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Topics

 Organizational info
 Source Control
 Unity3D and monoDevelop/(Visual Studio)
 Unreal Engine 4 / Blueprints
 Basic Physics
 Leap Motion
 Task 1
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Organization
 TISS registration

– Unregistration deadline 10. October!

 TUWEL course – check your access!

 Equipment hand-out after the Tutorial till 5PM
– Only for full registered groups!
– Read and fill-in the contracts!
– Bring you Student ID + 1 copy of it

 Please keep your repositories private for all assignments at all 
times! 
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Organization (2)
 Check your PC+Vive ASAP!

• Make sure that base-stations are fixed rigidly!
• Moving base-stations when powered might damage them!

 Please, handle the packaging with care! 
– Some of it is falling apart -> can damage the equipment

 If something is not working and tech. support doesn’t help – let 
us know asap!
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Organization (3)
 TUWEL course

– Tutorial slides
– Group registrations

• Those  without a group – will be assigned!
– Engine choice
– Assignment descriptions
– Assignment submissions (up to 256MB)
– Forum (tutors are there for you!)
– FAQ

 Contact us: vrue@lists.tuwien.ac.at
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Source-Control Bitbucket 
 You can have unlimited private repositories under certain 

conditions. 

– It is free as long as you have fewer than 5 
collaborators registered. 

– You can always manage and remove collaborators 
temporarily and add them later on. 
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Source-Control GitHub 
 If you are using GitHub, we kindly ask you to 

register as a student. At GitHub it is free! 

 You'll need a TU email address + valid student ID

 Then you can hide your code from the public 
– Please, do that with all the assignments. 
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Source-Control .gitignore
 It is recommended to use a .gitignore file for Unity and Unreal. 

– It ignores Source-Control for certain files 

– Unity and Unreal have many auto-generated files that don't need to be in 
the repository. 

– Can make the repository huge (Unreal generates  >2GB of files even 
though only around 300MB need to be shared with your partner) 

 Check gitignore.io for templates 
– https://www.gitignore.io/
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Source-Control git Client 

 You can either use the git Console or as an alternative a Client like 
SourceTree

– Very easy to use 

– Graphical user Interface 
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Unity3D 
+ 

MonoDevelop/Visual Studio
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Unity 3D 
 Game Engine

– Adapted for AR&VR
 Development environment

– Editor
 Runtime actor - Player
 Supports many media formats 

– 3D models
– Sounds
– Animations

 Programming
– C# (Mono) – relevant for us
– JavaScript
– Etc.

https://docs.unity3d.com/Manual/UnityOverview.html
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Interface

1. Game view 2. Scene view

3. Hierarchy 4. Inspector

5. Project

5. Console
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Unity – Project tab
 Assets

– Unity Ressources
• Meshes
• Scripts
• Textures
• Scenes
• ...

– Direct connection to Filesystem
– Organization depends on developer
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Unity – Scene & Game tabs
 Scene - Visual construction area

– Allows visual manipulation
• Position
• Rotation
• Scale

– Detailed view
• Wire frames
• Alpha chanel...

– Partial previews
• Sound (depending on vie point)
• Some animations (particle systems)

 Game - Real time player view
– Multiple cameras view is possible
– Sounds
– Player triggered events
– All changes done are NOT saved!

QWERT
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Unity - Inspector
 GameObjects

– All Objects in the Scene
– Container for Components
– Can be deactivated, taged, assigned to a layer
– Every Object has a Transform Component 

 Components
– Define the functionality of GameObjects
– Differ in Types
– Are attached to GameObjects
– Can be added 

• in Editor via Menu or Inspector button
• attached by a Script
• Using Drag and Drop from Project

– Script is also a Component
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Unity – Hierarchy tab
 Defines the scene organization
 Showes all objects in the current 

scene
 Defines Parent-Child relations

– Defines grouping of GameObjects
– Builds up on Transform Component

 Parent 
– is a local coordinate system for Children
– Influences Children‘s Properties
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Unity - Console
• Errors/warnings

- Obsolete elements warnings
- Unused variables warnings

• Your script messages using
- Debug.Log 
- Debug.LogWarning 
- Debug.LogError

• Features:
- Message separation
- Collapsing messages from the 

same line
- Clear on Play
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Prefabs
 Preconfigured GameObjects

– Can be instantiated or cloned
• Runtime
• Reused in different Scenes

– Already contain chosen
• 3D model
• All Components
• Pre-defined settings of Components
• Pre-defined values of public variables in 

Scripts
– You can edit

• Instance of a Prefab
• Apply Instance Settings to the Prefab (save 

them) 
• Prefab itself 

– You can create Prefabs during 
runtime too
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Settings and Preferences
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MonoDevelop
 Integrated Development Environment

– Syntax Highlighting
– Debugging
– Good Unity-Integration
– Project management support
– ...

 Feel free to use Visual Studio

 Scripts
– Assets
– automatischer Build-Prozess im Editor
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Basics
 MonoBehavior

– Is attached as Component to a GameObject 
– main Methods in Script

• Start() - Initialisation
• Update() – called on every new frame

– Access to GameObject & Components
• gameObject
• transform
• GetComponent<T>()
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To Keep in Mind
 new GameObject()

– Creates new GameObjects in the root of Hierarchy (parentless) 
 transform.parent

– Setting the parent maintains the current Object’s global world values
• transform.position, 
• transform.rotation, 
• transform.scale

– But local transform values will be corrected in regard to the new local 
coordinate system (the one defined by the parent)! 

• transform.localPosition, 
• transform.localRotation, 
• transform.localScale

22



MonoDevelop-Debugging
 before Starting the Scene attach 

MonoDevelop to the Unity-Instance 

 Set Breakpoints

 Start the scene in Unity
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Unreal Engine 4
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Unreal Engine 4
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 Game Engine

 Development environment
– Unreal Editor

 Runtime actor – Player

 Supports many media formats 
– 3D models
– Sounds
– Animations

 Programming
– C++ (Visual Studio)

https://docs.unrealengin.com/latest/INT/

https://docs.unrealengine.com/latest/INT/


Unreal Editor Interface
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Unreal – Content Browser
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 Assets

– Create, import, organize and modify content
• Meshes, Textures, Blueprints,…

– Whether to show engine and plugin content can be toggled via the view
options



Unreal – Viewport
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 Visual construction area
– Allows visual manipulation

• Position, Rotation, Scale
– View Options

• Perspective
• Lit, unlit, wireframe, …

– Preview window
• When player character selected

 Preview: Real time player view
– Press play to start preview in viewport
– Option for VR Preview

For more information on viewports look at:
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/index.html

https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/index.html


Unreal – Viewport
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For more information on viewports look at:
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/index.html

https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/index.html


 Shows all Actors in the scene and their types

 Hierarchical tree view

 What you can do here
– Search for specific actors
– Toggle visibility
– Select actors to modify
– Group actors
– Attach an  actor to another actor
– Focus on an actor by pressing F
– Find asset in content browser
– Organize actors in folders
– Access blueprint editor for blueprint types
– …

Unreal – World Outliner 30



Unreal – Details Panel
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 Details for the actor selected in the 
Viewport



Settings and Preferences
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 Settings->Project Settings
– Maps & Modes

• Editor Startup Map
• Game Default Map (always make sure

this is set to the map you want before
packaging a project)

– Description
• Start in VR (if your program uses VR, don‘t forget to

check this)

– Input
• Add ActionMappings

and AxisMappings

More information on input and axis mappings:
https://www.unrealengine.com/en-US/blog/input-action-and-axis-mappings-in-ue4

https://www.unrealengine.com/en-US/blog/input-action-and-axis-mappings-in-ue4


UE4: Actor
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 An Actor is any object that can be placed into a level
• Called GameObjects in Unity
• There are several different types of Actors, some examples include: 

StaticMeshActor, CameraActor, and PlayerStartActor

 Creating a new instance of an actor is called spawning
• Function in blueprints Spawn Actor

 Contains the Root Component
– stores main transform (location, rotation, and scale)
– applies its properties to children

For more information on Actors and Components:
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors

https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors


Actor Classes
 An Actor is an object that can be placed or spawned in 

the world.

 A Pawn is an Actor that can be "possessed" and receive 
input from a Controller.

 A Character is a Pawn that includes the ability to walk, 
run, jump, and more.

 A Player Controller is an Actor responsible for 
controlling a Pawn used by the player.
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UE4: Actors & Components
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 Actors can be thought of, in one sense, as containers that hold 
special types of Objects called Components.
– ActorComponent is the base class for components that define reusable 

behavior that can be added to different types of Actors.
• are associated with a specific Actor, but do not exist at any specific place in the 

world
• E.g. AI,  deal with player input

– Scene Components
• Actor Components with transforms
• can be attached to each other in a hierarchical fashion

– Primitive Components
• Scene Components with rendered representation
• E.g. mesh, particle system, physics and collision settings are here

For more information on Actors and Components:
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors

https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Actors


Blueprints Visual Scripting
 The Blueprints Visual Scripting system in Unreal Engine 

– is a complete gameplay scripting system 

– based on the concept of using a node-based interface 

– is used to create gameplay elements from within Unreal Editor

36

Getting started with Blueprints:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/GettingStarted/index.html

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/GettingStarted/index.html


Blueprint Editor Access
 In World outliner Type in blue
 In Content browser
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Blueprint Types
 Level Blueprints

– are specific to the level that they're used in
– Are used to set up functionality specific to the level, or Actors in it

 Blueprint Classes 
– Define reusable behavior in the project
– Are defined by parent blueprint class

• add it to any of your levels
• also add as many copies as you need
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More information about the level blueprint can be found here:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Types/LevelBlueprint

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Types/LevelBlueprint


UE4: Blueprint Classes
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 Similar to classes in Java/C++ (inheritance, interfaces)
 Can be instantiated (spawned) at Runtime

 Can contain
– Variables, Functions

• Mesh, Material, etc.
• Components with Pre-defined settings

 You can edit
– Blueprint Class in general (applied to all Actors in project)
– Instance of a Blueprint Class (applied to a specific Actor)

• Make sure you are working on the one you want!

Quickstart tutorial on Blueprints:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/QuickStart/index.html
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The Blueprint Editor



Blueprint Editor: My Blueprint
41

 The items displayed depend on the 
type of the Blueprint
– Graphs
– Functions 
– Macros (template for nodes)
– Variables
– Event Dispatchers

 create new items by clicking on the
plus icon

 Variables can be set to private or
public (eye icon)
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Blueprint Editor: Details
 Edit properties of the blueprint

– Variables

– Functions

– Events

– Actor components



Blueprints: Accessing Data
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 Inside the current Blueprint

– Drag functions/components/variables/… into the Graph Editor to use them

– Or right click in the Graph Editor and search for the functions/component/variable

 Actors from the World Outliner can be accessed in the Level Blueprint

– you can drag an actor from the World Outliner into the Level Blueprint

– Every level has a Level Blueprint

– To access the level blueprint select Blueprints > Open Level Blueprint 

More information about the level blueprint can be found here:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Types/LevelBlueprint

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Types/LevelBlueprint


Blueprints: Accessing Actors
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 Access Actors not associated with the current blueprint
– Get All Actors Of Class
– Get All Actors With Tag

• These are slow, don‘t use them every frame!
– Use various Tags and Get Tags for faster search

 Useful information:
– Referencing Actors in Blueprints

– https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/ReferenceAssets/Blueprints/

– Finding Actors in Blueprints
– https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/FindingActors/Blueprints/index.h
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https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/ReferenceAssets/Blueprints/
https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/FindingActors/Blueprints/index.html


Blueprint Editor: Graph Editor
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Blueprint Editor: Graph Editor
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 Visual scripting

– Right click to add a node
• context sensitivity available

– Add comments to sections for readability
• type comment in search function, select add comment
• Or select some nodes, right click on one of the nodes, and select create 

comment

– Search functionality
• Use to look up available functions/variables

More on Pins:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/BP_HowTo/ConnectingNodes

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/BP_HowTo/ConnectingNodes


Blueprints: Useful Tips
 Spawn Actor From Class

• Create an Actor at runtime

 Destroy Actor
• Destroy an Actor at runtime

 Get Actor Transform

 Attach To Actor/Component

 Detach From Actor/Component

 Blueprints Quick Start Guide
– https://docs.unrealengine.com/latest/INT/Engine/Blueprints/QuickStart/index.html

 Blueprint Editor Cheat Sheet 
– https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/CheatSheet/index.html
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Debugging
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 Window -> Developer Tools
– Output Log, Message Log

 Blueprint Debugger
– Set breakpoints
– Watch variables

 Print String
– to log output window
– on screen

 Debug functions
– DrawDebug[…]

• Point, Line, Plane, Sphere…

More on debugging Blueprints:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Debugging/



Basic Physics
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Unity: Physics Basics 
Collider
 Component that reacts on other 

Colliders
– Different shapes, sizes and types

• Primitive shapes
• MeshCollider (not recommended)

– At least one of the colliding Objects 
has to have a Rigidbody
Component

– OnCollisionEnter() event is 
called at the collision

 Collider can be a trigger
– isTrigger flag is set to true
– Typically static
– OnTriggerEnter() event is called 

at the collision
– No physics is involved then
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Unity: Physics Basics (2)
Rigidbody
 Component that object to be 

effected by physics
 Must have a Collider

Component to interact with other 
physics objects

 Enables gravity (castomisable)
 Define properties

– Mass 
– Drag (air resistance)
– Velocity 

 isKinematic disables physics 
interaction for the object, 

– but still activates the colliders of other 
objects!
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Unreal: Physics Basics (1)
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 Physics settings are in Details

– Gravity is set here

– To make an object simulate physics
• Simulate Physics flag = true
• Needs at least a simple collision shape
• Set mass of the object & damping factors
• Have collision shapes

– Simple: Primitives or convex hulls
– Complex: Triangle mesh of the object

• Mobility might be set to Movable

– Constraints
• lock position/rotation for individual axes

More on Physics:
https://docs.unrealengine.com/latest/INT/Engine/Physics/
https://docs.unrealengine.com/latest/INT/Resources/ContentE
xamples/Physics/index.html

https://docs.unrealengine.com/latest/INT/Engine/Physics/
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/Physics/index.html


Unreal: Physics Basics (2)
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 Collision component is defined
– Presets 
– Custom settings

 Collision must be enabled for 
all the objects involved
– Block: e.g. solid objects

• Enable Simulation Generates Hit 
Events flag to fire events on collision

– Overlap: e.g. triggers
• Enable Generate Overlap Events flag 

if you want them to fire (trigger 
colliders in Unity)

– Ignore: no interaction 
• If you want two objects to block each 

other both of them need to be set to 
block the type of the other object

More on collision:
https://docs.unrealengine.com/latest/INT/Engine/Physics/Collision/Overview/index.html

https://docs.unrealengine.com/latest/INT/Engine/Physics/Collision/Overview/index.html


Interaction Basics

In VR (3D) ?

In the real world (3D) 
Grab and move

On a desktop (2D) 
With a mouse - 2D motion

Source: https://www.leapmotion.com

It‘s somewhere in-between
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Leap Motion
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Leap Motion Basics
 Tracks hands in close range: 10 – 60 cm

 Installation: Orion Beta 3.2 
 Unity in Asset store

• Unity Core Asset 
• Add-on Leap Motion Interaction Engine 
• Optionally: Hands Module

 Unreal Leap Motion Plugin

 Meant for a first-person view of the VE 
– best usability with an HMD 
– in VRUE use 

• unofficial human mounts 
• or desktop setup

Source: https://www.leapmotion.com
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How to activate the plugin in UE4:
https://developer.leapmotion.com/unreal#103

https://developer.leapmotion.com/unreal#103


How Does Leap Work

Source: https://www.ifixit.com
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Leap Motion Examples
Blocks (.exe only) Unity Pinch Draw (Add-on module)

Pictures source: 
https://www.leapmotion.com

Untiy UI Input Module (Add-on module)  
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https://gallery.leapmotion.com/ui-input-module
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Unity: Leap Tracking Basics
 Position of a tracking target is 

– calculated in respect to the tracking origin in the real world 
– mapped to a position in the VE

 Attention: Leap is sensitive to Light House IR lasers
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Unreal: Leap Tracking Basics
 Position of a tracking target is 

– calculated in respect to the tracking origin in the real world 
– mapped to a position in the VE

 Attention: Leap is sensitive to Light House IR lasers
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Image source and more information on coordinate systems:
https://developer.leapmotion.com/documentation/v2/unreal/devguide/Leap_Coordinate_Mapping.html

https://developer.leapmotion.com/documentation/v2/unreal/devguide/Leap_Coordinate_Mapping.html


Unity: Integration
 Main Prefab                         Extended for Interaction Manager (later)

 LeapHandController contains main hand tracking – related scripts: LeapHandController, 
LeapServiceProvider and HandPool

 CenterEyeAnchor has a camera and HMD-related scripts (not so important in the task)
 HandPool defines hand models (make sure to drag correct game objects)
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Unity: Natural Hand Interaction
 Interaction Engine (from Add-on modules)

– allows to easier grab and throw objects
– based on twisted physics rules (colliders, gravity, etc.)

 Usage
– LMHeadMountedRigInteraction and corresponding HandPool
– InteractionManager
– InteractionBehaviour on game objects to be interacted with
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Unity: Hand Types
 Capsule Hands

– graphical representation, generated dynamically by a script
 Rigid Hands 

– made out of colliders, can be used to interact with game 
objects

– are incompatible with Interaction Engine! 
• Remove from the hierarchy and the HandPool

 Interaction Hands
– Invisible, used with Interaction Engine
– Included to Leap Motion Interaction Engine v1.1 Add-on
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Unity: Gestures with Leap
 Detector scripts (DetectionUtilities) for simple gestures:

– Extended finger
– Pinch
– Finger direction
– Palm direction, etc.

 Can be combined to create new gestures with 
DetectorLogicGate
– For example, extended thumb and index make a pistol gesture

 Some gestures are recognized better than others:
− In the plane orthogonal to the Leap z-axis
− Neighbouring fingers are harder to distinguish

 Good examples in DetectionExamples (add-on module)

Pistol gesture
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Unreal & Leap: Getting Started
 Leap Plugin is included in UE4, only needs to be enabled

 Choose a Blueprint Project, and the VR Template

 For information on the Leap Plugin see for example
https://github.com/getnamo/leap-ue4

 The plugin contains blueprint characters you can place in the world
– E.g. LeapRiggedCharacter, LeapFloatingHandsCharacter
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Unreal: LeapFloatingHandsChracter
 Handtype can be changed at runtime

– See the Event Graph of LeapFloatingHandsCharacter
– Add the InputAction ChangeHands in the Project Settings

 Available hand types
– LeapComponentHands

• discrete components for the parts of the hands
– LeapRiggedEchoHands

• rigged mesh hand
– LeapImageHands

• displays images of your real hands from the camera sensors
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Unreal: LeapRiggedCharacter
 Not just floating hands, full body
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Unreal: Moving around
 Moving your character around via keyboard input

– Look at the Movement Graph of LeapBasicRiggedCharacter or
LeapFloatingHandsCharacter
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Unreal: Gestures
 LeapEventInterface

– Add Interface to a Blueprint
– Add LeapController to that Blueprint

 The LeapAnimBodyConnector already implements that 
interface

 The Rigged Character and Floating Hands Character use the 
LeapAnimBodyConnector

 The LeapEventInterface
– Events are for example HandPinched and HandGrabbed
– Using the Event HandMoved, you can implement your own logic
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Unreal: Gestures
 Events of the LeapEventInterface return a Hand from which

you can get a lot of information
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3D Interaction
 3D-Interaction 

– Different from 2D interaction
– A user can move in all 3 dimentions
– Tracking is the basis for the interaction

 Basic principles 
– Real hand position and rotation is mapped to the Virtual Hand
– In the Virtual Environment (VE), user interacts using Virtual Hands
– Limitations:

• LeapMotion tracking range 
• human grabbing distances 

– Need interactions that are not possible in the real world 
• to reach and manipulate the distant objects

Source: https://www.leapmotion.com

are too small to reach all the objects
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Task 1
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3D Interaction in Task 1
 3D Interaction techniques

– Looking at the scene from first-person perspective
– Camera position in VE is fixed
– Tracking origin – Leap Motion device

 Interaction techniques in VRUE
– Interaction with VE

– using gestures
– Natural hand interaction with objects 

– Unity: using Leap Interaction Engine
– Unreal: VR template & adding force

– Distant interaction 
– using Raycast/LineTrace
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Create objects 
 With both hands doing Pinch 

– see Blocks demo
 Scale the object depending on the 

distance between left and right 
pinches 
 Unity:

 Use PinchDetector and DetectorGate
 Newly created objects should have 

InteractionBehaviour for Interaction 
Engine functionality

 Unreal
 LeapEventInterface
 Events HandPinched, HandGrabbed, 

HandMoved
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Select and Manipulate

 In close range – reproducing real world hand interaction 
(Interaction Engine)

 In far range – using interaction metaphors (Raycast and gestures)
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Unity: Raycast
 Physics.Raycast

– Shoots an invisible ray 
– True when intersects with 

• Colliders
• objects with Rigidbody, even without a collider
• (if configured) Triggers

– Collision info stored as RaycastHit
 Visualize with a LineRenderer
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Unreal: TraceLine
 LineTraceByChannel

or LineTraceForObjects
– Shoots an invisible ray 
– Returns a HitResult

 Visualize by rendering a line
– Simplest way:
Draw Debug Line
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More information on raycasts/traces:
https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/UseRaycasts/Blueprints

https://docs.unrealengine.com/latest/INT/Gameplay/HowTo/UseRaycasts/Blueprints


Raycast/LineTrace Select
1. Cast a ray with Raycast/LineTrace when a pistol gesture is 

detected

2. An object currently hit by Raycast/LineTrace can be selected

3. Select by folding the thumb

4. Now the object can be manipulated
 Viasualize the selection state with the color

− Color #1, when neutral
− Color #2, when an object is hit by Raycast 

• but not yet selected
− Color #3, when selected and can be manipulated
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Task 1 – Assignment Submission
 Assignments submissions are held in TUWEL exclusively!

 You submit:
 .zip of the Unity project

– Include “feature description” in a txt file for bonus
• A list of what is done 

 Zip-file might be up to 256MB

 Deadline: 15.10.17, 23:59
– Every extra day = -10% of your points

 Grading: main points + bonus points
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Grading
 Please, read the assignments carefully

– Project organization is important and graded!
– Scene organization is also graded!
– Clean code/blueprints are appreciated

• Comments are very welcome

– Cheating will be punished!

 Bonus is optional
– But the earned points are counted into the grade, if something was not perfect
– Doesn’t mean you can skip the main functionality
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Unity: Where to Look for Help
Official Tutorials https://unity3d.com/learn/tutorials

Other Video Tutorials http://www.unity3dstudent.com/category/modules/

User Manual http://unity3d.com/support/documentation/

Reference Manual https://docs.unity3d.com/432/Documentation/Components/

Scripting Reference https://docs.unity3d.com/ScriptReference/index.html

Community Forum https://forum.unity3d.com/

Knowledge Base https://support.unity3d.com/hc/en-us

Leap Motion (Orion) 

https://developer.leapmotion.com/documentation/unity/index.html
https://github.com/leapmotion/UnityModules/wiki/Getting-Started-%28Interaction-Engine%29
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http://unity3d.com/support/documentation/
https://docs.unity3d.com/432/Documentation/Components/
https://docs.unity3d.com/ScriptReference/index.html
https://forum.unity3d.com/
https://support.unity3d.com/hc/en-us
https://developer.leapmotion.com/documentation/unity/index.html


Unreal: Where to Look for Help
Official Tutorials https://docs.unrealengine.com/latest/INT/

Video Tutorials https://docs.unrealengine.com/latest/INT/Videos

Community Forum https://wiki.unrealengine.com/Main_Page

Unity to Unreal https://docs.unrealengine.com/latest/INT/GettingStarted/FromUnity

Blueprints https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html

Content Examples https://docs.unrealengine.com/latest/INT/Resources/ContentExamples

Leap UE4 Docs https://developer.leapmotion.com/documentation/v2/unreal/index.html

https://github.com/getnamo/leap-ue4
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https://docs.unrealengine.com/latest/INT/
https://docs.unrealengine.com/latest/INT/Videos/User
https://wiki.unrealengine.com/Main_Page
https://docs.unrealengine.com/latest/INT/GettingStarted/FromUnity
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples
https://developer.leapmotion.com/documentation/v2/unreal/index.html
https://github.com/getnamo/leap-ue4


Questions?
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