192.067 VO Deductive Databases March 18, 2022				
	Matrikelnummer (student id)	Familienname (family name) Vorname (first name)		

1.) Consider the following two databases:

$$
\begin{gathered}
D_{1}=\{R(a, b), R(b, a)\} \\
D_{2}=\{R(a, c), \underline{R(b, c), R(c, d)\}}
\end{gathered}
$$

Furthermore, consider the program P consisting of the following rules:

$$
\begin{gathered}
Q_{1}(Y, Y) \leftarrow R(X, Y) \\
Q_{2}(Y, X) \\
Q_{2}(X, Z) \leftarrow R(X, Y) \\
Q_{2}(X, Y), R(Z, Y)
\end{gathered}
$$

Compute the answer to the Datalog query $\left(P, Q_{1}\right)$ over the database D_{1}.
Compute the answer to the Datalog query $\left(P, Q_{2}\right)$ over the database D_{2}.
(12 points)
1)

Output of $\left(P, Q_{1}\right)$ aver D_{1} is $\{(6, b),(a, a)\}$
2)

Outpull of $\left(P, Q_{2}\right)$ over D_{2} is $\{(c, a),(c, b),(d, c),(d, a),(d, b)\}$
2.) Consider a program P consisting of the following three rules:

$$
\begin{aligned}
& b \leftarrow \text { not } b \\
& b \leftarrow b \\
& b \leftarrow \text { not } a
\end{aligned}
$$

Present at least one stable model of P. Justify your answer (including the computation of the program reduct). (7 points)

Which one of the three rules should be deleted from P so that the resulting program P^{\prime} has no stable models? Explain you answer. (5 points)
(12 points)
canclidates

$$
\begin{array}{ll}
M_{1}=\varnothing & M_{3}=\{b\} \\
M_{2}=\{a\} & M_{4}=\{c\}
\end{array}
$$

1)

pH_{1}
$6 \leftarrow$
$b \leftarrow 6$
$6 \leftarrow$
M_{1} isn't model of $P^{M_{n}}$
2) $b \leftarrow$ hal a
$p^{M n}$
$b \in$

$$
b \leftarrow 6
$$

M n al amadel

$$
\begin{aligned}
& p_{2}^{M_{2}} \\
& b<- \\
& b<-6
\end{aligned}
$$

M_{2} not a model
H_{3} model one minimal

$$
\rightarrow \text { stable }
$$

μ_{4} model bel not minimal
3.) Consider a program P consisting of the following rules:

$$
\begin{aligned}
& c \leftarrow a \\
& a \leftarrow b, \operatorname{not} d \\
& b \leftarrow c, \text { not } a \\
& d \leftarrow \operatorname{not} a
\end{aligned}
$$

1) Present a nonempty set U_{1} of atoms from P such that U_{1} is unfounded w.r.t. $(P,\{ \},\{ \})$.
2) Present a nonempty set U_{2} of atoms from P such that U_{2} is unfounded w.r.t. $(P,\{a\},\{ \})$. It should be the case that $U_{1} \neq U_{2}$.
3) Justify your answer.
4) use graded unfounded sel algorithm
$1\{a, b, c, c \times\}$
$=\{a, b, c\}$
5)
1. $\{b, k, d\}$
2. $\{b, d\}$

$$
\begin{aligned}
& \text { Check } \\
& \quad C \in a \quad a \in U \checkmark \\
& a \in b, \text { not } d \quad b \in U \checkmark \\
& b \leftarrow C \text { nat } a \quad c \in U \checkmark \\
& d \in \text { nil } a \quad d \in U
\end{aligned}
$$

Check
$c \in a \quad c \notin U-$
$a \in b$, nat $d a \notin U \cup$
$b \in c$, nat $a \quad a \in \operatorname{Pos} V$
$d \in$ nat $a \quad a \in \operatorname{Pos} V$
$a \in b$, nat $d a \notin U$
$u \in$ nat a $a \in \operatorname{Pos} V$
4.) Consider an interpretation $\mathcal{I}=\left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}\right)$ satisfying the following:

- $\Delta^{\mathcal{I}}=\{a, b, c\}$,
- $A^{\mathcal{I}}=\{a, b\}$ for the concept name A,
- $B^{\mathcal{I}}=\{a, c\}$ for the concept name B,
- $R^{\mathcal{I}}=\{(a, c),(b, a),(c, b)\}$ for the role name R, and
- $P^{\mathcal{I}}=\{(a, a),(b, b)\}$ for the role name P.

Compute the extension of ${ }^{\mathcal{I}}$ for the following complex concepts (i.e .compute $C^{\mathcal{I}}$ for all complex concepts C listed below):
(1) $\neg A \sqcup \neg B$
(2) $A \sqcap \top$
(3) $\exists R . B$
(4) $\forall R \cdot B\{a, b, c\}$
(5) $\exists P .(A \sqcup \neg A)$
(6) $\forall R .(A \sqcap \neg A)$
2)
$\{a, b\}$
3)
$\{a, b\}$

B
4)
$\{a, b\}$
5)
$\{a, b\}$
6)
5.) By defining a suitable interpretation \mathcal{I}, show that the concept $B \sqcap(\exists R .(\exists R . \neg B))$ is satisfiable. We additionally require that $\left|\Delta^{\mathcal{I}}\right|=2$, ie., the domain of \mathcal{I} contains exactly 2 elements. Here B is a concept name and R is a role name.
(12 points)

$$
\begin{aligned}
& \Delta^{\prime}=\{a, b\} \\
& B^{\prime}=\{b\} \\
& R=\{(a, a),(b, a) \\
& (\exists R, 7 B)^{\prime}=\{a, b\} \\
& (\exists R \cdot(\exists R, 7 B))^{\prime}=\{a, b\}
\end{aligned}
$$

$$
\left.B_{\Pi}\left(\exists R_{1} \cdot \exists R . \cap B\right)\right)\{6\} \cap\{a, 6\}=\{6\}
$$

