
VU Programm- und Systemverifikation
Homework: SMT

(15 points)

May 13, 2015

Given the following code example:

double S = input ();

assert (0 < S && S < 3);

double a = S;

double c = S - 1.0;

while (c >= 0.01 || c <= -0.01) {

a = a - a * c / 2.0;

c = c * c * (c - 3.0) / 4.0;

assert(S * (1 + c) = a * a && S > 0 && S < 3);

}

printf("sqrt of %f is approx. %f\n", S, a);

assert(a * a > S * 0.99);

assert(a * a < S * 1.01);

and its loop invariant

S · (1 + c) = a2 ∧ S > 0 ∧ S < 3

Tasks: Following the example of the file loop.smt discussed during the lecture and also
given on the next page:

1. encode the transition relation of the loop in Z3

2. write a Z3 assertion and check that the precondition (initialization) implies the in-
variant

3. write a Z3 assertion and check that if the invariant holds before one iteration, it also
holds after the iteration

4. write a Z3 assertion and check that the assertion holds upon leaving the loop

5. write a Z3 assertion and check that |c| is decreasing if the loop body is executed under
the assumption −1 < c < 2.

Upload a text file called assignment5.smt with your solutions to TUWEL by May 27,
2015. Make sure that the file contains your name and ID (as a comment). Z3 must not
report syntax errors when called with the -smt2 option.

1

;;

;; By calling "z3 -smt2 loop.smt" one can check the assertion

;; in the following code using the loop invariant: m * x = n * y + z

;;

;; Igor Konnov , Josef Widder , 2013. v1.0

;;

;; int n = input();

;; int x = input();

;; int m = n;

;; int y = x;

;; int z = 0;

;; assume(n >= 0);

;; while (n > 0) {

;; if (n % 2) {

;; z += y;

;; }

;; y *= 2;

;; n /= 2;

;; }

;; assert(z == m * x);

(declare-const n Int)

(declare-const x Int)

(declare-const m Int)

(declare-const y Int)

(declare-const z Int)

(declare-const n2 Int)

(declare-const y2 Int)

(declare-const z2 Int)

(define-fun loopcond () Bool (> n 0))

(define-fun loopbody () Bool

(if loopcond

(and (if (= 1 (mod n 2))

(= z2 (+ z y))

(= z2 z))

(= y2 (* y 2))

(= n2 (/ n 2)))

(and (= z2 z)

(= y2 y)

(= n2 n))))

(define-fun invariant () Bool (and

(>= n 0)

(>= m 0)

(= (* m x) (+ z (* n y)))))

(define-fun invariantpost () Bool (and

(>= n2 0)

(>= m 0)

(= (* m x) (+ z2 (* n2 y2)))))

2

;;

;; check that the precondition implies invariant

;;

(push)

(assert (not (=>

(and (= m n) (= x y) (= z 0) (>= n 0))

invariant

)))

(check-sat)

(pop)

;;

;; check invariant:

;;

(push)

(assert (not (=>

(and invariant loopbody)

invariantpost)))

(check-sat)

;;(get-model)

(pop)

;;

;; check assertion after leaving loop

;;

(push)

(assert (not (=>

(and invariant (not loopcond))

(= z (* m x)))))

(check-sat)

;; (get-model)

(pop)

;;

;; check that loop terminates (i.e., if n>0 then n decreases)

;;

(push)

(assert (not (=>

(and loopcond loopbody)

(< n2 n))))

(check-sat)

;;(get-model)

(pop)

3

