VU Programm- und Systemverifikation

Solution: Hoare Logic

May 21, 2016

Solution for Task 1
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@® loop invariant

@) assignment from @;
we rewrite this to
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now factor out (r = —1):
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® assignment from @
simplifies to (i2 = n), since (i2 = n) A (12 < n Vi% > n) is false

@ Using the rule of consequence, we strengthen the terms from @ and ® to
(i2 #n) A (r = —1) and (i = n) A (r = —1), respectively.
Consequently (r = —1) is the pre-condition of the conditional statement.
@ The loop invariant conjoined with the loop entrance condition.

This conjunction trivially implies ®.

®,®,@ With the assignment rule, we prove that the loop invariant holds on entrance.

Finally, we conjoin the loop invariant with the negated loop entrance condition
(t>n)V(rv-1).
We perform a case split:
e If (i <n), then (r # —1), and therefore by the loop invariant r =i = \/n.

e If (r = —1) then the post-condition is trivially satisfied.



