
Programm- & Systemverifikation
Temporal Logic and Model Checking

Georg Weissenbacher
184.741

(thanks to Igor Konnov for many slides)



What happened so far

We learned:

about bugs and assertions

how to test programs

how to prove programs correct

about Bounded Model Checking (BMC)

how to perform automated reasoning

Today we will learn about (unbounded) Model Checking

2



Model Checking

Edmund Clarke
Allen Emerson
Joseph Sifakis

Basic idea:

Assertions in temporal logic

Programs with finite state space

models instead of programs

all reachable states are inspected!

also works for concurrent models

3



T

s s′

⟨pc 7→ 2, x 7→ 1⟩ ⟨pc 7→ 3, x 7→ 2⟩

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

4



T
s s′

⟨pc 7→ 2, x 7→ 1⟩ ⟨pc 7→ 3, x 7→ 2⟩

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

4



T
s s′

⟨pc 7→ 2, x 7→ 1⟩ ⟨pc 7→ 3, x 7→ 2⟩

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

4



T
s s′

⟨pc 7→ 2, x 7→ 1⟩ ⟨pc 7→ 3, x 7→ 2⟩

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

4



T
s s′

⟨pc 7→ 2, x 7→ 1⟩ ⟨pc 7→ 3, x 7→ 2⟩

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

4



T
s s′

⟨pc 7→ 2, x 7→ 1⟩ ⟨pc 7→ 3, x 7→ 2⟩

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T

T

T

T

4



T
s s′

⟨pc 7→ 2, x 7→ 1⟩ ⟨pc 7→ 3, x 7→ 2⟩

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T

T

T

T

4



T
s s′

⟨pc 7→ 2, x 7→ 1⟩ ⟨pc 7→ 3, x 7→ 2⟩

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

4



T
s s′

⟨pc 7→ 2, x 7→ 1⟩ ⟨pc 7→ 3, x 7→ 2⟩

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

4



T
s s′

⟨pc 7→ 2, x 7→ 1⟩ ⟨pc 7→ 3, x 7→ 2⟩

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T

4



Program Model and Specifications

Models are finite state (as Kripke Structure)

Specifications are given in Temporal Logic

5



Finite-state transition systems and Kripke structures

Definition
A triple ⟨S,T , I⟩ is a Finite-State Transition System, if

a finite set of states S,

a set of initial states I ⊆ S, and

a total transition relation T ⊆ S × S.

(i.e., ∀s ∈ S .∃s′ ∈ S .T (s, s′))

Definition
A quadruple ⟨S,T , I, L⟩ is a Kripke structure, if

⟨S,T , I⟩ comprise a finite-state transition system,

L is a labelling function S → 2AP .

(from the states to a set of atomic propositions AP)

6



Finite-state transition systems and Kripke structures

Definition
A triple ⟨S,T , I⟩ is a Finite-State Transition System, if

a finite set of states S,

a set of initial states I ⊆ S, and

a total transition relation T ⊆ S × S.

(i.e., ∀s ∈ S .∃s′ ∈ S .T (s, s′))

Definition
A quadruple ⟨S,T , I, L⟩ is a Kripke structure, if

⟨S,T , I⟩ comprise a finite-state transition system,

L is a labelling function S → 2AP .

(from the states to a set of atomic propositions AP)

6



Atomic propositions and assertions

Atomic propositions represent properties of states

(alternatively, we could directly refer to state variables)

Assertion is a Boolean combination of atomic propositions from AP

We write s |= F if F holds in state s:

s |= p ⇔ p ∈ L(s)
s |= ¬F ⇔ s ̸|= F
s |= F1 ∨ F2 ⇔ s |= F1 or s |= F2

s |= F1 ∧ F2 ⇔ s |= F1 and s |= F2

7



Specifying correctness with assertions

Consider a traffic lights control

Each traffic light in the system can be in one of three states:

(In some countries, there are more combinations!)

8



Specifying Correctness

So far, we have specified correctness in terms of assertions

Consider a crossing with two traffic lights
1

and
2

assert

(
¬

1
∨ ¬

2

)

Enables us to specify “safety” of a system

9



A state of a four-light system

assertion expresses something bad not supposed to happen
10



The simplest explicit-state model checker

Algorithm EXPLICITREACHDFS
Input:
1. a Kripke structure ⟨S,T , I, L⟩,
2. an assertion F
// check, whether every state reachable from I via T satisfies F

1 open := list(I)
2 visited = ∅
3 while open ̸= [] {
4 s := head(open)
5 open := tail(open)
6 i f s ̸|= F then error(s)
7 f o r each s′ ∈ S : (s, s′) ∈ T
8 i f s′ /∈ visited then {
9 visited := {s′} ∪ visited

10 open := s′ :: open
11 }
12 }

11



Questions about EXPLICITREACHDFS

1. Why does EXPLICITREACHDFS terminate?

2. How to implement the set operations?

3. How to implement for each s′ ∈ S : (s, s′) ∈ T efficiently?

4. How many iterations does the outer loop make (worst case)?

5. How many times is line 8 called (worst case)?

6. Can we report an execution that leads to an error?

12



The simplest explicit-state model checker (v. 2)

Algorithm EXPLICITREACHDFSCEX

Input:

1. a Kripke structure ⟨S,T , I, L⟩,
2. an assertion F

// check, whether every state reachable from I via T satisfies F
// if not, report an execution that leads to a bug

1 visited = ∅
2 funct ion dfs(s) {
3 i f s ̸|= F then error(stack ())
4 f o r each s′ ∈ S : (s, s′) ∈ T
5 i f s′ /∈ visited then {
6 visited := {s′} ∪ visited
7 dfs(s′)
8 }
9 }

10 f o r each s ∈ I { dfs(s) }

13



Explicit enumeration with breadth-first search

Algorithm EXPLICITREACHBFS
Input:
1. a Kripke structure ⟨S,T , I, L⟩,
2. an assertion F
// check, whether every state reachable from I via T satisfies F

1 open := list(I)
2 visited = ∅
3 while open ̸= [] {
4 s := head(open)
5 open := tail(open)
6 i f s ̸|= F then error(s)
7 f o r each s′ ∈ S : (s, s′) ∈ T
8 i f s′ /∈ visited then {
9 visited := {s′} ∪ visited

10 open := append(open, s′)
11 }
12 }

14



Depth-first vs. breadth-first

+ BFS always finds a shortest counterexample

- DFS counterexamples can be quite long

+ DFS keeps only the current stack, so |open| ≤ |S|

- In BFS, open tends to grow large (think of duplicate states)

DFS is considered to be more efficient than BFS

SPIN uses DFS, but also supports BFS

TLC uses BFS

15



Limits of assertions

What if we want to guarantee that something good happens?

Consider the crossing with two traffic lights
1

and
2

“not indefinitely
(

1
∧

2

)
”

16



A perfectly safe situation (at least until the drivers lose their temper)

17



Specifying Correctness

It is impossible to specify this requirement with assertions

We have to extend the specification language

Let us revisit the transition systems we are considering

For the time being, we still stick to finite state systems

18



Temporal logics

19



Paths

Can we reason about paths?

An (infinite) path π:

a sequence of states s0, s1, . . . with T (si , si+1) for i ≥ 0

s0 s1 s2 s3 s4
T T T T

πi denotes the suffix of π starting at si

(note that π = π0)

20



Path formulas

Fix a Kripke structure M and a path π

We will introduce path formulas

...and write M, π |= φ to denote that φ holds on the path π

Start with a Boolean combination F of atomic propositions

M, π |= F ⇔ ?

s0 s1 s2 s3 s4
T T T T

F

21



Path formulas

Fix a Kripke structure M and a path π

We will introduce path formulas

...and write M, π |= φ to denote that φ holds on the path π

Start with a Boolean combination F of atomic propositions

M, π |= F ⇔ F holds in first state s0 of π

s0 s1 s2 s3 s4
T T T T

F

21



Path formulas

Syntactic convention:

F denotes a state formula

φ denotes a path formula

We introduce a number of temporal operators,

...which specify what is supposed to happen along a path

In what follows, we introduce temporal logic called CTL∗

22



Temporal operators: next

Syntax
Unary: X ⟨path formula⟩

Semantics
M, π |= Xφ if and only if M, π1 |= φ

Example: M, π |= X p

(It doesn’t matter whether or not p holds in s0 or s2, s3, . . .)

s0 s1 s2 s3 s4
T T T T

p

X can be nested: M, π |= XXp

s0 s1 s2 s3 s4
T T T T

p

23



Temporal operators: next

Syntax
Unary: X ⟨path formula⟩

Semantics
M, π |= Xφ if and only if M, π1 |= φ

Example: M, π |= X p

(It doesn’t matter whether or not p holds in s0 or s2, s3, . . .)

s0 s1 s2 s3 s4
T T T T

p

X can be nested: M, π |= XXp

s0 s1 s2 s3 s4
T T T T

p

23



Temporal operators: eventually

Syntax
Unary: F ⟨path formula⟩

Semantics
M, π |= Fφ if and only if M, πk |= φ for some k ≥ 0

Intuitively, p holds after a finite number of steps

Example: M, π |= Fp

s0 s1 s2 s3 s4
T T T T

p

F allows us to express basic liveness properties

24



Temporal operators: globally

Syntax
Unary: G ⟨path formula⟩

Semantics
M, π |= Gφ if and only if M, πi |= φ for i ≥ 0

Intuitively, p holds in every path state

Example: M, π |= Gp

s0 s1 s2 s3 s4
T T T T

p p p p p

G allows us to express basic safety properties

25



Temporal operators: until

Syntax
Binary: ⟨path formula⟩U ⟨path formula⟩

Semantics
M, π |= φ1Uφ2

if and only if

there is k ≥ 0 such that M, πk |= φ2 and M, πj |= φ1 for 0 ≤ j < k

Intuitively, φ1 holds until φ2 holds
Importantly, φ2 must happen eventually!
Example: M, π |= q U p

s0 s1 s2 s3 s4
T T T T

q,p q,p q,p q,p q,p

(q doesn’t have to hold anymore once discharged by p)
26



Temporal operators: release

Syntax
Binary: ⟨path formula⟩R ⟨path formula⟩

Semantics
M, π |= φ1Rφ2

if and only if one of the two conditions holds:

1. ∃k ≥ 0 such that M, πk |= φ1 and M, πj |= φ2 for 0 ≤ j < k

2. M, πj |= φ2 for j ≥ 0

φ1 releases φ2 (if φ2 ever holds) Example: M, π |= p R q

s0 s1 s2 s3 s4
T T T T

q,p q,p q,p q,p q,p

s0 s1 s2 s3 s4
T T T T

q,p q,p q,p q,p q,p

27



Temporal operators: release

Syntax
Binary: ⟨path formula⟩R ⟨path formula⟩

Semantics
M, π |= φ1Rφ2

if and only if one of the two conditions holds:

1. ∃k ≥ 0 such that M, πk |= φ1 and M, πj |= φ2 for 0 ≤ j < k

2. M, πj |= φ2 for j ≥ 0

φ1 releases φ2 (if φ2 ever holds) Example: M, π |= p R q

s0 s1 s2 s3 s4
T T T T

q,p q,p q,p q,p q,p

s0 s1 s2 s3 s4
T T T T

q,p q,p q,p q,p q,p

27



Temporal operators: more examples

M, π |= p U (G q)

s0 s1 s2 s3 s4
T T T T

p,q p,q p,q p,q p,q

M, π |= F (G p)

s0 s1 s2 s3 s4
T T T T

p p p p p

28



Temporal operators: more examples

M, π |= p U (G q)

s0 s1 s2 s3 s4
T T T T

p,q p,q p,q p,q p,q

M, π |= F (G p)

s0 s1 s2 s3 s4
T T T T

p p p p p

28



Temporal operators: more examples

“not indefinitely
( )

”

M, π |= F
(
¬

)
or M, π |= ¬G

( )

s0 s1 s2 s3 s4
T T T T

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

29



Temporal operators: more examples

“not indefinitely
( )

”

M, π |= F
(
¬

)
or M, π |= ¬G

( )

s0 s1 s2 s3 s4
T T T T

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

29



Temporal operators: equivalences

As the last example shows,

...some temporal operators can be rewritten in terms of others:

Gφ ≡ ¬F (¬φ)

Fφ ≡ true Uφ

φ1 Rφ2 ≡ ¬(¬φ1 U¬φ2)

¬, X, U are sufficient to express G, F, and R

(c.f. “basis” (¬,∨) in propositional logic)

30



Temporal operators: path quantifiers

So far, we could only talk about individual paths

To amend this, we introduce path quantifiers

Syntax
E ⟨path formula⟩

A ⟨path formula⟩

Semantics
M, s |= Eφ ⇔ ∃π starting at s such that M, π |= φ

M, s |= Aφ ⇔ ∀π starting at s it holds that M, π |= φ

Note that Eφ and Aφ are state formulas!
31



Remember:

unwinding a Kripke structure results in infinite tree

32



The introduced logic is called

Computation Tree Logic∗

(or just CTL∗)

* As you probably have guessed, there is also CTL, discussed later

33



Computation Tree Logic (CTL∗): Examples

s0

s1

s2

s3

M, s0 |= AF
( )

✓

M, s0 |= AX
(

EG
( ))

✓

M, s0 |= EGX
( )

✓

M, s0 |= AGX
( )

×

34



Computation Tree Logic (CTL∗): Examples

s0

s1

s2

s3

M, s0 |= AF
( )

✓

M, s0 |= AX
(

EG
( ))

✓

M, s0 |= EGX
( )

✓

M, s0 |= AGX
( )

×

34



Computation Tree Logic (CTL∗): Examples

s0

s1

s2

s3

M, s0 |= AF
( )

✓

M, s0 |= AX
(

EG
( ))

✓

M, s0 |= EGX
( )

✓

M, s0 |= AGX
( )

×

34



Computation Tree Logic (CTL∗): Examples

s0

s1

s2

s3

M, s0 |= AF
( )

✓

M, s0 |= AX
(

EG
( ))

✓

M, s0 |= EGX
( )

✓

M, s0 |= AGX
( )

×

34



Computation Tree Logic (CTL∗): Examples

s0

s1

s2

s3

M, s0 |= AF
( )

✓

M, s0 |= AX
(

EG
( ))

✓

M, s0 |= EGX
( )

✓

M, s0 |= AGX
( )

×

34



Computation Tree Logic (CTL∗): Examples

s0

s1

s2

s3

M, s0 |= AF
( )

✓

M, s0 |= AX
(

EG
( ))

✓

M, s0 |= EGX
( )

✓

M, s0 |= AGX
( )

×

34



Computation Tree Logic (CTL∗): Examples

s0

s1

s2

s3

M, s0 |= AF
( )

✓

M, s0 |= AX
(

EG
( ))

✓

M, s0 |= EGX
( )

✓

M, s0 |= AGX
( )

×

34



Computation Tree Logic (CTL∗): Examples

s0

s1

s2

s3

M, s0 |= AF
( )

✓

M, s0 |= AX
(

EG
( ))

✓

M, s0 |= EGX
( )

✓

M, s0 |= AGX
( )

×

34



Branching Time vs. Linear Time

Commonly used fragments of CTL∗:

branching-time logic

quantifies over paths possible from a given state

linear-time logic

for events along a single computation path only

35



Branching Time: Computation Tree Logic (CTL)

CTL restricts CTL∗ formulas:

X, F, G, U, and R must be immediately preceded by A or E

Examples:
EF (start ∧¬ready) there’s a path on which we start at some

point despite not being ready
AG(req⇒ AF ack) each request eventually acknowledged

AG EX progress no deadlocks

every CTL formula is also a CTL∗ formula (by construction)

36



Linear Temporal Logic (LTL)

Linear Temporal Logic also restricts CTL∗ (differently than CTL)

A CTL∗ formula is an LTL formula, if there is a formula ψ:

(a) φ starts with A, that is, φ ≡ Aψ

(b) ψ contains neither E, nor A

intuitively, φ is interpreted over all paths

every LTL formula is also a CTL∗ formula (by construction)

Wondering, whether you could use E instead of A?

That would be the logic called ELTL

37



LTL: examples

A(FG p) “all paths eventually stabilise with property p”

(cannot be expressed in CTL)

A(GF p) “p is visited infinitely often”

AG(try → F succeed) ”every attempt eventually succeeds”

Bored to write A in front of a formula? We too! Usually, A is omitted

38



Preview: The SPIN Explicit State Model Checker

http://spinroot.com

“Explicit-state” Model Checker

Models with asynchronous processes
Communication via channels

Modeling language PROMELA

39

http://spinroot.com


LTL in the SPIN Model Checker

Unary Operators
[] Globally (2 or G)
<> Eventually (3 or F)
! Boolean negation

Binary Operators
U Until
&& Boolean “and”
|| Boolean “or”
-> Boolean Implication

40



Temporal Properties for PROMELA Traffic Light

ltl P1 { [] <> g1 }
ltl P2 { [] ! (g1 && g2) }

active proctype TrafficLight2 () {
do
:: an1 -> g1 = 1
:: aus1 -> g1 = 0
od

}
active proctype TrafficLight2 () {

do
:: an2 -> g2 = 1
:: aus2 -> g2 = 0
od

}
active proctype Control () {

do
:: c == 1 -> an1 = 1; aus1 = 0; c = 2;
:: c == 2 -> an1 = 0; aus1 = 1; c = 3;
:: c == 3 -> an2 = 1; aus2 = 0; c = 4;
:: c == 4 -> an2 = 0; aus2 = 1; c = 1;
od

}

41



Model Checking of PROMELA Models with SPIN

Generate C program from PROMELA:

spin -a traffic.pml

Compile program (gcc necessary):

gcc -o pan -DBFS pan.c

Start model checking:

./pan -N P2 traffic.pml

Result:

assertion violated !( !( !((g1&&g2))))

View counterexample:

./pan -r traffic.pml.trail

42



Model Checking of PROMELA Models with SPIN

Generate C program from PROMELA:

spin -a traffic.pml

Compile program (gcc necessary):

gcc -o pan -DBFS pan.c

Start model checking:

./pan -N P2 traffic.pml

Result:

assertion violated !( !( !((g1&&g2))))

View counterexample:

./pan -r traffic.pml.trail

42



Model Checking of PROMELA Models with SPIN

Generate C program from PROMELA:

spin -a traffic.pml

Compile program (gcc necessary):

gcc -o pan -DBFS pan.c

Start model checking:

./pan -N P2 traffic.pml

Result:

assertion violated !( !( !((g1&&g2))))

View counterexample:

./pan -r traffic.pml.trail

42



Expressiveness CTL∗, CTL, and LTL

A CTL∗ formula φ distinguishes logic A from logic B, if:

(a) φ is a formula of A, and

(b) no formula of B is equivalent to φ

(equivalent formulas are satisfied by the same Kripke structures)

A F G p and AF(p ∧ X p) distinguish LTL from CTL

AG EF p and AFAG p distinguish CTL from LTL

want more? AF(p ∧ AX p) distinguishes CTL from LTL too

(A F Gp) ∨ (AG EF p) distinguishes CTL∗ from CTL and LTL

Proofs: Baier, Katoen (2008), pp. 337 and 424

43



Complexity of CTL∗, CTL, and LTL

Consider a Kripke structure ⟨S,T , I, L⟩ and a CTL∗ formula φ

- |S| and |T | are the number of states and transitions resp.

- |φ| is the number of φ’s subformulas

Table: Complexity of model checking for fragments of CTL∗

CTL LTL CTL∗

PTIME PSPACE-complete PSPACE-complete

O(|φ| · (|S|+ |T |)) O(2|φ| · (|S|+ |T |)) O(2|φ| · (|S|+ |T |))

Details: Baier, Katoen (2008), pp. 430

Good news: we consider only the algorithm for CTL

44



(explicit)

tableaux model checking

for CTL

45



Model Checking for CTL

Fix a finite Kripke structure M = ⟨S,T , I, L⟩

Notation: JψK def
= {s ∈ S | M, s |= ψ} for a CTL formula ψ

CTL model checking problem:

for a CTL formula φ, answer, whether I ⊆ JφK

Thus, our goal is to compute the set JφK

46



Preprocessing step: simplify formulas

CTL has 10 basic operators

X F G U R

A AX AF AG AU AR

E EX EF EG EU ER

all 10 can be expressed in terms of EX, EG, and EU:

AXφ ≡ ¬EX(¬φ)

AGφ ≡ ¬EF(¬φ)

A(φ1 Rφ2) ≡ ¬E(¬φ1 U¬φ2)

EFφ ≡ E(true Uφ)

AFφ ≡ ¬EG(¬φ)

E(φ1 Rφ2) ≡ ¬A(¬φ1 U¬φ2)

A(φ1 Uφ2) ≡ ¬E(¬φ2 U (¬φ1 ∧ ¬φ2)) ∧ ¬EG¬φ2

47



Tableaux structure

Using syntactic structure of φ (parse tree), construct the set Tφ

Start with Tφ = {φ}, apply the rules until no applicable rule left:

1. if ψ′ ∧ ψ′′ ∈ Tφ, then Tφ := {ψ′, ψ′′} ∪ Tφ
2. if ¬ψ ∈ Tφ, then Tφ := {ψ} ∪ Tφ
3. if EXψ ∈ Tφ, then Tφ := {ψ} ∪ Tφ
4. if EGψ ∈ Tφ, then Tφ := {ψ} ∪ Tφ
5. if ψ′ EUψ′′ ∈ Tφ, then Tφ := {ψ′, ψ′′} ∪ Tφ

Example: for φ ≡ (EX EF p) ∧ EG q,

we have Tφ = {φ,EX EF p,EF p, p,EG q, q}.

48



Tableaux structure

Using syntactic structure of φ (parse tree), construct the set Tφ

Start with Tφ = {φ}, apply the rules until no applicable rule left:

1. if ψ′ ∧ ψ′′ ∈ Tφ, then Tφ := {ψ′, ψ′′} ∪ Tφ
2. if ¬ψ ∈ Tφ, then Tφ := {ψ} ∪ Tφ
3. if EXψ ∈ Tφ, then Tφ := {ψ} ∪ Tφ
4. if EGψ ∈ Tφ, then Tφ := {ψ} ∪ Tφ
5. if ψ′ EUψ′′ ∈ Tφ, then Tφ := {ψ′, ψ′′} ∪ Tφ

Example: for φ ≡ (EX EF p) ∧ EG q,

we have Tφ = {φ,EX EF p,EF p, p,EG q, q}.

48



Tableaux computation

Having constructed the set Tφ,

we will compute JψK for each ψ ∈ Tφ

We start from the bottom (propositions) and end at the top (φ)

In our example, φ ≡ (EX EF p) ∧ EG q

Our goal is to fill the table:

(EX EF p) ∧ EG q ?
EX EF p ?

EF p ?
EG q ?

p ?
q ?

49



Tableaux computation

Having constructed the set Tφ,

we will compute JψK for each ψ ∈ Tφ

We start from the bottom (propositions) and end at the top (φ)

In our example, φ ≡ (EX EF p) ∧ EG q

Our goal is to fill the table:

(EX EF p) ∧ EG q ?
EX EF p ?

EF p ?
EG q ?

p ?
q ?

49



Easy part: propositions and Boolean connectives

Propositions are very easy to handle:

JpK = {s ∈ S | p ∈ L(s)} for p ∈ AP

Booleans are easy too:

Jψ′ ∧ ψ′′K = Jψ′K ∩ Jψ′′K and J¬ψK = S \ JψK

(EX EF p) ∧ EG q JEX EF pK ∩ JEG qK

EX EF p ?

EF p ?

EG q ?

p {s ∈ S | p ∈ L(s)}

q {s ∈ S | q ∈ L(s)}

50



Easy part: propositions and Boolean connectives

Propositions are very easy to handle:

JpK = {s ∈ S | p ∈ L(s)} for p ∈ AP

Booleans are easy too:

Jψ′ ∧ ψ′′K = Jψ′K ∩ Jψ′′K and J¬ψK = S \ JψK

(EX EF p) ∧ EG q JEX EF pK ∩ JEG qK

EX EF p ?

EF p ?

EG q ?

p {s ∈ S | p ∈ L(s)}

q {s ∈ S | q ∈ L(s)}

50



Nexttime

The first really temporal operator is easy too:

1 procedure compEX(ψ) {
2 JEXψK := {s ∈ S | ∃s′ ∈ JψK and (s, s′) ∈ T}
3 }

Note the relation between E and ∃ and between X and T

51



Until

φEUψ (or EφUψ) requires us to reason about paths:

1 procedure compEU(ψ′, ψ′′) {
2 Z := ∅
3 Z ′ := Jψ′′K
4 while Z ̸= Z ′

5 Z := Z ′

6 Z ′ := Z ∪ {s ∈ Jψ′K | ∃s′ ∈ Z and (s, s′) ∈ T}
7

8 Jψ′ EUψ′′K := Z
9 }

Why does it terminate?

52



Globally

EGψ requires us to find cycles on which ψ always holds

We start with JψK
Then we eliminate states s with no successor in JψK

1 procedure compEG(ψ) {
2 Z ′ := JψK
3 do
4 Z := Z ′

5 Z ′ := {s ∈ JψK | ∃s′ ∈ Z and (s, s′) ∈ T}
6 while Z ̸= Z ′

7

8 JEGψK := Z
9 }

53



Complete algorithm

Algorithm EXPLICITCTL
Input: a Kripke structure M = ⟨S,T , I, L⟩ and a CTL formula φ

1 compute Tφ = {ψ0, . . . , ψk} such that |ψ0| ≥ · · · ≥ |ψk |
2 f o r i from k downto 0 {
3 i f ψi = p such that p ∈ AP then
4 JψiK := {s ∈ S | p ∈ L(s)}
5 i f ψi = ¬ψ then
6 JψiK := S \ JψK
7 i f ψi = ψ′ ∧ ψ′′ then
8 JψiK := Jψ′K ∩ Jψ′′K
9 i f ψi = EXψ then

10 JψiK := compEX(ψ)
11 i f ψi = EGψ then
12 JψiK := compEG(ψ)
13 i f ψi = ψ′ EUψ′′ then
14 JψiK := compEU(ψ′, ψ′′)
15 }

54



Illustration of EU

EX

⋂
ϕ1

ϕ2

⋂
ϕ1

EX

E(φ1 Uφ2) holds in φ2

and in predecessor states of φ2

in which φ1 holds

Fixed point: Transitive closure
of all such predecessor states

55



Illustration of EG

×

ϕ
EX2

Start with all states in which φ
holds

shrink to states in φ such that φ
still holds after 1 step

Keep shrinking until fixed point
reached

56



Traffic light and EU

E
(

U
)

s0

s1

s2

s3

µZ . ∨ ( ∧ EX Z )

1. ∨
(

∧ EX⊥
)
= {s2}

2. ∨
(

∧
)
=

3. ∨ () =

4. Fixed point!

M, s1 |= E
(

U
)

M, s2 |= E
(

U
)

57



Traffic light and EU

E
(

U
)

s0

s1

s2

s3

µZ . ∨ ( ∧ EX Z )

1. ∨
(

∧ EX⊥
)
= {s2}

2. ∨
(

∧ EX {s2}
)
=

3. ∨ () =

4. Fixed point!

M, s1 |= E
(

U
)

M, s2 |= E
(

U
)

57



Traffic light and EU

E
(

U
)

s0

s1

s2

s3

µZ . ∨ ( ∧ EX Z )

1. ∨
(

∧ EX⊥
)
= {s2}

2. ∨
(

∧ {s1}
)
=

3. ∨ () =

4. Fixed point!

M, s1 |= E
(

U
)

M, s2 |= E
(

U
)

57



Traffic light and EU

E
(

U
)

s0

s1

s2

s3

µZ . ∨ ( ∧ EX Z )

1. ∨
(

∧ EX⊥
)
= {s2}

2. ∨
(

∧ {s1}
)
= {s1, s2}

3. ∨ () =

4. Fixed point!

M, s1 |= E
(

U
)

M, s2 |= E
(

U
)

57



Traffic light and EU

E
(

U
)

s0

s1

s2

s3

µZ . ∨ ( ∧ EX Z )

1. ∨
(

∧ EX⊥
)
= {s2}

2. ∨
(

∧ {s1}
)
= {s1, s2}

3. ∨
(

∧ EX {s1, s2}
)
=

4. Fixed point!

M, s1 |= E
(

U
)

M, s2 |= E
(

U
)

57



Traffic light and EU

E
(

U
)

s0

s1

s2

s3

µZ . ∨ ( ∧ EX Z )

1. ∨
(

∧ EX⊥
)
= {s2}

2. ∨
(

∧ {s1}
)
= {s1, s2}

3. ∨
(

∧ {s0, s1, s2}
)
=

4. Fixed point!

M, s1 |= E
(

U
)

M, s2 |= E
(

U
)

57



Traffic light and EU

E
(

U
)

s0

s1

s2

s3

µZ . ∨ ( ∧ EX Z )

1. ∨
(

∧ EX⊥
)
= {s2}

2. ∨
(

∧ {s1}
)
= {s1, s2}

3. ∨ ({s1}) =

4. Fixed point!

M, s1 |= E
(

U
)

M, s2 |= E
(

U
)

57



Traffic light and EU

E
(

U
)

s0

s1

s2

s3

µZ . ∨ ( ∧ EX Z )

1. ∨
(

∧ EX⊥
)
= {s2}

2. ∨
(

∧ {s1}
)
= {s1, s2}

3. ∨ ({s1}) = {s1, s2}

4. Fixed point!

M, s1 |= E
(

U
)

M, s2 |= E
(

U
)

57



Traffic light and EU

E
(

U
)

s0

s1

s2

s3

µZ . ∨ ( ∧ EX Z )

1. ∨
(

∧ EX⊥
)
= {s2}

2. ∨
(

∧ {s1}
)
= {s1, s2}

3. ∨ ({s1}) = {s1, s2}
4. Fixed point!

M, s1 |= E
(

U
)

M, s2 |= E
(

U
)

57



Traffic light and EG

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z

s0

s1

s2

s3

1. {s1, s2} ∧ EX⊤

= {s1, s2}
2. {s1, s2}∧
3. {s1, s2}∧
4. Fixed point!

M, s1 |= EG
(

E
(

U
))

58



Traffic light and EG

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z

s0

s1

s2

s3

1. {s1, s2} ∧ ⊤

= {s1, s2}
2. {s1, s2}∧
3. {s1, s2}∧
4. Fixed point!

M, s1 |= EG
(

E
(

U
))

58



Traffic light and EG

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z

s0

s1

s2

s3

1. {s1, s2} ∧ ⊤ = {s1, s2}

2. {s1, s2}∧
3. {s1, s2}∧
4. Fixed point!

M, s1 |= EG
(

E
(

U
))

58



Traffic light and EG

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z

s0

s1

s2

s3

1. {s1, s2} ∧ ⊤ = {s1, s2}
2. {s1, s2} ∧ EX {s1, s2}

3. {s1, s2}∧
4. Fixed point!

M, s1 |= EG
(

E
(

U
))

58



Traffic light and EG

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z

s0

s1

s2

s3

1. {s1, s2} ∧ ⊤ = {s1, s2}
2. {s1, s2} ∧ {s0, s1, s3}

3. {s1, s2}∧
4. Fixed point!

M, s1 |= EG
(

E
(

U
))

58



Traffic light and EG

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z

s0

s1

s2

s3

1. {s1, s2} ∧ ⊤ = {s1, s2}
2. {s1, s2}∧{s0, s1, s3} = {s1}

3. {s1, s2}∧
4. Fixed point!

M, s1 |= EG
(

E
(

U
))

58



Traffic light and EG

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z

s0

s1

s2

s3

1. {s1, s2} ∧ ⊤ = {s1, s2}
2. {s1, s2}∧{s0, s1, s3} = {s1}

3. {s1, s2} ∧ EX {s1}

4. Fixed point!

M, s1 |= EG
(

E
(

U
))

58



Traffic light and EG

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z

s0

s1

s2

s3

1. {s1, s2} ∧ ⊤ = {s1, s2}
2. {s1, s2}∧{s0, s1, s3} = {s1}

3. {s1, s2} ∧ {s0, s1, s3}

4. Fixed point!

M, s1 |= EG
(

E
(

U
))

58



Traffic light and EG

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z

s0

s1

s2

s3

1. {s1, s2} ∧ ⊤ = {s1, s2}
2. {s1, s2}∧{s0, s1, s3} = {s1}

3. {s1, s2}∧{s0, s1, s3} = {s1}

4. Fixed point!

M, s1 |= EG
(

E
(

U
))

58



Traffic light and EG

Let’s compute the greatest fixed point

νZ . {s1, s2} ∧ EX Z

s0

s1

s2

s3

1. {s1, s2} ∧ ⊤ = {s1, s2}
2. {s1, s2}∧{s0, s1, s3} = {s1}

3. {s1, s2}∧{s0, s1, s3} = {s1}

4. Fixed point!

M, s1 |= EG
(

E
(

U
))

58



Complexity?

CompEX requires O(|T |)

CompEF and CompEG require O(|S|+ |T |) operations

Propositions, ¬, and ∧ can be treated in O(|S|)

Thus, O(|φ| · (|S|+ |T |))

59



Summary

Introduced temporal logics as a specification language
Branching time logic (CTL)
Linear time logic (LTL)
Computation tree logic (CTL∗)

Explicit model checking for CTL

60


