
Parallel Computing
Exercise sheet 3 + Reference Solution

June 18, 2019

Disclaimer

This document contains the assignments from exercise-sheet 3 of the lecture 184.710
Parallel Computing 2019S, the reference solution as well as my personal solution.

The reference solution is given directly in the assignments in italics, my personal
solution is always located in the Solution subsection of an exercise.

I cannot guarantee the correctness of any solution provided in this document.

Exercise 1

Some MPI code is being executed by the processes belonging to the communicator comm,
in particular, each process is looking up its rank and the size of the communicator as
follows.

MPI_Comm_size(comm , &size);

MPI_Comm_rank(comm , &rank);

assert(size >= 3);

assert(count >= M);

assert(sendbuf != NULL);

assert(recvbuf != NULL);

assert(TAG1 != TAG2);

Now, consider the following three variations of the code that follows:

(a) correct

if (rank == 1){

MPI_Sendrecv(sendbuf ,count ,MPI_INT ,2,TAG1 ,

recvbuf ,count ,MPI_INT ,2,TAG2 ,

1

comm ,MPI_STATUS_IGNORE);

} else if (rank == 2) {

MPI_Send(sendbuf ,count ,MPI_INT ,1,TAG2 ,comm);

MPI_Recv(recvbuf ,count ,MPI_INT ,1,TAG1 ,comm ,MPI_STATUS_IGNORE);

}

(b) Non-matching tags, deadlock. Reverse the tags in send/receive for rank 2.

if (rank == 1){

MPI_Sendrecv(sendbuf ,count ,MPI_INT ,2,TAG2 ,

recvbuf ,count ,MPI_INT ,2,TAG1 ,

comm ,MPI_STATUS_IGNORE);

} else if (rank == 2) {

MPI_Recv(recvbuf ,count ,MPI_INT ,1,TAG1 ,comm ,MPI_STATUS_IGNORE);

MPI_Send(sendbuf ,count ,MPI_INT ,1,TAG2 ,comm);

}

(c) Deadlocks. Process 1 must send/receive to processes 3 and 2, respectively. Receive
and send tags in processes 2 and 3 must be swapped.

if (rank == 1){

MPI_Sendrecv(sendbuf ,count ,MPI_INT ,2,TAG2 ,

recvbuf ,count ,MPI_INT ,2,TAG1 ,

comm ,MPI_STATUS_IGNORE);

} else if (rank == 2) { // process 2 must send

MPI_Send(sendbuf ,count ,MPI_INT ,1,TAG2 ,comm);

} else if (rank == 3) { // process 3 must receive

MPI_Recv(recvbuf ,count ,MPI_INT ,1,TAG1 ,comm ,MPI_STATUS_IGNORE);

}

1. Which of the three pieces (a), (b), and/or (c) are correct, which not? Give an easy
repair where needed, but change only arguments to the calls (no code movements).

Solution

1. (a) correct

(b) incorrect tags

if (rank == 1){

MPI_Sendrecv(sendbuf ,count ,MPI_INT ,2,TAG2 ,

recvbuf ,count ,MPI_INT ,2,TAG1 ,

comm ,MPI_STATUS_IGNORE);

} else if (rank == 2) {

MPI_Recv(recvbuf ,count ,MPI_INT ,1,TAG2 ,comm ,MPI_STATUS_IGNORE);

MPI_Send(sendbuf ,count ,MPI_INT ,1,TAG1 ,comm);

2

}

(c) incorrect tags and incorrect destination

if (rank == 1){

MPI_Sendrecv(sendbuf ,count ,MPI_INT ,3,TAG2 ,

recvbuf ,count ,MPI_INT ,2,TAG1 ,

comm ,MPI_STATUS_IGNORE);

} else if (rank == 2) { // process 2 must send

MPI_Send(sendbuf ,count ,MPI_INT ,1,TAG1 ,comm);

} else if (rank == 3) { // process 3 must receive

MPI_Recv(recvbuf ,count ,MPI_INT ,1,TAG2 ,comm ,MPI_STATUS_IGNORE);

}

Exercise 2

Some large array a of n elements is to be shifted from process i to process i + k, for
k > 0. The result received at process i is undefined (and may be anything) if i− k < 0.

The algorithm proposed below for this problem is not optimal, and accomplishes the
task by k shifts by one process. The special MPI_PROC_NULL process is used to make
handling of the cases where i + k ≥ p and i − k < 0 easier. Sending to and receiving
from MPI_PROC_NULL always succeeds immediately and has no effect.

MPI_Comm_size(comm ,&size);

MPI_Comm_rank(comm ,&rank);

prev = (rank >0) ? rank -1 : MPI_PROC_NULL;

next = (rank <size -1) ? rank+1 : MPI_PROC_NULL;

for (i=0; i<k; i++) {

if (rank %2==0) {

MPI_Send(a,n,MPI_INT ,next ,TAG ,comm);

MPI_Recv(b,n,MPI_INT ,prev ,TAG ,comm ,MPI_STATUS_IGNORE);

} else {

MPI_Recv(b,n,MPI_INT ,prev ,TAG ,comm ,MPI_STATUS_IGNORE);

MPI_Send(a,n,MPI_INT ,next ,TAG ,comm);

}

if (prev!= MPI_PROC_NULL) {

for (j=0; j<n; j++) a[j] = b[j];

}

}

The task is to step-wise improve this algorithm.

1. Instead of shifting k times, accomplish the desired result by only one shift from
process i directly to process i+ k. This code should still use only MPI_Send() and

3

MPI_Recv(). It must work for any n ≥ 0 and p > 0 and any k > 0. Explain what
is needed, and write out the (few) extra code lines required.

problem: even-odd distinction, what if i and i + k have the same parity?

prev = (rank -k >= 0) ? rank -k : MPI_PROC_NULL;

next = (rank+k < size) ? rank+k : MPI_PROC_NULL;

if ((rank/k)%2==0)

// solves problem if parity is the same

Otherwise:

• 0: send to 2, recv from -2

• 2: send to 4, recv from 0

• 4: send to 6, recv from 2

• 6: send to -2, recv from 4

2. What is a potential performance problem with using only send and receive opera-
tions for the implementation?

Performance problem?

• No bidirectional communication possible (perhaps supported by the network).

• Always 2 communication rounds.

3. Give a solution to the problem using the combined MPI_Sendrecv() operation.

only one MPI Sendrecv operation

4. Mention a case (from the lectures) where the k-shifts operation is used.

e.g. Hillis-Steele prefix-sums/scan algorithms

Solution

1. The loop is unnecessary as we only send/receive from one process, but the distinc-
tion of the send/receive order can not depend on even-odd distinction as this only
works for odd k and needs to depend on k as every jump is k processes long each
2k processes have the same order. To work correctly for all k shifting-chains the
offset of the chain is subtracted.

MPI_Comm_size(comm ,&size);

MPI_Comm_rank(comm ,&rank);

prev = rank - k;

if (prev < 0) prev = MPI_PROC_NULL;

next = rank + k;

if (next >= size) next = MPI_PROC_NULL;

4

proc_chain = rank % k;

if ((rank - proc_chain) % 2*k == 0) {

MPI_Send(a,n,MPI_INT ,next ,TAG ,comm);

MPI_Recv(b,n,MPI_INT ,prev ,TAG ,comm ,MPI_STATUS_IGNORE);

} else {

MPI_Recv(b,n,MPI_INT ,prev ,TAG ,comm ,MPI_STATUS_IGNORE);

MPI_Send(a,n,MPI_INT ,next ,TAG ,comm);

}

if (prev!= MPI_PROC_NULL) {

for (j=0; j<n; j++) a[j] = b[j];

}

2. The solution does not utilize bidirectional communication networks as the send/re-
ceive operations occur sequential (they block).

3. MPI_Sendrecv() makes it unnecessary to distinct every second process in the shift-
chain.

MPI_Comm_size(comm ,&size);

MPI_Comm_rank(comm ,&rank);

prev = rank - k;

if (prev < 0) prev = MPI_PROC_NULL;

next = rank + k;

if (next >= size) next = MPI_PROC_NULL;

MPI_Sendrecv(a,n,MPI_INT ,next ,TAG ,

b,n,MPI_INT ,prev ,TAG ,

comm ,MPI_STATUS_IGNORE);

if (prev!= MPI_PROC_NULL) {

for (j=0; j<n; j++) a[j] = b[j];

}

4. The k-shift can be used by the d-dimensional stencil operations to shift the result
to the horizontal neighbor (k = 1) and the vertical neighbor (k = width).

Exercise 3

The following piece of code is part of a recursive algorithm where the set of processes is
recursively split until only a single process remains in the communicator.

MPI_Comm_size(comm ,&size);

MPI_Comm_rank(comm ,&rank);

5

MPI_Comm_split(comm ,((rank %3==0) ? 1 : 0),size -rank ,& newcomm);

MPI_Comm_rank(newcomm ,& newrank);

int x = rank;

MPI_Bcast (&x,1,MPI_INT ,0,newcomm);

printf("x is %d for process %d, now %d\n",x,rank ,newrank);

1. Assume the program is executed with p = 11 MPI processes. What is the outcome
(in particular, the value of x) from each process?

Something like the following (Note: Only the first recursion-step was required):

x is 10 for process 1, now 6

x is 10 for process 2, now 5

x is 10 for process 4, now 4

x is 10 for process 5, now 3

x is 10 for process 7, now 2

x is 10 for process 8, now 1

x is 10 for process 10, now 0

x is 9 for process 0, now 3

x is 9 for process 3, now 2

x is 9 for process 6, now 1

x is 9 for process 9, now 0

Solution

1. Assuming, that after the given code-block comm and newcomm are switched and the
code starts again the output would be similar (order may change) to this:

x is 9 for process 0, now 3

x is 10 for process 1, now 6

x is 10 for process 2, now 5

x is 9 for process 3, now 2

x is 10 for process 4, now 4

x is 10 for process 5, now 3

x is 9 for process 6, now 1

x is 10 for process 7, now 2

x is 10 for process 8, now 1

x is 9 for process 9, now 0

x is 10 for process 10, now 0

x is 3 for process 0, now 1

x is 2 for process 0, now 1

x is 2 for process 2, now 0

x is 3 for process 3, now 0

x is 0 for process 0, now 0

x is 0 for process 1, now 0

x is 0 for process 0, now 0

x is 0 for process 1, now 0

6

x is 6 for process 0, now 2

x is 5 for process 1, now 3

x is 5 for process 2, now 2

x is 6 for process 3, now 1

x is 5 for process 4, now 1

x is 5 for process 5, now 0

x is 6 for process 6, now 0

x is 0 for process 0, now 0

x is 2 for process 1, now 1

x is 2 for process 2, now 0

x is 0 for process 0, now 0

x is 0 for process 1, now 0

x is 3 for process 0, now 1

x is 2 for process 1, now 1

x is 2 for process 2, now 0

x is 3 for process 3, now 0

x is 0 for process 0, now 0

x is 0 for process 1, now 0

x is 0 for process 0, now 0

x is 0 for process 1, now 0

Exercise 4

The following example uses one-sided communication to transfer data from all processes
except process 0 to process 0 (here: data is just the rank). The code does not do what
is intended, and there are at least two reasons for that.

if (rank == 0) {

int *data;

MPI_Comm_size(comm , &size);

data = (int*) malloc(size*sizeof(int));

MPI_Win_create(data , size*sizeof(int), sizeof(int), MPI_INFO_NULL ,

comm ,&win);

for (i=1; i<size; i++) {

printf("From rank %d this %d\n", i, data[i]);

}

MPI_Win_free (&win);

free(data);

} else {

MPI_Win_create(NULL ,0,sizeof(int),MPI_INFO_NULL ,comm ,&win);

MPI_Comm_rank(comm ,&rank);

MPI_Win_lock(MPI_LOCK_SHARED ,0,0,win);

MPI_Put (&rank ,1,MPI_INT ,0,0,1,MPI_INT ,win);

MPI_Win_unlock (0,win);

MPI_Win_free (&win);

}

7

1. Present two fixes to the code such that process 0 can correctly print out the data
(rank) transmitted from each of the other processes. You can use either collective
operations or additional point-to-point communication.

• Fix 1:

– Option add MPI Barrier

∗ after unlock operations for rank != 0

∗ after MPI Win create for rank 0

– Another option: use MPI Win fence()

• Fix 2: All non-roots put to the same offset → put offset to i.

Solution

1. Fixes are included in the following code-listing and indicated by comments.

// Get rank before as it is used in the condition

MPI_Comm_rank(comm ,&rank);

if (rank == 0) {

int *data;

MPI_Comm_size(comm , &size);

data = (int*) malloc(size*sizeof(int));

MPI_Win_create(data , size*sizeof(int), sizeof(int), MPI_INFO_NULL ,

comm ,&win);

// Wait for other processes to finish their put -operation

MPI_Win_fence (0,win);

for (i=1; i<size; i++) {

printf("From rank %d this %d\n", i, data[i]);

}

MPI_Win_free (&win);

free(data);

} else {

MPI_Win_create(NULL ,0,sizeof(int),MPI_INFO_NULL ,comm ,&win);

MPI_Win_lock(MPI_LOCK_SHARED ,0,0,win);

// Add displacement in the target data -sturcture

// so that the processes don’t override the data

MPI_Put (&rank ,1,MPI_INT ,

0,rank*sizeof(int),1,MPI_INT ,win);

MPI_Win_unlock (0,win);

// Signal finish of write

8

MPI_Win_fence (0,win);

MPI_Win_free (&win);

}

Exercise 5

Let us assume that before starting the real communication, process 0 in the communica-
tor comm will first read the data needed into an array a of size n (of, say, integers), and
then have to distribute these data evenly to the other processes, such that each process
has its part of the array a in a (smaller) array b. We want to achieve this using MPI
collective operations (but usually do not time this part since it takes Ω(n) time steps).

1. First, assume that the number of processes p in comm divides n, and that all pro-
cesses already know n, the number of elements in the array. Accomplish the distri-
bution with a single collective operation, and write out the call that all processes
in comm have to perform. Process 0 is the root process.

MPI Scatter(a,n/size,MPI DOUBLE, b,n/size,MPI DOUBLE ,0,comm);

2. Now assume that n is not known, and that each process i needs to get instead
ni elements from the a array where ni’s are local values not known to the root.
Write a call to a collective operation that allows the root to compute n = Σp−1

i=0ni,
followed by another collective call that distributes the a array to the smaller b
arrays of the processes. Hint: Some (local) computation is necessary here before
the second collective call.

What to do?

a) Root needs to get the number of elements (ni) from all processes.

b) Root sends the required elements to each process.

int ns[size], disp[size];

MPI_Gather (&n,1,MPI_INT ,ns ,1,MPI_INT ,0,comm);

disp [0] = 0;

for (i=1; i<size; i++) disp[i] = disp[i-1]+ns[i-1];

MPI_Scatterv(a,ns ,disp ,MPI_INT ,b,n,MPI_INT ,0,comm);

Solution

1. Make use of the scatter-routine of MPI:

9

MPI_Comm_rank(comm ,&rank);

MPI_Comm_size(comm ,&p);

MPI_Scatter(a,n/p,MPI_INT ,

b,n/p,MPI_INT ,

0,comm);

2. Make use of gather and vectored scatter routines:

MPI_Comm_rank(comm ,&rank);

MPI_Comm_size(comm ,&p);

if (rank == 0){ //Root

int total_n = 0;

int[] local_n = new int[p];

int[] displs = new int[p];

MPI_Gather(ni ,1,MPI_INT ,

local_n ,1,MPI_INT ,

0,comm);

for(i=0; i<p; i++) {

displs[i] = total_n;

total_n += local_n[i];

}

MPI_Scatterv(a,local_n ,displs ,MPI_INT ,

b,ni,MPI_INT ,

0,comm);

} else { // Others

MPI_Gather(ni ,1,MPI_INT ,

NULL ,1,MPI_INT ,

0,comm);

MPI_Scatterv(NULL ,NULL ,NULL ,MPI_INT ,

b,ni,MPI_INT ,

0,comm);

}

Exercise 6

Each MPI process in a communicator comm has an n-element vector vi for ranks 0 ≤ i < p
(p is the number of processes in comm). The task is, using MPI collective functionality
(almost) exclusively, to compute all inclusive prefix-sums for the sequence of vectors vi
that is wi = Σi

j=0vj for process i (note that Σ means vector addition here), and the total

10

element-wise sums over all vectors, that is Σp−1
j=0vj . You may assume that the elements

are doubles and that the MPI operator is MPI_SUM.

1. Which collective operations are you using? Write out a code snippet solving the
problem.

Example code given:

double v[n]; // initialized somewhere

double w[n];

MPI_Comm_rank(comm ,&rank);

MPI_Scan(v,w,n,MPI_DOUBLE ,MPI_SUM ,comm);

// intended solution

if (rank == size -1) {

// copy from w to sum

int i;

for (i=0; i<n; i++) sum[i] = w[i];

}

MPI_Bcast(sum ,n,MPI_DOUBLE ,size -1,comm);

// second best solution

MPI_Allreduce(v,sum ,n,MPI_DOUBLE ,MPI_SUM ,comm);

2. Using the best-case assumptions as explained in the lecture (collective operations in
fully connected network), what may the asymptotic running time of your solution
be (recall that MPI does not define a performance model and does not give any
guarantees for the collective operations)?

running time: O (n + log p)

Solution

1. The MPI routine for inclusive prefix-sums is MPI_Scan

MPI_Comm_size(comm ,&p);

MPI_Scan(vi,wi,n,MPI_DOUBLE ,MPI_SUM ,comm);

// Broadcast total element -wise sum

//which is obtained in the last (p-1) process

double [] total_sum = new double[n];

memcpy(total_sum ,wi,n*sizeof(double));

MPI_Bcast(total_sum ,n,MPI_DOUBLE ,p-1,comm)

11

2. The asymptotic runtime is O(n + log p) (+O(n + log p) for the broadcast) as the
operation can be distributed tree-like. The process p− 1 would serve as root (and
contain the total sum).

Exercise 7

An array a is distributed across a set of MPI processes with each part stored in a local
array a[] of n elements (such that the total number of elements is pn). The task is to
compute the exclusive prefix-sums for each element in the distributed array, that is for
element a[i] at process r the sum of all elements at process before r (rank r′ < r) plus
the sum of the elements local to process r with index j < i. The idea is explained in
the lecture on prefix-sums. Use MPI collective functions as much as possible. You may
assume that n is the same for all processes. The number of processes p can be very large.
Your solution should be scalable/efficient for large p and large n. A code template is
given below:

MPI_Comm_rank(comm ,&rank);

// local reduction

sum = a[0];

for (i=1; i<n; i++) sum += a[i];

// MPI code/function to compute the partial sum required for rank

...

// sum is a partial sum for rank

if (rank == 0) {

sum = a[0];

} else {

e = a[0];

a[0] = sum;

sum += e;

}

// complete the exclusive prefix -sums for rank ,

// use sum as running sum

...

1. Complete the code template with the necessary MPI function(s) to communicate.

Example code given:

MPI_Comm_rank(comm ,&rank);

// local reduction

sum = a[0];

for (i=1; i<n; i++) sum += a[i];

12

MPI_Exscan(MPI_IN_PLACE ,&sum ,1,MPI_INT ,MPI_SUM ,comm);

if (rank == 0) {

sum = a[0];

} else {

e = a[0];

a[0] = sum;

sum += e;

}

for (i=1; i<n; i++) {

e = a[i];

a[i] = sum;

sum += e;

}

2. What may an estimated asymptotic running time be, using optimistic assumptions
as discussed in the lecture?

• MPI Exscan with one element: O(log p)

• total time is O(n + log p)

Solution

1. An implementation using MPI_Exscan:

MPI_Comm_rank(comm ,&rank);

// local reduction

sum = a[0];

for (i=1; i<n; i++) sum += a[i];

// Compute the partial sum required for rank

MPI_Exscan(MPI_IN_PLACE ,&sum ,1,MPI_INT ,comm)

if (rank == 0) {

sum = a[0];

} else {

e = a[0];

a[0] = sum;

sum += e;

}

// Complete local (exclusive) prefix sums

for (i=1; i<n; i++){

e = a[i];

a[i] = sum;

sum += e;

}

13

2. Local work (per process) is O(2n) and the communication for the exclusive prefix-
sums should be in O(n log p) when using optimistic assumptions (tree-like commu-
nication structure), but uses just 1 value per process (the sum) and therefore is in
O(log p) Asymptotic running time is therefore O(n + log p).

14

