192.067 VO Deductive Databases March 18, 2022				
	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	

1.) Consider the following two databases:

$$D_1 = \{R(a, b), R(b, a)\}$$
$$D_2 = \{R(a, c), \underline{R(b, c)}, R(c, d)\}$$

Furthermore, consider the program P consisting of the following rules:

$$Q_1(Y,Y) \leftarrow R(X,Y)$$
$$Q_2(Y,X) \leftarrow R(X,Y)$$
$$Q_2(X,Z) \leftarrow Q_2(X,Y), R(Z,Y)$$

Compute the answer to the Datalog query (P, Q_1) over the database D_1 . Compute the answer to the Datalog query (P, Q_2) over the database D_2 .

(12 points)

1)
Oulpul of
$$(P_{1};Q_{1})$$
 over P_{1} is $\{(6,6), (a,a)\}$
2)
Outpul of (P_{1},Q_{2}) over D_{2} is $\{(c,a), (c,b), (d,c), (d,a), (d,b)\}$

2.) Consider a program P consisting of the following three rules:

$$\begin{array}{l} b \leftarrow not \ b \\ b \leftarrow b \\ b \leftarrow not \ a \end{array}$$

Present at least one stable model of P. Justify your answer (including the computation of the program reduct). (7 points)

Which one of the three rules should be deleted from P so that the resulting program P' has no stable models? Explain you answer. (5 points)

(12 points)

3.) Consider a program P consisting of the following rules:

$$c \leftarrow a$$

$$a \leftarrow b, not \ d$$

$$b \leftarrow c, not \ a$$

$$d \leftarrow not \ a$$

- (1) Present a nonempty set U_1 of atoms from P such that U_1 is unfounded w.r.t. $(P, \{\}, \{\})$.
- ?) Present a nonempty set U_2 of atoms from P such that U_2 is unfounded w.r.t. $(P, \{a\}, \{\})$. It should be the case that $U_1 \neq U_2$.
- 3) Justify your answer.

(12 points)

1) use greated unfaunded set algorithm 1 fa.b.c. of 3 2 fa.b.c 3	(heck (e a aeuv a e b, nat d beuv b e C, nat a ceuv d e nat a deu	
2)	Check	
1. fb, K, d3	cea c∉U∕ a«b,nafda€U/	,
2. 26, 23	bec, nala a Ep	05 🗸
	uenota aef	os V

- **4.)** Consider an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ satisfying the following:
 - $\Delta^{\mathcal{I}} = \{a, b, c\},\$
 - $A^{\mathcal{I}} = \{a, b\}$ for the concept name A,
 - $B^{\mathcal{I}} = \{a, c\}$ for the concept name B,
 - $R^{\mathcal{I}} = \{(a, c), (b, a), (c, b)\}$ for the role name R, and
 - $P^{\mathcal{I}} = \{(a, a), (b, b)\}$ for the role name P.

Compute the extension of \mathcal{I} for the following complex concepts (i.e. compute $C^{\mathcal{I}}$ for all complex concepts C listed below):

- (1) $\neg A \sqcup \neg B$
- (2) $A \sqcap \top$
- (3) $\exists R.B$

- $\begin{array}{ll} (4) & \forall R.B & \texttt{fa,b,c} \texttt{j}\\ (5) & \exists P.(A \sqcup \neg A) \\ (6) & \forall R.(A \sqcap \neg A) \end{array}$

5.) By defining a suitable interpretation \mathcal{I} , show that the concept $B \sqcap (\exists R. (\exists R. \neg B))$ is satisfiable. We additionally require that $|\Delta^{\mathcal{I}}| = 2$, i.e., the domain of \mathcal{I} contains exactly 2 elements. Here B is a concept name and R is a role name. (12 points)

$$\Delta' = \{a, 63\}$$

 $B' = \{63\}$
 $R = \{(a, a), (6, a)\}$
 $(3R TB)' = \{a, 63\}$
 $(3R.(3R TB))' = \{a, 63\}$

BM (]R.(]R.T.))={63n \$a,63 = {63

Grading scheme: 0–31 nicht genügend, 32–38 genügend, 39–45 befriedigend, 46–52 gut, 53–60 sehr gut