
6.0 ECTS/4.5h VU Programm- und Systemverifikation (184.741)
June 18, 2014

Kennzahl
(study id)

Matrikelnummer
(student id)

Familienname (family name) Vorname (first name) Gruppe
(version)

A

1.) Coverage
Consider the following program fragment and test suite:

int longest (unsigned a, unsigned b, unsigned c) {
int result = a;

if ((a + b > c) && (a + c > b) && (b + c > a)) {
if (b > result)

result = b;

if (c > result)

result = c;

return result;

} else {
return -1;

}
}

Inputs Outputs
a b c result
6 4 3 6
3 6 4 6
7 16 8 -1

(a) Control-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(assume that the term “decision” refers to all Boolean expressions in the program).

satisfied
Criterion yes no
path coverage
statement coverage
branch coverage
decision coverage
condition/decision coverage

(5 points)

(b) Data-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(here, the parameters of the function do not constitute definitions, and the return
statement return result is a c-use):

satisfied
Criterion yes no
all-defs
all-c-uses
all-p-uses
all-c-uses/some-p-uses
all-p-uses/some-c-uses
all-uses
all-du-paths

(7 points)

(c) If the test-suite from above does not satisfy the coverage criteria listed below, aug-
ment it with test-cases such that these criteria are satisfied. If full coverage cannot be
achieved for one or more of these criteria, explain why.

MC/DC

Inputs Outputs
a b c result

all-p-uses/some-c-uses

Inputs Outputs
a b c result

(5 points)

(d) Provide sufficiently many test-cases to guarantee modified condition/decision coverage
for the following program fragment, or explain why this coverage metric can’t be satis-
fied:

bool foo(unsigned a, unsigned b, unsigned c) {
return ((a + b > c) || (a > c));

}

Input Output
a b c result

(3 points)

2.) Black-Box Testing

The function

int inside(int x0, int y0, int x1, int y1, int x2, int y2)

determines whether the point (x0, y0) lies inside, on, or outside the following rectangle:

(x1, y1)

(x2, y2)

• The point (x1, y1) is the lower left corner, and (x2, y2) is the upper right corner.

• The sides of the rectangle must have a non-zero length.

• inside returns

– 1 if (x0, y0) lies inside the rectangle

– 0 if (x0, y0) lies on a side of the rectangle

– -1 if (x0, y0) lies outside the rectangle

(a) Equivalence Partitioning

From the conditions above, derive the equivalence classes for the method inside. Use
the table below to partition them into valid equivalence classes (valid inputs) and in-
valid equivalence classes (invalid inputs). Label each of the equivalence classes clearly
with a number (in the according column). For each correct equivalence class you can
score one point (up to 10 points).
(Do not provide test-cases here – that’s task (b))

Condition Valid ID Invalid ID

(10 points)

(b) Boundary Value Testing

Use Boundary Value Testing to derive a test-suite for the method inside. Specify the
inputs points p0 = (x0, y1), p1 = (x1, y2), p2 = (x2, y2) (e.g., p1 = (1, 2), p2 = (0, 0), p3 =
(4, 4)). Indicate clearly which equivalence classes each test-case covers by referring to
the numbers from task (a). You receive one point for each correct test-case (up to 15
points, where test-cases that do not represent boundary values do not count).

Input Output Classes Covered

(15 points)

3.) (a) Invariants
Given the code example:

int a, x, y, n;

x = 0;

y = 0;

n = 0;

if (a > 0) {

while (y < 2013) {

n = n + 1;

y = y + a;

x = x + y;

}

}

Consider the following formulas; are they loop invariants? If not, give the values of a,
x, y, n, a′, x′, y′, and n′ that show that it is not an invariant.

i. a > 0

ii. y = a · n
iii. y = n

iv. x = a · y ∧ y = n · a
v. x = a·n·(n+1)

2 ∧ y = a · n
(10 points)

(b) Hoare Logic

Prove the Hoare Triple below (assume that the domain of all variables in the program are
the natural numbers including 0). You need to find a sufficiently strong loop invariant.

Annotate the following code directly with the required assertions. Justify each assertion
by stating which Hoare rule you used to derive it.

{true}

if (x > y) {

t := x;

x := y;

y := t;

} else {

skip;

}

while (x<y) {

x := x + 1;

}

{x = y}

(10 points)

4.) Decision procedures

(a) Bring the following formula into conjunctive normal form (CNF) using Tseitin trans-
formation.

(a ∨ (b ∧ ¬ (c ∨ d)))

(5 points)

(b) Consider the following formulas in Equality Logic; are they satisfiable? If yes, provide
a satisfying assignment over integers, if not, give the reasoning based on equivalence
classes that leads to this conclusion.

i. a = b ∧ c 6= d ∧ a = d ∧ e = c ∧ e 6= b ∧ c 6= b ∧ d = b

ii. a 6= b ∧ c 6= d ∧ c = g ∧ b = c ∧ e = f ∧ f = a ∧ g = e

(6 points)

5.) Temporal Logic

Consider the following Kripke Structure:

a

s0

b

s1

a

s2

b

s3

(a) Fix s0 as the initial state and give the computation tree for three steps. (6 points)

(b) For each formula, in which states of the Kripke structure does it hold? (Note that we
do not consider s0 as special initial state here.)

i. b ∧ A X a

ii. E F G a

iii. AF AG a ∨ AF AG b

iv. E X b ∧ (E X (E X b))

(8 points)

