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Part 3:

Fault-tolerance
and Modeling
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Fault-tolerance and modeling

Goals of fault-tolerance modeling
Design phase
Designing and implementing the computer system to achieve the 
dependability required.

– avoid construction of costly prototypes
– modeling is used to evaluate design alternatives
– analysis of critical components
– for prediction of dependability parameters

(safety, reliability, availability, maintainability, ... )

Validation phase:
Gaining confidence that a certain dependability goal (requirement) has been 
attained.

– modeling is used to evaluate the computer system
– certification 
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Fault-tolerance and modeling

Modeling techniques

Deterministic modeling
– the maximum number of faults that can be tolerated without system 

failure is considered 

– the evaluation criteria is n-resilency, i.e. a system is said to be n-resilent
if it can tolerate up to n component failures

Probabilistic (quantitative) modeling
– component failure and repair rates are described as stochastic processes

– consideration of failure rates 

– statistical models
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Fault-tolerance and modeling

Probabilistic modeling

There are three different forms of information which can be used to model a 
system’s dependability.

Historical information (statistics):
Information about the behavior of identical or similar components in the 
past is assessed.

Experimental information (statistics):
Information is gained by exercising the system or single components 
(for software this includes typically the test and debugging)

Structural information:
Overall dependability of a system is deduced from the structure and the 
dependability figures of its parts
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Fault-tolerance and modeling

Probabilistic functions

Reliability R(t)

is the probability that the system will 
conform to its specification 
throughout a period of duration t.

Failure Probability Q(t)

is the probability that the system will 
not conform to its specification 
throughout a period of duration t.
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f (t) =

dQ(t)
dt

= −
dR(t)

dt

    

λ(t) =
f (t)
R(t)

= −
dR(t)

dt
1

R(t)

Fault-tolerance and modeling

Probability density function
Def.: The failure density f(t) at time t is defined by the number of failures 
during Δt. 

Failure rate
Def.: The failure rate λ(t) at time t is defined by the number of failures during 
Δt in relation to the number of correct components at time t.



Course: Dependable Computer Systems 2012, © Stefan Poledna, All rights reserved part 3, page 7

Fault-tolerance and modeling

Constant failure rate
Used to model the normal-life period of the bathtub curve

failure rate

probability density function

reliability

Reliability for constant failure rate

    λ(t) = λ

    f (t) = λe−λt

    R(t) = e−λt
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Fault-tolerance and modeling

Failure rates

Devices FIT Device FIT

TTL-SSI, -MSI 5 Transistor (bip.) 3

CMOS-SSI 3 Transistor (FET) 3

RAM (Š 1 MBit) 20 Power Transistor 40

RAM (> 1 MBit) 45 Diode 3

PLD 130 Opto-Coupler 5
EPROM (Š 1 MBit) 10 LED/LCD-Display 15

EPROM (> 1 MBit) 20 Resistors 1

µC, µP 20 Lamp 12V 500

DSP 40 Lamp 24V 1000

CMOS-GA (Š 100 kGates) 35 Condensator 3

CMOS-GA (> 100 kGates) 70 Switch (per contact) 7

OP-Amp 3 Relais 70

Analog custom design 45 Solder joint 0.5

FIT = failures / 109 [h]
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Fault-tolerance and modeling

Weibull distributed failure rate
Used to model infant mortality and wear out period of components. 

α < 1: failure rate is decreasing with time
α = 1: constant failure rate
α > 1: failure rate is increasing with time

failure rate

probability density function

reliability

    λ(t) = αλ(λt)α−1

    f (t) = αλ(λt)α−1e−(λt)α

    R(t) = e−(λt)α

Reliability for weibull distributed failure rate
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Fault-tolerance and modeling

Lognormal distributed failure rate
For semiconductors the lognormal distribution fits more data collections than 
any other and is assumed to be the proper distribution for semiconductor life. 

failure rate

probability density function

reliability
    
f (t) =

1
σt 2π
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Fault-tolerance and modeling

Probabilistic structural based modeling
Assumptions:

– identifiable (independent) components

– each component is associated with a given failure rate

– model construction is based on the structure of the interconnections between 
components

Models:
– Simple block diagrams

– Arbitrary block diagrams

– Markov models

– Generalized Stochastic Petri Nets (GSPN)
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Fault-tolerance and modeling

Simple block diagrams
assumption of independent components

combination of series or parallel connected components

Series connection Parallel connection
R1(t) Rn(t)R2(t) . . .

    

Rseries(t) = Ri (t)
i=1

n

∏

Qseries(t) = 1− Rseries(t) = 1− Ri (t)
i=1

n

∏

= 1− 1− Qi (t)( )
i=1

n

∏
    

Qparallel(t) = Qi (t)
i=1

n

∏

Rparallel(t) = 1− Qparallel(t) = 1− Qi (t)
i=1

n

∏

= 1− 1− Ri(t)( )
i=1

n

∏

R1(t) Rn(t)R2(t)
. . .
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Fault-tolerance and modeling

Constant failure rate

Series connection

the resulting failure rate for the 
system is still constant

    λ(t) = λ

    R(t) = e−λt

    

Rseries(t) = Ri(t)
i=1

n

∏ = e−λit

i=1

n

∏

= e
−t λi

i=1

n

∑

Reliability of 1,2 and 4 series connected 
components with constant failure rate
(λ1 = λ2 = λ3 = λ4)
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Fault-tolerance and modeling

Parallel connection

for 3 parallel components this gives:

under the assumption λ1 = λ2 = λ3 it follows

the resulting failure rate is no longer constant

    

Rparallel(t) = 1− 1− Ri(t)( )
i

n

∏

= 1− 1− e−λit( )
i

n

∏

    

Rparallel(t) = 1− 1− e−λ1t( )1− e−λ2t( )1− e−λ3t( )( )
= e−λ1t + e−λ2t + e−λ3t + e−(λ1 +λ2 +λ3 )t −

e−(λ1+λ2)t − e−(λ1+λ3)t − e−(λ2 +λ3)t

    Rparallel(t) = 3 e−λt − e−2λt( )+ e−3λt
Reliability of 1,2 and 4 parallel connected 
components with constant failure rate
(λ1 = λ2 = λ3 = λ4)
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Fault-tolerance and modeling

Simple block diagrams
can be used to model arbitrary combinations of series and parallel connected 
components

easy mathematics for constant failure rates

Problems
assumption of independent failures 

maintenance cannot be modeled

restricted to series/parallel connection

only for active redundancy and fail-silence

R1(t) R3(t)

R2(t)

R4(t)

R5(t)

R6(t)
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Fault-tolerance and modeling

Arbitrary block diagrams
no restriction to series/parallel connections

RE(t)

RA(t)

RC(t)

RB(t)

RD(t)

Inclusion/exclusion principle

1: A B +
2: B E +
3: D E +
4: C D +

12: A B E –
13: A B D E –
14: A B C D –
23: B D E –
24: B C D E –
34: C D E –

123: A B D E +
124: A B C D E +
134: A B C D E +
234: B C D E +

1234: A B C D E –

    

Rblock(t) = RAB + RBE + RDE + RCD −

RABE − RABCD − RBDE − RCDE +
RABCDE

    RABC = Rseries(A,B,C)
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Fault-tolerance and modeling

Active redundancy and voting
for TMR 2 out of 3 components have 
to function correctly

under the assumption of identical failure rates

for general voting systems where c out of n components have to function 
correctly

    

RTMR(t) = R(CA,CB,CC, t) + R(CA,CB CC ,t)+

R(CA,CC CB,t) + R(CB,CC CA,t)

)()(3)()( 23 tQtRtRtRTMR +=

    
RNMR(t) =

n

k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k=c

n

∑ e−λt( )k 1− e−λt( )n−k

CA

CC

CB V
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Fault-tolerance and modeling

Parallel fail silent components vs. majority voting

Neglected issues:

coverage of fail silence assumption

reliability of voter

n = 1 single component
n = 2 two parallel components
n = (3,2) voting, 2 out of 3
n = (5,2) voting, 2out of 5  
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Fault-tolerance and modeling

Passive redundancy
probability that A is performing correctly
plus conditional probability that B is
performing correctly and A has failed

under the assumption of constant failure rates λA = λB

CA

CB

s

    R(t) = R(CA) + R(CB CA)

    

R(t) = e− λt + RB(t − x + Δx)
RA (x) − RA (x + Δx)[ ]Δx

Δx
x=0

t

∑

Δx → 0: e−λt + RB(t − x)
x=0

t

∫ f (x)dx

= e−λt + e−λ ( t− x)λ
x=0

t

∫ e−λxdx

= e−λt (1+ λt)
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Fault-tolerance and modeling

Passive vs. active redundancy

Neglected issues:

coverage of fail silence assumption

reliability of switch

n = 1 single component
n = 2 two parallel components
n = (3,2) voting, 2 out of 3
n = 1 + 1 one passive backup  
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Fault-tolerance and modeling

Passive redundancy with an unreliable switch
assumption that the switch functions correctly 
with probability Rs(t)

the system reliability is the probability that 
A is performing correctly plus the conditional 
probability that B is performing correctly and 
A has failed and the switch still functions 
correctly

CA

CB

s

    

R(t) = e− λt + RB(t − x + Δx)Rs(t) RA(x)− RA(x − Δx)[ ]
x=0

t

∑

= e− λt + e−λ (t−x) e−λst λe−λxdx
x=0

t

∫
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Fault-tolerance and modeling

Passive redundancy with limited error detection 
coverage

assumption that errors of component A are
not always detected, the error detection 
coverage is given by c

the system reliability is the probability that 
A is performing correctly plus the conditional 
probability that B is performing correctly and 
A has failed and A’s error has been detected

    

R(t) = e− λt + c RB(t − x + Δx) RA(x)− RA(x − Δx)[ ]
x=0

t

∑

= e− λt + c e−λ (t− x)λe−λxdx
x=0

t

∫

CA

CB

s
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Fault-tolerance and modeling

Perfect vs. imperfect passive redundancy

under practical conditions it is impossible to build an ideal passive 
replicated system

an unreliable switch with λs = 0.5λ or a switch with error detection 
coverage of 80% reduces the system reliability below that of active 
redundant components

n = 1 + 1 one passive backup
n = 2 two parallel components
n = 1 +0.8 1 error detection coverage 80%
n = 1 +0.5λ 1 reliability of switch is 0.5λ
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Fault-tolerance and modeling

Single parametric measures
Mean time to failure:

Mean time to repair:

Mission reliability:
Rm = R(tm) tm ... mission duration

(Steady state) availability:

    
MTTF= t f (t)dt

0

∞

∫

    
MTTR= t fr(t)dt

0

∞

∫

  
A =

MTTF
MTTF + MTTR
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Fault-tolerance and modeling

Mean time to failure
Constant failure rate: ▪ Weibull distributed failure rate:

Serial connected components: ▪ Passive redundancy:

Parallel connected components:

if λ1 = λ2 = ... = λn

    
MTTF= t f (t)dt= tλe−λtdt =

1
λ

0

∞

∫
0

∞

∫

     
MTTFseries =

1
λ1 + λ2 +L+ λn

     
MTTFparallel =

1
λ

1+
1
2

+
1
3

+L+
1
n

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

     
MTTFpassive =

1
λ1

+
1

λ2
+L+

1
λn

    
MTTF= tαλ(λt)α−1e−(λt)α dt =

Γ(1+ α−1)
λ

0

∞

∫
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Fault-tolerance and modeling

Repair rate
repair rate μ(t) analogous to failure rate

most commonly constant repair rates μ(t) = μ

Mean time to repair
analogous to mean time to failure

    
MTTR=

1
μ
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Fault-tolerance and modeling

Mission reliability
assumption of a mission time tm

during mission there is no possibility of maintenance or repair

typical examples are space flights or air planes

suitability of architectures depends on mission time
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Fault-tolerance and modeling

Availability
the percentage of time for which the system will conform to its specification

also called steady state or instantaneous availability

without maintenance and repair 

Mission availability

    MTTR= ∞: A = 0

    

t → ∞:

A =
MTTF
MTBF

=
MTTF

MTTF+ MTTR
mean time between failures (MTBF)

    

t → tm:

Am =
1

tm
R(t)dt

t=0

tm

∫
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Fault-tolerance and modeling

Markov models
suitable for modeling of:

– arbitrary structures
(active, passive and voting redundancy)

– systems with complex dependencies
(assumption of independent failures is no longer necessary)

– coverage effects 

Markov property: 
The system behavior at any time instant t is independent of history 
(except for the last state).

restriction to constant failure rates 
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Fault-tolerance and modeling

The two phases for Markov modeling
Model design:

– identification of relevant system states 
– identification of transitions between states
– construction of Markov graph with transition rates

Model evaluation:
Differential equation
Solution of equation gives R(t)
– explicit (by hand)
– Laplace transformation
– numeric solution (tool based)

Integration of differential equation gives MTTF
– system of linear equations
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Example model for active redundant system

Two parallel connected components A and B 
with maintenance. Failure rates are λA and λB, 
repair rates are μA and μB. 

▪ Identification of system states:                ▪ Construction of Markov Graph

1: A correct B correct P1(t)
2: A failed B correct P2(t)
3: A correct B failed P3(t)
4: A failed B failed P4(t)

Fault-tolerance and modeling

RA(t)

RB(t)

λA

λA λB

41

2

3λB

μA

μB
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Fault-tolerance and modeling

Active redundancy with identical components

▪ failure rates: λA = λB = λ

▪ repair rates: μA = μB = μ

▪ Identification of system states: ▪ Construction of Markov Graph

1: A correct B correct P1(t)
2: one failed one correct P2(t)
3: A failed B failed P3(t)

▪ Differential equations:

2λ λ
1 2 3

μ

)()(

)()()(2)(

)()(2)(

2
3

21
2

21
1

tP
dt

tPd

tPtP
dt

tPd

tPtP
dt

tPd

λ

λμλ

μλ

=

+−=

+−=
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Fault-tolerance and modeling

MTTF evaluation from Markov model
In a Markov model the MTTF is given by the period during which the system 
exhibits states that correspond to correct behavior.

for the active redundant example system:

state probabilities for t = 0 and t = ∞
    

MTTF= P1(t)+ P2(t)( )
t=0

∞

∫ dt = T1 + T2

T1 = P1(t)dt
t=0

∞

∫ T2 = P2(t)dt
t=0

∞

∫

    

P1(0) = 1 P1(∞) = 0
P2(0) = 0 P2(∞) = 0
P3(0) = 0 P3(∞) = 1
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Fault-tolerance and modeling

MTTF evaluation from Markov model (cont.)

integration of differential equation

solution of linear equation system

    

d P1(t)
dt

= − 2λP1(t) + μP2(t)

d P2(t)
dt

= 2λP1(t) − (μ + λ)P2(t)

d P3(t)
dt

= λP2(t)
    

0 − 1= −2λT1 + μT2

0 − 0 = 2λT1 − (μ + λ)T2

1− 0 = λT2

⇒

    

T2 = 1
λ

T1 =
μ + λ
2λ

T2 =
μ + λ
2λ2 =

1
2λ

+
μ

2λ2

MTTF= T2 + T2 =
3

2λ
+

μ
2λ2
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Fault-tolerance and modeling

Effect of maintenance

repair and failure rate:

for 2 active redundant components the MTTF is improved by a factor 34

for 2 passive redundant components the MTTF is improved by a factor 51

  
λ =

1
1000

[h] μ =
1

10
[h]

without maintenance with maintenance
R(t) MTTF h R(t) MTTF        h

2 components in series 500 500

single component 1000 1000

2 components in parallel 1500 — 51500

one passive backup 2000 — 102000

    e−2λt
  
1

2λ

  e−λt
  
1
λ

    2e−λt − e−2λt
  
3

2λ

    e
−λt (1+ λt)   

2
λ

    e−2λt
  
1

2λ

  e−λt
  
1
λ

  
3

2λ + μ
2λ2

  
2
λ + μ

λ2
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Fault-tolerance and modeling

Effect of failure semantics and assumption coverage

comparing a system with two active replicated components to a TMR systems shows 
that under ideal conditions active replication has a higher reliability

But: active replication is based on 
the assumption that components
are fail silent
– assumption coverage ???

TMR voting is based on the assump-
tion of fail consistent components
– assumption coverage ≈ 1

(if properly constructed) 
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Fault-tolerance and modeling

Effect of failure semantics and assumption coverage
(cont.)

modeling of the TMR was reasonable since assumption coverage of fail 
consistent behavior ≈ 1

modeling of the active redundant system was idealistic since assumption 
coverage of fail silent behavior < 1

Markov model:
λ ..  failure rate for active redundant parallel connected components
c ..  assumption coverage for fail silent behavior

2cλ λ1 2 3

2(1 − c)λ
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Fault-tolerance and modeling

Effect of failure semantics and assumption coverage (cont.)

failure rate of a single component:  λ = 100 FIT  

System Description MTTF

n = 2, 0.999 two parallel components, coverage of fail silent assumption 99.9% 14.99 106

n = 2, 0.90 two parallel components, coverage of fail silent assumption 90% 14.00 106

n = 2, 0.70 two parallel components, coverage of fail silent assumption 70% 12.00 106

n = 2, 0.50 two parallel components, coverage of fail silent assumption 50% 10.00 106

n = (2, 3) TMR system, coverage of fail consistent assumption 100% 8.33 106

0 2 4 6 8 10 12 14

0.2

0.4
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0.8

1

t  [h 106]

R(t)
n = 2, 0.999 
n = 2, 0.90 
n = 2, 0.70 
n = 2, 0.50 
n = (2, 3)
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Fault-tolerance and modeling

Effect of failure semantics and assumption coverage
(cont.)

comparing parallel components to a TMR systems shows that the reliability 
of the parallel system is superior for reasonable assumption coverages

Safety:
from the viewpoint of safety both systems needs to be reevaluated

Parallel system: R(t) = S(t)
for the parallel components the system reliability is equal to the system 
safety since the system may potentially cause a hazard if it does not 
function correctly

TMR system: R(t) < S(t)
for TMR systems the reliability is not equal to the safety since the system 
can be in a safe state although it is not functioning correctly, e.g. all three 
components disagree
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Fault-tolerance and modeling

Safety of a TMR system
to model the safety of a TMR system it needs to be differentiated between 
incorrect function and the unsafe system state

Markov model:
λ .. failure rate for single component
c .. probability of coincident failures of two components

1 .. 3 correct components
2 .. 2 correct, 1 failed comp.
3 .. 1 correct, 2 failed comp. 
4 .. 3 failed components
5 .. unsafe state, ≥ 2 coincident

component failures

3λ
2(1 –c)λ

1

5

32 4
3(1 –c)λ

2cλ
3cλ

3cλcorrect 
function

system failure
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Fault-tolerance and modeling

Effect of assumption coverage on safety
failure rate of a single component:  λ = 100 FIT  

System Description MTTFS

n = (2, 3), 10 10-6 TMR system, probability of two coincident failures 10 10-6 333.34 109

n = (2, 3), 4 10-3 TMR system, probability of two coincident failures 4 10-3 861.71 106

n = (2, 3), 0.5 TMR system, probability of two coincident failures 0.5 13.33 106

n = 2, 0.999 two parallel comp., coverage of fail silent assumption 99.9% 14.99 106

n = 2, 0.90 two parallel comp., coverage of fail silent assumption 90% 14.00 106

0.2
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S(t)

0 2 4 6 8 10 12 14 t  [h 106]

n = (2, 3), 10 10-6 
n = (2, 3), 4 10-3
n = 2, 0.999 
n = 2, 0.90 
n = (2, 3), 0.5

coincidence probability of 
two even distributed numbers
16 bit 10 10-6

8 bit 4 10-3

1 bit 0.5
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Effect of assumption coverage on safety
10 10-6 - probability that two 16 bit numbers coincide 
(independence assumption)

4 10-3 - probability that two 8 bit numbers coincide ( “” )

0.5 - probability that two 1 bit numbers coincide ( “” )
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Generalized Stochastic Petri Nets (GSPN)
because of the very limited mechanisms available, Markov models become 
easily very complex 

Petri Nets provide much richer mechanisms, they can be used to model and 
analyze arbitrary systems, algorithms and processes

basic Petri Nets — which were restricted to discrete behavior only — can be 
extended to “Generalized Stochastic Petri Nets” by allowing transition 
delays to be either deterministically equal to zero or exponentially 
distributed random variables, or to be random variables with different 
distributions

it was shown that stochastic Petri Nets are isomorphic to continous Markov 
chains, i.e. for each stochastic Petri Net there exists a functional equivalent 
Markov chain (and vice versa)
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Petri Net Example
Single-writer/multiple-reader access to a shared resource with single access. 

pi ... places

ti ... transitions

πi ... transition priorities

the 3 tokens in place p1 represents customers that may request the 
resource

firing t1 starts the protocol

t2 indicates “read” and t3 “write” access, respectively

the single token in p5 represents the resource

p1

p2

p3

p4

p5

p6

p7

K

K = 3

t1

t2

t3 t5

t4 t6

t7

π1

π1

π1

π2

π2

π2

π2
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GSPN modeling

To model and analyze a system by means of GSPN the following steps has to be 
carried out:

model construction:
usually by means of structured techniques, bottom-up or top-down

model validation:
structural analysis, possibly formal proves of some behavioral properties

definition of performance indices:
definition of markings and transition firings (deterministically or stochastic)

conversion to Markov chain:
generation of reachability set and reachability graph to obtain the Markov chain

solution of the Markov chain

Tool support for all steps exists. Conversion to a Markov chain and solution can be 
automated completely. 
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Model simulation vs. analytical solutions
generalized stochastic petri nets are well suited for simulation

transition rates are not restricted to be deterministic or exponentially 
distributed

complex models are computationally expensive
(simulation step width and simulation duration) 

too large simulation step width can result in meaningless results
(variance of result is too big) 
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Open issues of probabilistic structural based models 
large gap between system and model

model construction is time consuming, error prone and unintuitive

small changes in the architecture result in considerable changes in the 
model 

model validation for ultra-high dependability 
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Probabilistic structural modeling and software 

Probabilistic structural based models are not well suited for software. They are 
rather well suited to analyze hardware architectures and design alternatives. 

for software there are no well defined individual components

complexity of software structures is very high

for software the assumption of independent failures is too strong 
– one CPU for many processes
– one address range for many functions

real-time aspects are not captured

parallelism and synchronization is not considered
(except for GSPN’s)
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Reliability growth models
no assumption on identifiable components and system structure 

based on the idea of an iterative improvement process:
testing → correction → re-testing

major goals of reliability growth models:
– disciplined and managed process for reliability improvement

– extrapolating the current reliability status to future results

– assessing the magnitude of the test, correction and re-test effort

allows modeling of wearout and design faults

can be used for hardware and software as well 
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Software reliability growth models
typically continuous time reliability growth

– the software is tested

– the times between successive failures are recorded

– failures are fixed

observed execution time data t1, t2, t3, ... ti – 1 are realizations of the 
random variables T1, T2, T3, ... Ti – 1

based on these data the unobserved Ti, Ti + 1, ... should be predicted
(e.g. Ti = MTTF)

But:

accuracy of models is very variable

no single model can be trusted to behave well in all contexts
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The prediction system
Software reliability growth models are prediction systems which are comprised 
of:

The probabilistic model
which specifies the distribution of any subset Tj’s conditional on a unknown 
parameter α.

A statistical inference procedure
for α involving use of available data (realizations of Tj’s)

A prediction procedure
combining the above two points to allow to make probability statements 
about future Tj’s
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The basic idea behind the Musa model
The software starts with N0 errors, n errors are removed during 
debugging

the failure rate is defined by (failure rate = failure correction rate)

i ... average instruction execution rate
K ... error exposure ratio

the number of errors after time t is given by the differential equation

    N = N0 − n

    
f (t) = iKN f (t) =

dn
dt

    

dn
dt

+ iKn= iKN0

n(t) = N0 1− e−iKt( )

    
MTTF=

1
f (t)

=
1

iKN0
eiKt
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Problems with the Musa model
does not consider “error size”

Def.: The size of an error is the probability 
that an element selected from I results in a failure 

error size usually decreases over time
(diminishing returns of heroic debugging)

assumption of independent inputs is too restrictive
(program input is also determined by history)

assumption of identical failure rates for errors

assumption that no new errors are introduced
(invalid for iterative software development process)

accuracy is very variable

program P

input domain I

output domain O
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Error seeding
an experimental approach to evaluate the software development processes 
and testing techniques

the program P is seeded with m errors (one at a time), and for each error all 
the test cases are run until the error is detected or the set of test cases is 
exhausted

evaluation of the correctness probability:

evaluation of testing efficiency

reliability of test cases

  
R =

mdetected

m
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Comparison of probabilistic modeling techniques

Method Advantages Restrictions and deficiencies

simple block 
diagrams

arbitrary block 
diagrams

markov chains

simple and easy to understand 
model, easy to calculate for 
constant failure rates

can be used to model arbitrary 
structures

can model arbitrary structures, no 
restriction to independent failures, 
complex dependencies can be ex-
pressed, modeling of coverage 
and maintenance, good tool 
support 

restricted to series and parallel 
connection, assumption of inde-
pendent failures, maintenance 
can-not be modelled, only for 
active redundant systems, not well 
suited for software
same restrictions as with simple 
block diagrams, except series and 
parallel connection, not well suited 
for software
compared to GSPN higher model 
complexity, restriction to constant 
failure rates, not well suited for 
software
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Comparison of probabilistic modeling techniques (cont.)

Method Advantages Restrictions and deficiencies

generalized 
stochastic petri nets

reliability growth 
models

error seeding

much richer mechanisms for 
modeling, allows combination of 
discrete and stochastic behavior, 
good tool support, can be used to 
model algorithmic issues of 
software
suited for prediction of software 
reliability, does not make 
assumptions on the system 
structure, based on relatively easy 
obtainable experimental data
very easy procedure, takes few 
assumptions on the system

it is difficult to verify that the model 
agrees with reality (as for any 
complex model)

accuracy of models is very 
variable, no general applicable 
model, user must analyze different 
models to select suitable one

computational complexity (seeded 
errors by number of test cases), 
error size needs to be controlled
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Limits of validation for ultra-high dependability
10-9 catastrophic failure conditions per hour for civil transport 
airplanes

experimental system evaluation is impossible for critical applications 

modeling is therefore the only possibility to validate ultra-high 
dependability

Limits for reliability growth models:
If we want to have an assurance of high dependability, using information 
obtained from the failure process, then we need to observe the system for 
a very long time.

Limits of testing:
If we see a period of 109 hours failure free operation a MTTF of 109 hours 
can be expected without bringing any apriori believe to the problem.

If a MTTF of 106 is required and only 103 hours of test are carried out, 
Bayesian analysis shows that essentially we need to start with a 50:50 
believe that the system will attain a MTTF of 106.  
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Limits of modeling for ultra-high dependability (cont.)

Limits of other sources of evidence:
Step-wise evolution, simple design, over-engineering can be used only to a limited 
extent to obtain confidence because there is no continuos system model and there 
are no identifiable stress factors. 

Limits of past experience:
For software there is no clear understanding of how perceived differences in the 
design or design methodology affect dependability.

Limits of structural modelling:
There are obvious limitations with respect to design faults, and software in 
particular since the assumption of failure independence does not hold. 
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Limits of modeling for ultra-high dependability (cont.)

Limits of formal methods and proofs:
“We believe that proofs may eventually give ‘practically complete’ assurance about 
software developed for small but well-understood application problems, but the set 
of these problems is now empty and there is no way of foreseeing whether it will 
grow to be of some significance.”

(Littlewood and Strigini, 1993) 
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Conclusion
modeling is used for the design and validation phase

deterministic and probabilistic modeling 

probabilistic structural based modeling
– simple block diagrams

– arbitrary block diagrams

– Markov models

– Generalized stochastic Petri Nets (GSPN)

for evaluation of design alternatives 
– reliability and safety need to be considered individually

– the interdependence of assumption coverage and system complexity 
needs special consideration 
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Conclusion (cont.)

single parametric measures
(mean time to failure, mean time to repair, mission reliability,
availability)

limits of modeling for ultra-high dependability
– currently there is no methodology available to gain confidence that complex 

systems guarantee ultra-high dependability
– it is impossible to collect enough experience with one system
– it is impossible to extrapolate from known systems and known methodology
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