
VU Programm- und Systemverifikation
Assignment 1: Assertions, Testing, and Coverage

Name: Matr. number:

Due: April 7, 2pm

1 Coverage Metrics

Consider the following program fragment and test suite:

boolean coprime (unsigned x, unsigned y) {
unsigned k = x;

unsigned m = y;

if ((k == 0) || (m == 0)) {
return ((k == 1) || (m == 1));

}
while (k != m) {
if (k > m) {

k = k - m;

} else {
m = m - k;

}
}
return (k == 1);

}

Inputs Outputs

x y result

0 1 true

0 5 false

14 15 true

14 21 false

1.1 Control-Flow-Based Coverage Criteria (3 points)

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(assume that the term “decision” refers to all Boolean expressions in the program).

satisfied

Criterion yes no

path coverage

statement coverage

branch coverage

decision coverage

condition/decision coverage

For each coverage criterion that is not satisfied, explain why this is the case:

1

1.2 Data-Flow-Based Coverage Criteria (5 points)

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(here, the parameters of the function do not constitute definitions, and the return state-
ments are p-uses but not c-uses):

satisfied

Criterion yes no

all-defs

all-c-uses

all-p-uses

all-c-uses/some-p-uses

all-p-uses/some-c-uses

For each coverage criterion that is not satisfied, explain why this is the case:

1.3 Modified Condition/Decision Coverage (1 point)

If the test-suite from above does not satisfy the MC/DC coverage criterion, augment it
with the minimal number of test-cases such that this criterion is satisfied. If full coverage
cannot be achieved, explain why.

MC/DC

Inputs Outputs

x y result

2

2 Equivalence Partitioning and Boundary Testing

The function

int intersect (float x0, float y0, float x1, float y1,
float x2, float y2, float x3, float y3)

takes as parameters 4 points (xi, yi) (for 0 ≤ i ≤ 3) and determines whether the two line
segments (x0, y0)− (x1, y1) and (x2, y2)− (x3, y3) intersect:

(x0, y0)

(x1, y1)
(x2, y2)

(x3, y3)

• All points are of type R× R.
• The points (x0, y0) and (x2, y2) must be the “left” points of the line segments, i.e.,
x0 ≤ x1 and x2 ≤ x3 (as in the figure above).
• The line segments must have a non-zero length.
• intersect returns

– 0 if the two lines are parallel
– 1 if the two lines are not parallel and do not intersect
– 2 if the two lines intersect

2.1 Equivalence Partitioning (4 points)

From the specification above, derive equivalence classes for the method intersect. Use
the table below to partition them into valid equivalence classes (valid inputs) and invalid
equivalence classes (invalid inputs). Label each of the equivalence classes clearly with a
number (in the according column). For each correct equivalence class you can score half a
point (up to 4 points).
(Do not provide test-cases here – that’s task (b))

3

Condition Valid ID Invalid ID

4

2.2 Boundary Value Testing (4 points)

Use Boundary Value Testing to derive a test-suite for the method intersect. Spec-
ify the inputs points p0 = (x0, y0), p1 = (x1, y1), p2 = (x2, y2), and p3 = (x3, y3) (e.g.,
p0 = (3, 3), p1 = (1, 2), p2 = (0, 0), p3 = (4, 4)). Indicate clearly which equivalence classes
each test-case covers by referring to the numbers from task (a). You can receive up to 4
points (12 a point per test case), where test-cases that do not represent boundary values do
not count.

Input Output Classes Covered

5

3 Invariants (3 points)

int x, y;

x = 0;

y = 0;

while (x < 2016 && y < 63) {

y = y + 1;

x = x + y;

}

Consider the formulas below; tick the correct box (2X) to indicate whether they are loop
invariants for the program above.
• If the formula is an inductive invariant, provide an (informal) proof that the invariant

is inductive.
• If the formula P is an invariant that is not inductive, give values of x and y before

and after the loop body demonstrating that the Hoare triple

{P ∧B} y = y + 1; x = x + y {P}

(where B = (x < 2016 ∧ y < 63)) does not hold.
• Otherwise, provide values of x and y that correspond to a reachable state showing

that the formula is not an invariant.

6

x ≥ y 2 Inductive Invariant 2 Non-inductive Invariant 2 Neither

Justification:

y ≥ 0 ∧ x ≥ y 2 Inductive Invariant 2 Non-inductive Invariant 2 Neither

Justification:

x = 0 ∨ x 6= 3 · y 2 Inductive Invariant 2 Non-inductive Invariant 2 Neither

Justification:

Please hand in your assignment via TUWEL (as a single PDF file) by April 7, 2016, 2pm.

7

