
6.0 ECTS/4.5h VU Programm- und Systemverifikation (184.741)
June 27, 2013

Kennzahl
(study id)

Matrikelnummer
(student id)

Familienname (family name) Vorname (first name) Gruppe
(version)

A

1.) Coverage
Consider the following program fragment and test suite:

bool minmax (int i, int j, int k,

int &least, int &most) {
least = i;

most = i;

if (most < j)

most = j;

if (most < k)

most = k;

if (least > j)

least = j;

if (least > k)

least = k;

return (least ≤ most);

}

Inputs Outputs
i j k least most result
1 2 3 1 3 true
3 2 1 1 3 true

(a) Control-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(assume that the term “decision” refers to all Boolean expressions in the program).

satisfied
Criterion yes no
path coverage
statement coverage
branch coverage
decision coverage
condition/decision coverage

(5 points)

(b) Data-Flow-Based Coverage Criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite above
(here, the parameters of the function do not constitute definitions):

satisfied
Criterion yes no
all-defs
all-c-uses
all-p-uses
all-c-uses/some-p-uses
all-p-uses/some-c-uses
all-uses
all-du-paths

(7 points)

(c) If the test-suite from above does not satisfy the coverage criteria listed below, aug-
ment it with test-cases such that these criteria are satisfied. If full coverage cannot be
achieved for one or more of these criteria, explain why.

all-c-uses

Inputs Outputs
i j k least most result

all-p-uses/some-c-uses

Inputs Outputs
i j k least most result

MC/DC

Inputs Outputs
i j k least most result

(5 points)

(d) Provide sufficiently many test-cases to guarantee modified condition/decision coverage
for the following program fragment:

bool foo(int x, int y) {
return ((x < y) || (y % 2 >= 1));

}

Input Output
x y result

(3 points)

2.) Black-Box Testing

The method valueOf(String s) of the class at.forsyte.Float returns a Float object
holding the float value represented by the argument s.

• If s is null, then a NullPointerException is thrown.

• Leading and trailing whitespace characters in s are ignored.

• If s does not represent a valid floating point value, a NumberFormatException is thrown.

• If s is longer than 10 characters, a TooLongForExamException is thrown.

All floating point values are expressed in decimal (base 10). A valid floating point value
starts with an optional sign (−, +), followed by a whole number part and/or a fraction part
(at least one of which has to be present). The whole number part can be either a non-empty
sequence of digits (0-9), or the string NaN or Infinity. In the latter two cases, the whole
number part must not be followed by a fraction part. The fraction part starts with a decimal
point followed by a non-empty sequence of digits.

(a) Equivalence Partitioning

From the conditions above, derive the equivalence classes for the method valueOf. Use
the table below to partition them into valid equivalence classes (valid inputs) and in-
valid equivalence classes (invalid inputs). Label each of the equivalence classes clearly
with a number (in the according column). For each correct equivalence class you can
score one point (up to 10 points).
(Do not provide test-cases here – that’s task (b))

Condition Valid ID Invalid ID

(10 points)

(b) Boundary Value Testing

Use Boundary Value Testing to derive a test-suite for the method valueOf. Specify
the input as a string. If the expected output is a (valid) Float object, use a floating
point number to represent it. Indicate clearly which equivalence classes each test-case
covers by referring to the numbers from task (a). You receive one point for each correct
test-case (up to 15 points, where test-cases that do not represent boundary values do
not count).

Input Output Classes Covered

(15 points)

3.) (a) Invariants
Given the code example:

int a, x, y, n;

x = 0;

y = 0;

n = 0;

assume (a > 0);

while (y < 2013) {

n = n + 1;

x = x + a;

y = y + x;

}

Consider the following formulas; are they loop invariants? If not, give the values of a,
x, y, n, a′, x′, y′, and n′ that show that it is not an invariant.

i. a > 0

ii. x = a · n
iii. y = n

iv. y = a · x ∧ x = n · a
v. y = a·n·(n+1)

2 ∧ x = a · n
(10 points)

(b) Hoare Logic

Prove the Hoare Triple below (assume that the domain of all variables in the program are
the natural numbers including 0). You need to find a sufficiently strong loop invariant.

Annotate the following code directly with the required assertions. Justify each assertion
by stating which Hoare rule you used to derive it.

{true}

if (x > y) {

a = x;

b = y;

} else {

a := y;

b := x;

}

while ((a-b)>0) {

a = a-1;

}

{a = b}

(10 points)

4.) Decision procedures

(a) Bring the following formula into conjunctive normal form (CNF) using Tseitin trans-
formation.

(a ∧ b) ∨ ¬ (¬c ∨ d)

(5 points)

(b) Consider the following formulas; are they satisfiable? If yes, provide a satisfying assign-
ment, if not, give the reasoning that leads to this conclusion.

i. (a→ b) ∧ (¬a ∨ ¬b)
ii. ¬a ∧ (b ∨ c) ∧ (¬b ∨ c) ∧ (¬b ∨ ¬a) ∧ (¬c ∨ a)

iii. (a→ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ b) ∧ (a ∧ ¬b)
(6 points)

(c) Consider the following formulas in Equality Logic; are they satisfiable? If yes, provide
a satisfying assignment over integers, if not, give the reasoning based on equivalence
classes that leads to this conclusion.

i. x4 = x7 ∧ x2 = x1 ∧ x3 = x2 ∧ x7 6= x5 ∧ x1 = x6 ∧ x6 6= x4 ∧ x7 = x3

ii. x1 = x3 ∧ x1 6= x5 ∧ x2 = x4 ∧ x2 = x5 ∧ x3 6= x4 ∧ x3 6= x5 ∧ x4 = x5

(4 points)

