
Programm- & Systemverifikation
Assignment 1

Georg Weissenbacher
184.741

Part 1 of Assignment 1 – Assertions

For each of the following examples:
I Provide (if possible) initial values for the unsigned 32-bit

variables x and y such that the first assertion does not fail, but
the second does.

I If this is not possible, use the substitution trick from the lecture
and mathematical/logical reasoning to explain why.

1. assert(y==41); x=(y+1); assert(x==42);

2. assert(x==y); y--; assert(x>y);

3. assert(x!=y && x!=0); y=(y%x); assert(y>0 && x!=0);

(In ANSI-C, % denotes the modulo operator)

4. assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

(In ANSI-C, ˆ denotes the XOR operator (⊕))

Assertions and Concurrency

I Locks can be used to prevent simultaneous or concurrent
access to critical regions or resources

I Simplified API:
I lock(A) succeeds if lock A is available
I lock(A) blocks if lock is already held/acquired

(by this or another thread)
I unlock(A) releases a lock previously acquired
I unlock(A) never blocks

Assertions and Concurrency

I Deadlocks happen if locks are acquired in wrong order

I Thread one acquires lock A
I Thread two acquires lock B
I Thread one waits for lock B
I Thread two waits for lock A
I Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

Assertions and Concurrency

I Deadlocks happen if locks are acquired in wrong order
I Thread one acquires lock A

I Thread two acquires lock B
I Thread one waits for lock B
I Thread two waits for lock A
I Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

Assertions and Concurrency

I Deadlocks happen if locks are acquired in wrong order
I Thread one acquires lock A
I Thread two acquires lock B

I Thread one waits for lock B
I Thread two waits for lock A
I Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

Assertions and Concurrency

I Deadlocks happen if locks are acquired in wrong order
I Thread one acquires lock A
I Thread two acquires lock B
I Thread one waits for lock B (thread two still running)

I Thread two waits for lock A
I Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

Assertions and Concurrency

I Deadlocks happen if locks are acquired in wrong order
I Thread one acquires lock A
I Thread two acquires lock B
I Thread one waits for lock B
I Thread two waits for lock A

I Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

Assertions and Concurrency

I Deadlocks happen if locks are acquired in wrong order
I Thread one acquires lock A
I Thread two acquires lock B
I Thread one waits for lock B
I Thread two waits for lock A
I Now both threads are stuck. . .

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);

Part 2 of Assignment 1

I Add assertions that fail if a deadlock is about to occur!
I Assertions must not fail if no deadlock occurs!
I Hints:

I You need to augment the code with auxiliary code and
variables indicating when a process is waiting for a lock

I The assertions must be executed before the deadlock occurs

For the specialists among you: assume sequential consistency

Assertions and Concurrency: Solution

flagA = 0;

lock (A);

flagA = 1;

assert (!flagB);

lock (B);

flagA = 0;

unlock (B);

unlock (A);

flagB = 0;

lock (B);

flagB = 1;

assert (!flagA);

lock (A);

flagB = 0;

unlock (A);

unlock (B);

Note:
I If only one thread contains an assertion, then there’s a

potential deadlock without an assertion failure
I If flagA and flagB are reset after the inner locks are

released, then there’s a potential assertion failure even if the
deadlock doesn’t happen

Part 3 of Assignment 1

I Add an inductive invariant to the code
I Use it to show that the assertion after the loop holds
I Add comments to the code explaining

I why your assertion is an inductive invariant
I why it shows that the assertion after the loop holds

unsigned x = i;

unsigned y = j;

while (x != 0)

{

x--;

y++;

assert (?); // add invariant here

}

assert ((i != j) || (y == 2 * i));

Inductive invariant: Solution

assert (true);

assert (j == j + (i - i));

unsigned x = i;

assert (j == j + (i - x));

unsigned y = j;

assert (y == j + (i - x));

while (x != 0)

{

assert (y == j + (i - x));

assert ((y + 1) == j + (i - (x - 1)));

x--;

assert ((y + 1) == j + (i - x));

y++;

assert (y == j + (i - x));

// Number of iterations n := i - x

}

assert ((x == 0) && y == j + (i - x));

assert ((i != j) || (y == 2 * i));

Submitting your solution

I Your solution must be submitted via TUWEL by April 15, 4pm
I Late submissions will not be accepted

I Answer all questions and submit your solution as a single PDF
I Make sure the file contains your student ID and your name
I You can get up to 5 points for each part of this assignment

