Rendering SS2011, Andrea Weidlich

Onur Dogangönül

November 11, 2011

Contents

Ι	Re	nderin	ng Theory	4			
1	Rendering Equation						
	1.1	Surfac	e Area Formalism	4			
	1.2	Direct	ional Formalism	4			
	1.3	Short	Form	5			
2	Potential Equation						
	2.1	RE, P	E Symmetry and Difference	5			
3	Global Illumination Solution Strategies						
	3.1	Invers	ion	6			
	3.2	Expan	sion	7			
		3.2.1	Recursive Substitution	7			
		3.2.2	Integral Evaluation	7			
		3.2.3	Path termination	8			
		3.2.4	Expansion Advantages and Disadvantages	8			
	3.3	Iterati	on	9			
		3.3.1	Iteration Advantages and Disadvantages	9			
4	Exp	ansior	a Algorithms	10			
	4.1	Gathe	ring Type Random Walk	10			
		4.1.1	Ray Casting	11			
		4.1.2	Ray Tracing	11			
		4.1.3	Distribution RayTracing	12			
		4.1.4	Path Tracing	13			
	4.2	Shooti	ing Type Random Walk	14			
		4.2.1	Forward Raytracing - Photon Tracing	14			
		4.2.2	Light Tracing - Forward Path Tracing	15			
		4.2.3	Gathering vs Shooting Algorithms	15			
	4.3	Bidire	ctional Random Walk	15			

		4.3.1 Bidirectional Path Tracing	5
		4.3.2 Metropolis Light Transport	6
5	Iter	ative Algorithms 10	6
	5.1	Idea, Advantages and Disadvantages	6
	5.2	Storage-Based Methods Overview	7
	5.3	Form-Factor Radiosity	7
		5.3.1 Radiosity Equation $\ldots \ldots 1$	7
		5.3.2 Algorithm	8
		5.3.3 Form Factor Calculation	8
		5.3.4 Limitations and Scope	9
		5.3.5 Progressive-Refinement-Radiosity	9
		5.3.6 Hierarchical Radiosity	9
	5.4	Global Lines	9
	5.5	Photon Mapping	0

 $\mathbf{21}$

28

II Advanced Topics

7.8

6 Surface Models $\mathbf{21}$ 6.1216.2Bi-Directional Reflectance Distribution Function (BRDF) . . 216.2.1216.2.2Related Distribution Functions 216.2.3226.2.422226.2.5Data Sources 6.3236.3.1236.3.2Perfectly Diffuse 246.3.3246.3.4Perfectly Specular 256.3.5Directional Diffuse 257 **Advanced Materials** $\mathbf{26}$ 267.17.2267.3277.4Asterism and Chatoyance 277.5277.6Sparkling Effects 277.728

Subsurface Scattering

8	Spe	ctral Rendering 2	29
	8.1	Introduction	29
	8.2	Colour Space Rendering	29
	8.3	Spectral Rendering	30
		8.3.1 Measuring Spectra	30
		8.3.2 Preparation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 3$	30
	8.4	Spectral vs RGB Rendering 3	31
	8.5	Spectral Effects	31
9	Par	ticipating Media 3	82
	9.1	Introduction	32
	9.2	Transport Equation 3	32
	9.3	Volume Photon mapping	33
		9.3.1 Estimating Radiance	34
		9.3.2 Analytical Models	34
10) Can	neras 3	84
	10.1	Camera Models	34
	10.2	Pinhole Concept vs Aperture 3	35
11	Intr	oduction to Stereo Projection 3	86
12	Pos	t-processing: Tone Reproduction and White Balance 3	26
12		1	86
12	12.1	Introduction	36
12	12.1	Introduction 3 Image Formats 3	36 37
12	12.1	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3	36 37 37
12	12.1	Introduction3Image Formats312.2.1Conventional formats12.2.2HDR formats	36 37 37 38
12	12.1 12.2	Introduction3Image Formats312.2.1Conventional formats12.2.2HDR formats12.2.3Spectral Image Formats	36 37 37 38 38
12	12.1 12.2	Introduction3Image Formats312.2.1 Conventional formats312.2.2 HDR formats312.2.3 Spectral Image Formats3Image Post-Processing3	36 37 37 38
	12.1 12.2 12.3	Introduction3Image Formats312.2.1 Conventional formats312.2.2 HDR formats312.2.3 Spectral Image Formats3Image Post-Processing312.3.1 Tone Reproduction Operators3	36 37 37 38 38 38 38 38 39
	12.1 12.2 12.3 Pix:	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3 12.2.2 HDR formats 3 12.2.3 Spectral Image Formats 3 Image Post-Processing 3 12.3.1 Tone Reproduction Operators 3 ar RenderMan 4	36 37 37 38 38 38 38 38 39
	12.1 12.2 12.3 Pix : 13.1	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3 12.2.2 HDR formats 3 12.2.3 Spectral Image Formats 3 12.2.3 Spectral Image Formats 3 12.2.3 Tone Reproduction Operators 3 12.3.1 Tone Reproduction Operators 3 ar RenderMan 4 Introduction 4	36 37 38 38 38 38 38 39 41
	12.1 12.2 12.3 Pix 13.1 13.2	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3 12.2.2 HDR formats 3 12.2.3 Spectral Image Formats 3 Image Post-Processing 3 12.3.1 Tone Reproduction Operators 3 ar RenderMan 4 REYES Desing Principles 4	36 37 37 38 38 38 38 38 39 41 41 42
	12.1 12.2 12.3 Pix 13.1 13.2 13.3	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3 12.2.2 HDR formats 3 12.2.3 Spectral Image Formats 3 12.2.3 Spectral Image Formats 3 Image Post-Processing 3 12.3.1 Tone Reproduction Operators 3 ar RenderMan 4 REYES Desing Principles 4 REYES Advantages and Disadvantages 4	36 37 37 38 38 38 38 39 41 41 42 42
	12.1 12.2 12.3 Pix 13.1 13.2 13.3	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3 12.2.2 HDR formats 3 12.2.3 Spectral Image Formats 3 12.2.3 Spectral Image Formats 3 Image Post-Processing 3 12.3.1 Tone Reproduction Operators 3 ar RenderMan 4 REYES Desing Principles 4 REYES Advantages and Disadvantages 4 RenderMan Interface 4	36 37 38 38 38 38 38 39 41 41 42 42 43
	12.1 12.2 12.3 Pix 13.1 13.2 13.3	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3 12.2.2 HDR formats 3 12.2.3 Spectral Image Formats 3 Image Post-Processing 3 12.3.1 Tone Reproduction Operators 3 ar RenderMan 4 REYES Desing Principles 4 REYES Advantages and Disadvantages 4 13.4.1 Using the RM Interface 4	36 37 38 38 38 38 38 39 41 41 42 42 43 43
	12.1 12.2 12.3 Pix 13.1 13.2 13.3	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3 12.2.2 HDR formats 3 12.2.3 Spectral Image Formats 3 Image Post-Processing 3 12.3.1 Tone Reproduction Operators 3 ar RenderMan 4 Introduction 4 REYES Desing Principles 4 REYES Advantages and Disadvantages 4 13.4.1 Using the RM Interface 4 13.4.2 RM Programm Structure 4	36 37 38 38 38 38 39 41 41 42 42 43 43 43
	12.1 12.2 12.3 Pix: 13.1 13.2 13.3 13.4	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3 12.2.2 HDR formats 3 12.2.3 Spectral Image Formats 3 Image Post-Processing 3 12.3.1 Tone Reproduction Operators 3 ar RenderMan 4 Introduction 4 REYES Desing Principles 4 REYES Advantages and Disadvantages 4 13.4.1 Using the RM Interface 4 13.4.2 RM Programm Structure 4 13.4.3 RIB File 4	36 37 38 38 38 38 39 41 42 43 43 43 44
	12.1 12.2 12.3 Pix: 13.1 13.2 13.3 13.4	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3 12.2.2 HDR formats 3 12.2.3 Spectral Image Formats 3 Image Post-Processing 3 12.3.1 Tone Reproduction Operators 3 ar RenderMan 4 Introduction 4 REYES Desing Principles 4 REYES Advantages and Disadvantages 4 13.4.1 Using the RM Interface 4 13.4.2 RM Programm Structure 4 13.4.3 RIB File 4 Shading 4	36 37 38 38 38 38 39 41 42 42 43 43 43 44 44
	12.1 12.2 12.3 Pix: 13.1 13.2 13.3 13.4	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3 12.2.2 HDR formats 3 12.2.3 Spectral Image Formats 3 12.2.3 Spectral Image Formats 3 Image Post-Processing 3 12.3.1 Tone Reproduction Operators 3 ar RenderMan 4 Introduction 4 REYES Desing Principles 4 REYES Advantages and Disadvantages 4 13.4.1 Using the RM Interface 4 13.4.2 RM Programm Structure 4 13.4.3 RIB File 4 13.5.1 Shape vs Shading 4	36 37 38 38 38 38 39 41 41 42 42 43 43 44 44 44
	12.1 12.2 12.3 Pix: 13.1 13.2 13.3 13.4	Introduction 3 Image Formats 3 12.2.1 Conventional formats 3 12.2.2 HDR formats 3 12.2.3 Spectral Image Formats 3 Image Post-Processing 3 12.3.1 Tone Reproduction Operators 3 ar RenderMan 4 Introduction 4 REYES Desing Principles 4 REYES Advantages and Disadvantages 4 13.4.1 Using the RM Interface 4 13.4.3 RIB File 4 13.5.1 Shape vs Shading 4 13.5.2 Shading pipeline 4	36 37 38 38 38 38 38 39 41 41 42 42 43 43 43 44 44

Part I Rendering Theory

1 Rendering Equation

1.1 Surface Area Formalism

• 1986 Kajia version of RE (Fredholm Integro-differential equation)

$$I(x, x') = g(x, x')[\epsilon(x, x') + \int_{S} \rho(x, x', x'')I(x', x'')dx'']$$

- I(x, x'): Amount of light from x' to x
- g(x, x')
 - Geometric term desribes setting between x' and x
 - Usually light energy reduced by $\frac{1}{r^2}$
 - Is zero, if an object lies between these points
- $\epsilon(x, x')$: Direct light energy, if x' emitter
- $\rho(x, x', x'')$: Indirect light, which is recived from x'' via x' (BRDF etc.)
- \int_{S} : Must be evaluated over all surfaces in the scene
- Completely describes problem of image synthesis

1.2 Directional Formalism

• Alternative RE geometry

$$L(\vec{x},\omega) = L^{e}(\vec{x},\omega) + \int_{\Omega} L(h(\vec{x},-\omega'),\omega') \cdot f_{r}(\omega',\vec{x},\omega) \cdot \cos\theta d\omega'$$

- $L(\vec{x},\omega)$
 - Describes amount of light on pos x in direction ω
 - Correlates to I(x, x')
- $h(\vec{x}, -\omega')$: Correlates to g(x, x').
- $L^e(\vec{x}, \omega)$

- Direct light emitted from x in ω direction
- Correlates to $\epsilon(x, x')$
- $f_r(\omega', \vec{x}, \omega)$: Correlates to $\rho(x, x', x'')$.
- \int_{Ω} : Evaluated over whole hemisphere.
- Emission term is outside of sintegral

1.3 Short Form

• Given the directional formalism, integral operator T introduces

$$TL(\vec{x},\omega) = \int_{\Omega} L(h(\vec{x},-\omega'),\omega') \cdot f_r(\omega',\vec{x},\omega) \cdot \cos\theta d\omega'$$

- Short: $L = L^e + TL$
- Analytical solutions are usually impossible
- Contractivity of the integral operator T or adjunct operator T'
 - In physically plausible environments, operators T and T' are contractive since surface reflectances are <1
 - Successive application yields smaller results
 - Highly specular surfaces less contractive than diffuse environments (i.e. iterative algorithms take longer to converge)

2 Potential Equation

• From viewpoint of emitter

$$(T'W)(\vec{y},\omega') = \int_{\Omega} W(h(\vec{y},\omega'),\omega') \cdot f_r(\omega',h(\vec{y},\omega'),\omega) \cdot \cos\theta d\omega$$

- T' is the adjoint operator of T from RE
- Short: $W = W^e + T'W$

2.1 RE, PE Symmetry and Difference

- Symmetry
 - RE: From viewpoint of the receiver
 - PE: From viewpoint of the emitter
 - Both equations of similar tpye and approached in similar ways

- PE suites better for certain methods
- Differences
 - RE: Radiance values for viewing ray (immediately useful for rendering)
 - PE: Radiance state of entire scene, results are stored and evaluated later

3 Global Illumination Solution Strategies

- Solution Technique Classification
 - Local illuminations models
 - * Coupling ignored
 - * No recursion
 - Recursive ray-tracing
 - * Easy couplings are followed
 - * Specular and transmission
 - Global illumination methods: Full treatment of RE coupling
- GI solutions
 - Inversion: Not used in practice, forget it
 - Expansion: Mostly stochastic techniques (ray tracers are exception)
 - Iteration: Both stochastic and deterministic (finite element) approaches

3.1 Inversion

- Inversion brings variables to one side
- Is a solution for simple equations but does not apply to the infinite dimensional integral operator (cannot be inverted in closed form)
- Finite element approaches
 - Yield a system of linear equations
 - Have to be inverted
 - Algorithms not used due to cubic complexity and numerical instability

3.2 Expansion

3.2.1 Recursive Substituion

- $L = L^e + TL$
- $L = L^e + T(L^e + TL) = L^e + TL^e + T^2L$
- Repeating n times results in neumann series

$$L = \sum_{i=0}^{n} T^i L^e + T^{n+1} L$$

• T is a contraction and the infinith iteration is zero.

$$\lim_{n \to \infty} T^{n+1}L = 0$$

• Leads to

$$L = \sum_{i=0}^{\infty} T^i L^e$$

as a solution for rendering problem

- Intractable equation with infinite series of integrals is replaced by integrals with successively higher dimensionality (T^i has i integrals)
- Gathering expansion (Rec. subst. RE): Corresponds to recursion levels during ray-casting from eye
- Shooting expansion (Rec. sub. PE): Corresponds to recursion levels during ray shooting from emitter

3.2.2 Integral Evaluation

- Integral evaluation
 - At each recursion level integral (high dimensional) is sampled
 - Numerical quadrature
 - * Finite number of samples taken from integration domain
 - * Integrand evaluated for samples
 - * Numerical result of integral is weighted sum of evaluated samples
 - Classical Numerical Integration
 - * Brick rule, Simpsons rule simple and effective for low-dim integrands
 - * Effort rises exponentially with dimension of integrand

- * Monto carlo only viable method
- Monte Carlo Quadrature
 - Converts calculation of integral to expected value problem.
 - Number of samples needed not dependent on dimension
 - Random sampling basis for determing result
 - Choosing samples
 - * Two strategies
 - \cdot Importance sampling: Find best sample points by guessing distribution
 - Stratification: Using samples which cover integrant very evenly
 - * Discrepancy measure for sampling quali
 - \cdot Regular grid high discrepancy
 - · Real random numbers also high discrepancy
 - * Quasi Monte Carlo (Stratification)
 - $\cdot\,$ Deterministic low-discrepancy sequences
 - $\cdot\,$ Halton sequences for arbitrary numbers of points
 - $\cdot\,$ Hammersley sequences if number of needed points is known before
 - $\cdot\,$ TMS nets for 2d integrands
 - QMC substantial performance and quality gains

3.2.3 Path termination

- Fractional propagation / Attenuation
 - Absorbed energy is subtracted at every step
 - Path terminated when energy is less than threshold
 - Biased but more intuitive
- Russian Roulette
 - Random termination of ray according to propagation probability
 - No bias, less intuitive

3.2.4 Expansion Advantages and Disadvantages

- Advantages:
 - Gathering expansion: No temp rep of complete radiance function required

- Shooting expansion: Flexible storage techniques
- Algorithms work on original geometry (no tesselation)
- Walks independent -can be parallelised.
- No temporary rep of the radiance function required.
- Disadvantages:
 - Paths independet, no coherency between them
 - Evaluation of very high dimensional integrals
 - * Walk termination when biased threshold is reached or russian roulette
 - * Reduces sampling of higher recursion levels (scenes with mirrors)

3.3 Iteration

• Solution of RE is fixed point of series

$$L_n = L^e + TL_{n-1}$$

- If T contractive, series converges from any initial distribution L_0
- Finite element techniques used, with discretisation error

3.3.1 Iteration Advantages and Disadvantages

- Advantages
 - Coherence exploited well
 - Approximating functions L_n viewpoint-independent: potential advantage for animations
 - Provides implicit smoothing through discretisation, i.e. more visually pleasing images than noisy expansion
 - More robust for highly reflective environments

• Disadvantages

- Requires object tesselation and finite element rep
 - * Geometric accuracy and coherence lost
 - * Substantial storage requirements also for moderately complex scenes
- Accuracy of high frequency shadows, reflections, caustics problematical
- Solution computed even for invisible parts of scene

4 Expansion Algorithms

- Random Walk Algorithms Overview
 - Gathering type RW
 - Shooting type RW
 - Bi-directional algorithms
 - Global methods
- Heckbert's Taxonomy
 - Provides further information
 - Used to categorize rendering algorithms
 - Short names
 - * E ... eye
 - * L ... lightsource
 - $\ast\,$ D $\ldots\,$ non-ideal reflection or refraction
 - $\ast\,$ S ... ideal relfection or refraction
 - * * ... iteration
 - * [] ... optional
 - * | ... selection

4.1 Gathering Type Random Walk

- Starts at eye, gathers emission of the visited points
- Differences in trace() function determine actual algorithm
- Pseudo code illustrated in algorithm 1

Algorithm 1 Gathering Type Random Walk

```
for all pixels do

colour = 0

for i = 1 \rightarrow N do

ray = random ray through pixel

<math>sampleColour = c * trace(ray)

colour += sampleColour / N

end for

end for
```

• Gathering Type Algorithms

- Ray Casting (LDE): Intersect single ray with a scene

- Ray Tracing: $L[D]S^*E$
 - * Photorealistic rendering algorithm
 - * Raytracers and more sophisticated renderes use raycasters
- Distribution ray tracing: $L[D|S]^*E$
- Path tracing: $L[D|S]^*E$

4.1.1 Ray Casting

- First hit raytracing or nonrecursive raytracing
- Possible as real time renderer
- Potentially more efficient than OpenGL for complex scenes (> 10M polygons)
- Pseudo code illustrated in algorithm 2

Algorithm 2 Ray Casting Trace Function

```
hit = FirstIntersect(ray)
if no intersection then
    return bgColour
else
    return emission(@hit,-ray.dir) + directLighting(@hit,-ray.dir)
end if
```

• Realtime RT

- Based on ray casting
- Certain limited types of recursion possible
- GI also possible
- State of the art: 1 billion polygons 640x480

4.1.2 Ray Tracing

- Classical raytracing (CG1), known as Whitted Raytracing (Turner Whitted)
- Hybrid algorithm
 - Recursion is evaluated for perfect mirrors
 - Coupling is ignored otherwise
- Steps

- Ray through pixel: Visibility calculation, Object intersection

- Shading based on direction to lightsource
- Multiple lightsources are taken into account
- Determining shadows
- Handling of reflections
- Shading of reflections
- Sum of influences
- Pseudo code illustrated in algorithm 3

Algorithm 3 Ray Tracing Trace Function

```
hit = firstIntersect(ray)
if no intersection then
    return bgColour
end if
colour = emission(@hit, -ray.dir) + directLighting(@hit, -ray.dir)
if kr > 0 then
    colour += kr * trace(reflectedRay)
end if
if kt > 0 then
    colour += kt * trace(transmittedRay)
end if
return colour
```

4.1.3 Distribution RayTracing

- Distribution raytracing: $L[D|S]^*E$
- Impractical due to fan out of N at every level
- Very slow convergence
- Pseudo Code: Pdf page 12 slide 3
- Pros and Cons
 - +Simple
 - + Process eventually converges to true solution
 - - Bad convergence
- Other algorithms are used instead of this one

4.1.4 Path Tracing

- Path tracing: $L[D|S]^*E$
 - Single path traced through scene
 - New ray is generated within hemisphere on diffuse object intersection
 - With or without intermediate light source evaluation exist
- Simple path tracing (Pseudo Code: Pdf page 13 slide 2)
 - + Fast
 - + Simple to code: Follow path untillight source or threshold
 - - Does not work for small light sources
- Improved Path Tracing
 - Sampling of the light sources: Multiple importance sampling
 - Key problem: correct weighting of two samples
- Path tracing: Sample weighting
 - At each surface intersection there are two possibilities to continue the ray
 - * According to the BRDF
 - * Through sampling of lightsources
 - Both have merits depending on situation
 - Problem: Choosing right one requires knowledge of the solution
 - Simple averaging: Retains worst properties of both
 - Both samples without scaling yields wrong results
 - No simple solution: Heuristic base on relative sample probabilities
 - The Balance Heuristic
 - * Only used when both rays hit same light source, all other cases are simply added
 - * Key idea: Weight each sample according to its relative probability
 - * Weights sum up to one, no energy is counted twice
 - * Each ray has two probabilities
 - Brdf probability (how probable that this ray gets created, e.g. Lambertian surface, phong-type specular lobe, mirror)

- Lightsource sample probability (how probable that ray gets created as a light source sample, e.g. area light source probability)
- Path Tracing: Pros and Cons
 - + Simple
 - + Converges to true solution
 - + Better convergence than distribution RT
 - bad converge for arbitrary scenes, especially when the lightsources are small

4.2 Shooting Type Random Walk

- Starts at lightsources, spreads the emission to visited points, which are projected into image
- Differences in shoot() function determine algorithm
- Pseudo code illustrated in algorithm 4

Algorithm 4 Shooting Type Random Walk

```
clearImage

for i = 0 \leftarrow N do

ray = random ray from light with selection probability p_e

power = L_e * \cos(\phi) / (P_e * N)

shoot(ray, power)

end for
```

4.2.1 Forward Raytracing - Photon Tracing

- LS^*DE
- Inverse of raytracing
- Unuseable convergence speed
- Limited to RT-type images
- Pseudo Code on page 17 slide 5

4.2.2 Light Tracing - Forward Path Tracing

- $L[D|S]^*E$
- Inverse of path tracing
- High variance
- Converges to true solution
- Unuseable in practice
- Pseudo Code on page 18 slide 1

4.2.3 Gathering vs Shooting Algorithms

- Dual algorithms, solve same problem
- Performance depends on factors
 - Image size vs scene size
 - Surface types
 - Light sources

4.3 Bidirectional Random Walk

- Overcome difficulties of gathering and shooting by combining them
- Two algorithms exist
 - Bidirectional path tracing
 - Metroplois light transport

4.3.1 Bidirectional Path Tracing

- Similar to path or light tracing, except
 - Two paths randomly cast, from the eye, and the lightsources
 - Convert shooting type walk to gathering type walk, the radiance ise multiplied by a facter (see pdf)
- One version, all mutual inter-connections evaluated, in the other just last one
- Both paths are stopped when below importance threshold, or russian roulette is applied

4.3.2 Metropolis Light Transport

- Bidirectional tracing until a useful path found (costly and rare)
- Attempt to change path a little bit, to find another usefull path
- Problem: not breaking the stochastic simulation metropolis sampling
- Changing a path
 - Bidirectional Mutations: Changes in path length vertices are added or deleted
 - Perturbations: Directions are slightly altered at points in path
- Pros and Cons
 - + Handles difficult situations well
 - - Startup bias not optimal for normal scenes
 - - very difficult to implement

5 Iterative Algorithms

5.1 Idea, Advantages and Disadvantages

- Idea
 - Solution to RE is a fixed point of

$$L_n = L^e + TL_{n-1}$$

- If T contractive, converges from any initial distribution L_0
- Finite element techniques (discretisation error) used for storing intermediate approximating functions L_n
- Viewpoint independent, also more computations involved
- Advantages
 - Coherency can be better exploited
 - Approximating functions L_n viewpoint independent: advantage for animations
 - Implicit smoothing due discretization, i.e. better than noisy expansion
 - More robust for highly reflective environments
- Disadvantages

- Requires object tesselation and finite element representation
 - * Geometric accuracy and coherency is lost
 - * High storage requirements even for moderately complex scenes
- Accuracy of high frequency shadows, reflections and caustics problematical
- Solution also for occluded parts

5.2 Storage-Based Methods Overview

- Classical Radiosity Iteration
 - Deterministic
 - Form-factor based
 - Discretization of scene into patches
- Stochastic Approaches Expansion
 - Global lines
 - Photon tracing

5.3 Form-Factor Radiosity

5.3.1 Radiosity Equation

- Assume perfectly diffuse scattering
- Radiosity B is engery per unit area leaving patch surface per discrete time interval and is the combi
- Derive Discrete Radiosity Equation from RE (surface patches finite element mehtod)

$$B_i = E_i + \rho_i \sum_{j=1}^n B_j F_{ij}, 1 \le i \le n$$

- B_i : Radiosity Patch i (Sum of emission und reflection per surface area)
- E_i : Emission patch i
- ρ_i : Reflection patch i
- n: Num patches
- F_{ij} : Amount of energy from patch j to i (form factor)

5.3.2 Algorithm

- Surfaces divided up into patches
- View factor (form factor) computed for each pair of patches
- Factors describe visibility between patches
- Small view factors patches are far away or at oblique angle (zero if occluded)
- Factors used as coefficients in linearized form of RE yields a linear system of equations
- Solving equations yields radiosity (brightness) of patches with diffuse interreflections and soft shadows
- Progressive radiosity solves system iteratively, after each iteration tmp radiosity values for patches (bounce levels)
- PR usefull for getting interactive preview
- No numerical converging needed stop iteration when looking good
- Compute matrix solution at once too expensive: Jacobi-Iteration and Gauss-Seidel method (Gathering Radiosity), Progressive-Refinement and Southwell-Iteration (Shooting Radiosity)
- Shooting solutions converge better

5.3.3 Form Factor Calculation

- Nusselt
 - Point of receiving surface patch is center of sphere
 - Project other surface on sphere
 - Project projected surface on sphere on plane
 - Approximates form factor
- Hemicube
 - Cube with grid
 - Each grid point on cube has delta formfactor depending on position of grid plane
 - Surface patch projected on hemi cube
 - Delta form factors are summed up on projected areas: form factor relationship

- Binary space partitioning tree (BSP-tree): better performance for determining hidden patches
- Adaptive integration: newer methods

5.3.4 Limitations and Scope

- Only polygonal scenes
- Only diffuse materials
- Extensions for mirrors possible
- Newer, stochastic methods are state of research
- Form factor radiosity is state of the art in commercial products

5.3.5 Progressive-Refinement-Radiosity

- Shoot radiosity from all patches
- First take patches with high radiosity then lower radiosity

5.3.6 Hierarchical Radiosity

- Patchhierarchie: Bigger patches contain many smaller patches
- Radiosity on different levels: If error small stay on higher level, else lower level
- Cluster enhancement: bigger hierarchie level

5.4 Global Lines

- Stochastic radiosity solver
- Cast rays through scene, record all light transport along intersections
- Difusse environments only
- Also tesselated geometry
- Sometimes faster than photon tracing
- Good for animation sequences
- Theoretical better than form-factor radiosity but not used in practice (research only)

5.5 Photon Mapping

- Multipass renderer (usually 2-pass)
- Photon paths traced through scene and intersection point and incoming dir stored in cache (photon map)
- Usually different photon maps (Global, Caustics, etc..)
- Photon map usually arranged (kD-tree) for optimal k-nearest neighbor algorithm (photon look-up time depends on spatial distri)
- Caustic Photon Map
 - Many photons are emitted towards specular objects
 - Stored upon intersection with diffuse surfaces
 - Visualize directly by nearest n photons for illumination reconstruction
- Global Photon Map
 - Photons are emitted towards all objects in a scene
 - Used as a rough approximation of light transport in a scene
 - Not visualized directly
- Shadow Photon Map
 - Rays with origin at lightsource traced through entire scene
 - First intersection recorded as light, subsequent as shadow
 - Used for improvement raytracing pass
- Photon Maps Disadvantages
 - Slow
 - Memory consumption
 - Illumination reconstruction depends on distance
 - Biased (Averaging many renders does not converge to correct solution of RE)
- Lightmaps
 - 2d light textures on objects
 - Each texture element averages the energy of all photon hits it receives
 - Higher order representations possible

- Area of texels has to be known and has to be computed as a preprocessing step
- Interpolation over texels after tracing pass
- Photon Tracing
 - Memory consumption: texels on all primitives are wasteful
 - Preprocessing: area computation for large numbers of texels takes too long
 - Execution time: far too many photons have to be cast for a stable estimate
 - Impossible to attach to implicit objects, e.h. L-systems

Part II Advanced Topics

6 Surface Models

6.1 Light Matter Interaction

- Surface reflectance properties determine look
- Surface light interaction
 - Key term for surface reflectance $\rho(x, x', x'')$
 - How light from a given direction is modified upon reflection from a surface
 - Has to be answereable for all directions and surface points

6.2 Bi-Directional Reflectance Distribution Function (BRDF)

6.2.1 Definition

- Returns ratio of reflected radiance along outgoing dir to irradiance incident on surface from ingoing dir
- $f_r(w_i \to w_r) \equiv \frac{L_r(w_r)}{L_i(\omega_i)cos\theta_i d\omega_i}$

6.2.2 Related Distribution Functions

- BTDF (Bi-directional Transmission Distribution) for rays that point into material
- BSDF (Bi-directional Scattering Distribution) combination of both, but rarely used

- BTF (Bi-directional Texture Function)
 - BRDF for entire texutres (carpet, cloth, ...)
 - Positional info to combine BRDFs
 - Problems: Seamless textures from BTF data, acquisition of samples

6.2.3 Isotropy vs Anisotropy

- Isotropy
 - Rotational invariance
 - Holds for large number of surfaces
 - Reduces number of variables by one
 - No alignment needed
- Anisotropy: Reflectance properties change with rotation of the surface around normal vector

6.2.4 Requirements

- Reasonable amounts of storage
- Capture key characteristics of surface
- Fast easy sampling by Monte Carlo
 - Apart perfectly diffuse and perfect mirrors, other reflection properties only tractable through MC rendering
 - Casting rays according to distribution function is crucial

6.2.5 Data Sources

- Tabulated measurements or simulation results
 - Gonioreflectometer: Expensive, hard to maintain and operate, generates huge data.
 - High memory when stored as set of finely spaced samples
 - Compression essential
 - Hard, time-consuming to measuring
 - Bad stochastic sampling characteristics: Rejection sampling
 - * Given hard to sample probability distri other easy to sample envelope distri
 - * Samples from envelope distri are accepted or rejected

- * Many unwanted samples possible
- Approximation by analytical functions and requirements
 - Reciprocity: Sampling directions can be interchanged (Helmholtz reciprocity principle)

$$f_r(\omega_i \to \omega_r) \equiv f_r(\omega_r \to \omega_i)$$

- Energy conservation
- Fast evaluation
- Expressivity
- Easy stochastic sampling

6.3 Analytical BRDFs

- Empirical models
 - Lambert, Phong, Blinn, Lafortune
 - Superposition of different components
- Physically based models
 - Torrance-Sparrow, Cook-Torrance, Kajiya, He-Sillion-Torrance-Greenberg (HTSG)
 - Physical material constants needed

6.3.1 Overview

- Lambert: only diffuse component
- Phong: generalized cosine lobe
- Ward: anisotropic
- Can be combined for higher realism
- Energy conservation dependent on coefficients and combination (esp. for Phong)
- Easy to sample
- Generalizations possible

6.3.2 Perfectly Diffuse

- Reflect the incoming light equally in all directions over the hemisphere
- Viewing direction independent
- E.g. Lambert, Oren-Nayar
- Lambert Surface
 - Percectly diffuse isotropic surface
 - Light proportional to cosine of incident angle
 - Color defined by wavelength-dependent diffuse absorption coefficient
- Oren-Nayar Surface
 - Microfacet-based diffuse surface
 - Takes into account masking, shadowing and interreflections
 - Often gaussian distri used to model distri of micro-facets (cavities)
 - Variance (sigma) of gaussian distri measure for roughness
 - Simplifies to Lambert's cosine model when sigma is zero
 - More and more retro-reflective for increasing sigma

6.3.3 Rough Specular

- Some light is reflected off ideal specular angle (highlights)
- Phong Surface
 - Visual approximation by ambient, diffuse and specular term
 - Adds specular highlight (parametrized through exponent)
 - Also combined phong lobes possible
- Ward's BRDF Model
 - Anisotropic micro-faceted surfaces
 - Physically correct (energy conserving) and fast
 - Again gaussian distri for cavities
 - Based on real measurements with a gonio-reflectometer

6.3.4 Perfectly Specular

- One outgoing dir (reality not existent)
- Incoming angle outgoing angle
- Simulate smooth glass, metallic surfaces
- For realistic materials: Fresnel coefficients

6.3.5 Directional Diffuse

- Combination of rough specular reflector and ideal diffuse reflector
- E.g. Cook-Torrance, Ward, He,...
- Torrance-Sparrow Surface
 - Physically plausible BRDF model three main components
 - * Microfacet model
 - * Fresnel term for reflectance
 - * Roughness term
 - Requires material constants to be known
 - Geometric Factor: Facets perfect reflectors except attenuation (self-shadowing, masking)
 - Evaulation
 - * + Physically corrent
 - * + Excellent results
 - * Hard to sample
 - * Hard to code
 - * Depends on material constants
- He, Torrance, Sillion, Greenberg
 - Based on wave optics and diffraction theory, can take polarization into account
 - Additional split between diffuse and directional diffuse term
 - Expensive to compute
 - Input: auto-correlation, variance of surface height

7 Advanced Materials

7.1 Beyond Normal BRDFs

- Some surfaces not characterized through standard BRDFs
- Phosphorescent paint
- Fluorescent paint
- Metallic paint
- Pearlescent paint
- Complex structure
 - Fibers (e.g. hair, textiles)
 - Sparkles (e.h. snow, lacquer)
 - Thin layers (e.g. leaves, skin)
- BSSRDFs

7.2 Fluorescence

- Re-radiation of incident energy at different wavelengths
- If only re-radiation to lower energy levels
 - Extends reflection spectra to matrices
 - Hard to handle otherwise
- Common effect, hard to measure: bispectral photometers needed
- In some areas the reflection intensity appears to be larger than 1
- Bi-Coloured Reflection Pattern
 - Rays reflected by the substrate retain color
 - Rays which interact with colorant molecules undergo wavelength shift
 - First Approximation: Phong lobes
 - * Superposition of different phong lobes
 - * Fixed ratio between lobes
 - * Large diffuse fluorescent component
 - * Small specular, non-fluorescent part
 - * Advantage: simple
 - * Disadvantage: results are not good

- Layered Torrance-Sparrow Model
 - Rough dielectric layer over lambertian fluorescent surface
 - Blinn microfacet distribution
 - No attenuation in the substrate
 - Simplified sub-surface scattering, re-emission at the point of incidence

7.3 Fibers

- Many materials composed of bundles of thin fiber
- E.g. hair, textiles, finished wood
- Hair
 - Not possible to model as a volume
 - Strands modelled as cylinders
 - Three light paths (R Reflect, T Transmission: R, TT, TRT)
 - Gaussian distribution (roughness) times attenuation

7.4 Asterism and Chatoyance

- Reflected light forms luminous band (star)
- Caused by small needle-like inclusions
- Simulated with a phong-like model

7.5 Heterogeneous Gemstones

- Appearance depends on viewing direction
- Often heterogenous
- Combining several textures

7.6 Sparkling Effects

- E.g. snow, metallic paint, gemstones
- Small flecks of material has a high specular reflectance
- Two options: Statistically, Explicitly
- Metallic Paint
 - Statistical model

- Substrate: Lambert reflector
- Flakes are modelled with a distribution
- Top: clear coat (Fresnel reflectance)
- Explicitly modelled flakes
 - * Bigger flakes can be modelled explicitly
 - * E.g. BTFs or voronoi textures

7.7 Pearlescent Paint

- Interference effect
- Aluminium or mica flakes coated with thin layers

7.8 Subsurface Scattering

- BRDFs: light scatters exactly at point where it hits the surface
- Subsurface scattering: light enters material, bounces around and leaves at different place
- Extension of BRDFs
- BSSRDFs: Bidirectional surface scattering reflectance distribution function
- 8 degrees of freedom (pos and direction)
- Monte Carlo evaluation expensive
- Diffusion Approximation
 - Light distri in highly scattering media becomes isotropic
 - Two point sources are placed near surface
 - Complete BSSRDF sum of diffusion approximation and single scattering term
- Rendering BSSRDFs
 - BSSRDF model applies to semi infinite homogeneous media
 - For practical model consider
 - * Efficient integration of BSSRDF
 - * Single scattering evaluation for arbitrary geometry
 - * Diffusion approximation for arbitrary geometry
 - * Texture (spatial variation)
 - Efficient Rendering (2 pass approach): first irradiance at surface points, then evaluate BSSRDF

8 Spectral Rendering

8.1 Introduction

- Basic Properties
 - Light as electromagnetic radiation out of particular region of entire spectrum
 - Distinguishing criterion: its frequency
- Spectrum
 - Ray of light contains many different waves with individual frequencies
 - Distribution of wavelength intensities per wavelength referred as spectrum of ray or lightsource

8.2 Colour Space Rendering

- Conventional
- Mostly RGB space, also CIE XYZ space
- RGB (Tristimulus) Rendering
 - RGB (3 wavelengths) define light and material props
 - Process 3 channels sep
 - Device dependent
 - RGB rep not ideal
- CIE XYZ
 - Derived from RGB
 - Outside the human visual gamut (only positive XYZ values)
 - Valid colors subspace of first octant
 - XYZ not closed under multiplication
- CIE XYZ vs RGB
 - RGB closed under multiplicaiton
 - RGB negative values to rep all colors
 - RGB corresponds to real colour
 - XYZ virtual positive values

8.3 Spectral Rendering

- Few products available: Maxwell renderer, luxrender, indigo
- Few known about internal details
- Rendering steps
 - Get spec
 - Prepare spec
 - Process spectral samples sep throughout rendering calculation
 - Compute final display color using CIE color matching functions and standard transformations

8.3.1 Measuring Spectra

- Measured with spectroradiometer
- First calibration of measurement device
- Reference standard needed
 - Source of known emissivity (blackbody, reference lamps)
 - Detector with an exactly known response
 - Surface with exactly known reflectivity
- Reference Lamps
 - Desinged lamps
 - Repeatability of lamp manufacturing good enough to duplicate lamps
 - Tungsten halogen lamps of 1000, 200 and 45W developed for general use
 - Burning time limited
- Detectors: pdf...

8.3.2 Preparation

- Light as freq distri (usually smooth, sharp peaks fluorescense, spectral colours)
- Colour collections: munsel, ncs, ral...
- Discritize distris
 - Regular sampling: aliasing, fast convolution

- Linear or higher order rep: efficient storage, slow convolution
- Hybrids: slow but more efficient storage
- Amount of samples depends on spectrum
 - * More samples for spectra with sharp peaks
 - * CIE F11 representations
 - $\ast\,$ error map sampling points

8.4 Spectral vs RGB Rendering

- RGB
 - Fast, widely supported
 - Limited accuracy (sharp spectra, different illuminations)
- Spectral Rendering
 - Accuracy, prediction of nature
 - High cost, aliasing, data mixing, input data
 - Hard to code

8.5 Spectral Effects

- Metamerism (different spectra same color, problem for paint and pigment industry)
- Volume absorption
- Dispersion (prisms, rainbows): wavelength dependency of interference and refraction
- Interference and diffraction
- Fluorescent materials and light sources
- Polarisation: essential for predictive rendering or crystals and transparent objects or outdoor scenes
 - Specular surfaces governed by fresnel terms
 - Show discrepancy for diff orientiations of polarised incoming light (.e.g. skylight)
 - Spec scenes with water, glass, car roots etc are affected
 - Describing polarisation see pdf

9 Participating Media

9.1 Introduction

- In vaccum, radiance is constant along the ray
- Real-world light scattered and attenuated (e.g. fog, smoke, ..)
- Two difficulties
 - Intersection phenomena within any point of the medium
 - Spectral dependence of medium characteristic parameters
- Radiation three different kinds of phenomena
 - Absorbtion
 - * Energy is reduced (converted into e.g. heat)
 - * Given by absorption coefficient
 - * Beer's law: see pdf
 - Emission
 - * Energy added from luminous particles and converted to visible light
 - $\ast\,$ Chemical, thermal or nuclear processes
 - Scattering
 - * Out-scattering: Radiance reduced along ray (e.g. clouds)
 - * In-scattering: Radiance increased from other dirs (e.g. mist)
- Phase Function: Spatial distri of the scattered light
 - Isotropic (counterpart of diffuse BRDF)
 - Rayleigh (small spherical particles, e.g. smoke)
 - Mie (particles have size of light, e.h. clouds)
 - Henyey-Greenstein (approximation of Mie)

9.2 Transport Equation

- TE takes all these phenomena into account
- Describes variation of radiance
- Challenges
 - Input data (homogeneous constant parameters, inhomogeneous
 properties are varying in the medium)
 - * Explicit storage of measured data (voxel grids)

- * Numerical solutions (simple analytical functions: perlin noise, exp func, fluid sim)
- Solving the TE (Full solution expensive simplified models)
- TE simplifications
 - No scattering case (e.g. fire)
 - Single scattering case (not realistic, strongly related to the medium)
 - * Scattering of light by a single particle
 - * Material is either very thin or very transparent
 - For homogeneous non-emitting materials there is another formula
 - For heterogeneous materials break up integral and compute it incrementally by ray marching
 - * Compute distribution from medium, by dividing the ray into smaller segments
 - * Different Ray Sampling strategies
 - Absorption and emission only
 - Multiple Scattering
 - * Scattering of light from multiple particles
 - * Two Stages
 - * Illumination pass (source radiance is computed, e.g. volume photon mapping)
 - * Visualization pass (TE is solved, e.g. ray marching)

9.3 Volume Photon mapping

- Extend surface photon maps to volume photon maps
- Photons stored in volume
- Two pass algorithm: First trace photons through volume, then evaluate photon maps using ray marching
- Photon can pass unaffected or interact with medium (scattered or absorbed)
- Russion roulette decides photon is scattered or absorbed
- Stored in photon map, if not from light source and interacts
- Importance sampling of phase function to find new direction

9.3.1 Estimating Radiance

- Different for surfaces and volumes
- Direct light by sampling of the light source using ray marching
- Indirect light: volume radiance estimate

9.3.2 Analytical Models

- CIE: Monochrome (luminance only), validated to some degree
- Perez: improved CIE model
- Preetham: based on perez model, spectral colours for each solar elevation
 - Five parameters
 - A darkening or brightening of the horizon
 - B luminance gradient near the horizon
 - C relative intensity of the circum-solar region
 - D width of the circum-solar region
 - relative backscattered light

10 Cameras

10.1 Camera Models

- Perspective Camera (perspective projection)
 - Pinhole (Perspective) Camera
 - Simplest device for taking photos
 - Light enters through small hole and falls on film, hole is the eye point
 - Includes foreshortening
 - Doesn't perserve distances or parallel lines
- Orthographic Camera (parallel projection)
 - Perserves relative distance between objects, parallel lines
 - No foreshortening
 - View volume is an aligned box
- Fisheye Camera

- Environment (Spherical) Camera
 - Rays are traced in all directions around a point
 - 2d view of everything that is visible from that point
 - All rays have same origin
 - Useful for environment lighting

10.2 Pinhole Concept vs Aperture

- Sharp for all parts of a scene
- Pinhole is an idealized concept, but not realistic
- Real cameras need an aperture and a lens
- Aperture
 - Pinhole has to have nonzero diameter reason for aperture
 - Cameras have variable with which is determined by a mechanical iris
 - Lens is needed to create an image with aperture and iris
- Thin Lens Assumption
 - For sophisticated CG renderings with DOF etc more realistic concept of lens systems is needed than a pinhole camera
 - For most purposes, it is sufficient to assume a planar lens with negligible curvature and fixed index of refraction
 - Fat lenses have to be explicitly simulated
- Focal Length Definition
 - Parallel rays that fall through lens are focused in F
 - Small F .. wide angle lens
 - Large F .. tele lens
- Thin Lens Camera Implications
 - Possible to perfect focus any plane source image onto the receiving film
 - It is not possible to focus all objects which are in different depths
 - Resolution of the film is always limited
- Depth of Field

- Small aperture... image is sharper over a wider range, but longer exposure needed
- Big aperture ... small exposure, low DOF
- f-number: focal length divided by aperture diameter
- Real Camera Lens Errors
 - Spherical Aberration, Astigmatism and Coma
 - Distortion affects the image geometry
 - Field curvature is due to lens curvature: local lack of sharpness
 - Chromatic aberration (occurs near edges)
 - Diffraction upper-bounds the imaging capabilities of a given lens

11 Introduction to Stereo Projection

- Physical properties of stereo setup
 - Linear vs circular polarization
 - 2 beamers with filters for circular polarized light
 - Retroreflective screen: Perserves polarization state
- Basics
 - Render scene twice: With eye offset
 - Also view matrix changed sometimes
 - * Toe in: shift towards focus point
 - * Offaxis: shit view matrix
 - * Create asymmetric proj: No vertical parallax

12 Post-processing: Tone Reproduction and White Balance

12.1 Introduction

- Image Synthesis Pipeline
 - Modelling
 - Rendering
 - * Output RGB, XYZ or spectral
 - * Predictive rendering yields hdr images
 - Display has limited range for luminance and color

• HDR

- Dynamic range: contrast ratio between brightest and darkest parts
- Hdr cannot be displayed on normal display hw
- Special iamge formats necessary
- Usually impossible to solve repro task perfectly
- Strongly depnds on output device
- Various heuristics of increasing complexity exist
- Full perception models difficult
- Animations pose additional challenges (frame to frame coherency)

• Image Types

- Relative values: Measured as max output device capability
 - * Screens: Two orders of magnitude
 - * Printouts: Range of 10 luminance units
 - $\ast\,$ 8bit images: 256 steps
- Absolute Radiometric Values
 - * Captures of reality: Scene ref images
 - * Digital cameras ought to capture

12.2 Image Formats

12.2.1 Conventional formats

- RGB (TIFF, PNG, JPEG)
- TIFF also in CIE L*a*b*
- Normally 8 bits per channel
- TIFF: 16 bit possible (JPEG 12bit)
- Brightness ends at 1 device dependent
- No physical meaning of values
- Compact size, standardised but lots of info lost

12.2.2 HDR formats

- Values have physical meaning
- Floating point components: Large range
- Compact size, standardised, few quantization errors, Compression introduce artefacts
- Not understood by photoshop
- Radiance RGBE, Pixar Log and LogLuv TIFF, ART XYZ (uncompressed), OpenEXR
- OpenEXZ HDR Image Format
 - Tailored to needs of movie industry
 - 8bits unsuitable for movie work, 16bit limited post-processing
 - 16 and 32 bit floating point colors
 - 16 bit float compatible with Nvidia CG HALF (EXR directly used in hardware)
 - Lossless compression: 35%-55%
 - Arbitrary info can be stored alongside image data
 - Arbitrary image channels

12.2.3 Spectral Image Formats

- N spectral samples per pixel
- Floating point components: Large range
- Values have physical meaning
- FITS and ARTRAW lonely formats
- No quantization or compression errors, no info lost but huge files (400mb for 640x480) and rare support

12.3 Image Post-Processing

- Gamut Mapping: Getting colours into display gamut
 - Local: Outlying points are individually moved (fast but highlights lost)
 - Global: All points analysed, point cloud shrunk so it fits into gamut
 - * Relation between colours is maintained

* Desaturation of img

- Tone Mapping: Fitting the luminance range to a given device
- Tone Rep: Gamut and tone mapping together

12.3.1 Tone Reproduction Operators

- 3 diff approaches
- Global methods: spatially uniform, linear scale factor, non-linear scale factor
 - Scalling all luminance values by factor
 - Primitive and fast
 - Automatic determination of factor
 - Sufficient for many scenes
 - Result in dark images if the DR big
 - Linear operators: same fac for all values
 - * Mean value mapping
 - $\cdot\,$ Mean value of the hist is mapped to 0.5
 - $\cdot\,$ Values outside the constrast interval are clipped
 - * Interactive calib: Interactively define area and range of available contrast interval
 - * Ward's scaling fac
 - MAx display luminance and environment adaption degree parametrization
 - $\cdot\,$ Good results: just visible differences remain
 - \cdot Image has to be given in absolute units
 - Non-linear operators
 - * Exponential Mapping
 - \cdot Corresponds to human perception
 - · Reduces overproportional influence of few bright pixels
 - * Schlick's Method
 - $\cdot\,$ Behaviour similar to exponential mapping
 - \cdot Good for high contrast images
 - $\cdot\,$ Can fail completely
 - * Mapping by Tumblin and Rushmeier
 - * Visual Adaption Model
- Local methods: spatially non-uniform

- Differences between parts of the image are taken into account
- Image sep into zones to determine brightness targets (similar to photography)
- Local kernel of var size used for final tone rep step
- Can look artificial
- Perceptual approaches
 - Results from physiology and psychology used to reproduce behaviour of human vis sys
 - 2 approaches
 - * Determiens what person would see if scene was real
 - $\ast\,$ Try to rep sensation using on display
 - Takes into account
 - * Threshold sensitivity
 - * Color appearance
 - * Visual acuity
 - * Light adaption
 - * Dark adaption
- Colour Correction / White balance
 - Challenging task
 - Most algorithms image based, only two scene driven
 - Workflow
 - * Determining illuminant colour
 - * Applying transform that compensates for the illuminant
 - Many algorithms:
 - * Gray world
 - Avg of all pixels is gray
 - $\cdot\,$ Avg is mapped to gray
 - $\cdot\,$ Fails if assumption is violated
 - * White patch
 - $\cdot\,$ Always a white obj in the img,
 - $\cdot\,$ Brightest pixel is mapped to white,
 - \cdot Fails if no white obj
 - * Neural networks
 - CC State of the art
 - * Scene based (better approach)

- * Reliable CC method that used additional info (gathered during rendering)
- Algorithm Overview
 - * All directly viewed surfaces set to neutral
 - * All lights set to neutral on directly viewed surfaces

13 Pixar RenderMan

13.1 Introduction

- REYES architecture
 - Render everything you ever saw
 - PRMan ref implementation
 - Assumptions and Goals
 - * High possible model complexity
 - * Diverse primitives: fractals, procedural models etc
 - * Shading complexity
 - Complexity of scenes more comes from surface specs than geometry
 - \cdot Programmable shaders needed
 - * Minimal ray tracing: Approximation of non-local effects through other means (e.g. shadow maps)
 - * Speed: 2h movie in 1 year
 - * Image quality: Anti-aliasing and proper pixel filtering needed
- RenderMan: Used for today's industrial CG work
- RenderMan Naming Confusion
 - RenderMan SL: 3d scene description language
 - RenderMan Interface: Interface between modelling and rendering
 - PRMan: The RenderMan-compliant hybrid scanline renderer
- For long time Pixar PRMan was the only Rman-compliant system
- Pixar Photorealistic RenderMan (PRMan)
 - Evolved since 1982/84 from Lucasfilm Renderer
 - Sophisticated scanline renderer
 - Currently at release 14.0
 - * Indirect illumination / GI
 - * Hair and fur optimizations
 - * Parallel network rendering
 - * On demand raytracing

13.2 **REYES** Desing Principles

- Bound: Computes bounding box
- Culling: Discard inv primitives
- Diceable test
 - Examines micropolygon size and number
 - * All primitives are diced into micropolygons
 - * Shading process operates on MPs
 - * MP generation operates in eye space
 - * Subdivision done in the primitives (u,v) space
 - Split: Subdivision into other geometric primitives
 - Dice: Perform the actual split into micropolygons
 - Backdoor feature intended to incorporate raytracing
 - Sampling
 - * Micropolygons are nyquist limit for their pixels
 - * Jittered samples trade aliasing artifacts for noise
 - * Sampling can be influenced
 - Reconstruction functions are user choice: RiFilter

13.3 **REYES** Advantages and Disadvantages

- Advantages
 - Can handle arbitrary number of primitves
 - No inversions projections of pixel onto textures
 - Computations can easily be vectorised (e.g. shading)
 - No clipping calculations
 - Frequently no texture filtering is needed
- REYES Disadvantages
 - No natural way to dice polygons
 - Shading before sampling causes problems for motion blur
 - Dicing is difficult for some types of primitives (like e.g. blobs)
 - No coherency for large uniform objects, everything is diced into micropolygons
 - No GI info of any kind is computed

13.4 RenderMan Interface

- Interface between rendering and modelling
- Powerful set of primitive surface types: quadric surf, polygons, parametric surfaces
- Hierarchical modeling, geometry
- Constructive solid geometry
- Camera model (orthographic, perspective)
- Generalized shading model

13.4.1 Using the RM Interface

- Two basic options exist
 - Use of RM function calls from high-level language (e.g. C) implementation of the RM API
 - Feeding archived RM function calls from a RenderMan Interface Bytestream (RIB) to a compliant renderer (Hand generated, output from modelling program)
- Acutal renderers are usually non-interactive
- Separate preview renderes are used during the design phase

13.4.2 RM Programm Structure

- Consistent naming of API calls (Ri..)
- All function calls bracketed between one pair of RiBegin and RiEnd
- One global graphics state is maintained within this bracket
- All API calls modify this state
- API calls are frequently varargs, and have to be terminated with RI NULL
- Most calls deal with surface properties

13.4.3 RIB File

- Sequence of requests to the renderer
- No loops, branches, ...
- Hierarchical attributes, transformations
- Geometry, lights and materials are specified insidde a WorldBegin, WorldEnd block
- Normally RIB file contains just one frame's worth of data

13.5 Shading

13.5.1 Shape vs Shading

- Shape: Geometry of object
- Shading
 - Appearance of object in scene
 - Defined by: light and surface specs and pos, pos and orientation of object

13.5.2 Shading pipeline

- Three types of shaders
- Emission at the light source
- Interaction of light with surface
- Atmospheric effects between surface and viewpoint

13.5.3 Types of Shaders

- RenderMan Interface supports
 - Light source shaders
 - * Calculates intensity and colour of light sent by the light source to a point on a surface
 - * Describes lightsource
 - Surface shaders
 - * Determines the colour of light reflecting from a point on a surface in a particular direction
 - * Does not have to be physically plausible

- Volume shaders: Generalizes the idea of atmosphere affecting light passing through space between surface and eye
- Displacement shaders
 - * Distort geometry of basic object
 - * Difference to bump maps (surface shader): silhouette is correct
 - * Costly to evaluate
- Imager shaders
 - * Transform already computed colours to something else
 - * Applications: e.g. cartoonish distortions of realistic renderings
 - * Only colour information and z-Buffer data are provided
- Transformation Shaders
 - * Similar to displacement shaders in that they modify object geometry resp. point coordinates
 - * Difference: used at a different, earlier stage of the rendering pipeline
 - * Used to transform entire objects
 - * Restricted variable set
- Each shader has specific variables and result types
 - Floats
 - Colours: multi colour models, RGB default
 - Points
 - Strings
 - Uniform vs Varying variables
 - * Uniform vars constant everywhere over area
- Shadows
 - Automatic shadow generation not classic RM
 - Shadow maps prepared for each lightsource
 - Surface shaders use this info
 - Raytracing and GI in newer RM obsolete this
- Deep Shadow Maps
 - Store rep of the fractional visibility through a pixel at all possible depths
 - Transmittance function describes light falloff

- Stored as array of floating-point pairs
- Handles volumentric effects and semi-transparent surfaces

• Reflections

- Similar to depth images for the lights, reflections have to be precomputed
- Reflection maps have artefacts: no multiple inter-reflections
- Fast
- (Sort of obsoleted by raytracing on demand)
- Reflection / Refraction Multipass Rendering
 - Multi-pass rendering
 - Tank shader: Each wall has unique pair of reflection and refraction camera
 - Texture is projected
- Ray Tracing On Demand
 - Scanline: fast, can handle complex scenes, shadows and reflections are problematic
 - Ray tracing can not deal with complex scenes
 - Ray differentials
 - First-level rays originate from REYES shading points
- Implementations
 - Original Pixar renderer (REYES): Micropolygon-based hybrid with raytracing capabilities
 - BMRT: Raytracer, has disappeared after legal action was taken against author
 - Pixie: Open-source RenderMan
 - Realtime techniques: Ongoing research topic

14 Unsolved Problems

- First suggested by Ivan Sutherland in 1965
- Become focus of future developments in 70/80s
- When is a problem solved? e.g. RE .. theoretically solved, but unsovled practical sense

- Cheap and fast solutions needed
- Sutherland 1966
 - Cheap machines with basic capability
 - Basic interaction techniques
 - Coupling simulation to their display
 - Describing motion
 - Continuous tone displays (haftoning)
 - Making structure of drawings explicit
 - Hidden line removal
 - Program instrumenation and visualization
 - Automatic placement of elements in network diagrams
 - Workin with abstractions (scientific visualization)
- Heckbert 1987
 - Converting implicit models to parametric
 - High-quality texture filtering
 - Antialiasing
 - Shadows without ray tracing
 - Practical ray tracing
 - Practical radiosity
 - Frame-to-frame coherence
 - Automating model culling
 - Smooth model transitions
 - Affordable real-time rendering hardware
- Jim Blinn's 10 Unsolved Problems (More sociological or marketing issues than technical problems)
 - Novely
 - * Simply find something new
 - * Easy problems have been solved
 - Education
 - * Learning: Keeping up with what has been done (Related to problem 1, don't reinvent the wheel)
 - * Teaching: Dissemination of new discoveries
 - * System Integration: How to use all the tricks in one production

- * Simplicity: Make things simple
- Better Pixel Arithmetic Theory
 - * RGBA pixel concept incomplete
 - * 3 probs
 - Pre-multiplication of colour channels by alpha channel (local / global distinction)
 - $\cdot\,$ Correlated edges of foreground and background object
 - · Combining compositing operations with light reflection models
 - * Unified field theory of pixel arithmetic
- Legacy compatibility
 - * Technological improvements change trade-off
 - * Legacy applications and data, e.g. 3d apis, file formats
 - * How to no abandon the old while allowing the new
- Arithmetic Sloppiness
 - * Programmers tempted to do sloppy job of pixel arithmetic for speed
 - * E.g. texture filtering: bilinear interpolation between four nearest texels (diamond shaped artifacts)
 - * Phong BRDF model
 - * How accurate do we need to be?
- Antialiasing: Textures in perspective will be either too fuzzy or to jaggy
- A Modeling, Rendering, Animation Challenge
 - * 1 shape piles of rope or string and even conceivably to protein folding
 - * Modeling is figuring out the shape of it
 - * Rendering is making picture of it
 - * Animation is figuring out how it moves with time
- Finding a use for real-time 3d
 - * Find large-scale uses for it: Entertainment (movies, games), Engineering (CAD, CAM), Visualization
 - * Interaction and communication (GUIs, printed media, art, ecommerce, web3d and virtual communities)
- Unsolved issues in PR
 - Acquisition and modeling BRDFs
 - Reliable, accurate and cheap

- Render and measurement time too long
- Measure more samples where more accuracy needed
- Acquisition of geometry and surface appearance
- Problematic for non-diffuse and transparent surfaces or when illuminant is unknown
- Self-adaptive light transport
- Some algorithms perform better in specific situations than others
- Adaptive overall global illumination algorithm picks mode depending on surface, illuminations,...
- Scalable and robust rendering
- Complex scenes without user intervention
- Especially important in interactive and dynamic applications, e.g. games
- Geometry-independent rendering
- Currently many ray-objects interaction calculations
- What if geometry is not known explicitly (e.g. light field, photographs)
- Radiometric accuracy main dirven force
- Usually not necessary
- Psychoperceptual rendering: Perceptual correct images
- Viewer might still judge the image to be realistic
- Integration with real elements
- Put real objects in virtual scene and virtual object in real scene, e.g. with projectors
- Blend between real and virtual elements
- Ultimate Photorealistic Renderer
 - Interactivity
 - Any material, any geometry (pure specular to pure diffuse)
 - Many different input models
 - Realism slider

List of Algorithms

1	Gathering Type Random Walk	10
2	Ray Casting Trace Function	11
3	Ray Tracing Trace Function	12
4	Shooting Type Random Walk	14