
6.0 ECTS/4.5h VU Programm- und Systemverifikation (184.741)
June 22, 2016

Kennzahl
(study id)

Matrikelnummer
(student id)

Familienname (family name) Vorname (first name) Gruppe
(version)

A

1.) Coverage
Consider the following program fragment and test suite:

int maxsum (int max, int val) {
int result = 0;

int i = 0;

if (val < 0)

val = -val;

while ((i < val) && (result ≤ max)) {
i = i+1;

result = result + i;

}
if (result ≤ max)

return result;

else

return max;

}

Inputs Outputs
max val result
0 0 0
0 -1 0
10 1 1

(a) Control-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(assume that the term “decision” refers to all Boolean expressions in the program).

satisfied
Criterion yes no
path coverage
statement coverage
branch coverage
decision coverage
condition/decision coverage

For each coverage criterion that is not satisfied, explain why this is the case:

(7 points)

(b) Data-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(here, the parameters of the function do not constitute definitions, and the return

statements are c-uses):

satisfied
Criterion yes no
all-defs
all-c-uses
all-p-uses
all-c-uses/some-p-uses
all-p-uses/some-c-uses

For each coverage criterion that is not satisfied, explain why this is the case:

(7 points)

(c) If the test-suite from above does not satisfy the MC/DC coverage criterion, augment
it with the minimal number of test-cases such that this criterion is satisfied. If full
coverage cannot be achieved, explain why.

MC/DC

Inputs Outputs
max val result

(1 point)

2.) Black/Gray-Box Testing

The function

enum {ACUTE, RIGHT, OBTUSE} triangle (float α, float β, float γ)

takes as parameters 3 angles α, β, and γ (in degrees) of a valid triangle and determines its
type:

• acute: all angles are less than 90◦,

• right: has a right angle (90◦),

• obtuse: has an angle that is larger than 90◦.

α γ
β

A valid triangle satisfies the following conditions:

• All angles are positive values (in degrees), and

• the sum of all angles is the straight angle (180◦).

(a) Equivalence Partitioning

From the specification above, derive equivalence classes for the method triangle. Use
the table below to partition them into valid equivalence classes (valid inputs) and in-
valid equivalence classes (invalid inputs). Label each of the equivalence classes clearly
with a number (in the according column). For each correct equivalence class you can
score one point (up to 7 points).
(Do not provide test-cases here – that’s task (b))

Condition Valid ID Invalid ID

(7 points)

(b) Boundary Value Testing

Use Boundary Value Testing to derive a test-suite for the method triangle. Specify
the inputs points α, β, and γ. Indicate clearly which equivalence classes each test-case
covers by referring to the numbers from task (a). You can receive up to 8 points, where
redundant test-cases that do not represent boundary values do not count.

Input Output Classes Covered

(8 points)

3.) (a) Invariants Consider the following program, where r and i are integers and n is a
non-negative natural number (possibly 0):

r = -1;

i = 0;

while ((i <= n) && (r == -1)) {

if (i*i == n)

r = i;

else

i = i + 1;

}

Consider the formulas below; tick the correct box (2X) to indicate whether they are loop
invariants for the program above.

• If the formula is an inductive invariant for the loop, provide an informal argument
that the invariant is inductive.

• If the formula P is an invariant that is not inductive, give values of x and y before
and after the loop body demonstrating that the Hoare triple

{P ∧B} if (i ∗ i == n) r = i; else i = i + 1; {P}

does not hold.

• Otherwise, provide values of r, i, and n that correspond to a reachable state showing
that the formula is not an invariant.

(r2 = n) ∨ (r < 0) 2 Inductive Invariant 2 Non-inductive Inv. 2 Neither

Justification:

(i2 ≤ n) 2 Inductive Invariant 2 Non-inductive Inv. 2 Neither

Justification:

(r ≤ 1) ∨ (r 6= n) 2 Inductive Invariant 2 Non-inductive Inv. 2 Neither

Justification:

(10 points)

(b) Hoare Logic

Prove the Hoare Triple below (assume that the domain of all variables in the program
are the natural numbers including 0, i.e., x, y ∈ N0 or, equivalently, both x and y are of
type unsigned). You need to find a sufficiently strong loop invariant.

Annotate the following code directly with the required assertions. Justify each assertion
by stating which Hoare rule you used to derive it, and the premise(s) of that rule. If
you strengthen or weaken conditions, explain your reasoning.

{true}

if (x > y) {

t := x;

x := y;

y := t;

} else {

skip;

}

while (x < y) {

x := x + 1;

y := y - 1;

}

{(x− y ≤ 1)}

(10 points)

4.) Decision procedures

(a) Consider the following formulas in propositional logic; are they satisfiable? If yes,
provide a satisfying assignment over booleans, if not, give the reasoning that leads to
this conclusion.

(¬a ∨ a) ∧ (¬b ∨ e ∨ b) ∧ (v ∨ c) ∧ c ∧ e ∧ (¬c ∨ b) ∧ (¬d ∨ ¬c) (1)

b ∧ (¬b ∨ ¬b) ∧ ¬e ∧ (¬b ∨ e) ∧ (¬e ∨ ¬d) ∧ d ∧ c (2)

(e ∨ ¬e ∨ ¬b) ∧ (u ∨ a ∨ ¬e) ∧ ¬d ∧ ¬c ∧ a ∧ (¬e ∨ b) ∧ ¬d (3)

(v ∨ ¬e) ∧ ¬c ∧ (a ∨ a) ∧ b ∧ (¬d ∨ d ∨ ¬d) ∧ d ∧ (¬b ∨ e ∨ ¬a) (4)

¬d ∧ c ∧ (¬d ∨ b) ∧ (¬e ∨ d ∨ ¬a) ∧ (v ∨ ¬d ∨ e) ∧ a ∧ e (5)

(5 points)

(b) Consider the following package dependency graph:

P1

P2

P3

P4

Nodes depict software packages; a solid arrow from package Pi to package Pj requires Pj

to be installed if Pi is installed; a dashed arrow from package Pi to package Pj prohibits
Pi to be installed if Pj is installed. We model information about installed packages
using 4 boolean variables x1, . . . , x4: for i : 1 ≤ i ≤ 4, if xi = true, then package i is
installed.

Encode the constraints of the graph as a propositional formula in CNF.
How can you check using a SAT solver whether P1 can be installed?

(6 points)

(c) Check the satisfiability of the following SMT formulas. Assume that x, y, z, a, b, c ∈ Z are
integer constants, and f : Z×Z→ Z and g : Z→ Z are binary and unary uninterpreted
functions over integers respectively. Whenever a formula is satisfiable, give a satisfying
assignment for it, i.e., integer values for all variables and function interpretations over
integers that make the formula true under the assignment. Whenever a formula is not
satisfiable, give a reason why it is unsatisfiable.

f(3, y) = 6 ∧ f(y, x) = f(x, y) ∧ f(y, 4) = 8 ∧ f(y, y) = 4 (6)

∧ f(1, x) = 3 ∧ f(1, x) = f(x, 1) ∧ g(x) = f(1, x)

g(g(g(1))) = 1 ∧ g(g(1)) 6= f(x, 1) ∧ x = g(g(1)) (7)

f(x, x) = x ∧ f(y, y) = y ∧ a 6= b ∧ f(x, y) = f(y, x) ∧ f(0, 1) = a ∧ f(1, 0) = b

∧ (f(x, x) = 0 ∨ f(x, x) = 1) ∧ (f(y, y) = 0 ∨ f(y, y) = 1) (8)

(9 points)

5.) Temporal Logic

Consider the following Kripke Structure:

a

s1

b

s0

a

s2

b

s3

For each formula, give the states of the Kripke structure for which the formula holds. In
other words, consider the computation trees starting with one of the states from the set
{s0, s1, s2, s3}, and for each tree, check whether the given formula holds on it or not.

(a) b ∧ A X a

(b) a ∨ A X b

(c) AF AG a ∨ AF AG b

(d) EF G¬b

(e) AG a

(10 points)

