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• This is an open book exam which means you can use any resources available, but you have to do it
alone.

• Ensure that your solutions and all necessary intermediate steps are described / shown in an
understandable and readable manner.

• You can do the exercises either electronically (LaTeX, Word, etc.) or on paper.

• Compile all your solutions (electronic documents, scans, photos) into a single PDF and upload it
to TUWEL until the end of the exam.

• If you have any questions during the exam, there is a live Q&A session:
https://tuwien.zoom.us/j/2409933302

Good Luck!

https://tuwien.zoom.us/j/2409933302


1. (7 points) Modeling: Wind Power Farm
Several wind turbines should be built in a given area. There are four potential locations L =
{1, 2, 3, 4}, and a wind turbine at location i would lead to 20 units of building costs and produce
on average ei units of energy per day, see the table below. Unfortunately, wake effects lead to a
reduction of energy production if wind turbines are too close together. If a wind turbine has one or
more neighboring turbines (indicated by edges in the graph below), its produced energy is reduced to
75% of the nominal value ei. The goal is to choose a subset of locations for building wind turbines
that maximizes the total energy output per day such that the total building costs do not exceed a
given budget of 50 units.

location i ei

1 20
2 24
3 40
4 20

1

2

3 4

(a) Formulate this problem as a (mixed) integer linear program. Describe all variables and con-
straints.

(b) State an optimal solution including all variables with non-zero values and the corresponding
objective value.



2. (6 points) Lagrangian Relaxation
Consider the following binary integer program:

z = max 3x1 + x2 + x3 (1)
2x1 + 3x2 + x3 = 4 (2)

4x1 + 2x2 + 3x3 ≤ 5 (3)
x1, x2, x3 ∈ {0, 1} (4)

(a) Identify the optimal value z and state an optimal solution.
(b) Relax constraint (2) in the usual Lagrangian way and write down the Lagrangian subproblem

z(u) depending on the Lagrangian multiplier u associated to the relaxed constraint.
(c) Run 2 iterations of the subgradient algorithm, starting with u0 = 0 and using step size µ0 = 1

(you do not need to compute u2). Note that you do not need the max-operator when updating
parameter u since it is allowed to get negative. State in each iteration the optimal value of
the Lagrangian subproblem and an according optimal solution. If the solution is feasible for
the original problem, compute the corresponding original objective value.

(d) What is the computational complexity of the Lagrangian subproblem? Does it have the in-
tegrality property? Note that the optimal value of the LP relaxation of the original binary
program is 3.375.



3. (6 points) Vehicle Routing By Branch-and-Cut
A feasible solution to the capacitated vehicle routing problem in an undirected graph G = ({0} ∪
C,E) with depot 0, customer nodes C = {1, 2, 3, 4, 5}, edges E, demands di for all customer i ∈ C
(see table below), and multiple vehicles each with capacity Q = 10 can be characterized as follows:

• Each customer is visited exactly once and its demand is fully served.
• All vehicles start and end their tour at the depot 0, i.e., there are no tours disconnected from

the depot.
• The sum of all demands in a tour does not exceed the vehicle capacity.

Assume that we run a branch-and-cut approach for the undirected graph below based on the following
formulation (omitting the objective function):

x(δ(j)) = 2 ∀j ∈ C (5)

x(δ(S)) ≥ 2
⌈

1
Q

∑
i∈S

di

⌉
∀S ⊆ C (6)

xe ∈ {0, 1, 2} ∀e = {0, j} ∈ E, j ∈ C (7)
xe ∈ {0, 1} ∀e = {i, j} ∈ E, i, j ∈ C (8)

Capacity constraints (6) are similar to undirected cutset constraints and ensure connectivity and the
vehicles’ capacity: They state that each subset S of customers needs a minimum number of vehicles
to get fully served, i.e.,

⌈
1
Q

∑
i∈S di

⌉
, and each of those vehicles need to enter and leave set S on 2

different edges. Note that edges incident to the depot can be used twice to allow single-customer
tours.
We start only with a subset of the constraints above and in some branch-and-bound node we obtain
the LP relaxation solution shown in the graph below: The value next to each edge corresponds to
its LP solution value (variable names are mostly omitted for better readability).

(a) Find at least one violated degree constraint, if one exists.
(b) Find at least one violated subtour elimination constraint (they are valid for subsets S ⊆ C

but not included in the formulation above), if one exists.
(c) How many vehicles do we need at least to serve all customers?
(d) Find at least two violated capacity constraints.

customer i demand di

1 4
2 3
3 6
4 2
5 5

1 2

3 4 5

0

x̄{1,2} = 0.5

1

0

0.5
0.750.5

1

1

0 0.25



4. (8 points) Modeling: Vaccine Delivery
The city of Vienna has hired your company to handle the distribution of vaccines to its vaccination
centers. Your goal is to accomplish this as cheaply as possible.
Vienna operates a set of vaccination centers C = {1, 2, . . . , n}, each of which has a daily demand
for di boxes of vaccines. Your single delivery vehicle, which can carry up to D boxes, leaves your
central warehouse (which is located at location 0) fully loaded in the morning. Driving from any
location i ∈ {0} ∪C to another location j ∈ {0} ∪C takes tij minutes and costs cij Euro for fuel.
Unloading a single box takes u minutes. To ensure timely opening of all vaccination centers, all
vaccines must be delivered and unloaded within T minutes after you leave your warehouse. Your
vehicle returns to the warehouse after its final delivery.
Instead of delivering all vaccines yourself, you can subcontract the cryo-logistics company DeepFreeze
to handle some deliveries for you. DeepFreeze guarantees the timely delivery of all necessary vaccines
to any vaccination center i ∈ C for a fixed delivery cost of fi Euro plus a handling cost of h Euro
per box. To simplify logistics at each center, split deliveries are not allowed: each center must
receive its full complement of vaccines at once, either from you or from DeepFreeze.

(a) Formulate this problem as a (mixed) integer linear program. Describe all variables and con-
straints you used. You may use a compact formulation (polynomially many variables and
constraints) or one solved by branch-and-cut.

(b) Describe a simple construction heuristic for solving this problem. It must not generate solutions
where DeepFreeze handles all deliveries, unless that is an optimal solution.



5. (7 points) Chvátal-Gomory Cutting Planes
Consider the polyhedron P described by the following linear inequalities

−x1 + 3x2 ≤ 5 (9)
2x1 + x2 ≤ 8 (10)

x1 ≥ 0 (11)
x2 ≥ 0 (12)

and its corresponding set of integer feasible points X = P ∩ Z2.
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Figure 3: https://www.desmos.com/calculator/exbrptd2ig

(a) Which of the following inequalities are valid for X? Which are redundant in the description
of P ∩Bi?
i. B1 : x1 ≤ 5
ii. B2 : x1 + x2 ≥ 1
iii. B3 : x2 ≤ 2

(b) Use the Chvátal-Gomory procedure with the following constraint weight vectors
i. u1 = (1

3 , 0)
ii. u2 = (1

4 ,
1
4)

to derive two new valid inequalities C1 and C2 for X. State which of the newly derived valid
inequalities (if any) are facet-defining for conv(X).

(c) Is the resulting polyhedron P∩C1∩C2 equal to conv(X)? If not, state the missing inequalities.
(d) Solve the linear program

max x1 + x2 (13)
s.t. x ∈ P (14)

Does the optimal solution change if you consider the feasible set P ∩ C1 ∩ C2 instead?

https://www.desmos.com/calculator/exbrptd2ig


6. (6 points) Cover Inequalities
Consider the knapsack set

X = {{0, 1}5 : 9x1 + 6x2 + 5x3 + 4x4 + x5 ≤ 12}

(a) State a minimum cover C with |C| ≥ 3 and its corresponding valid cover inequality.
(b) State the extended cover inequality for C.
(c) Lift the cover inequality for C to obtain a strong valid inequality, i.e., compute all lifting

coefficients.
(d) State all optimal solutions for the following ILP

max x1 + x2 + x3 + x4 + x5 (15)
s.t. x ∈ X (16)


