
Programm- & Systemverifikation
Assertions & Testing: Exercises

Georg Weissenbacher
184.741

What happened so far

▶ How bugs come into being:
▶ Fault – cause of an error (e.g., mistake in coding)
▶ Error – incorrect state that may lead to failure
▶ Failure – deviation from desired behaviour

▶ We specified intended behaviour using assertions
▶ We proved our programs correct (inductive invariants).
▶ Coverage Metrics tell us when to stop testing.
▶ Heard about Automated Test-Case Generation.

In this Lecture

More Examples and Exercises for
▶ Bugs
▶ Assertions
▶ Testing
▶ Test Case Generation
▶ Inductive Invariants

Spot the Bug

struct {

HeartbeatMessageType type;

uint16 payload_length;

opaque payload[HeartbeatMessage.payload_length];

opaque padding[padding_length];

} HeartbeatMessage;

/* ... */

/* Read type and payload length first */

hbtype = *p++;

n2s(p, payload); /* puts 2 bytes of p into payload */

p1 = p;

/* ... */

if (hbtype == TLS1_HB_REQUEST) {

unsigned char *buffer , *bp;

int r;

buffer = OPENSSL_malloc (1+2+ payload+padding);

bp = buffer;

*bp++ = TLS1_HB_RESPONSE;

s2n(payload , bp); /* puts 16-bit value into bp */

memcpy(bp, p1, payload);

r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT , buffer ,

3+ payload+padding);

}

Heartbleed OpenSSL bug

▶ TLS heartbeat mechanism keeps connections alive
▶ receiver must send a corresponding response carrying an

exact copy of the payload of the received request

▶ payload is trusted without bounds check
▶ attacker can request slice of memory up to 216 bytes, obtain

▶ long-term server private keys
▶ TLS session keys
▶ confidential data like passwords
▶ session ticket keys

▶ affected version: OpenSSL 1.01 through 1.01f

Assertions as formal specifications

▶ Assume:

unsigned isqrt (unsigned x)

computes largest integer square root of x
▶ Write assertion that fails if result is wrong!

unsigned r = isqrt (x);

assert (r*r <= x && x <= (r+1)*(r+1));

▶ Note: Assertion doesn’t tell us how isqrt works!

Assertions as formal specifications

▶ Assume:

unsigned isqrt (unsigned x)

computes largest integer square root of x
▶ Write assertion that fails if result is wrong!

unsigned r = isqrt (x);

assert (r*r <= x && x <= (r+1)*(r+1));

▶ Note: Assertion doesn’t tell us how isqrt works!

Assertions as formal specifications

▶ Assume:

unsigned isqrt (unsigned x)

computes largest integer square root of x
▶ Write assertion that fails if result is wrong!

unsigned r = isqrt (x);

assert (r*r <= x && x <= (r+1)*(r+1));

▶ Note: Assertion doesn’t tell us how isqrt works!

Assertions as formal specifications

▶ Assume:

unsigned gcd (unsigned x, unsigned y)

computes greatest common divisor of x and y

▶ Write assertion that fails if result is wrong!

unsigned r = gcd (x, y);

. . .

Assertions as formal specifications

unsigned r = gcd (x, y);

. . .

What are the properties of the greatest common divisor r?

▶ (x % r == 0) && (y % r == 0)

▶ Is this sufficient?
▶ What if gcd (12, 36) returns 3?

Assertions as formal specifications

unsigned r = gcd (x, y);

. . .

What are the properties of the greatest common divisor r?
▶ (x % r == 0) && (y % r == 0)

▶ Is this sufficient?
▶ What if gcd (12, 36) returns 3?

Assertions as formal specifications

unsigned r = gcd (x, y);

assert ((x % r == 0) && (y % r == 0));

What are the properties of the greatest common divisor r?
▶ (x % r == 0) && (y % r == 0)

▶ Is this sufficient?
▶ What if gcd (12, 36) returns 3?

Assertions as formal specifications

unsigned r = gcd (x, y);

assert ((x % r == 0) && (y % r == 0));

What are the properties of the greatest common divisor r?
▶ (x % r == 0) && (y % r == 0)

▶ Is this sufficient?

▶ What if gcd (12, 36) returns 3?

Assertions as formal specifications

unsigned r = gcd (x, y);

assert ((x % r == 0) && (y % r == 0));

What are the properties of the greatest common divisor r?
▶ (x % r == 0) && (y % r == 0)

▶ Is this sufficient?
▶ What if gcd (12, 36) returns 3?

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
▶ IS CD (r, x, y)

▶ ̸ ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)

∧(t ≤ min(x , y))
▶ C++ doesn’t have quantifiers
▶ N has infinitely many elements
▶ What else do we know about %?

▶ (r > y) ⇒ (y%r = y)

▶ therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
▶ IS CD (r, x, y)

▶ ̸ ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)

∧(t ≤ min(x , y))

▶ C++ doesn’t have quantifiers
▶ N has infinitely many elements

▶ What else do we know about %?
▶ (r > y) ⇒ (y%r = y)

▶ therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
▶ IS CD (r, x, y)

▶ ̸ ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)

∧(t ≤ min(x , y))

▶ C++ doesn’t have quantifiers
▶ N has infinitely many elements
▶ What else do we know about %?

▶ (r > y) ⇒ (y%r = y)

▶ therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
▶ IS CD (r, x, y)

▶ ̸ ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)

∧(t ≤ min(x , y))

▶ C++ doesn’t have quantifiers
▶ N has infinitely many elements
▶ What else do we know about %?

▶ (r > y) ⇒ (y%r = y)

▶ therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
▶ IS CD (r, x, y)

▶ ̸ ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)

∧(t ≤ min(x , y))

▶ C++ doesn’t have quantifiers
▶ N has infinitely many elements
▶ What else do we know about %?

▶ (r > y) ⇒ (y%r = y)
▶ therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
▶ IS CD (r, x, y)

▶ ̸ ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)∧(t ≤ min(x , y))
▶ C++ doesn’t have quantifiers
▶ N has infinitely many elements
▶ What else do we know about %?

▶ (r > y) ⇒ (y%r = y)
▶ therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

assert (̸ ∃t ∈ N . IS CD(t , x , y) ∧ (t > r) ∧ (t ≤ min(x , y)));

▶ What about the quantifier?
▶ r < t ≤ min(x , y), we can use a loop!

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

assert (̸ ∃t ∈ N . IS CD(t , x , y) ∧ (t > r) ∧ (t ≤ min(x , y)));

▶ What about the quantifier?

▶ r < t ≤ min(x , y), we can use a loop!

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

assert (̸ ∃t ∈ N . IS CD(t , x , y) ∧ (t > r) ∧ (t ≤ min(x , y)));

▶ What about the quantifier?
▶ r < t ≤ min(x , y), we can use a loop!

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

for (unsigned t=r+1; t <= min(x, y); t++)

assert (!IS CD(t, x, y));

▶ Does not make assumptions about implementation

▶ Admittedly, not very efficient
▶ Only for testing!
▶ Turn it off in release version.

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

for (unsigned t=r+1; t <= min(x, y); t++)

assert (!IS CD(t, x, y));

▶ Does not make assumptions about implementation
▶ Admittedly, not very efficient

▶ Only for testing!
▶ Turn it off in release version.

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

for (unsigned t=r+1; t <= min(x, y); t++)

assert (!IS CD(t, x, y));

▶ This specification is not executable
▶ But very close to full-blown (inefficient) implementation

▶ We can implement a “prototype”

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

for (unsigned t=r+1; t <= min(x, y); t++)

assert (!IS CD(t, x, y));

▶ This specification is not executable
▶ But very close to full-blown (inefficient) implementation

▶ We can implement a “prototype”

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

#define max(x, y) (((x)<(y))?(y):(x))

unsigned gcd (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS CD(t, x, y))

return t;

}

return max(x, y);

}

▶ Wait, can we reach end of function without return?
▶ Yes, if min(x, y) = 0
▶ In this case, return max(x, y) (since gcd(0, x) = x)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

#define max(x, y) (((x)<(y))?(y):(x))

unsigned gcd (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS CD(t, x, y))

return t;

}

return max(x, y);

}

▶ Wait, can we reach end of function without return?

▶ Yes, if min(x, y) = 0
▶ In this case, return max(x, y) (since gcd(0, x) = x)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

#define max(x, y) (((x)<(y))?(y):(x))

unsigned gcd (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS CD(t, x, y))

return t;

}
return max(x, y);

}

▶ Wait, can we reach end of function without return?
▶ Yes, if min(x, y) = 0
▶ In this case, return max(x, y) (since gcd(0, x) = x)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

#define max(x, y) (((x)<(y))?(y):(x))

unsigned gcd (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS CD(t, x, y))

return t;

}
return max(x, y);

}

▶ This implementation is inefficient!
▶ But we can use it as a prototype!

char is_cd (unsigned r, unsigned x, unsigned y) {

return ((x % r == 0) && (y % r == 0));

}

unsigned gcd_proto (unsigned x, unsigned y) {

unsigned t = min (x, y);

for (; t > 0; t--) {

if (is_cd (t, x, y))

return t;

}

return max (x, y);

}

Euclid’s Algorithm

unsigned gcd_impl (unsigned x, unsigned y)

{

unsigned k = x;

unsigned m = y;

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

▶ Why does this work?

Euclid’s Algorithm

unsigned gcd_impl (unsigned x, unsigned y)

{

unsigned k = x;

unsigned m = y;

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

▶ Why does this work?

Euclid’s Algorithm: Correctness

unsigned k = x;

unsigned m = y;

while (k != m) {

if (k > m) k = k - m;

else m = m - k;

}

return k;

Properties of gcd:
▶ If x = y, then gcd (x,y) = gcd (x,x) = x

▶ If x > y, then gcd (x,y) = gcd (x-y,y)

Euclid’s Algorithm: Correctness

If x > y, then gcd (x,y) = gcd (x-y,y). Proof:
▶ Suppose IS CD(r, x, y). Then

∃n, m . (x = n · r) ∧ (y = m · r)

Therefore,

x− y = n · r− m · r = (n− m) · r

and thus ((x− y)%r) = 0.

▶ Using similar reasoning, we can also show that

IS CD(r, x− y, y) ⇒ IS CD(r, x, y).

▶ Therefore

{r | IS CD(r, x, y)} = {r | IS CD(r, x− y, y)}

▶ In particular, the largest element in both sets is the same

Euclid’s Algorithm: Correctness

If x > y, then gcd (x,y) = gcd (x-y,y). Proof:
▶ Suppose IS CD(r, x, y). Then

∃n, m . (x = n · r) ∧ (y = m · r)

Therefore,

x− y = n · r− m · r = (n− m) · r

and thus ((x− y)%r) = 0.
▶ Using similar reasoning, we can also show that

IS CD(r, x− y, y) ⇒ IS CD(r, x, y).

▶ Therefore

{r | IS CD(r, x, y)} = {r | IS CD(r, x− y, y)}

▶ In particular, the largest element in both sets is the same

Euclid’s Algorithm: Correctness

If x > y, then gcd (x,y) = gcd (x-y,y). Proof:
▶ Suppose IS CD(r, x, y). Then

∃n, m . (x = n · r) ∧ (y = m · r)

Therefore,

x− y = n · r− m · r = (n− m) · r

and thus ((x− y)%r) = 0.
▶ Using similar reasoning, we can also show that

IS CD(r, x− y, y) ⇒ IS CD(r, x, y).

▶ Therefore

{r | IS CD(r, x, y)} = {r | IS CD(r, x− y, y)}

▶ In particular, the largest element in both sets is the same

Euclid’s Algorithm: Correctness

If x > y, then gcd (x,y) = gcd (x-y,y). Proof:
▶ Suppose IS CD(r, x, y). Then

∃n, m . (x = n · r) ∧ (y = m · r)

Therefore,

x− y = n · r− m · r = (n− m) · r

and thus ((x− y)%r) = 0.
▶ Using similar reasoning, we can also show that

IS CD(r, x− y, y) ⇒ IS CD(r, x, y).

▶ Therefore

{r | IS CD(r, x, y)} = {r | IS CD(r, x− y, y)}

▶ In particular, the largest element in both sets is the same

Euclid’s Algorithm

unsigned gcd_impl (unsigned x, unsigned y)

{

unsigned k = x;

unsigned m = y;

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

▶ We can now use a Test Case Generator (e.g., KLEE)

Euclid’s Algorithm

unsigned gcd_impl (unsigned x, unsigned y)

{

unsigned k = x;

unsigned m = y;

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

▶ We can now use a Test Case Generator (e.g., KLEE)

Euclid’s Algorithm

▶ Let’s look at inputs x=k=0, y=m=1
▶ What happens in this case?

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

▶ Number of loop iterations: ∞

Euclid’s Algorithm

▶ Let’s look at inputs x=k=0, y=m=1
▶ What happens in this case?

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

▶ Number of loop iterations: ∞

Euclid’s Algorithm

unsigned gcd_impl(unsigned x, unsigned y)

{

unsigned k = x;

unsigned m = y;

if ((x == 0) || (y == 0))

return max (x, y);

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

Euclid’s Algorithm

The program is correct; but not necessarily efficient!
▶ For 905 and 2, Euclid’s algorithm loops 453 times

▶ Maybe there is a more efficient algorithm?
▶ Euclid’s gcd deducts 2 from 905 452 times
▶ 905 % 2 would yield the same result in one step!
▶ Can also avoid k > m comparison by swapping values!

Euclid’s Algorithm

The program is correct; but not necessarily efficient!
▶ For 905 and 2, Euclid’s algorithm loops 453 times
▶ Maybe there is a more efficient algorithm?

▶ Euclid’s gcd deducts 2 from 905 452 times
▶ 905 % 2 would yield the same result in one step!
▶ Can also avoid k > m comparison by swapping values!

Euclid’s Algorithm

The program is correct; but not necessarily efficient!
▶ For 905 and 2, Euclid’s algorithm loops 453 times
▶ Maybe there is a more efficient algorithm?

▶ Euclid’s gcd deducts 2 from 905 452 times
▶ 905 % 2 would yield the same result in one step!
▶ Can also avoid k > m comparison by swapping values!

Euclid’s Algorithm

unsigned gcd_impl2(unsigned x, unsigned y)

{

unsigned k = max(x,y);

unsigned m = min(x,y);

while (m != 0) {

unsigned r = k % m;

k = m;

m = r;

}

return k;

}

Euclid’s Algorithm

▶ Now the algorithm is much more efficient
▶ But are we pleased with these test cases?

▶ What’s the coverage?

#include <assert.h>

#define MIN(x, y) ((x)<(y))?(x):(y)

#define MAX(x, y) ((x)<(y))?(y):(x)

unsigned gcd (unsigned x, unsigned y)

{

unsigned k = MAX (x,y);

unsigned m = MIN (x,y);

while (m != 0) {

unsigned r = k % m;

k = m; m = r;

}

return k;

}

int main(int argc , char** argv)

{

assert (gcd (0,0) == 0);

assert (gcd (1,1) == 1);

assert (gcd (905 ,2) == 1);

assert (gcd (905 ,2) == 1);

assert (gcd (2,3) == 1);

assert (gcd (512 ,31) == 1);

}

GCOV Usage Revisited

▶ gcc -g -fprofile-arcs -ftest-coverage -o gcd gcd.c

(use clang instead of gcc on newer Macs)
▶ gcov -b gcd

▶ cat gcd.c.gcov

▶ ./gcd ; gcov -b gcd

▶ cat gcd.c.gcov

GCOV Results

function gcd called 6 returned 100% blocks executed 100%

6: 5:unsigned gcd (unsigned x, unsigned y)

-: 6:{

18: 7: unsigned k = MAX (x,y);

18: 8: unsigned m = MIN (x,y);

branch 0 taken 17%

branch 1 taken 83%

23: 9: while (m != 0) {

branch 0 taken 65%

branch 1 taken 35%

11: 10: unsigned r = k % m;

11: 11: k = m; m = r;

11: 12: }

6: 13: return k;

-: 14:}

GCOV Results

Why is GCOV . . .
▶ reporting two branches?

▶ Remember that the macros MAX and MIN both hide the same
branch

▶ claiming that branch coverage hasn’t been reached?
▶ assert is actually a macro, too.

Other Control-Flow-Based Coverage Metrics

▶ Test suite achieves full branch/decision coverage for gcd
▶ What about

▶ condition coverage?
▶ condition decision coverage?
▶ MC/DC?
▶ multiple condition coverage?

▶ Only decisions in gcd are (m != 0) and (x < y)
▶ Therefore, these notions coincide.

Other Control-Flow-Based Coverage Metrics

▶ Test suite achieves full branch/decision coverage for gcd
▶ What about

▶ condition coverage?
▶ condition decision coverage?
▶ MC/DC?
▶ multiple condition coverage?

▶ Only decisions in gcd are (m != 0) and (x < y)
▶ Therefore, these notions coincide.

Data-Flow-Based Coverage Metrics

unsigned k, m;

if (x > y) {

k = x; m = y

} else {

k = y; m = x;

}

while (m != 0) {

unsigned r = k % m;

k = m; m = r;

}

return k;

x y

0 0
1 1

905 2
2 3

512 31

▶ Do we achieve all-p-uses/some-c-uses coverage?
(all definitions used, and if they affect decisions, then all
affected decisions are executed)

How Can KLEE Generate Test Cases?

➀ Select a path in the function gcd

➁ Generate conditions depending on symbolic inputs

➂ Find satisfying assignment (using SMT Solver)
➃ Run Prototype on generated inputs

▶ Report generated inputs and output of oracle

➃ If coverage reached, terminate; else goto ➀

Automated Test-Case Generation

▶ E.g., want to cover else-branch at ➀, loop at ➁ once

unsigned k, m;

x 7→ x0, y 7→ y0

➀ if (x > y) {

(x0 ≤ y0)

k = x; m = y

} else {
k = y; m = x;

k 7→ y0, m 7→ x0

}
➁ while (m != 0) {

(x0 ̸= 0)

unsigned r = k % m;

r 7→ (y0 % x0)

k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

▶ E.g., want to cover else-branch at ➀, loop at ➁ once

unsigned k, m; x 7→ x0, y 7→ y0

➀ if (x > y) {

(x0 ≤ y0)

k = x; m = y

} else {
k = y; m = x;

k 7→ y0, m 7→ x0

}
➁ while (m != 0) {

(x0 ̸= 0)

unsigned r = k % m;

r 7→ (y0 % x0)

k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

▶ E.g., want to cover else-branch at ➀, loop at ➁ once

unsigned k, m; x 7→ x0, y 7→ y0

➀ if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x;

k 7→ y0, m 7→ x0

}
➁ while (m != 0) {

(x0 ̸= 0)

unsigned r = k % m;

r 7→ (y0 % x0)

k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

▶ E.g., want to cover else-branch at ➀, loop at ➁ once

unsigned k, m; x 7→ x0, y 7→ y0

➀ if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x; k 7→ y0, m 7→ x0

}
➁ while (m != 0) {

(x0 ̸= 0)

unsigned r = k % m;

r 7→ (y0 % x0)

k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

▶ E.g., want to cover else-branch at ➀, loop at ➁ once

unsigned k, m; x 7→ x0, y 7→ y0

➀ if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x; k 7→ y0, m 7→ x0

}
➁ while (m != 0) { (x0 ̸= 0)

unsigned r = k % m;

r 7→ (y0 % x0)

k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

▶ E.g., want to cover else-branch at ➀, loop at ➁ once

unsigned k, m; x 7→ x0, y 7→ y0

➀ if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x; k 7→ y0, m 7→ x0

}
➁ while (m != 0) { (x0 ̸= 0)

unsigned r = k % m; r 7→ (y0 % x0)
k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

▶ E.g., want to cover else-branch at ➀, loop at ➁ once

unsigned k, m; x 7→ x0, y 7→ y0

➀ if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x; k 7→ y0, m 7→ x0

}
➁ while (m != 0) { (x0 ̸= 0)

unsigned r = k % m; r 7→ (y0 % x0)
k = m; m = r; k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

▶ E.g., want to cover else-branch at ➀, loop at ➁ once

unsigned k, m; x 7→ x0, y 7→ y0

➀ if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x; k 7→ y0, m 7→ x0

}
➁ while (m != 0) { (x0 ̸= 0)

unsigned r = k % m; r 7→ (y0 % x0)
k = m; m = r; k 7→ x0, m 7→ (y0 % x0)

}
return k; ((y0 % x0) = 0)

Automated Test-Case Generation

▶ We generated the constraint

(x0 ≤ y0) ∧ (x0 ̸= 0) ∧ ((y0 % x0) = 0)

▶ Is it satisfiable?

▶ Yes, for instance x0 7→ 1, y0 7→ 1
▶ Run oracle on input x0 7→ 1, y0 7→ 1

▶ We obtain the result 1

▶ Report test case, and select next path

Automated Test-Case Generation

▶ We generated the constraint

(x0 ≤ y0) ∧ (x0 ̸= 0) ∧ ((y0 % x0) = 0)

▶ Is it satisfiable?
▶ Yes, for instance x0 7→ 1, y0 7→ 1

▶ Run oracle on input x0 7→ 1, y0 7→ 1

▶ We obtain the result 1

▶ Report test case, and select next path

Automated Test-Case Generation

▶ We generated the constraint

(x0 ≤ y0) ∧ (x0 ̸= 0) ∧ ((y0 % x0) = 0)

▶ Is it satisfiable?
▶ Yes, for instance x0 7→ 1, y0 7→ 1

▶ Run oracle on input x0 7→ 1, y0 7→ 1

▶ We obtain the result 1

▶ Report test case, and select next path

Automated Test-Case Generation

▶ We generated the constraint

(x0 ≤ y0) ∧ (x0 ̸= 0) ∧ ((y0 % x0) = 0)

▶ Is it satisfiable?
▶ Yes, for instance x0 7→ 1, y0 7→ 1

▶ Run oracle on input x0 7→ 1, y0 7→ 1
▶ We obtain the result 1

▶ Report test case, and select next path

Automated Test-Case Generation

▶ We generated the constraint

(x0 ≤ y0) ∧ (x0 ̸= 0) ∧ ((y0 % x0) = 0)

▶ Is it satisfiable?
▶ Yes, for instance x0 7→ 1, y0 7→ 1

▶ Run oracle on input x0 7→ 1, y0 7→ 1
▶ We obtain the result 1

▶ Report test case, and select next path

Recall: Manual Test-Case Generation

unsigned gcd (unsigned x, unsigned y)

▶ Which equivalence classes would you generate?
▶ Which test cases would boundary testing yield?

If You Don’t Trust Testing . . .

. . . you can try to prove the program correct.
▶ An assertion is an (loop) invariant if

▶ it holds upon loop entry
▶ remains true after each iteration of the loop

▶ An invariant is inductive
▶ if its validity upon loop entry is sufficient to guarantee that it still

holds after the iteration

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {

assert (∧GCD(x , y) = GCD(m, (k%m)));

unsigned r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));

k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));

m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));

}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {

assert (∧GCD(x , y) = GCD(m, (k%m)));

unsigned r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));

k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));

m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {

assert (∧GCD(x , y) = GCD(m, (k%m)));

unsigned r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));

k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));
m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {

assert (∧GCD(x , y) = GCD(m, (k%m)));

unsigned r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));
k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));
m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {
assert ((m ≥ (k%m)) ∧ GCD(x , y) = GCD(m, (k%m)));
unsigned r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));
k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));
m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {
assert ((m ≥ (k%m))︸ ︷︷ ︸

true

∧GCD(x , y) = GCD(m, (k%m)));

unsigned r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));
k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));
m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {
assert (GCD(x , y) = GCD(m, (k%m)));
. . .
assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));

}

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m)) ⇒ (GCD(x , y) = GCD(m, (k%m)))

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {
assert (GCD(x , y) = GCD(m, (k%m)));
. . .
assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));

}

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m)) ⇒ (GCD(x , y) = GCD(m, (k%m)))

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m)) ⇒ (GCD(x , y) = GCD(m, (k%m)))

▶ Since (k ≥ m), we have GCD(k ,m) = GCD((k%m),m)

▶ Therefore GCD(x , y) = GCD(m, (k%m))

▶ Loop iteration does not invalidate

(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m)) ⇒ (GCD(x , y) = GCD(m, (k%m)))

▶ Since (k ≥ m), we have GCD(k ,m) = GCD((k%m),m)

▶ Therefore GCD(x , y) = GCD(m, (k%m))

▶ Loop iteration does not invalidate

(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m)) ⇒ (GCD(x , y) = GCD(m, (k%m)))

▶ Since (k ≥ m), we have GCD(k ,m) = GCD((k%m),m)

▶ Therefore GCD(x , y) = GCD(m, (k%m))

▶ Loop iteration does not invalidate

(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
▶ GCD(x , y) = GCD(y , x)
▶ GCD(0, x) = x
▶ GCD(x , x) = x
▶ (x > y) ⇒ GCD(x , y) = GCD(x%y , y)

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m)) ⇒ (GCD(x , y) = GCD(m, (k%m)))

▶ Since (k ≥ m), we have GCD(k ,m) = GCD((k%m),m)

▶ Therefore GCD(x , y) = GCD(m, (k%m))

▶ Loop iteration does not invalidate

(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

Euclid’s Algorithm and Inductive Invariants

Does
(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

hold at the beginning of the loop?

unsigned k = max(x,y);

unsigned m = min(x,y);

Euclid’s Algorithm and Inductive Invariants

Does
(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

guarantee that k = GCD(x , y) after the loop?
▶ After the loop, we know that m = 0
▶ Therefore

(k ≥ 0) ∧ GCD(x , y) = GCD(k , 0)

▶ The algorithm is correct!

Euclid’s Algorithm and Inductive Invariants

Does
(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

guarantee that k = GCD(x , y) after the loop?
▶ After the loop, we know that m = 0
▶ Therefore

(k ≥ 0) ∧ GCD(x , y) = GCD(k , 0)

▶ The algorithm is correct!

Symbolic Simulation with KLEE

http://klee.github.io

▶ Explores paths of LLVM programs
▶ Symbolic simulation for test-case generation

http://klee.github.io

Symbolic Simulation with KLEE

#include <klee/klee.h>

int get_sign(int x) {

if (x == 0)

return 0;

if (x<0)

return -1;

else

return 1;

}

int main() {

int a;

klee_make_symbolic (&a, sizeof(a), "a");

return get_sign(a);

}

KLEE Tutorial (Docker Image)

Try at home:
▶ Docker (https://www.docker.com/get-docker)
▶ Instructions on

klee.github.io/tutorials/

▶ Load/Create Docker Image:

docker run -ti --name=klee psv

--ulimit=’stack=-1:-1’ klee/klee

▶ Restart (after exit):

docker start -ai klee psv

https://www.docker.com/get-docker
klee.github.io/tutorials/

KLEE Tutorial (http://klee.github.io/tutorials/)

Trivial example from before (get sign):
▶ In the get sign directory:

cd /home/klee/klee src/examples/get sign

▶ Translate source to LLVM bitcode:

clang -I ../../include -emit-llvm -c -g

get sign.c

▶ Run KLEE on the generated bitcode:

klee get sign.bc

http://klee.github.io/tutorials/

KLEE Tutorial (http://klee.github.io/tutorials/)

▶ KLEE generates several test-cases in klee-out-0

▶ Inputs can be viewed using the following command:

ktest-tool test000001.ktest

▶ Replay test-cases:
▶ clang -I ../../include/ -L

/home/klee/klee build/lib/ get sign.c

-lkleeRuntest
▶ export LD LIBRARY PATH=/home/klee/klee build/lib/
▶ KTEST FILE=klee-last/test000001.ktest ./a.out
▶ echo $?

http://klee.github.io/tutorials/

Checking Coverage with clang and llvm-cov

Compile with coverage instrumentation:
▶ clang --coverage -I ../../include/ -L

/home/klee/klee build/lib/ get sign.c

-lkleeRuntest

Run tests as before:
▶ KTEST FILE=klee-last/test000001.ktest ./a.out

Show coverage information:
▶ llvm-cov gcov get sign.gcno

Try this with gcd!

#include <klee/klee.h>

#define MAX(x, y) ((x)<(y))?(y):(x)

unsigned gcd (unsigned x, unsigned y)

{

unsigned k = x;

unsigned m = y;

if ((x==0) || (y==0)) return MAX(x, y);

while (k != m) {

if (k > m) k = k - m;

else m = m - k;

}

return k;

}

int main(int argc , char** argv)

{

unsigned a, b;

klee_make_symbolic (&a, sizeof(a), "a");

klee_make_symbolic (&b, sizeof(b), "b");

return gcd (a, b);

}

Try this with gcd!

#include <klee/klee.h>

#define MIN(x, y) ((x)<(y))?(x):(y)

#define MAX(x, y) ((x)<(y))?(y):(x)

unsigned gcd (unsigned x, unsigned y)

{

unsigned k = MAX (x,y);

unsigned m = MIN (x,y);

while (m != 0) {

unsigned r = k % m;

k = m; m = r;

}

return k;

}

int main(int argc , char** argv)

{

unsigned a, b;

klee_make_symbolic (&a, sizeof(a), "a");

klee_make_symbolic (&b, sizeof(b), "b");

return gcd (a, b);

}

Exploring gcd with KLEE

▶ On gcd, KLEE doesn’t terminate! (Why?)

▶ Restrict run-time:
▶ -max-time=n (halt after n seconds)
▶ -max-fork=n (stop forking after n symbolic branches)
▶ -max-memory=n (limit memory consumption to n megabytes)
▶ or simply use Ctrl+C. . .

▶ We can apply test-cases generated for prototype to gcd!
▶ Simply make sure that the symbolic variables are the same!

Exploring gcd with KLEE

▶ On gcd, KLEE doesn’t terminate! (Why?)
▶ Restrict run-time:

▶ -max-time=n (halt after n seconds)
▶ -max-fork=n (stop forking after n symbolic branches)
▶ -max-memory=n (limit memory consumption to n megabytes)
▶ or simply use Ctrl+C. . .

▶ We can apply test-cases generated for prototype to gcd!
▶ Simply make sure that the symbolic variables are the same!

Exploring gcd with KLEE

▶ On gcd, KLEE doesn’t terminate! (Why?)
▶ Restrict run-time:

▶ -max-time=n (halt after n seconds)
▶ -max-fork=n (stop forking after n symbolic branches)
▶ -max-memory=n (limit memory consumption to n megabytes)
▶ or simply use Ctrl+C. . .

▶ We can apply test-cases generated for prototype to gcd!
▶ Simply make sure that the symbolic variables are the same!

Hints for Using Docker

▶ Copy a file from host to Docker image:

docker cp gcd.c klee psv:/home/klee/gcd.c

▶ “Got permission denied while trying to connect . . . ” error:

usermod -a -G docker $USER

(or run using sudo if that fails)

Symbolic Simulation with KLEE

▶ Also supports complex build systems (WLLVM)
▶ Can be used as LLVM-bitcode interpreter

▶ Check coreutils tutorial on KLEE webpage
▶ Supports symbolic command-line parameters

▶ using a dedicated library; check
http://klee.github.io/tutorials/testing-coreutils/

Assertions

Byte swapping trick:
▶ assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

▶ We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

▶ Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Assertions

Byte swapping trick:
▶ assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

▶ We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

▶ Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Assertions

Byte swapping trick:
▶ assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

▶ We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

▶ Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Assertions

Byte swapping trick:
▶ assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

▶ We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

▶ Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Assertions

Byte swapping trick:
▶ assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

▶ We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

▶ Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Assertions

Byte swapping trick:
▶ assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

▶ We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

▶ Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Assertions and Concurrency

▶ Locks can be used to prevent simultaneous or concurrent
access to critical regions or resources

▶ Simplified API:
▶ lock(A) succeeds if lock A is available
▶ lock(A) blocks if lock is already held/acquired

(by this or another thread)
▶ unlock(A) releases a lock previously acquired
▶ unlock(A) never blocks

Assertions and Concurrency

▶ Deadlocks happen if locks are acquired in wrong order

▶ Thread one acquires lock A
▶ Thread two acquires lock B
▶ Thread one waits for lock B
▶ Thread two waits for lock A
▶ Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

Assertions and Concurrency

▶ Deadlocks happen if locks are acquired in wrong order
▶ Thread one acquires lock A

▶ Thread two acquires lock B
▶ Thread one waits for lock B
▶ Thread two waits for lock A
▶ Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

Assertions and Concurrency

▶ Deadlocks happen if locks are acquired in wrong order
▶ Thread one acquires lock A
▶ Thread two acquires lock B

▶ Thread one waits for lock B
▶ Thread two waits for lock A
▶ Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

Assertions and Concurrency

▶ Deadlocks happen if locks are acquired in wrong order
▶ Thread one acquires lock A
▶ Thread two acquires lock B
▶ Thread one waits for lock B (thread two still running)

▶ Thread two waits for lock A
▶ Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

Assertions and Concurrency

▶ Deadlocks happen if locks are acquired in wrong order
▶ Thread one acquires lock A
▶ Thread two acquires lock B
▶ Thread one waits for lock B
▶ Thread two waits for lock A

▶ Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

Assertions and Concurrency

▶ Deadlocks happen if locks are acquired in wrong order
▶ Thread one acquires lock A
▶ Thread two acquires lock B
▶ Thread one waits for lock B
▶ Thread two waits for lock A
▶ Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

The Task

▶ Add assertions that fail if a deadlock is about to occur!
▶ Assertions must not fail if no deadlock occurs!
▶ Hints:

▶ You need to augment the code with auxiliary code and
variables indicating when a process is waiting for a lock

▶ The assertions must be executed before the deadlock occurs

For the specialists among you: assume sequential consistency

Solution for Deadlocks

flagA = 0;

lock (A);

flagA = 1;

assert (!flagB);

lock (B);

flagA = 0;

unlock (B);

unlock (A);

flagB = 0;

lock (B);

flagB = 1;

assert (!flagA);

lock (A);

flagB = 0;

unlock (A);

unlock (B);

Note:
▶ If only one thread contains an assertion, then there’s a

potential deadlock without an assertion failure
▶ If flagA and flagB are reset after the inner locks are

released, then there’s a potential assertion failure even if the
deadlock doesn’t happen

Inductive Invariants

▶ Add an inductive invariant to the code
▶ Use it to show that the assertion after the loop holds
▶ Add comments to the code explaining

▶ why your assertion is an inductive invariant
▶ why it shows that the assertion after the loop holds

unsigned x = i;

unsigned y = j;

while (x != 0)

{

x--;

y++;

assert (?); // add invariant here

}

assert ((i != j) || (y == 2 * i));

Solution for Invariant

assert (j == j + (i - i));

int x = i;

assert (j == j + (i - x));

int y = j;

assert (y == j + (i - x));

while (x != 0) {
assert ((y + 1) == j + (i - (x - 1)));

x--;

assert ((y + 1) == j + (i - x));

y++;

assert (y == j + (i - x)); // # iterations n := i - x

}
assert ((x == 0) && y == j + (i - x));

assert ((i != j) || (y == 2 * i));

Solution for Invariant (ctd.)

▶ (y==j+(i-x)) implies (y+1)==j+(i-(x-1))
▶ Therefore (y==j+(i-x)) is a loop invariant

▶ (y==j+(i-x)) is inductive
▶ Holds at beginning of loop, since (j == j + (i - i)) is true

▶ Implies assertion after loop (since x == 0)

Summary

Today was a recap of
▶ Assertions
▶ Testing
▶ Test Case Generation
▶ Inductive Invariants

Next time it’s getting a bit more formal

Summary

Today was a recap of
▶ Assertions
▶ Testing
▶ Test Case Generation
▶ Inductive Invariants

Next time it’s getting a bit more formal

