
Programm- & Systemverifikation
Assignment 1

Georg Weissenbacher
184.741

Part 1 of Assignment 1

I Your task: Implement a balanced (AVL) binary search tree.

I The Internet is an endless source for solutions for
programming assignments

I It’s on the interwebs, it must be !

I To save you some effort, we’ve already downloaded a solution
from

http://www.refcode.net/2013/02/

balanced-avl-binary-search-trees.html

http://www.refcode.net/2013/02/balanced-avl-binary-search-trees.html
http://www.refcode.net/2013/02/balanced-avl-binary-search-trees.html

Part 1 of Assignment 1

I Your task: Implement a balanced (AVL) binary search tree.
I The Internet is an endless source for solutions for

programming assignments
I It’s on the interwebs, it must be true!

I To save you some effort, we’ve already downloaded a solution
from

http://www.refcode.net/2013/02/

balanced-avl-binary-search-trees.html

http://www.refcode.net/2013/02/balanced-avl-binary-search-trees.html
http://www.refcode.net/2013/02/balanced-avl-binary-search-trees.html

Part 1 of Assignment 1

I Your task: Implement a balanced (AVL) binary search tree.
I The Internet is an endless source for solutions for

programming assignments
I It’s on the interwebs, it must be correct!

I To save you some effort, we’ve already downloaded a solution
from

http://www.refcode.net/2013/02/

balanced-avl-binary-search-trees.html

http://www.refcode.net/2013/02/balanced-avl-binary-search-trees.html
http://www.refcode.net/2013/02/balanced-avl-binary-search-trees.html

Part 1 of Assignment 1

I Your task: Implement a balanced (AVL) binary search tree.
I The Internet is an endless source for solutions for

programming assignments
I It’s on the interwebs, it must be correct!

I To save you some effort, we’ve already downloaded a solution
from

http://www.refcode.net/2013/02/

balanced-avl-binary-search-trees.html

http://www.refcode.net/2013/02/balanced-avl-binary-search-trees.html
http://www.refcode.net/2013/02/balanced-avl-binary-search-trees.html

Implementation details. . .

/* recursive tree structure */

typedef struct _tree

{

struct _tree * left;

struct _tree * right;

int element;

int height;

} Tree;

The implementation provides the following functions:
I insert(e, t): Insert element e into the tree t

I Returns a pointer to a modified tree
I Duplicate elements are ignored

I delete(e, t): Remove element e from the tree t
I Returns a pointer to the modified tree
I Non-existent elements are ignored

I find(e, t): Find element e in the tree t
I Returns a pointer to the respective sub-tree (NULL on failure)

A test case

The web-page also provides a test-case to demonstrate that the
implementation works:

I Insert 20, 5, 15, 9, 13, 2, 6, 12, 14, 15, 16, 17, 18, 19
I Delete 14, 13, 5, 10, 15, 16, 19, 18, 20
I What’s left: 2, 6, 9, 12, 17

We wrote a test harness for you.
I That’s how nice we are.
I You can find the source code on TISS.

The test case above succeeds.

A test case

The web-page also provides a test-case to demonstrate that the
implementation works:

I Insert 20, 5, 15, 9, 13, 2, 6, 12, 14, 15, 16, 17, 18, 19
I Delete 14, 13, 5, 10, 15, 16, 19, 18, 20
I What’s left: 2, 6, 9, 12, 17

We wrote a test harness for you.
I That’s how nice we are.
I You can find the source code on TISS.

The test case above succeeds.

Testing the implementation

I Devise a test scenario with
I at most 5 insertion operations and
I no deletions

such that find (e, t) fails even though the element e was
inserted into t.

Use the format

{’i’,e1},{’i’,e2},...,{’f’,ei}
to specify your scenario, where {’i’,e1} denotes the
insertion of element e1 and ’f’ invokes a find operation
(c.f. the source file).

I Explain what happens when you call free tree(t) after
executing your test scenario.

Testing the implementation

I Devise a test scenario with
I at most 5 insertion operations and
I no deletions

such that find (e, t) fails even though the element e was
inserted into t.
Use the format

{’i’,e1},{’i’,e2},...,{’f’,ei}
to specify your scenario, where {’i’,e1} denotes the
insertion of element e1 and ’f’ invokes a find operation
(c.f. the source file).

I Explain what happens when you call free tree(t) after
executing your test scenario.

Testing the implementation

I Devise a test scenario with
I at most 5 insertion operations and
I no deletions

such that find (e, t) fails even though the element e was
inserted into t.
Use the format

{’i’,e1},{’i’,e2},...,{’f’,ei}
to specify your scenario, where {’i’,e1} denotes the
insertion of element e1 and ’f’ invokes a find operation
(c.f. the source file).

I Explain what happens when you call free tree(t) after
executing your test scenario.

Adding assertions to avl.c

For any node, a balanced tree maintains the following invariants:
I The height of the left and right sub-tree differs by at most 1;
I The elements in the left sub-tree are smaller than the

elements in the right sub-tree.

Use assertions to add pre- and post-conditions to the following
functions, such that a bug resulting in the violation of these
invariants is caught by an assertion:

I insert

I delete

I single rotation with left,
single rotation with right

I double rotation with left,
double rotation with right

Part 2 of Assignment 1

I Add an inductive invariant to the code
I Use it to show that the assertion after the loop holds
I Add comments to the code explaining

I why your assertion is an inductive invariant
I why it shows that the assertion after the loop holds

int x = i;

int y = j;

while (x != 0)

{

x--;

y--;

assert (?);

}

assert ((i != j) || (y == 0));

Submitting your solution

I Your solution must be submitted via TUWEL by April 9, 4pm
I Late submissions will not be accepted
I We’ll make part 2 available soon

I Answer all questions and submit your solution as a PDF
I Make sure the file contains your student ID and your name
I Do not submit the source code file

I it is provided for your convenience only

