
VRUE Tutorial #2
13.10.17

Khrystyna Vasylevska

Topics
 Some organization remarks
 HTC Vive

– How does it work
– Setup and Calibration
– Unity Integration
– Unreal Integration

 What you need to know for Task #2
 Task #2

Assignments
 Implementing main task is obligatory!

– Task #3 will be building on Task #1 and Task #2
– Final project will build on Task #3

 Bonus is optional
– Graded as some Extra points
– Will be used to slightly improve the final grade, if the main task is not quite

perfect
– Make sure to indicate that you implemented bonus!

• By submitting a screenshot and feature description txt file to bonus
submission.

• By adding “_bonus” to the name of your executable.

Submissions & Sharing
 Private repositories only! And at all times!
 Cheating will not be tolerated!

 Have troubles?
– Go thought the slides of Tutorial #1 AGAIN!
– Ask tutors!

 Task 1 submission deadline: 15.10.2017 23:55
 Task 2 submission deadline: 27.10.2017 23:55

HTC Vive:
What‘s inside and how it works

LightHouse Base Station
 Each base station contains two IR

lasers with mirrors
– One sweeps from bottom to top

(horizontally, 8.333ms)
– Second sweeps from left to right

(vertical , 8.333ms)
 Lasers rotate at 3,600 rpm
 Each base station also contains a LED

array
– flashes a wide-angle synchronization

pulse at the beginning of each 8.333ms
laser sweep

– to synchronize two base stations with
each other

– to give tracked devices a way to measure
their relative angles to each base station

Source: http://www.pcper.com

https://youtu.be/avBt_P0wg_Y
https://youtu.be/avBt_P0wg_Y

LightHouse Syncronization
 LED array is used

– to synchronize two base stations with
each other

– to give tracked devices a way to
measure their relative angles to each
base station

 Only be one laser sweeping the
tracking volume at any time

 Four lasers of two linked base
stations (A and B), are interleaved
– A’s two lasers sweep one after

another and then B’s two lasers
– So LED array behaves like this

• blink / X-sweep / blink / Y-sweep / blink /
(none) / blink / (none)

• See video https://youtu.be/avBt_P0wg_Y

Source: http://www.pcper.com

https://youtu.be/avBt_P0wg_Y

Tracking
 Any optical positional tracking has limits
 To have initial position and orientation (locked) a device

must have:
– at least 5 sensors ‘lit’ by a Base Station
– or 3 if two Base Stations are in view

 Once locked, the device can use data from an IMU
(Gyroscope & Accelerometer)
– To update its location in real-time between the sweeps
– Even if all sensors have been temporarily blocked from view

Vive Headset
Contains
 An eye relief adjustment
 An interpupillary distance adjustment
 Fresnel lenses
 AMOLED display panels

– 91.8 mm diagonal, 447 pixel per inch
 A proximity sensor (is Vive on now?)
 A front-facing camera
 32 photodiodes + IR filters on the outer

shell
 IMU – Inertial Measurement Unit

Source: https://www.ifixit.com

https://en.wikipedia.org/wiki/Eye_relief
https://en.wikipedia.org/wiki/Interpupillary_distance
https://en.wikipedia.org/wiki/Fresnel_lens

Vive Controllers
 Touchpad
 2 small buttons (menu, On)
 Trigger button
 Grip button
 24 sensors + IR filters
 IMU
 Battery

Sources:
http://www.pcper.com
https://www.ifixit.com

Possible Setups
 Seated
 Standing
 Walking

Source: http://www.bilawal.in

Limited Setups
Seated

 Assumes Origin in
Player head

 Might be reset
– in SteamVR via “VR

Settings”
– Using

ResetSeatedZeroPose
call through OpenVR
API

 Calibrated Area:
1x1m

Standing
 Assumes Origin

– centered in
tracked volume

– on the floor

 Tracked volume is
set via Room setup

Installation
 Steam

– http://store.steampowered.com/
 SteamVR and connect HTC Vive

– see the installation Tutorial here http://www.htcvive.com/eu/support/
– If something does not work as expected contact HTC Vive support and do

as instructed before you report a problem to us
 Steam->Library tab

– SteamVR can be found under Tools
• Check it, if you can’t find it try

– Steam->Settings->Account
– Beta participation -> Change-> Steam Beta Update

 Update the firmware when prompted
– Base stations might require to do it via cable – check if it is needed before

mounting the base stations

http://store.steampowered.com/
http://www.htcvive.com/eu/support/

Rooms Setup and Calibration
 Room calibration

– Use advanced mode if needed

 Note your play area size
– Software doesn’t allow areas

exceeding 4.5x4.5m

 Chaperone is needed!
– Camera view is controlled under

camera settings in Vive menu

Unity Integration
 Import Steam VR plugin to your project

– Window->AssetStore
– Search for SteamVR plugin

 Accept proposed Project settings

Prefabs
 Main - CameraRig
 Additional:

– SteamVR
• Configures game settings and setup (seated, standing, room scale)

– Status
• Calbigration tool and other statistics

Vive Prefabs
 [CameraRig] - origin

– Defines and represents the play area
• Steam VR_Controller Manager
• Steam VR_PlayArea

 Camera (head)
– Represents head motions in tracked volume
– Renders screen view (not HMD View)

• SteamVR_Tracked Object – Index = Hmd
 Camera (eye)

– Follows the head motions
– Renders HMD view (slightly different settings)

• Steam VR_Camera
 Controller (left/right)

• SteamVR_Tracked Object
– Model

• Steam VR_Render Model

Physics Basics Review
Collider
 Component that reacts on other

Colliders
 Collider can be a trigger

Rigidbody
 Component that object to be effected

by physics
 Must have a Collider Component

to interact with other physics objects
 isKinematic disables physics

interaction for the object
– But it still affects the other objects

Physics Parameters
 Physics settings

– General settings for the project
• Edit->Project Settings ->Physics

– For each individual object
• Rigidbody properties

– For a group or specific type of objects
• Physics Material

– Describes the surface/material physics
– Controls how an object reacts to a collision

Physics & Interaction
 Physics collision needs

– 2 Colliders
– At least 1 Rigidbody
– Physics Engine will use parameters of each Rigidbody and Physics material to calculate the

right response to collision

 What if there are no second Rigidbody or it isKinematic, but you
need some extra response?
– you use AddForce(Vector3 force, ForceMode)

• ForceMode uses mass (or not – see documentation)
– Force
– Impulse
– etc.

– Or you assign the response ignoring the physics engine
• Rigidbody.velocity
• Rigidbody.AddTorque()
Note: ignoring the physics might cause unnatural behavior

Ways to Implement Interaction
 Use Collider.isTrigger

– allows to detect collision (touch), but ignores the Physics of it
– Trigger also calls for OnTriggerEnter(Collider) also [Stay, Exit] events
– To ensure that you can control hold/release actions you will also need another

condition, like is some button pressed or not.

Attachment of the GameObject to the controller:
 Parenting

– Nest the object to the controller using transform.parent
 Track Position

– Match the positions in Update()
– Similar to parenting, but without breaking the hierarchy

 Physics Joint
– Fixed Joint component relies on physics and setup parameters
– You can setup Breaking Force and/or Torque

https://docs.unity3d.com/Manual/class-FixedJoint.html

Vive Controller Class
SteamVR_ControllerManager from [CameraRig]
 Handles the controllers rendering, indexing, connections

SteamVR_Controller

 Handles input events
 defines :

– ButtonMask: ApplicationMenu, Grip, Axis0-4, Touchpad, Trigger
• Analog enum EVRButtonId defined in openvr_api.cs

– Device class has following properties and methods:
• index, connected, hasTracking, outOfRange, uninitialized, etc.
• bool GetPress(ulong buttonMask)
• bool GetTouch(ulong buttonMask)
• TriggerHapticPulse(duration in MicroSec, EVRButtonId)

Accessing Vive Controller Data
 Controllers in Unity have only SteamVR_TrackedObject

component
– SteamVR_TrackedObject.index – is the controller’s deviceID

• It changes every run and sometimes during run-time
• New devices are dynamically added or removed
• Reference to the component doesn’t change and provides access to the updated

index

 To get to the instance of the Device class
– Use SteamVR_Controller.Input(int deviceID)

• And from there you get your input and output (vibrations)

 Good practice:
– Do not call GetComponent<T>() every frame, get it in Start() or
Awake() once!

– Similarly, avoid frequent GameObject.Find() calls, if possible.

Useful Things: Execution Order
 Awake

– always called before any Start functions or just after a prefab is instantiated
– Called even if Script is disabled!

 Start
– is called before the first frame update
– only if the script instance is enabled

 Update
– Called based on frame rate

 FixedUpdate
– time based and used typically for physics and other time related things
– is often called more frequently than Update, fits only time dependent events
– DO NOT use it instead of Update or there will be strange behavior!

There are also other functions. For further information see
https://docs.unity3d.com/Manual/ExecutionOrder.html

https://docs.unity3d.com/Manual/ExecutionOrder.html

Other Useful Things
 To check what your user is seeing

– SteamVR app -> Dropdown menu - Display Mirror

 To check what’s around you
– SteamVR app -> Dropdown menu Settings -> Camera -> Allow Camera for

Chaperone Bounds Will show you the edges of surrounding objects.
• Beware, that the scale is not quite right relative to the virtual world.

– In game: Menu -> Settings -> Chaperone will allow you to change the grid view and
color.

 Timing (Optional)
– Edit->Preferences->Time

• Default Fixed TimeStep = 0.02
• If set Fixed TimeStep = 1/90 = 0.01111111 physics updates will match the Vive update rate
• Disadvantage: Higher CPU usage

[Unity]Where to Look for Help
 SteamVR Developer Important Links and Documentation

– https://steamcommunity.com/app/358720/discussions/0/613956964584902849/

 SteamVR at Valve Developer Community
– https://developer.valvesoftware.com/wiki/SteamVR

 SteamVR Developer Forum
– http://steamcommunity.com/app/358720/discussions/

 HTC Vive SteamVR SDK
– https://www.htcdev.com/devcenter/opensense-sdk/htc-vive-steamvr-sdk

 OpenVR API Documentation
– https://github.com/ValveSoftware/openvr/wiki/API-Documentation

 Unity Documentation
– https://docs.unity3d.com/Manual/index.html

https://steamcommunity.com/app/358720/discussions/0/613956964584902849/
https://developer.valvesoftware.com/wiki/SteamVR
http://steamcommunity.com/app/358720/discussions/
https://www.htcdev.com/devcenter/opensense-sdk/htc-vive-steamvr-sdk
https://github.com/ValveSoftware/openvr/wiki/API-Documentation
https://docs.unity3d.com/Manual/index.html

Unreal Integration
 Create a new Virtual Reality Project

– Select HMD+ Motion Controller after creating Project
– File->Open Level-> VirtualRealityBP-> MotionControllerMap for

HTC Vive Test Environment

VR Pawn
 VRPawn - origin

– Defines and represents the Player (HMD)

 Controller (left/right)
– Both Controllers are spawned from

VRPawn (MotionControllerPawn in Content
browser) in the Blueprint Event Graph

– Controllers are attached Actors
– Controller Behavior can be found in the

Event Graph of the BP

VR Template info: http://www.tomlooman.com/vrtemplate/

http://www.tomlooman.com/vrtemplate/

Vive Controller Input
 Settings-> Project Settings->Input ->Bindings

- here add Input Bindings for specific Buttons and Axes (Touchpad)
- define the input keys in the settings first then you bind them in C++ to a method

More info
https://docs.unrealengine.com/latest/INT/Programming/Tutorials/PlayerCamera/2/index.html

https://docs.unrealengine.com/latest/INT/Programming/Tutorials/PlayerCamera/2/index.html

Accessing Vive Controller Data
 Using the mappings in C++

– Bind the defined Action to a Method so the Method is called as soon as the
Input Event occurs

• InputComponent->BindAction(“GrabLeft", EInputEvent::IE_Pressed,
this,&AMyClass::AMyMethodToBind);

– For Axis(Touchpad) use this
• InputComponent>BindAxis("LeftTriggerAnalog",this,&AMyClass::AMyMethod

ToBind);

– Always check your Mappings in the Settings so they are assigned!

Exposing Objects in the Editor
 You can expose Data fields in your C++ scripts in your editor by

using
– UPROPERTY

– Different Parameters can be given for different results:
− VisibleAnywhere

− EditAnywhere

 Example:
UPROPERTY(EditAnywhere)

TSubclassOf<class AActor> variable;

 Properties Documentation for more information

<- One line specificator

VR Template info: http://www.tomlooman.com/vrtemplate/

https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Reference/Properties/
http://www.tomlooman.com/vrtemplate/

Loading Resources from Disk
 You can acess different kinds of Resources directly from the

Content Browser inside C++
 Example for a pre-created Material

– staticConstructorHelpers::FObjectFinder<UMaterial>
MyMaterialName(TEXT("Material'/Game/Assets/Materia
ls/MyMaterialName.MyMaterialName'"));

 Loads the Material at runtime
 You can get the Path to the Resource by

right-clicking it in your Content Browser
and selecting Copy Reference

Spawning Actors in the World
 You can spawn Actors into the world by calling this Method in C++
 GetWorld()-> SpawnActor<AActor>(myActor, FVector

location, FRotator rotation, FActorSpawnParameters
params);

 This Method returns an AActor* pointer
 Only Actors can be spawned like this. You can’t spawn

Components (Meshes etc.) directly!

Organizing and Parenting
 You can organize Actors in the World Outliner by putting them in

Folders
spawnedActor->SetFolderPath("/folderName");

 You can also parent AActors together
– but not if they have their own Physics enabled. Use Folders instead.

childActor->AttachToActor(parentActor,
FAttachmentTransformRules::KeepRelativeTransform);

Components
 Components are a special type of Object

designed to be used as sub-objects within
Actors only

 Each specific Component has it‘s unique
parameters and purpose

 You can create your own Components in C++
– by defining a C++ (Component) class
– use this Component instead of separate Actor

 And reuse this component later on other
Actors as well

Components Documentation

https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors/Components/

Instantiating Components
 Components can be instantiated in a script and attached to an

Actor.
UStaticMeshComponent* SphereVisual =
CreateDefaultSubobject<UStaticMeshComponent>(TEXT("VisualReprese
ntation"));

SphereVisual->SetupAttachment(RootComponent);

 After creating a Component you can load the data for it (Mesh in
this case).

static ConstructorHelpers::FObjectFinder<UStaticMesh>
SphereVisualAsset(TEXT("/Game/StarterContent/Shapes/Shape_Sphere
.Shape_Sphere"));

if (SphereVisualAsset.Succeeded()){

SphereVisual->SetStaticMesh(SphereVisualAsset.Object);

}

Getting Components from Actors
 You can get Specific types of Components by creating a TArray

and calling GetComponents() on an Actor
TArray<UStaticMeshComponent*> meshes;

myActor->GetComponents(meshes);

meshes[0]->SetMaterial(0, myMaterial);

 You can use this Method with different types of Components. The
result depends of the TArray type.

 You can also get an instance of a specific Component by calling
FindComponentByClass on an AActor

UStaticMeshComponent* m = GetOwner()-
>FindComponentByClass<UStaticMeshComponent>();

Physics Basics Review
Collision
 Defines what the Actor can collide

with and how the specific
Collision should be handled by the
Engine

Physics
 Defines all parameters how the

Actor is affected by physics

Physics Materials
 Physics material

– Is used for a group or specific type of
objects

– Describes the surface/material physics
– Controls how an object reacts to a

collision

Trigger Events
 You can add a dynamic Eventbased Method to a Component that

is able to Generate Overlap Events (for exmple a
StaticMeshComponent)
meshComponent->OnComponentBeginOverlap.AddDynamic(this,
&myClass::myMethod);

OR
meshComponent->AddForce(FVector::RightVector * 1000,NAME_None,
true);

 This Method will be trigerred as soon as an overlap Event happens

Checking for Overlapping Actors
 You can get all Overlapping Actors that overlap in a Volume by

calling

TArray<Aactor*> overlappingActors;

overlappingVolume->GetOverlappingActors(overlappingActors);

– This will Return a TArray of Actors that overlapped the volume. You can just
iterate with a for loop over them to perform some operations on the actors.

– Needs to be called every frame

Volume reference: https://docs.unrealengine.com/latest/INT/Engine/Actors/Volumes/

https://docs.unrealengine.com/latest/INT/Engine/Actors/Volumes/

Useful Things: Execution Order
 BeginPlay (Unity -> Awake)

– Overridable native event for when play begins for this Actor.

 PostLoad (Unity -> Start)
– is called by serialized Actor after they have finished loading from disk

 Tick (Unity -> Update)
– Function called every frame on the Actor

 EndPlay
– Called in several places to guarantee the life of the Actor is coming to an end

 Destroy
– is called manually by game any time an Actor is meant to be removed, but

gameplay is still occurring

Also there are other functions.
For further information see Actor Documentation or Actor Lifecycle

https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/GameFramework/AActor/index.html
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors/ActorLifecycle/

[Unreal]Where to Look for Help
 VRTeamplate Guide

– http://www.tomlooman.com/vrtemplate/

 VRTemplate Getting Started
– http://www.tomlooman.com/getting-started-with-vr/

 Accessing HTC Vive controllers from C++
– https://docs.http://jonaskunze.com/accessing-htc-vive-controllers-from-c-in-ue4-4-13-and-4-

14/.com/latest/INT/

 Unreal Engine Community Wiki(Tutorials and Reference)
– https://wiki.unrealengine.com/Main_Page

 Unreal Engine Documentation
– https://docs.unrealengine.com/latest/INT/

http://www.tomlooman.com/vrtemplate/
http://www.tomlooman.com/getting-started-with-vr/
https://docs.unrealengine.com/latest/INT/
http://jonaskunze.com/accessing-htc-vive-controllers-from-c-in-ue4-4-13-and-4-14/
https://docs.unrealengine.com/latest/INT/
https://wiki.unrealengine.com/Main_Page
https://docs.unrealengine.com/latest/INT/

Task 2
3D Zero-Gravity Billiard
 More scripting! (almost no blueprints!)

– Procedural generation of the gaming
environment using scripts

– Use primitives/meshComponents and a few
prefabs/Actors

– Materials

 Interaction
– Hand interaction using Vive controllers
– Physics interaction between different virtual

objects with zero gravity

	VRUE Tutorial #2�13.10.17
	Topics
	Assignments
	Submissions & Sharing
	Slide Number 5
	LightHouse Base Station
	LightHouse Syncronization
	Tracking
	Vive Headset
	Vive Controllers
	Possible Setups
	Limited Setups
	Installation
	Rooms Setup and Calibration
	Slide Number 15
	Unity Integration
	Vive Prefabs
	Physics Basics Review
	Physics Parameters
	Physics & Interaction
	Ways to Implement Interaction
	Vive Controller Class
	Accessing Vive Controller Data
	Useful Things: Execution Order
	Other Useful Things
	[Unity]Where to Look for Help
	Slide Number 27
	Unreal Integration
	VR Pawn
	Vive Controller Input
	Accessing Vive Controller Data
	Exposing Objects in the Editor
	Loading Resources from Disk
	Spawning Actors in the World
	Organizing and Parenting
	Components
	Instantiating Components
	Getting Components from Actors
	Physics Basics Review
	Physics Materials
	Trigger Events
	Checking for Overlapping Actors
	Useful Things: Execution Order
	[Unreal]Where to Look for Help
	Task 2

