, 119

Swapping Equal-Length Sections,

212, 302
Swapping Sections, 222, 302
Tardy Bus, 59
Unique 5-bit Sequences, 262,
303, 352
Welfare Crook, 207, 238, 302
Procedure, 149-162
heading of, 282
argument of a call, 152
body of, 150-151
call of, 152
declaration of, 150
recursive, 217
Production, 304
Program, annotated, 104

Index

Program inversion, 267
Program transformation, 235
Programming-in-the-small, 168
Proof, 163

by contradiction, 39-41

in natural deduction system,

31-32, 41-42

versus test-case analysis, 165
Proof Outline, 104
Proportional to, 321
Proposition, 8-016

as a set of states, 15

constant, 10

equivalent, 19

evaluation of, 11-14

stronger, 16

syntax of, 8-9, 13

weaker, 16

well-defined, 11
Propositional calculus, 25

Quadratic algorithm, 321

Quantification, 71-74
implicit, 83-84
numerical, 73-74
universal, 73

Quantified identifier, 71
range of, 71, 74, 82
type of, 83

Quantifier, existential, 71

Queue, 313

Quicksort, 226, 302

Quine, W.V.0, 42

QWERTY programmer, 170

Railroad Shunting Yard, 219

Randell, Brian, 296

Range of quantified identifier,
71, 74, 82

Record, 92, 98

as a function, 92, 98

Recursive procedure, 221

ref, 159

Refinement, of data, 235

Index

Relation, 315
binary, 315
closure of, 317
composition of, 316
identity relation, 316
invariant, see Invariant
many-to-one, 316
n-ary, 319
one-to-many, 316
one-to-one, 316
onto, 316
partial, 316
total, 316
Rene Descartes, 315
Replacing a constant, 199
Restricting nondeterminism, 238
Result assertion, 100
Result parameter, 151
Rewriting rule, 304
RHS, Right hand side (of an
equation)
Right subtree, 229
Role of semicolon, 115
Root, of a tree, 229
Ross, Doug, 296
Routine, 149
Rule of elimination, 30
Rule of inference, 25
Rule of introduction, 30
Rule of Substitution, 22, 26,
46-47
Rule of Transitivity, 23, 26
Rule, rewriting, 304
Rule, see Inference rule

Saddleback Search, 215, 302, 346
Schema, 19, 31, 45
Scholten, Carel, 301
Scope rule, in Algol 60, 38, 78
in natural deduction system, 38
in predicates, 78
Searching a Two-Dimensional
Array, 182, 188, 301
Section, of an array, 93

365

empty section, 93
Seegmueller, Gerhard, 296
SELECT statement, 134
Selector, 96
Semicolon, role of, 115
Sentence, of a grammar, 305
Separation of Concerns, 237
Sequence, 312

length of, 312

catenation of, 312
Sequential composition, 114-115
Set, 310

cardinality of, 311

difference, 311

empty, 310

intersection, 311

union, 311
Side effects, 119
Simple assignment, 117
Simple variable, 117
Simultaneous substitution, 81
skip, 114
sp, 120
Specification of a parameter, 150
Stack, 313
State, 11
Strategy, for developing a loop,

181, 187
for developing an alternative
command, 174
Strength reduction, 241
Stronger proposition, 16
Strongest postcondition, 120
Strongest proposition, 16
Subscripted variable, 89
Substitution, rule of, 22, 26,
46-47

simultaneous, 81

textual, 79-81

textual, extension to, 128-129
Subtree, 229
Swap, 103, 119
Swapping Equal-Length Sections,

212, 302

366

Swapping Sections, 222, 302
Symbol of a grammar, 304
nonterminal, 304
terminal, 304
Syntax tree, 308

7,8
Taking an assertion out of a
loop, 241
Tardy Bus Problem, 59
Tautology, 14
relation to theorem, 26
Terminal symbol, 304
Textual substitution, 79-81
extension to, 128-129
Theorem, 25
relation to tautology, 26
as a schema, 45
Total correctness, 110
Total relation, 316
Transitive closure, 317
Transitivity, rule of, 23, 26
Traversal, inorder, 236
postorder, 236, 347
preorder, 232
Tree, 229
depth of, 236
empty, 229
implementation of, 230
leaf of, 229
root of, 229
Truth table, 10, 15
Truth values, 8
Turski, Wlad M., 296
Two-dimensional array, 96

U, 69
Ullman, J.D., 309
Unambiguous grammar, 308

Unbounded nondeterminism, 312

Undefined value, 69
Union, of two sets, 311

Unique 5-bit Sequences, 262,

303, 352

Index

Universal quantification, 73
upper, 89
Upsequence, 259

Value parameter, 151
Value result parameter, 151
Var parameter, 158
Variable, subscripted, 89
final value of, 102
initial value of, 102
definition of, 283
simple, 117
Variant function, 142

Weakening a predicate, 195
combining pre- and post-
conditions, 211 .
deleting a conjunct, 195
enlarging the range of a
variable, 206
replacing a constant, 199
Weaker proposition, 16
Weakest precondition, 109
Weakest proposition, 16
Welfare Crook, 207, 238, 302
Well-defined proposition, 11
WFF'N PROOF, 28, 42, 59
While-loop, 138
Wilkes, Maurice, 149
Williams, John, 301
Wirth, Niklaus, 296
Woodger, Michael, 296
wp, 108

