
6.0 ECTS/4.5h VU Programm- und Systemverifikation (184.741)
June 17, 2015

Kennzahl
(study id)

Matrikelnummer
(student id)

Familienname (family name) Vorname (first name) Gruppe
(version)

A

1.) Coverage
Consider the following program fragment and test suite:

boolean coprime (unsigned x, unsigned y) {
unsigned k = x;

unsigned m = y;

if ((k == 0) || (m == 0)) {
return ((k == 1) || (m == 1));

}
while (k != m) {
if (k > m) {

k = k - m;

} else {
m = m - k;

}
}
return (k == 1);

}

Inputs Outputs
x y result
0 1 true
0 5 false
14 15 true
14 21 false

(a) Control-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(assume that the term “decision” refers to all Boolean expressions in the program).

satisfied
Criterion yes no
path coverage
statement coverage
branch coverage
decision coverage
condition/decision coverage

For each coverage criterion that is not satisfied, explain why this is the case:

(7 points)



(b) Data-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(here, the parameters of the function do not constitute definitions, and the return

statements are p-uses but not c-uses):

satisfied
Criterion yes no
all-defs
all-c-uses
all-p-uses
all-c-uses/some-p-uses
all-p-uses/some-c-uses

For each coverage criterion that is not satisfied, explain why this is the case:

(11 points)

(c) If the test-suite from above does not satisfy the MC/DC coverage criterion, augment
it with the minimal number of test-cases such that this criterion is satisfied. If full
coverage cannot be achieved, explain why.

MC/DC

Inputs Outputs
x y result

(2 points)



2.) Black/Gray-Box Testing

The function

int intersect (float x0, float y0, float x1, float y1,
float x2, float y2, float x3, float y3)

takes as parameters 4 points (xi, yi) (for 0 ≤ i ≤ 3) and determines whether the two line
segments (x0, y0)− (x1, y1) and (x2, y2)− (x3, y3) intersect:

(x0, y0)

(x1, y1)
(x2, y2)

(x3, y3)

• All points are of type R× R.

• The points (x0, y0) and (x2, y2) must be the “left” points of the line segments, i.e.,
x0 ≤ x1 and x2 ≤ x3 (as in the figure above).

• The line segments must have a non-zero length.

• intersect returns

– 0 if the two lines are parallel

– 1 if the two lines are not parallel and do not intersect

– 2 if the two lines intersect

(a) Equivalence Partitioning

From the specification above, derive equivalence classes for the method intersect. Use
the table below to partition them into valid equivalence classes (valid inputs) and in-
valid equivalence classes (invalid inputs). Label each of the equivalence classes clearly
with a number (in the according column). For each correct equivalence class you can
score one point (up to 10 points).
(Do not provide test-cases here – that’s task (b))

Condition Valid ID Invalid ID

(10 points)



(b) Boundary Value Testing

Use Boundary Value Testing to derive a test-suite for the method intersect. Specify
the inputs points p0 = (x0, y0), p1 = (x1, y1), p2 = (x2, y2), and p3 = (x3, y3) (e.g.,
p0 = (3, 3), p1 = (1, 2), p2 = (0, 0), p3 = (4, 4)). Indicate clearly which equivalence
classes each test-case covers by referring to the numbers from task (a). You can receive
up to 10 points, where test-cases that do not represent boundary values do not count.

Input Output Classes Covered

(10 points)



3.) (a) Invariants

int x, y;

x = 0;

y = 0;

while (x < 2016 && y < 63) {

y = y + 1;

x = x + y;

}

Consider the formulas below; tick the correct box (2X) to indicate whether they are loop
invariants for the program above.

• If the formula is an inductive invariant, provide an (informal) proof that the invari-
ant is inductive.

• If the formula P is an invariant that is not inductive, give values of x and y before
and after the loop body demonstrating that the Hoare triple

{P ∧B} x = x + y; y = y + 1 {P}

(where B = (x < 2016 ∧ y < 63)) does not hold.

• Otherwise, provide values of x and y that correspond to a reachable state showing
that the formula is not an invariant.

x ≥ y 2 Inductive Invariant 2 Non-inductive Invariant 2 Neither

Justification:

y ≥ 0 ∧ x ≥ y 2 Inductive Invariant 2 Non-inductive Invariant 2 Neither

Justification:

x = 0∨x 6= 3·y 2 Inductive Invariant 2 Non-inductive Invariant 2 Neither

Justification:

(10 points)



(b) Hoare Logic

Prove the Hoare Triple below (assume that the domain of all variables in the program
are the natural numbers including 0, i.e., x, y ∈ N0 or, equivalently, both x and y are of
type unsigned). You need to find a sufficiently strong loop invariant.

Annotate the following code directly with the required assertions. Justify each assertion
by stating which Hoare rule you used to derive it, and the premise(s) of that rule.

{true}

if (y > x) {

t := x;

x := y;

y := t;

} else {

skip;

}

while ((y > 0) && (x % y != 0)) {

y := y - 1;

}

{(x 6= 0) ∨ (y = 0)}

(10 points)



4.) Decision procedures

(a) Consider the following formulas in propositional logic; are they satisfiable? If yes,
provide a satisfying assignment over booleans, if not, give the reasoning that leads to
this conclusion.

(¬a ∨ d) ∧ ¬b ∧ c ∧ ¬e ∧ (a ∨ c ∨ ¬a) ∧ (e ∨ ¬a ∨ ¬d) ∧ ¬e (1)

¬b ∧ (b ∨ ¬a) ∧ e ∧ (¬d ∨ a ∨ ¬c) ∧ (c ∨ c) ∧ d ∧ (¬e ∨ e ∨ ¬e) (2)

(¬e ∨ d) ∧ ¬e ∧ b ∧ (¬a ∨ e ∨ ¬c) ∧ a ∧ (b ∨ ¬e ∨ a) ∧ c (3)

(¬b ∨ d) ∧ (¬e ∨ ¬b) ∧ b ∧ a ∧ (¬d ∨ a ∨ d) ∧ (b ∨ b) ∧ (¬c ∨ c) (4)

(¬a ∨ ¬e) ∧ d ∧ (¬d ∨ ¬d) ∧ (¬d ∨ a) ∧ ¬a ∧ e ∧ b (5)

(5 points)

(b) Consider the following formulas in Equality Logic; are they satisfiable? If yes, provide
a satisfying assignment over integers, if not, give the reasoning based on equivalence
classes that leads to this conclusion.

a = b ∧ b = c ∧ c = d ∧ b = e ∧ c 6= d (6)

a = c ∧ a 6= b ∧ b = d ∧ c 6= d ∧ d = e ∧ f = e (7)

b = c ∧ c = d ∧ e = f ∧ f = g ∧ g = h ∧ d 6= h ∧ a = f ∧ b = e ∧ b = g ∧ c = f (8)

(6 points)



(c) Check the satisfiability of the following SMT formulas. Assume that x, y, z, a, b, c ∈ Z are
integer constants, and f : Z→ Z and g : Z×Z→ Z are unary and binary uninterpreted
functions over integers respectively. Whenever a formula is satisfiable, give a satisfying
assignment for it, i.e., integer values for all variables and function intepretations over
integers that make the formula true under the assignment. Whenever a formula is not
satisfiable, give a reason why it is unsatisfiable.

f(f(f(1))) = 1 ∧ f(f(1)) 6= g(x, 1) ∧ x = f(f(1))

∧ g(1, x) = 2 ∧ g(1, x) = g(x, 1) ∧ f(x) = g(1, x) (9)

g(x, y) = g(y, x) ∧ g(0, 1) = a ∧ g(1, 0) = b ∧ a 6= b ∧ g(x, x) = x ∧ g(y, y) = y

∧ (g(x, x) = 0 ∨ g(x, x) = 1) ∧ (g(y, y) = 0 ∨ g(y, y) = 1) (10)

g(2, y) = 6 ∧ g(y, x) = g(x, y) ∧ g(y, 2) = 8 (11)

(9 points)



5.) Temporal Logic

Consider the following Kripke Structure:

a s0

b s1

c s2

(a) For each formula, give the states of the Kripke structure, where the formula holds. In
other words, consider the computation trees starting with one of the states from the set
{s0, s1, s2}, and for each tree check, whether the given formula holds on it, or not.

i. a ∧ E X b ∧ E X c

ii. AF AG (A X b ∨ A X c)

iii. EF EG¬b
iv. AG (b A U c)

v. a A U (EG¬c)
(10 points)



6.) Concurrency

Consider the following program running the threads thread1 and thread2 in parallel:

1 #i n c l u d e <pth read . h>
2 #i n c l u d e < s t d l i b . h>
3 #i n c l u d e <a s s e r t . h>

5 // data s t r u c t u r e to s t o r e v a l u e
and ab s o l u t e v a l u e

6 t y p e d e f s t r u c t {
7 f l o a t abs ;
8 f l o a t v a l ;
9 } v a l u e t ;

11 v a l u e t n , m;
12 p th r ead mutex t ∗m lock ;
13 p th r ead mutex t ∗ n l o c k ;

15 // f i r s t t h r ead
16 v o i d ∗ th r ead1 ( v o i d ∗p ) {
17 p th r e ad mut e x l o c k ( n l o c k ) ;
18 // copy v a l u e o f m to n
19 n . abs = m. abs ;
20 n . v a l = m. v a l ;
21 p th r ead mutex un l o ck ( n l o c k ) ;
22 p t h r e a d e x i t (NULL) ;
23 r e t u r n NULL ;
24 }

26 // second th r ead
27 v o i d ∗ th r ead2 ( v o i d ∗p ) {
28 p th r e ad mut e x l o c k ( m lock ) ;
29 // copy v a l u e o f n to m
30 m. abs = n . abs ;
31 m. v a l = n . v a l ;
32 p th r ead mutex un l o ck ( m lock ) ;
33 p t h r e a d e x i t (NULL) ;
34 r e t u r n NULL ;
35 }

37 // main f u n c t i o n
38 i n t main ( )
39 {
40 // i n i t i a l i z e n
41 n l o c k = ma l l o c
42 ( s i z e o f ( p th r e ad mutex t ) ) ;
43 p t h r e a d mu t e x i n i t
44 ( n l o ck , NULL) ;
45 n . abs = 5 ;
46 n . v a l = −5;

48 // i n i t i a l i z e m
49 m lock = ma l l o c
50 ( s i z e o f ( p th r e ad mutex t ) ) ;
51 p t h r e a d mu t e x i n i t
52 ( m lock , NULL) ;
53 m. abs = 7 ;
54 m. v a l = 7 ;

56 p t h r e a d t t1 , t2 ;
57 p t h r e a d c r e a t e
58 (&t1 , NULL , thread1 , NULL) ;
59 p t h r e a d c r e a t e
60 (&t2 , NULL , thread2 , NULL) ;

62 p t h r e a d j o i n ( t1 , NULL) ;
63 p t h r e a d j o i n ( t2 , NULL) ;

65 a s s e r t ( n . abs == n . v a l | |
66 n . abs == −n . v a l ) ;

68 p t h r e a d e x i t (NULL) ;
69 r e t u r n 0 ;
70 }

The program contains two locks n lock and m lock, which are acquired and released by the
pthread-library functions pthread mutex lock and pthread mutex unlock, respectively.
The function pthread create spawns a new thread executing the function provided as third
argument with the parameter provided as fourth argument (which is always NULL in our
case), and stores its identifier in the first parameter. The function pthread join waits until
the thread identified by the first parameter finishes.

(a) Identify an execution in which the assertion in lines 65-66 fails.

• Describe the order in which the statements of thread1 and thread2 are executed
in the failing execution (by referring to the line numbers).

• Identify the problematic data dependencies (hazards) between the two threads.

(5 points)



(b) For the execution described in task (a), describe the fault, the error, and the failure.

Fault

Error

Failure

(5 points)


