1. Bugs

Software Testing

20245

Summary

What is a bug?

Error —a human action that produces an incorrect result.
Fault — a flaw in the program that if encountered during execution, produces a failure.
Failure — deviation of the system from its expected result.

Failure reproduction:

Reach —the input to the software must cause the faulty statement to be executed.

Infection — the faulty statement must produce an incorrect result, causing an incorrect
internal state for the system.

Propagation — the incorrect internal state must propagate to the output so that the result of
the fault is observable.

Defect reports:

Defects:

Title and description — high-level summary of the problem.
Detailed steps and expected behavior.

Priority — severity and frequency of the issue.

Context — relevant configuration (OS, version...) and hardware.
Pictures and examples.

delivered defects/kLoC = introduced defects - removed defects
Typically, 60 defects/kLoC.

2. Test Processes

What is software testing?

e Testing is the process of executing a program or system with the intent of finding errors.
e Goals of software testing:

o Finding defects.

o Assess the quality.

o Increase confidence.

o Prevent defects.
e Non-goals:

o Defect localization and removal (debugging).

o Prove the absence of bugs.

Verification vs Validation:

e Verification — Did we build the product right?
o Focus on current implementation vs specifications.
e Validation — Did we build the right product?
o Focus on current implementation vs customer requirements.

Testing processes:

e Testing processes are embedded within the development process.
e Test Management Process:

o Test strategy and planning.

o Test monitoring and control.

o Test completion.
e Dynamic Test Process:

o Test design and implementation.

o Test execution.

o Testreport.

Quality assurance:

e Ongoing activity across all phases of a development process.
e Static Quality Assurance — reviews and inspections; focus on early defect detection.
e Dynamic Quality Assurance:
o Defect detection in executable code documents via testing — sequential process via e.g.
V-Model.
o Coupling testing and implementation in e.g. SCRUM (TDD).

Test-Driven Development (TDD):

Testing in traditional sequential processes:

O
O

Long cycles in large engineering projects.
Finding bugs becomes difficult.

Testing in agile processes:

o Short cycles.

o Test cases written before implementation.

TDD Steps:

o Think - select next feature to implement and specify test cases.

o Red - all tests must fail.

o Green — stepwise implementation and test execution until all tests pass.

o Refactor — modification and optimization of classes without functional changes; test

cases may not fail.

3. Test Design Techniques

The test design problem:

e Problem: it is impossible to test all combinations of inputs and paths, except for trivial cases.
e Solution: sampling approach — choose a few powerful tests that represent the rest.
e Black-box, White-box, and Experience-based techniques.

Test design techniques:

1. Specification-Based (Black-Box):
e Equivalence Partitioning:

o Divide the range of inputs into groups of equivalent tests to avoid unnecessary
testing — 1 test per partition is sufficient.

o Equivalence Partition/Class — a portion of an input or output domain for which
the behavior of the system is assumed to be the same, based on the
specification.

o Applicable for systematic data (input and output) coverage at all levels of
testing.

o Limitations: weak selection of representative values (compare with boundary
value analysis below).

e Boundary Value Analysis:

o Selects representative values from an equivalence partition (programs are more
likely to fail at boundaries).

o 3 values — boundary, outside (invalid), inside (valid); if no “rea
values.

o Applicable with equivalence partitioning at all levels of testing, high probability
of defect detection.

o Limitations: requires inputs that can be partitioned to an ordered set and
identifiable boundaries; requires creative testers (e.g. boundaries of string?).

e Combinatorial Testing:

o Testing several variables in combination; pairwise testing often used to reduce
the number of combinations.

o In case of non-uniformity of input distribution, pairwise testing can fail (highly
probable combinations get too little attention), e.g. options dialog of MS Word.

e State Transition Testing:

o State diagrams show the various states that a system can get into and the
transitions that occur between the states.

o To test, identify states and transitions, draw a transition tree, and derive test
cases (all paths from root to leaves).

o For each state, add an invalid transition as well.

o Agood test heuristic is to test all transitions at least once.

IM

boundary, only 2

o Applicable for systems that exhibit different behavior depending on their state
(used in embedded systems and technical automation).

o Limitations: the state-explosion problem (too many states).

Structure-Based (White-Box):
e Statement Testing/Coverage:
o Each statement is executed at least once.
o Control-flow graphs are the foundation for control flow testing.
o Shortcoming: branch logic, e.g. if-statements.
Decision/Branch Testing/Coverage:
o Each branch must be executed at least once.
o The entire expression is considered as a single predicate.
o Decision coverage guarantees statement coverage, but not vice versa.
o Limitations: ignores branches within Boolean expressions due to short-circuit
operators (compiler optimizations).
Condition Testing/Coverage:
o Like decision/branch, but every Boolean subexpression is evaluated to true and
to false at least once.
o Multiple Condition Coverage (MCC):
= Requires a test for each possible combination (2" test cases)
o Modified Condition/Decision Coverage (MC/DC):
= Requires testing only those conditions that independently affect the
outcome.
Data Flow Testing (Path Coverage):
o Def-Use — follow paths where a value is defined (Def) and used (Use).
Mutation Testing/Coverage:
o Error seeding — artificial faults are introduced into the program (e.g. changing
constants, modifying conditions).
o Mutation testing:
= Test suite is run on original program and all tests pass.
= After each mutation, the test suite is run again. If at least one test case
fails, mutant is killed, else it survives (i.e. change remains undetected).
Experience-Based:
e Error-guessing:

o Tests are derived from the tester’s skill, intuition, and experience with similar
technologies.

o Astructured approach is to enumerate a list of possible errors and design tests
that attack those errors; lists can be built based on experience, or from available
defect and failure data.

e Intuitive Testing:
o Useful to identify special tests not easily captured by formal techniques.
e Exploratory Testing:

o Interactively gaining experience about the product while testing and designing
new tests based on that experience.

o Organized in 60-90 min sessions; goals defined as charters.

4. Test Automation

Motivation:

e Automated and frequent test case execution.
e Reduce boring and repetitive activities.

e Reproducibility of tests.

e Automated generation of large data samples.
o Nevertheless: high additional effort.

Traceability:

e [dentifying and verifying the history across development processes.
e Traceability classes:
o Traceability over time — relationship between versions/releases.
o Traceability across development phases (horizontal) — relationship between artifacts
across phases (e.g. requirements -> implementation -> test cases).
o Traceability across artifacts (vertical) — relationship between architecture levels (e.g.
system -> subsystem -> component -> class).
e (Can be used to see which code has to be checked when requirements change, as well as which
requirements are affected by failing code.

Automation:

e Test automation — the use of software to perform test activities.
e Test execution automation — the use of software to control the execution of tests.

Scenarios:

e Regression testing — (re-)testing a previously tested program following modification to ensure
that no defects have been introduced in the unchanged area of the software.

e Smoke testing — a subset of all planned/defined test cases ascertaining that the most
crucial/main functions of the system work; no finer details are tested.

e Load testing — performance testing conducted to evaluate the behavior of a component with
increasing load, as well as to determine what load can be handled.

GUI-Testing:

e The process of testing a GUI OR testing a system via its GUI.
o Testing types:
o Manual testing:
= Easy, cheap, flexible.
= No auto regression testing or results log.
o Capture-Replay:
= |nputs during manual testing are recorded and generate test scripts that can be
executed later (e.g. Selenium IDE).
= Easy, flexible, auto regression testing.
= Expensive first execution, fragile tests break easily.
= Problems:
e Interactions are recorded for the lowest-level Ul elements (e.g. clicking a
button label # clicking a button).
e Intended user interaction cannot always be reconstructed.
e Some events may not be captured, e.g. touch gestures.
e Some Ul elements may not be recognized, e.g. cells in a grid.
e Timing is relevant — C/R requires delays and synchronization.
e Requires a working system —no TDD!
o Programmatic (e.g. Selenium API):
= Test scripts are source code, auto regression testing.
= Requires maintenance of test scripts.

Test Maintenance:

e Corrective maintenance — reactive modification of tests to correct problems (e.g. test fails but
system is correct).

e Adaptive maintenance — modifications of the test to keep up with changes in the system.

e Perfective maintenance — modifications to improve quality of tests.

e Preventive maintenance — modifications to detect and correct problems in the tests.

Page Object Pattern:

e Pattern for web testing.
e Page Object:
o Abstraction over low-level detail.
API to access the elements of a Web page.
Better maintainability.
More readable and understandable tests
Less code duplications
Separation between Ul code and test code.

O O O O O

Behavior-Driven Development:

e BDD:
o Concrete examples of system behavior.
o Requirements are turned into automated tests that guide the developer, verify and
document the feature.
e Specification by example:
o Using examples to define the specification (the behavior of the system).
e Acceptance-Test-Driven Development (ATDD):
o Using acceptance tests to define the specification (often a synonym for Specification by
example).

5. Automating Test Automation

Random Testing:

o A black-box testing technique where test cases are randomly selected to match an operational
profile.
e Monkey testing:
o Random testing applied to GUI testing.
o Random selection from a large range of inputs — e.g. randomly pushing buttons.
e Fuzzy testing:
o Testing by providing invalid, unexpected, or random input data.
o Commonly used for security testing.
o Feedback-directed Random Testing — e.g. Randoop.
e Problems:
o Generation problem:
= How to sufficiently cover a large input space (e.g. guessing the correct
user/password with random inputs)?
= Randomly generated data follows a homogenous distribution.
o Test minimization problem:
= Large number of redundant test cases.
= Generated tests have much noise (failing test cases may have a large number of
irrelevant steps — difficult to debug failures).
= False positives.
o Oracle problem:
= Easy to generate random data, but hard to determine if the outcome passes or
fails.

Test Oracle:

e A source to determine expected results for comparison with the actual result of the execution in
order to decide pass or fail of the test.

e Differential testing — comparing the output of 2 different systems.
e Delta testing — comparing the output of 2 versions of the same system.
e Assertions vs Junit Asserts.

Model-Based Testing:

e A model is an abstraction of the system it describes.

o Model-based testing is defined as automatable derivation of concrete test cases from abstract
formal models, and their execution.

e The output of the model (expected) is compared to the output of the system (actual).

Techniques:

O
O
O
O

Random generation (e.g. random walk).

Markov chains.

Graph search algorithms.

Model checking — only paths that reach a certain state or transition.

Test generation:

O

Cons:

o O O

On-line — test cases are generated and executed at once; testing non-deterministic
systems.

Off-line — test cases are generated from a model; can be stored and maintained like
conventional test cases.

Early bug detection (modeling is early in the development).
Better evolution support (models are easier to update than individual tests).
Reduced costs (auto-generated test cases).

High effort shifted from testing to modeling.

Advanced modeling skills required of the testers.

Modeling is an abstraction — important details may be missed.
Difficult to define an appropriate oracle.

