
Software Testing

2024S

Summary

1. Bugs

What is a bug?

• Error – a human action that produces an incorrect result.

• Fault – a flaw in the program that if encountered during execution, produces a failure.

• Failure – deviation of the system from its expected result.

Failure reproduction:

• Reach – the input to the software must cause the faulty statement to be executed.

• Infection – the faulty statement must produce an incorrect result, causing an incorrect

internal state for the system.

• Propagation – the incorrect internal state must propagate to the output so that the result of

the fault is observable.

Defect reports:

• Title and description – high-level summary of the problem.

• Detailed steps and expected behavior.

• Priority – severity and frequency of the issue.

• Context – relevant configuration (OS, version...) and hardware.

• Pictures and examples.

Defects:

• delivered defects/kLoC = introduced defects - removed defects

• Typically, 60 defects/kLoC.

2. Test Processes

What is software testing?

• Testing is the process of executing a program or system with the intent of finding errors.

• Goals of software testing:

o Finding defects.

o Assess the quality.

o Increase confidence.

o Prevent defects.

• Non-goals:

o Defect localization and removal (debugging).

o Prove the absence of bugs.

Verification vs Validation:

• Verification – Did we build the product right?

o Focus on current implementation vs specifications.

• Validation – Did we build the right product?

o Focus on current implementation vs customer requirements.

Testing processes:

• Testing processes are embedded within the development process.

• Test Management Process:

o Test strategy and planning.

o Test monitoring and control.

o Test completion.

• Dynamic Test Process:

o Test design and implementation.

o Test execution.

o Test report.

Quality assurance:

• Ongoing activity across all phases of a development process.

• Static Quality Assurance – reviews and inspections; focus on early defect detection.

• Dynamic Quality Assurance:

o Defect detection in executable code documents via testing – sequential process via e.g.

V-Model.

o Coupling testing and implementation in e.g. SCRUM (TDD).

Test-Driven Development (TDD):

• Testing in traditional sequential processes:

o Long cycles in large engineering projects.

o Finding bugs becomes difficult.

• Testing in agile processes:

o Short cycles.

o Test cases written before implementation.

• TDD Steps:

o Think - select next feature to implement and specify test cases.

o Red – all tests must fail.

o Green – stepwise implementation and test execution until all tests pass.

o Refactor – modification and optimization of classes without functional changes; test

cases may not fail.

3. Test Design Techniques

The test design problem:

• Problem: it is impossible to test all combinations of inputs and paths, except for trivial cases.

• Solution: sampling approach – choose a few powerful tests that represent the rest.

• Black-box, White-box, and Experience-based techniques.

Test design techniques:

1. Specification-Based (Black-Box):

• Equivalence Partitioning:

o Divide the range of inputs into groups of equivalent tests to avoid unnecessary

testing – 1 test per partition is sufficient.

o Equivalence Partition/Class – a portion of an input or output domain for which

the behavior of the system is assumed to be the same, based on the

specification.

o Applicable for systematic data (input and output) coverage at all levels of

testing.

o Limitations: weak selection of representative values (compare with boundary

value analysis below).

• Boundary Value Analysis:

o Selects representative values from an equivalence partition (programs are more

likely to fail at boundaries).

o 3 values – boundary, outside (invalid), inside (valid); if no “real” boundary, only 2

values.

o Applicable with equivalence partitioning at all levels of testing, high probability

of defect detection.

o Limitations: requires inputs that can be partitioned to an ordered set and

identifiable boundaries; requires creative testers (e.g. boundaries of string?).

• Combinatorial Testing:

o Testing several variables in combination; pairwise testing often used to reduce

the number of combinations.

o In case of non-uniformity of input distribution, pairwise testing can fail (highly

probable combinations get too little attention), e.g. options dialog of MS Word.

• State Transition Testing:

o State diagrams show the various states that a system can get into and the

transitions that occur between the states.

o To test, identify states and transitions, draw a transition tree, and derive test

cases (all paths from root to leaves).

o For each state, add an invalid transition as well.

o A good test heuristic is to test all transitions at least once.

o Applicable for systems that exhibit different behavior depending on their state

(used in embedded systems and technical automation).

o Limitations: the state-explosion problem (too many states).

2. Structure-Based (White-Box):

• Statement Testing/Coverage:

o Each statement is executed at least once.

o Control-flow graphs are the foundation for control flow testing.

o Shortcoming: branch logic, e.g. if-statements.

• Decision/Branch Testing/Coverage:

o Each branch must be executed at least once.

o The entire expression is considered as a single predicate.

o Decision coverage guarantees statement coverage, but not vice versa.

o Limitations: ignores branches within Boolean expressions due to short-circuit

operators (compiler optimizations).

• Condition Testing/Coverage:

o Like decision/branch, but every Boolean subexpression is evaluated to true and

to false at least once.

o Multiple Condition Coverage (MCC):

▪ Requires a test for each possible combination (2n test cases)

o Modified Condition/Decision Coverage (MC/DC):

▪ Requires testing only those conditions that independently affect the

outcome.

• Data Flow Testing (Path Coverage):

o Def-Use – follow paths where a value is defined (Def) and used (Use).

• Mutation Testing/Coverage:

o Error seeding – artificial faults are introduced into the program (e.g. changing

constants, modifying conditions).

o Mutation testing:

▪ Test suite is run on original program and all tests pass.

▪ After each mutation, the test suite is run again. If at least one test case

fails, mutant is killed, else it survives (i.e. change remains undetected).

3. Experience-Based:

• Error-guessing:

o Tests are derived from the tester’s skill, intuition, and experience with similar

technologies.

o A structured approach is to enumerate a list of possible errors and design tests

that attack those errors; lists can be built based on experience, or from available

defect and failure data.

• Intuitive Testing:

o Useful to identify special tests not easily captured by formal techniques.

• Exploratory Testing:

o Interactively gaining experience about the product while testing and designing

new tests based on that experience.

o Organized in 60-90 min sessions; goals defined as charters.

4. Test Automation

Motivation:

• Automated and frequent test case execution.

• Reduce boring and repetitive activities.

• Reproducibility of tests.

• Automated generation of large data samples.

• Nevertheless: high additional effort.

Traceability:

• Identifying and verifying the history across development processes.

• Traceability classes:

o Traceability over time – relationship between versions/releases.

o Traceability across development phases (horizontal) – relationship between artifacts

across phases (e.g. requirements -> implementation -> test cases).

o Traceability across artifacts (vertical) – relationship between architecture levels (e.g.

system -> subsystem -> component -> class).

• Can be used to see which code has to be checked when requirements change, as well as which

requirements are affected by failing code.

Automation:

• Test automation – the use of software to perform test activities.

• Test execution automation – the use of software to control the execution of tests.

Scenarios:

• Regression testing – (re-)testing a previously tested program following modification to ensure

that no defects have been introduced in the unchanged area of the software.

• Smoke testing – a subset of all planned/defined test cases ascertaining that the most

crucial/main functions of the system work; no finer details are tested.

• Load testing – performance testing conducted to evaluate the behavior of a component with

increasing load, as well as to determine what load can be handled.

GUI-Testing:

• The process of testing a GUI OR testing a system via its GUI.

• Testing types:

o Manual testing:

▪ Easy, cheap, flexible.

▪ No auto regression testing or results log.

o Capture-Replay:

▪ Inputs during manual testing are recorded and generate test scripts that can be

executed later (e.g. Selenium IDE).

▪ Easy, flexible, auto regression testing.

▪ Expensive first execution, fragile tests break easily.

▪ Problems:

• Interactions are recorded for the lowest-level UI elements (e.g. clicking a

button label ≠ clicking a button).

• Intended user interaction cannot always be reconstructed.

• Some events may not be captured, e.g. touch gestures.

• Some UI elements may not be recognized, e.g. cells in a grid.

• Timing is relevant – C/R requires delays and synchronization.

• Requires a working system – no TDD!

o Programmatic (e.g. Selenium API):

▪ Test scripts are source code, auto regression testing.

▪ Requires maintenance of test scripts.

Test Maintenance:

• Corrective maintenance – reactive modification of tests to correct problems (e.g. test fails but

system is correct).

• Adaptive maintenance – modifications of the test to keep up with changes in the system.

• Perfective maintenance – modifications to improve quality of tests.

• Preventive maintenance – modifications to detect and correct problems in the tests.

Page Object Pattern:

• Pattern for web testing.

• Page Object:

o Abstraction over low-level detail.

o API to access the elements of a Web page.

o Better maintainability.

o More readable and understandable tests

o Less code duplications

o Separation between UI code and test code.

Behavior-Driven Development:

• BDD:

o Concrete examples of system behavior.

o Requirements are turned into automated tests that guide the developer, verify and

document the feature.

• Specification by example:

o Using examples to define the specification (the behavior of the system).

• Acceptance-Test-Driven Development (ATDD):

o Using acceptance tests to define the specification (often a synonym for Specification by

example).

5. Automating Test Automation

Random Testing:

• A black-box testing technique where test cases are randomly selected to match an operational

profile.

• Monkey testing:

o Random testing applied to GUI testing.

o Random selection from a large range of inputs – e.g. randomly pushing buttons.

• Fuzzy testing:

o Testing by providing invalid, unexpected, or random input data.

o Commonly used for security testing.

• Feedback-directed Random Testing – e.g. Randoop.

• Problems:

o Generation problem:

▪ How to sufficiently cover a large input space (e.g. guessing the correct

user/password with random inputs)?

▪ Randomly generated data follows a homogenous distribution.

o Test minimization problem:

▪ Large number of redundant test cases.

▪ Generated tests have much noise (failing test cases may have a large number of

irrelevant steps – difficult to debug failures).

▪ False positives.

o Oracle problem:

▪ Easy to generate random data, but hard to determine if the outcome passes or

fails.

Test Oracle:

• A source to determine expected results for comparison with the actual result of the execution in

order to decide pass or fail of the test.

• Differential testing – comparing the output of 2 different systems.

• Delta testing – comparing the output of 2 versions of the same system.

• Assertions vs Junit Asserts.

Model-Based Testing:

• A model is an abstraction of the system it describes.

• Model-based testing is defined as automatable derivation of concrete test cases from abstract

formal models, and their execution.

• The output of the model (expected) is compared to the output of the system (actual).

• Techniques:

o Random generation (e.g. random walk).

o Markov chains.

o Graph search algorithms.

o Model checking – only paths that reach a certain state or transition.

• Test generation:

o On-line – test cases are generated and executed at once; testing non-deterministic

systems.

o Off-line – test cases are generated from a model; can be stored and maintained like

conventional test cases.

• Pros:

o Early bug detection (modeling is early in the development).

o Better evolution support (models are easier to update than individual tests).

o Reduced costs (auto-generated test cases).

• Cons:

o High effort shifted from testing to modeling.

o Advanced modeling skills required of the testers.

o Modeling is an abstraction – important details may be missed.

o Difficult to define an appropriate oracle.

