
VRUE Tutorial 1
05.10.17

Khrystyna Vasylevska

Topics

 Organizational info
 Source Control
 Unity3D and monoDevelop/(Visual Studio)
 Unreal Engine 4 / Blueprints
 Basic Physics
 Leap Motion
 Task 1

2

Organization
 TISS registration

– Unregistration deadline 10. October!

 TUWEL course – check your access!

 Equipment hand-out after the Tutorial till 5PM
– Only for full registered groups!
– Read and fill-in the contracts!
– Bring you Student ID + 1 copy of it

 Please keep your repositories private for all assignments at all
times!

3

Organization (2)
 Check your PC+Vive ASAP!

• Make sure that base-stations are fixed rigidly!
• Moving base-stations when powered might damage them!

 Please, handle the packaging with care!
– Some of it is falling apart -> can damage the equipment

 If something is not working and tech. support doesn’t help – let
us know asap!

4

Organization (3)
 TUWEL course

– Tutorial slides
– Group registrations

• Those without a group – will be assigned!
– Engine choice
– Assignment descriptions
– Assignment submissions (up to 256MB)
– Forum (tutors are there for you!)
– FAQ

 Contact us: vrue@lists.tuwien.ac.at

5

mailto:vrue@lists.tuwien.ac.at

Source-Control Bitbucket
 You can have unlimited private repositories under certain

conditions.

– It is free as long as you have fewer than 5
collaborators registered.

– You can always manage and remove collaborators
temporarily and add them later on.

6

Source-Control GitHub
 If you are using GitHub, we kindly ask you to

register as a student. At GitHub it is free!

 You'll need a TU email address + valid student ID

 Then you can hide your code from the public
– Please, do that with all the assignments.

7

Source-Control .gitignore
 It is recommended to use a .gitignore file for Unity and Unreal.

– It ignores Source-Control for certain files

– Unity and Unreal have many auto-generated files that don't need to be in
the repository.

– Can make the repository huge (Unreal generates >2GB of files even
though only around 300MB need to be shared with your partner)

 Check gitignore.io for templates
– https://www.gitignore.io/

8

https://www.gitignore.io/

Source-Control git Client

 You can either use the git Console or as an alternative a Client like
SourceTree

– Very easy to use

– Graphical user Interface

9

Unity3D
+

MonoDevelop/Visual Studio

10

Unity 3D
 Game Engine

– Adapted for AR&VR
 Development environment

– Editor
 Runtime actor - Player
 Supports many media formats

– 3D models
– Sounds
– Animations

 Programming
– C# (Mono) – relevant for us
– JavaScript
– Etc.

https://docs.unity3d.com/Manual/UnityOverview.html

11

https://docs.unity3d.com/Manual/UnityOverview.html

Interface

1. Game view 2. Scene view

3. Hierarchy 4. Inspector

5. Project

5. Console

12

Unity – Project tab
 Assets

– Unity Ressources
• Meshes
• Scripts
• Textures
• Scenes
• ...

– Direct connection to Filesystem
– Organization depends on developer

13

Unity – Scene & Game tabs
 Scene - Visual construction area

– Allows visual manipulation
• Position
• Rotation
• Scale

– Detailed view
• Wire frames
• Alpha chanel...

– Partial previews
• Sound (depending on vie point)
• Some animations (particle systems)

 Game - Real time player view
– Multiple cameras view is possible
– Sounds
– Player triggered events
– All changes done are NOT saved!

QWERT

14

Unity - Inspector
 GameObjects

– All Objects in the Scene
– Container for Components
– Can be deactivated, taged, assigned to a layer
– Every Object has a Transform Component

 Components
– Define the functionality of GameObjects
– Differ in Types
– Are attached to GameObjects
– Can be added

• in Editor via Menu or Inspector button
• attached by a Script
• Using Drag and Drop from Project

– Script is also a Component

15

Unity – Hierarchy tab
 Defines the scene organization
 Showes all objects in the current

scene
 Defines Parent-Child relations

– Defines grouping of GameObjects
– Builds up on Transform Component

 Parent
– is a local coordinate system for Children
– Influences Children‘s Properties

16

Unity - Console
• Errors/warnings

- Obsolete elements warnings
- Unused variables warnings

• Your script messages using
- Debug.Log
- Debug.LogWarning
- Debug.LogError

• Features:
- Message separation
- Collapsing messages from the

same line
- Clear on Play

17

Prefabs
 Preconfigured GameObjects

– Can be instantiated or cloned
• Runtime
• Reused in different Scenes

– Already contain chosen
• 3D model
• All Components
• Pre-defined settings of Components
• Pre-defined values of public variables in

Scripts
– You can edit

• Instance of a Prefab
• Apply Instance Settings to the Prefab (save

them)
• Prefab itself

– You can create Prefabs during
runtime too

18

Settings and Preferences
19

MonoDevelop
 Integrated Development Environment

– Syntax Highlighting
– Debugging
– Good Unity-Integration
– Project management support
– ...

 Feel free to use Visual Studio

 Scripts
– Assets
– automatischer Build-Prozess im Editor

20

Basics
 MonoBehavior

– Is attached as Component to a GameObject
– main Methods in Script

• Start() - Initialisation
• Update() – called on every new frame

– Access to GameObject & Components
• gameObject
• transform
• GetComponent<T>()

21

To Keep in Mind
 new GameObject()

– Creates new GameObjects in the root of Hierarchy (parentless)
 transform.parent

– Setting the parent maintains the current Object’s global world values
• transform.position,
• transform.rotation,
• transform.scale

– But local transform values will be corrected in regard to the new local
coordinate system (the one defined by the parent)!

• transform.localPosition,
• transform.localRotation,
• transform.localScale

22

MonoDevelop-Debugging
 before Starting the Scene attach

MonoDevelop to the Unity-Instance

 Set Breakpoints

 Start the scene in Unity

23

Unreal Engine 4

24

Unreal Engine 4
25

 Game Engine

 Development environment
– Unreal Editor

 Runtime actor – Player

 Supports many media formats
– 3D models
– Sounds
– Animations

 Programming
– C++ (Visual Studio)

https://docs.unrealengin.com/latest/INT/

https://docs.unrealengine.com/latest/INT/

Unreal Editor Interface
26

Unreal – Content Browser
27

 Assets

– Create, import, organize and modify content
• Meshes, Textures, Blueprints,…

– Whether to show engine and plugin content can be toggled via the view
options

Unreal – Viewport
28

 Visual construction area
– Allows visual manipulation

• Position, Rotation, Scale
– View Options

• Perspective
• Lit, unlit, wireframe, …

– Preview window
• When player character selected

 Preview: Real time player view
– Press play to start preview in viewport
– Option for VR Preview

For more information on viewports look at:
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/index.html

https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/index.html

Unreal – Viewport
29

For more information on viewports look at:
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/index.html

https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/index.html

 Shows all Actors in the scene and their types

 Hierarchical tree view

 What you can do here
– Search for specific actors
– Toggle visibility
– Select actors to modify
– Group actors
– Attach an actor to another actor
– Focus on an actor by pressing F
– Find asset in content browser
– Organize actors in folders
– Access blueprint editor for blueprint types
– …

Unreal – World Outliner 30

Unreal – Details Panel
31

 Details for the actor selected in the
Viewport

Settings and Preferences
32

 Settings->Project Settings
– Maps & Modes

• Editor Startup Map
• Game Default Map (always make sure

this is set to the map you want before
packaging a project)

– Description
• Start in VR (if your program uses VR, don‘t forget to

check this)

– Input
• Add ActionMappings

and AxisMappings

More information on input and axis mappings:
https://www.unrealengine.com/en-US/blog/input-action-and-axis-mappings-in-ue4

https://www.unrealengine.com/en-US/blog/input-action-and-axis-mappings-in-ue4

UE4: Actor
33

 An Actor is any object that can be placed into a level
• Called GameObjects in Unity
• There are several different types of Actors, some examples include:

StaticMeshActor, CameraActor, and PlayerStartActor

 Creating a new instance of an actor is called spawning
• Function in blueprints Spawn Actor

 Contains the Root Component
– stores main transform (location, rotation, and scale)
– applies its properties to children

For more information on Actors and Components:
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors

https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors

Actor Classes
 An Actor is an object that can be placed or spawned in

the world.

 A Pawn is an Actor that can be "possessed" and receive
input from a Controller.

 A Character is a Pawn that includes the ability to walk,
run, jump, and more.

 A Player Controller is an Actor responsible for
controlling a Pawn used by the player.

34

UE4: Actors & Components
35

 Actors can be thought of, in one sense, as containers that hold
special types of Objects called Components.
– ActorComponent is the base class for components that define reusable

behavior that can be added to different types of Actors.
• are associated with a specific Actor, but do not exist at any specific place in the

world
• E.g. AI, deal with player input

– Scene Components
• Actor Components with transforms
• can be attached to each other in a hierarchical fashion

– Primitive Components
• Scene Components with rendered representation
• E.g. mesh, particle system, physics and collision settings are here

For more information on Actors and Components:
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors

https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors

Blueprints Visual Scripting
 The Blueprints Visual Scripting system in Unreal Engine

– is a complete gameplay scripting system

– based on the concept of using a node-based interface

– is used to create gameplay elements from within Unreal Editor

36

Getting started with Blueprints:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/GettingStarted/index.html

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/GettingStarted/index.html

Blueprint Editor Access
 In World outliner Type in blue
 In Content browser

37

Blueprint Types
 Level Blueprints

– are specific to the level that they're used in
– Are used to set up functionality specific to the level, or Actors in it

 Blueprint Classes
– Define reusable behavior in the project
– Are defined by parent blueprint class

• add it to any of your levels
• also add as many copies as you need

38

More information about the level blueprint can be found here:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Types/LevelBlueprint

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Types/LevelBlueprint

UE4: Blueprint Classes
39

 Similar to classes in Java/C++ (inheritance, interfaces)
 Can be instantiated (spawned) at Runtime

 Can contain
– Variables, Functions

• Mesh, Material, etc.
• Components with Pre-defined settings

 You can edit
– Blueprint Class in general (applied to all Actors in project)
– Instance of a Blueprint Class (applied to a specific Actor)

• Make sure you are working on the one you want!

Quickstart tutorial on Blueprints:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/QuickStart/index.html

40

The Blueprint Editor

Blueprint Editor: My Blueprint
41

 The items displayed depend on the
type of the Blueprint
– Graphs
– Functions
– Macros (template for nodes)
– Variables
– Event Dispatchers

 create new items by clicking on the
plus icon

 Variables can be set to private or
public (eye icon)

42

Blueprint Editor: Details
 Edit properties of the blueprint

– Variables

– Functions

– Events

– Actor components

Blueprints: Accessing Data
43

 Inside the current Blueprint

– Drag functions/components/variables/… into the Graph Editor to use them

– Or right click in the Graph Editor and search for the functions/component/variable

 Actors from the World Outliner can be accessed in the Level Blueprint

– you can drag an actor from the World Outliner into the Level Blueprint

– Every level has a Level Blueprint

– To access the level blueprint select Blueprints > Open Level Blueprint

More information about the level blueprint can be found here:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Types/LevelBlueprint

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Types/LevelBlueprint

Blueprints: Accessing Actors
44

 Access Actors not associated with the current blueprint
– Get All Actors Of Class
– Get All Actors With Tag

• These are slow, don‘t use them every frame!
– Use various Tags and Get Tags for faster search

 Useful information:
– Referencing Actors in Blueprints

– https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/ReferenceAssets/Blueprints/

– Finding Actors in Blueprints
– https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/FindingActors/Blueprints/index.h

tml

https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/ReferenceAssets/Blueprints/
https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/FindingActors/Blueprints/index.html

Blueprint Editor: Graph Editor
45

Blueprint Editor: Graph Editor
46

 Visual scripting

– Right click to add a node
• context sensitivity available

– Add comments to sections for readability
• type comment in search function, select add comment
• Or select some nodes, right click on one of the nodes, and select create

comment

– Search functionality
• Use to look up available functions/variables

More on Pins:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/BP_HowTo/ConnectingNodes

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/BP_HowTo/ConnectingNodes

Blueprints: Useful Tips
 Spawn Actor From Class

• Create an Actor at runtime

 Destroy Actor
• Destroy an Actor at runtime

 Get Actor Transform

 Attach To Actor/Component

 Detach From Actor/Component

 Blueprints Quick Start Guide
– https://docs.unrealengine.com/latest/INT/Engine/Blueprints/QuickStart/index.html

 Blueprint Editor Cheat Sheet
– https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/CheatSheet/index.html

47

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/QuickStart/index.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/CheatSheet/index.html

Debugging
48

 Window -> Developer Tools
– Output Log, Message Log

 Blueprint Debugger
– Set breakpoints
– Watch variables

 Print String
– to log output window
– on screen

 Debug functions
– DrawDebug[…]

• Point, Line, Plane, Sphere…

More on debugging Blueprints:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Debugging/

Basic Physics

49

Unity: Physics Basics
Collider
 Component that reacts on other

Colliders
– Different shapes, sizes and types

• Primitive shapes
• MeshCollider (not recommended)

– At least one of the colliding Objects
has to have a Rigidbody
Component

– OnCollisionEnter() event is
called at the collision

 Collider can be a trigger
– isTrigger flag is set to true
– Typically static
– OnTriggerEnter() event is called

at the collision
– No physics is involved then

50

Unity: Physics Basics (2)
Rigidbody
 Component that object to be

effected by physics
 Must have a Collider

Component to interact with other
physics objects

 Enables gravity (castomisable)
 Define properties

– Mass
– Drag (air resistance)
– Velocity

 isKinematic disables physics
interaction for the object,

– but still activates the colliders of other
objects!

51

Unreal: Physics Basics (1)
52

 Physics settings are in Details

– Gravity is set here

– To make an object simulate physics
• Simulate Physics flag = true
• Needs at least a simple collision shape
• Set mass of the object & damping factors
• Have collision shapes

– Simple: Primitives or convex hulls
– Complex: Triangle mesh of the object

• Mobility might be set to Movable

– Constraints
• lock position/rotation for individual axes

More on Physics:
https://docs.unrealengine.com/latest/INT/Engine/Physics/
https://docs.unrealengine.com/latest/INT/Resources/ContentE
xamples/Physics/index.html

https://docs.unrealengine.com/latest/INT/Engine/Physics/
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/Physics/index.html

Unreal: Physics Basics (2)
53

 Collision component is defined
– Presets
– Custom settings

 Collision must be enabled for
all the objects involved
– Block: e.g. solid objects

• Enable Simulation Generates Hit
Events flag to fire events on collision

– Overlap: e.g. triggers
• Enable Generate Overlap Events flag

if you want them to fire (trigger
colliders in Unity)

– Ignore: no interaction
• If you want two objects to block each

other both of them need to be set to
block the type of the other object

More on collision:
https://docs.unrealengine.com/latest/INT/Engine/Physics/Collision/Overview/index.html

https://docs.unrealengine.com/latest/INT/Engine/Physics/Collision/Overview/index.html

Interaction Basics

In VR (3D) ?

In the real world (3D)
Grab and move

On a desktop (2D)
With a mouse - 2D motion

Source: https://www.leapmotion.com

It‘s somewhere in-between

54

Leap Motion

55

Leap Motion Basics
 Tracks hands in close range: 10 – 60 cm

 Installation: Orion Beta 3.2
 Unity in Asset store

• Unity Core Asset
• Add-on Leap Motion Interaction Engine
• Optionally: Hands Module

 Unreal Leap Motion Plugin

 Meant for a first-person view of the VE
– best usability with an HMD
– in VRUE use

• unofficial human mounts
• or desktop setup

Source: https://www.leapmotion.com

56

How to activate the plugin in UE4:
https://developer.leapmotion.com/unreal#103

https://developer.leapmotion.com/unreal#103

How Does Leap Work

Source: https://www.ifixit.com

57

Leap Motion Examples
Blocks (.exe only) Unity Pinch Draw (Add-on module)

Pictures source:
https://www.leapmotion.com

Untiy UI Input Module (Add-on module)

58

https://gallery.leapmotion.com/ui-input-module

https://gallery.leapmotion.com/blocks https://gallery.leapmotion.com/pinch-draw

https://gallery.leapmotion.com/ui-input-module
https://gallery.leapmotion.com/blocks
https://gallery.leapmotion.com/pinch-draw

Unity: Leap Tracking Basics
 Position of a tracking target is

– calculated in respect to the tracking origin in the real world
– mapped to a position in the VE

 Attention: Leap is sensitive to Light House IR lasers

59

Unreal: Leap Tracking Basics
 Position of a tracking target is

– calculated in respect to the tracking origin in the real world
– mapped to a position in the VE

 Attention: Leap is sensitive to Light House IR lasers

60

Image source and more information on coordinate systems:
https://developer.leapmotion.com/documentation/v2/unreal/devguide/Leap_Coordinate_Mapping.html

https://developer.leapmotion.com/documentation/v2/unreal/devguide/Leap_Coordinate_Mapping.html

Unity: Integration
 Main Prefab Extended for Interaction Manager (later)

 LeapHandController contains main hand tracking – related scripts: LeapHandController,
LeapServiceProvider and HandPool

 CenterEyeAnchor has a camera and HMD-related scripts (not so important in the task)
 HandPool defines hand models (make sure to drag correct game objects)

61

Unity: Natural Hand Interaction
 Interaction Engine (from Add-on modules)

– allows to easier grab and throw objects
– based on twisted physics rules (colliders, gravity, etc.)

 Usage
– LMHeadMountedRigInteraction and corresponding HandPool
– InteractionManager
– InteractionBehaviour on game objects to be interacted with

62

Unity: Hand Types
 Capsule Hands

– graphical representation, generated dynamically by a script
 Rigid Hands

– made out of colliders, can be used to interact with game
objects

– are incompatible with Interaction Engine!
• Remove from the hierarchy and the HandPool

 Interaction Hands
– Invisible, used with Interaction Engine
– Included to Leap Motion Interaction Engine v1.1 Add-on

63

Unity: Gestures with Leap
 Detector scripts (DetectionUtilities) for simple gestures:

– Extended finger
– Pinch
– Finger direction
– Palm direction, etc.

 Can be combined to create new gestures with
DetectorLogicGate
– For example, extended thumb and index make a pistol gesture

 Some gestures are recognized better than others:
− In the plane orthogonal to the Leap z-axis
− Neighbouring fingers are harder to distinguish

 Good examples in DetectionExamples (add-on module)

Pistol gesture

64

Unreal & Leap: Getting Started
 Leap Plugin is included in UE4, only needs to be enabled

 Choose a Blueprint Project, and the VR Template

 For information on the Leap Plugin see for example
https://github.com/getnamo/leap-ue4

 The plugin contains blueprint characters you can place in the world
– E.g. LeapRiggedCharacter, LeapFloatingHandsCharacter

65

https://github.com/getnamo/leap-ue4

Unreal: LeapFloatingHandsChracter
 Handtype can be changed at runtime

– See the Event Graph of LeapFloatingHandsCharacter
– Add the InputAction ChangeHands in the Project Settings

 Available hand types
– LeapComponentHands

• discrete components for the parts of the hands
– LeapRiggedEchoHands

• rigged mesh hand
– LeapImageHands

• displays images of your real hands from the camera sensors

66

Unreal: LeapRiggedCharacter
 Not just floating hands, full body

67

Unreal: Moving around
 Moving your character around via keyboard input

– Look at the Movement Graph of LeapBasicRiggedCharacter or
LeapFloatingHandsCharacter

68

Unreal: Gestures
 LeapEventInterface

– Add Interface to a Blueprint
– Add LeapController to that Blueprint

 The LeapAnimBodyConnector already implements that
interface

 The Rigged Character and Floating Hands Character use the
LeapAnimBodyConnector

 The LeapEventInterface
– Events are for example HandPinched and HandGrabbed
– Using the Event HandMoved, you can implement your own logic

69

Unreal: Gestures
 Events of the LeapEventInterface return a Hand from which

you can get a lot of information

70

3D Interaction
 3D-Interaction

– Different from 2D interaction
– A user can move in all 3 dimentions
– Tracking is the basis for the interaction

 Basic principles
– Real hand position and rotation is mapped to the Virtual Hand
– In the Virtual Environment (VE), user interacts using Virtual Hands
– Limitations:

• LeapMotion tracking range
• human grabbing distances

– Need interactions that are not possible in the real world
• to reach and manipulate the distant objects

Source: https://www.leapmotion.com

are too small to reach all the objects

71

Task 1

72

3D Interaction in Task 1
 3D Interaction techniques

– Looking at the scene from first-person perspective
– Camera position in VE is fixed
– Tracking origin – Leap Motion device

 Interaction techniques in VRUE
– Interaction with VE

– using gestures
– Natural hand interaction with objects

– Unity: using Leap Interaction Engine
– Unreal: VR template & adding force

– Distant interaction
– using Raycast/LineTrace

73

Create objects
 With both hands doing Pinch

– see Blocks demo
 Scale the object depending on the

distance between left and right
pinches
 Unity:

 Use PinchDetector and DetectorGate
 Newly created objects should have

InteractionBehaviour for Interaction
Engine functionality

 Unreal
 LeapEventInterface
 Events HandPinched, HandGrabbed,

HandMoved

74

Select and Manipulate

 In close range – reproducing real world hand interaction
(Interaction Engine)

 In far range – using interaction metaphors (Raycast and gestures)

75

Unity: Raycast
 Physics.Raycast

– Shoots an invisible ray
– True when intersects with

• Colliders
• objects with Rigidbody, even without a collider
• (if configured) Triggers

– Collision info stored as RaycastHit
 Visualize with a LineRenderer

76

Unreal: TraceLine
 LineTraceByChannel

or LineTraceForObjects
– Shoots an invisible ray
– Returns a HitResult

 Visualize by rendering a line
– Simplest way:
Draw Debug Line

77

More information on raycasts/traces:
https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/UseRaycasts/Blueprints

https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/UseRaycasts/Blueprints

Raycast/LineTrace Select
1. Cast a ray with Raycast/LineTrace when a pistol gesture is

detected

2. An object currently hit by Raycast/LineTrace can be selected

3. Select by folding the thumb

4. Now the object can be manipulated
 Viasualize the selection state with the color

− Color #1, when neutral
− Color #2, when an object is hit by Raycast

• but not yet selected
− Color #3, when selected and can be manipulated

78

Task 1 – Assignment Submission
 Assignments submissions are held in TUWEL exclusively!

 You submit:
 .zip of the Unity project

– Include “feature description” in a txt file for bonus
• A list of what is done

 Zip-file might be up to 256MB

 Deadline: 15.10.17, 23:59
– Every extra day = -10% of your points

 Grading: main points + bonus points

79

Grading
 Please, read the assignments carefully

– Project organization is important and graded!
– Scene organization is also graded!
– Clean code/blueprints are appreciated

• Comments are very welcome

– Cheating will be punished!

 Bonus is optional
– But the earned points are counted into the grade, if something was not perfect
– Doesn’t mean you can skip the main functionality

80

Unity: Where to Look for Help
Official Tutorials https://unity3d.com/learn/tutorials

Other Video Tutorials http://www.unity3dstudent.com/category/modules/

User Manual http://unity3d.com/support/documentation/

Reference Manual https://docs.unity3d.com/432/Documentation/Components/

Scripting Reference https://docs.unity3d.com/ScriptReference/index.html

Community Forum https://forum.unity3d.com/

Knowledge Base https://support.unity3d.com/hc/en-us

Leap Motion (Orion)

https://developer.leapmotion.com/documentation/unity/index.html
https://github.com/leapmotion/UnityModules/wiki/Getting-Started-%28Interaction-Engine%29

81

https://unity3d.com/learn/tutorials
http://www.unity3dstudent.com/category/modules/
http://unity3d.com/support/documentation/
https://docs.unity3d.com/432/Documentation/Components/
https://docs.unity3d.com/ScriptReference/index.html
https://forum.unity3d.com/
https://support.unity3d.com/hc/en-us
https://developer.leapmotion.com/documentation/unity/index.html

Unreal: Where to Look for Help
Official Tutorials https://docs.unrealengine.com/latest/INT/

Video Tutorials https://docs.unrealengine.com/latest/INT/Videos

Community Forum https://wiki.unrealengine.com/Main_Page

Unity to Unreal https://docs.unrealengine.com/latest/INT/GettingStarted/FromUnity

Blueprints https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html

Content Examples https://docs.unrealengine.com/latest/INT/Resources/ContentExamples

Leap UE4 Docs https://developer.leapmotion.com/documentation/v2/unreal/index.html

https://github.com/getnamo/leap-ue4

82

https://docs.unrealengine.com/latest/INT/
https://docs.unrealengine.com/latest/INT/Videos/User
https://wiki.unrealengine.com/Main_Page
https://docs.unrealengine.com/latest/INT/GettingStarted/FromUnity
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples
https://developer.leapmotion.com/documentation/v2/unreal/index.html
https://github.com/getnamo/leap-ue4

Questions?

83

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Organization (2)
	Slide Number 5
	Source-Control Bitbucket
	Source-Control GitHub
	Source-Control .gitignore
	Source-Control git Client
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Unreal Engine 4
	Unreal Editor Interface
	Unreal – Content Browser
	Unreal – Viewport
	Unreal – Viewport
	Unreal – World Outliner
	Unreal – Details Panel
	Settings and Preferences
	UE4: Actor
	Actor Classes
	UE4: Actors & Components
	Blueprints Visual Scripting
	Blueprint Editor Access
	Blueprint Types
	UE4: Blueprint Classes
	The Blueprint Editor
	Blueprint Editor: My Blueprint
	Blueprint Editor: Details
	Blueprints: Accessing Data
	Blueprints: Accessing Actors
	Blueprint Editor: Graph Editor
	Blueprint Editor: Graph Editor
	Blueprints: Useful Tips
	Debugging
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Unreal: Physics Basics (1)
	Unreal: Physics Basics (2)
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Unreal: Leap Tracking Basics
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Unreal & Leap: Getting Started
	Unreal: LeapFloatingHandsChracter
	Unreal: LeapRiggedCharacter
	Unreal: Moving around
	Unreal: Gestures
	Unreal: Gestures
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Unreal: TraceLine
	Slide Number 78
	Slide Number 79
	Grading	
	Slide Number 81
	Unreal: Where to Look for Help
	Slide Number 83

