
VRUE Tutorial 3

Networking and Distribution
31.10.2017

Iana Podkosova

Organizational

Assignment 1 Basics/Leap Motion
Assignment 2 Physics/HTC Vive
Assignment 3 Networking and Distribution

due 21.11.2017

Project idea
due 10.11.2017

Project VR Game based on all above
 Mid-January 2018

Project Task
 VR game for 2 players

– Can also be a serious game or a simulator/educational
application

 Compulsory features (you have to implement them)
– Leap player creates different objects that are picked up and

used by both players
– Throwing objects (correct and correctly synchronised physics)
– LeapPlayer can move (but both players always see each other)
– Interactive game space extention (see next slide): 2 methods

 Short description to be submitted on November 10th
– Not graded but obligatory
– Text file describing gameplay and abilities of each player

Game Space vs Tracking Space

 Tracking space is limited to a max of 5x5 meters
– Game worlds are usually much bigger

 How to explore a large game world using a very
limited tracking space?

 Teleportation? Magic portals?
– Can provoke simulator sickness if used frequently in

an HMD-based application
– Can easily provoke disorientation
– Breaks the feeling of the continuity of the motion

 Alternative: manipulate tracking data and/or the
environment

Game Space Extention

 Multiple floors + elevators
– Modify y-position of the camera

 Increased walking speed
 Flying with specific gesture input (not on button

press!)
 Redirected walking: add rotation gains
 Redirected walking: modify geometry on the fly
 Use overlapping spaces
 Suggest your own method!

Knowledge for Assignment 3

 Setting up a networked project
– In Unity
– In Unreal
– Steering a player by tracking input

 Enabling distributed interaction
– Management of object manipulation rights
– Correct handling of physics depending on interaction

Networking and Distribution

Basic Concepts
 Server/Client structure (both Unity and Unreal)

 Single server – multiple clients, clients never communicate
directly

 Authoritative vs. Non-authoritative server (theory)
 Clients control local players

 Applications can be configured as Server, Client or
Host(Unity)/ListenServer(Unreal)
 Host is a server that also has a local client instance

 Network communication
 State synchronization/replication for objects and variables,

remote actions

Client-Server Communication:
Authoritative Server

 Server tasks
– Calculations, physics (collision detection), game logic
– Receive and process all input data from clients
– Distribution of position updates to clients

 Client tasks
– Send input directly to the server
– Receive and apply updates (including position)

 Characteristics
– Clients can‘t cheat
– Server loaded with calculations
– High network traffic
– Prediction on the client side in case of delays

Client-Server Communication:
Non-Authoritative Server

 Server tasks
– Synchronization of clients

 Client tasks
– Input and physics calculated and applied locally
– Position updates (but not only) are sent to the server

 Characteristics
– Game logic on the client side
– No need in prediction
– Smaller delay
– Clients own their objects
– Harder to achieve perfect synchronization

Client-Server Communication:
VR, Unity and Unreal

 What is better for VR?
– Everything that directly influences a user should be processed on the client

• Tracking input
• Interaction with nearby objects

 How is it done in UNET (Unity)?
– Player and player objects controlled by the client (client authority)
– All the other objects controlled by the server (server authority)

• But the authority can be passed to clients
• Necessary if game objects should be manipulated by all clients

– Server can easily invoke remote actions on clients, remote actions invoked on
the server are more restricted

 Game logic can be split between the server and the client

 How is it done in Unreal?
 Designed to use authoritative servers but workarounds are possible
 Strict definition of a gameplay

Unity

Network Manager
 Needed to set up a networked scene
 Setting for a player prefab and all spawnable

objects
 Network transmission settings
 StartServer(), StartClient(), StartHost()
 public override void OnStartServer(), etc.

Connection Management
 NetworkClient

– NetworkConnection connection

 NetworkServer
– Spawns distributed objects: Spawn, SpawnObjects,

SpawnWithClientAuthority
– Spawned objects should be in RegisteredSpawnablePrefabs
– List<NetworkConnection> connections

 NetworkConnection
– One for client, multiple for server
– Can „own“ distributed objects

 NetworkClient, NetworkServer, NetworkConnection also
implement low-level messaging
– Out of scope for the exercise but could have been used

NetworkIdentity

 Identifies objects accross the network
– NetworkInstanceId is primary property, issued by the server

and assigned to clients

 Objects with it should be only created by the server
 For complex objects, must be only on the root of the

hierarchy
 ServerOnly to instantiate only on the server
 localPlayerAuthority to enable client control

NetworkTransform
 To synchronize position and

rotation of a networked
game object

 Server-client for server objects
and client-server for an owning
client

 Also need a NetworkIdentity component
– With localPlayerAuthority checked for client-owned objects

 TransformSyncMode
– Only the position is synchronized with every setting

 NetworkTransformChild
– To synchronize transforms in the hierarchy
– Should always be attached to the parent game object

NetworkBehaviour
 Derives from MonoBehaviour
 Allows for UNET functionality: networked actions, callbacks,

variable state synchronization from server to client
 Requires a NetworkIdentity on the game object
 A game object can have multiple NetworkBehaviours
 All scripts containing networking functionality should be

NetworkBehaviours
 Callbacks OnStartClient and OnStartServer

 Called when a NetworkBehaviour is activated
 Custom functionality can be added

 OnStartAuthority, OnStopAuthority
– Called on behaviours with localPlayerAuthority when authority is passed to

a client and removed from it

Remote Actions and Attributes
 From server to client

– [SyncVar]
• To synchronize variables of simple types

– [ClientRpc]
• Called on the server, invoked on all clients
• Function must begin with the prefix Rpc

– [TargetRpc]
• Called on the server, invoked on a particular client
• Function must start with the prefix Target

 From client to server
– [Command]

• called on a client, invoked on the server on the player
object associated with the connection

• Function must start with the prefix Cmd

 Arguments of remote actions are serialized over
the network

 Other attributes
– [Client]

• For a function to only run on a client

– [Server]
• To only run on the server

– [NetworkSettings]
• To configure the transmission mode of a

Network Manager HUD
 Addition to Network Manager
 Enables Runtime GUI
 Allows to setup as server or client with adress and port
 Way easier to use in an .exe

Unreal

UE4 Networking

 UObject
 Object derived from UObject

 Objects, Game Objects, Actors, Pawns, Characters

 Server
 The computer process with an instance of a UWorld that contains Actors that

are replicated to clients

 The state of the world contained here is considered to be the "real" or
"correct" one

 Client
 The computer process with an instance of a UWorld that contains Actors that

were received from a Server over a network connection

 The state of a client is an approximation of the state of the Server. It is not
considered to be accurate or correct.

UE4 Networking: Connection
 No need in placing anything special in the map, can just start the

game as a server or a client
 Open command line at the location of the project

 “UE4Editor.exe” “ProjectName.uproject” MapName?listen -game -log

 “UE4Editor.exe” “ProjectName.uproject” MapName -server -log (-nosteam)

 “UE4Editor.exe” “ProjectName.uproject” IPaddress -game -log

 Cannot connect one editor instance to another!
 It is possible to start a listen server in the editor and connect a client started

from command line

 Possible to run a dedicated server and a client on the same machine (ip
127.0.0.1)

 UE4Editor provides in-built multiplayer testing
 Gets difficult with actual input devices (Vive, Leap)

 Make sure to start testing on two machines as soon as possible!

UE4 Gameplay Classes
Important for the project!
GameMode (or GameModeBase)

 Only exists on the server
 Rules for connecting to the game
 Good place for other game rules

GameState
 For clients to monitor the state

of the game
GameInstance

 On the server and replicated to
clients (one on each)
 Good for keeping information
relevant to each player

PlayerController
 On the server for each player and
on the Role_AutonomousProxy once
 Meant to process input
 Steers the player pawn

PlayerPawn (or Character)
 Exists everywhere for each player
 Gets spawned as the main player

PlayerState
 For each player on the server and
replicated to all clients
 Good for monitoring players

 Network Roles
 rules that control how information flows between Server and Client

 Spawning Rule
 Only the server can spawn Actors that will replicate to clients

 UPROPERTY Replication Rule
 A UPROPERTY that is tagged with Replicated is owned/controlled by the

server

 If a client changes the value of a replicated variable locally, that value will be
overwritten the next time the server changes it

 Rules For Calling Functions
 call functions on objects on the server version or client version of objects

UE4 Networking:

 Rules that control how information flows between Server and Client
 ROLE_Authority

 authoritative version of the object and its state represents what is considered to be
the only "real" state of the object

 An object with ROLE_Authority can execute function calls on any object on the server
 an object with ROLE_Authority will also replicate any changes to UPROPERTY fields to

any client versions of the object

 ROLE_None
 object has no networking role and isn't replicated

 ROLE_SimulatedProxy
 Simulates the state of the server object on a client
 Client has no authority to change the state of the object

 ROLE_AutonomousProxy
 Client can execute function calls on this object that execute on the server
 Role_AutonomousProxy is the owning client for pawns

 IsLocallyControlled
 Not a network role but useful to check if the game instance is a local player

(client or a listen server)

Network Roles

 Always from server to clients only!

 bReplicates
 Must be true

 bAlwaysRelevant
 Actor is always relevant to all clients and will always be replicated

 bOnlyRelevantToOwner
 Will only replicate to the player represented by the owning Pawn or PlayerController

 bNetLoadOnClient
 If true the Actor will load from a level file on a network client. This should be set to true for Actors you place in

a map that you want to exist on a client (typically most Actors want this)

 bTearOff
 If the Server sets this to true all clients will take authoritative control of their locally replicated versions of the

actor and changes and function calls on the actor will no longer be replicated over the network. It will be as
though it was a locally spawned actor.

 bReplicateMovement
 Set to true if you want to be able to move the Actor and have its position be updated on clients automatically
 Pawns have this one default, however it is not sufficient to see moving Vive controllers and Leap hands

 Actor must be "network-relevant"
 When it is within the viewing range of a client
 AActor::NetCullDistanceSquared controls the culling distance

Actor Replication

 Each Actor can maintain a list of replicated UPROPERTY()

 From server to clients only

 UPROPERTY(replicated)
 Can be conditionally replicated: SkipOwner, SimulatedOnly etc.

 RepNotify: a user-defined function will be called on the client every time the
property changes

 Properties always replicate reliably

Property Replication

 Still very ambiguous in Unreal!

 Components are not designed to replicate
 However component replication is useful and needs to be used in the

assignment

 Components replicate as a part of their owning Actor
 Static components (the ones created in the Actor constructor script as

Default Subobjects) will always spawn on clients

 Dynamic components need to be marked as replicated to be spawned on
clients

 Clients can also spawn locally-owned non-replicated components, depending
on the required functionality

Component Replication

Function Call Replication
 Any UFUNCTION() can be set to replicate and execute on client or server

instances of the object

 Possible to choose reliable or unreliable replication

 Types of remote function calls

 Server
• function will execute on the server version of the object ONLY

• object must have ROLE_Authority or ROLE_AutonomousProxy to execute this method

• Functions marked as Server must also be marked as WithValidation and implement a
validate function

 Client
• function will execute on the client that has a version of the object with

ROLE_AutonomousProxy (client that "Owns" this object)

• The only ROLE_AutonomousProxy objects that exist in Unreal are client instances of
PlayerControllers

 NetMulticast
• function will execute on all clients that have an instance of the object. Only an object with

ROLE_Authority can execute this function, any other networking role won't do anything

EXAMPLE for an Actor owned by Client 1

 Actor_Server - ROLE_Authority

 Actor_Client1 - ROLE_AutonomousProxy

 any calls to UFUNCTION() methods marked as Server will execute on
Actor_Server

 Actor_Client2 - ROLE_SimulatedProxy

 any calls to replicated functions will be ignored

 changes to any UPROPERTY on the Actor_Server instance will get replicated
to both Actor_Client1 and Actor_Client2 automatically

 any UFUNCTION() methods that are replicated as Client or NetMulticast that
are called on Actor_Server by the server will execute on Client1 in the case of
Client or both Client1 and Client2 in the case of NetMulticast

Replication Example

Task 3:
Distributed Interaction

Required Functionality

 A Leap-controlled player and a Vive-controlled player can
connect to the same game and see each other (hands only)
– Pre-implemented in Unity
– Synchronisation of hands positions needs to be done in Unreal

 Both players can manipulate a server-created object
– The object is visible to both players: needs to be replicated

(replication checked in Unreal, NetworkIdentity in Unity)
– Both players can pick up an object with a special combination of

actions and move it around, correctly seen by the other player
– One player can pass the object to the other player without dropping it
– The object follows Physics rules when not being manipulated by a

player: make sure Physics properties are coordinated on the server
and the clients!

Unity Resources
 Network set up

– Modify Network Address

 Vive Player
– Controlled by HTC Vive input

 Leap Player
– Controlled by Leap Motion input
– Fixed camera

 Only skeletal hands are visible to the other
player

 Need two computers to test
– LAN connection is better
– A dedicated server for the task implementation
– Can run the server and the Leap client on the
same machine

Player Control
 LocalPlayerController.cs

– Runs locally on PlayerController object
– Steers the local copy of networked hands

 Actor.cs

– Is a NetworkBehaviour, attached to the Player prefab
– Runs on every machine
– Initializes a correct Character
– Commands can be invoked on the server in this script!
– Will be used in distributed interaction

 Player prefab:
– Spawned as the main player on every

machine
– Transform is empty, the actual

character depends on what is set in
the Actor component

Synchronize Server Object

 NetworkIdentity
– localPlayerAuthority

 NetworkTransform
– Find parameters providing the smoothest sync

 Can only be manipulated by the server!
– Good to test with a host and a client: move on the

host and observe on the client
– Not active if a client is started but not connected to

the server

Allow Clients to Manipulate Server
Objects

 NetworkIdentity.AssignClientAuthority(NetworkConnection conn)
– To allow a client to manipulate server objects
– Objects become „belonging“ to the client
– Will disappear if to disconnect the owning client

 NetworkIdentity.RemoveClientAuthority(NetworkConnection
conn)
– To revert the authority back to the server
– A distributed object should always have an owner (authority cannot be

removed from the server, only passed to the client)

 NetworkIdentity.hasAuthority
– To check who currently has it

 Need some conditions to invoke these functions
– For example, when a user touches a distributed object
– Can test authority exchange with key presses

Conditions for Client Object Control

 What are the conditions
– User „grabs“ an object with both hands

 Where to check them
– Server?

• Avatar (hands) is synchronized unreliably -> possible
package loss can delay interaction

– Client?
• Need to communicate the event to the server -> reliably by

remote actions
• Can also get slow, but reliable messages are sure to be

delivered

How to Grab an Object

 With HTC Vive Controllers
– Both triggers down – local condition

– Both netwoked hands touching the object – localPlayer condition

 With Leap Motion – controlled hands
– Both Leap hands in Pinch – local condition

– Both networked hands touching the object – localPlayer condition

Notify the Server

 [Command] attribute
 Can only be invoked on the player object of a

corresponding NetworkConnection
 Server grants the authority over an object in

response
 What if two players grab an object

simultaneously?
– The first one gets it
– Think about a situation where both users are

„holding“ an object and then the current „owner“
releases the grab
• Make sure the object does not fall

Unreal Resources
 GameMode_BP.uasset

 Put it in your project and set as the used GameMode in ProjectSettings->Modes&Maps
 Pawns to be spawned as the 1st and 2nd connecting player can be chosen inside the

blueprint code

 Leap Player
– Use your pawn from the first assignment
– Only grabbing functionality is necessary, can remove gesture-related functionality if it

collides with the replication
– Movement of the Leap-controlled hands needs to be made visible to the Vive-controlled

player (only position and rotation, replicating individual fingers is not required)

 Vive Player
– Use the MotionControllerPawn from the VRTemplate
– Movement of the Vive-controlled hands needs to be made visible to the Live-controlled

player (only position and rotation, replicating the hand animation is not required)

 C++ classes with implemented functionality available as a reference
 Vive-controlled pawn in C++
 Custom PlayerController
 Custom Actor class for the shared object

How to Replicate Hands

 Replicated UPROPERTY for each hand‘s position and orientation as a
variable in the Pawn class, with SkipOwner condition

 Each tick, check the pawn‘s network role
– Set each hand‘s mesh position and rotation to the replicated values if

Role_SimulatedProxy
– Send position and rotation obtained from the tracking data to the server if

IsLocallyControlled, set replicated position and rotation to those values in the server
function

 Check the C++ implementation in the reference Pawn class

 Box needs to be able to switch owner when grabbing
conditions are fulfilled (similar to authority management in
Unity)

 When one of the PlayerControllers on the server is the current
owner (the box is being held by a player) the replication
mechanism is the same as for the hands

 Use C++ example

 Grabbing conditions to use: both hands are grabbing the object
(both triggers down for Vive and both hands in grabbing
gesture for Leap)

 If both Leap hands grabbing is difficult to achieve use an
arbitrary gesture (but the same on both hands)

How to Replicate the Box

Overall Communication Flow

AuthorityManager or
BoxClassActor

(localPlayer)

Actor or
PlayerController control conditions

true/false

AssignAuthority/
RemoveAuthority

RequestAuthority/
RemoveAuthority

Actor or PlayerController
(Unreal)

AuthorityManager or BoxClass

RequestAuthority/ReturnAuthority

NetworkIdentity.AssignClientAuthority/
NetworkIdentity.RemoveClientAuthority

or
SetOwner()

client

client

server

Structure

 Plan scripts/blueprints organization
 Try to keep logical functionality separately from

the particular implementation
– Authority exchange
– Conditions for the authority

• Can be different for different shared objects and input
devices!

– Implementation of these conditions

 Allow multiple shared objects!
 Shared object manipulation should also work if

to use two Vive-controlled or two Leap-
controlled players

Online Help
 Unity Networking Guide

– https://docs.unity3d.com/Manual/UNet.html
– https://unity3d.com/de/learn/tutorials/topics/multiplayer-networking

 Unreal
– https://docs.unrealengine.com/latest/INT/Gameplay/Networking/
– https://wiki.unrealengine.com/Replication

– https://wiki.unrealengine.com/Network_Replication,_Using_ReplicatedUsing

_/_RepNotify_vars

– https://docs.unrealengine.com/latest/INT/Gameplay/Networking/Actors/Prop

erties/index.html

– https://docs.unrealengine.com/latest/INT/Gameplay/Networking/Actors/Com

ponents/

– https://www.unrealengine.com/en-US/blog/network-tips-and-tricks

– https://docs.unrealengine.com/latest/INT/Gameplay/Networking/Blueprints/in

dex.html

– https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/Networking/Repl

icateFunction/Blueprints/index.html

– https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/Networking/Repl

icateVariable/Blueprints/index.html

https://docs.unity3d.com/Manual/UNet.html
https://unity3d.com/de/learn/tutorials/topics/multiplayer-networking
https://docs.unrealengine.com/latest/INT/Gameplay/Networking/
https://wiki.unrealengine.com/Replication
https://wiki.unrealengine.com/Network_Replication,_Using_ReplicatedUsing_/_RepNotify_vars
https://docs.unrealengine.com/latest/INT/Gameplay/Networking/Actors/Properties/index.html
https://docs.unrealengine.com/latest/INT/Gameplay/Networking/Actors/Components/
https://www.unrealengine.com/en-US/blog/network-tips-and-tricks
https://docs.unrealengine.com/latest/INT/Gameplay/Networking/Blueprints/index.html
https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/Networking/ReplicateFunction/Blueprints/index.html
https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/Networking/ReplicateVariable/Blueprints/index.html

