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Peterson Algorithm

Peterson is a simple algorithm for synchronizing two threads in a non-blocking way

first software-only solution to synchronization from 1981

known to be correct for memory order SC

named after its inventor Gary L. Peterson
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Peterson Algorithm

Variable v is initially set to 0, the Booleans i0 and i1 are initially set to false.

abbr. R/A Thread P0 abbr. R/A Thread P1

1 i0t R i0 := true i1t R i1 := true
2 v0 R v := 0 v1 R v := 1
3 i1r A 0: i1’READ i0r A 1: i0’READ
4 vr A v’READ vr A v’READ
5 if0 if i1 and v=0 then goto 0 if1 if i0 and v=1 then goto 1
6 s0 ? ... s1 ? ...
7 i0f R i0 := false i1f R i1 := false

Possible execution:

(i0, i1, v) = (f , f , 0) i0t→ (t, f , 0) v0→ (t, f , 0) i1t→ (t, t, 0) v1→ (t, t, 1) i1r→ (t, t, 1) vr→ (t, t, 1) i0r→
(t, t, 1) vr→ (t, t, 1) if1→ (t, t, 1) if0→ (t, t, 1) s0→ (t, t, 1) i0f→ (f , t, 1) i0r→ (f , t, 1) vr→ (f , t, 1) if1→
(f , t, 1) s1→ (f , t, 1) i1f→ (f , f , 1)
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Interleavings Graph with SC Memory Order

Abbildung: Interleavings Graph – Peterson with SC memory order
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Peterson Algorithm

Nodes and edges which cannot be reached in the interleavings graph have been deleted.

Note that no reordering of statements can occur in a sequentially consistent program.

Because of the structure of the graph, the critical sections s0 and s1 cannot execute at
the same time.

For this reason, mutual exclusion is provided.

The critical point is the “hole” in the graph near the lower right corner. It ensures
correct synchronization.
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Peterson Algorithm

To facilitate understanding, we notice that the nine nodes in the middle can carry both
value triples (t, t, 0) and (t, t, 1).

This means, that there definitely is a data race at those nine nodes.

However, the race does no harm.

Red edges are conditional edges; the corresponding condition [cond] is given as an edge
label. If a statement is executed along a conditional edge, the label reads [cond] : stmt.
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Migration of Peterson Algorithm
to Memory Order Release-Acquire

x denotes that the effect of statement x ist visible to the “home” core, x denotes that the
effect of x is visible to all the other cores.

Dependence analysis for thread P0 results in the constraints

i1r < if 0 and
vr < if 0.

In addition, memory fences are derived from release and acquire operations. These are

i0t < v0,
if 0 < s0, and
i0t < i0f .

Similar dependencies hold for thread P1. In the following we concentrate on thread P0. The
arguments are virtually the same for thread P1.
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Migration of Peterson Algorithm
to Memory Order Release-Acquire

Abbildung: Peterson with RA Memory order, 1st Try (plainly wrong)
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to Memory Order Release-Acquire

In this graph we immediately see that ir1 can precede i0t.

A more thorough analysis shows that this may lead to both threads entering the critical
section at line 6.

Thus we need additional memory fences in order to get the algorithm right with RA
memory order.
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To overcome this problem we introduce an additional constraint, namely i0t < ir1.

The matrix for this constraint reads (
i0t i1r
. i1r

)
because of the loop containing an arbitrary number of i1r statements.

12



Migration of Peterson Algorithm
to Memory Order Release-Acquire

To overcome this problem we introduce an additional constraint, namely i0t < ir1.

The matrix for this constraint reads (
i0t i1r
. i1r

)
because of the loop containing an arbitrary number of i1r statements.

12



Migration of Peterson Algorithm
to Memory Order Release-Acquire

Abbildung: Peterson with RA Memory order, 2nd Try (still wrong)
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Migration of Peterson Algorithm
to Memory Order Release-Acquire

However, the path
i0t → i0t → i1t → i1t → v1→ v1→ i1r → vr → v0→ v0→ i0r → vr → s0→ s1
in the Kronecker sum of the graph above and its P1 variant shows that P0 and P1 can enter
the critical section at the same time.

Thus, constraint i0t < ir1 is too weak to ensure correct synchronization.
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Migration of Peterson Algorithm
to Memory Order Release-Acquire

Our next try is to prohibit vr from preceding i0t,

The additional constraint is v0 < i1r .

Its matrix reads (
v0 i1r
. i1r

)
because of the loop containing an arbitrary number of i1r statements.
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to Memory Order Release-Acquire

Abbildung: Peterson with RA Memory order, 3rd Try (correct, but maybe inefficient)
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Migration of Peterson Algorithm
to Memory Order Release-Acquire

This version of the algorithm is correct.

This can be proven by applying Kronecker sum to the graph above and its P1 variant
and, further on, removing nodes and edges which cannot be reached in the resulting
graph.

On the other hand, the linear graph does not allow for any instruction reordering.

A short reflection shows that this is too restrictive.

In detail, the constraint v0 < i1r makes the constraint i0t < v0 dispensable.
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Migration of Peterson Algorithm
to Memory Order Release-Acquire

Abbildung: Peterson with RA Memory order with Relaxed instead of Release Memory Fence (still
correct and maybe more efficient)
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Lessons Learned

Migrating from sequentially consistent memory order to release-acquire memory order
ist not at all straight-forward.

It requires deep insights into the code of the algorithm and into the memory models.

Relaxing is useful to gain performance.
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